1
|
Roerden M, Spranger S. Cancer immune evasion, immunoediting and intratumour heterogeneity. Nat Rev Immunol 2025; 25:353-369. [PMID: 39748116 DOI: 10.1038/s41577-024-01111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
Cancers can avoid immune-mediated elimination by acquiring traits that disrupt antitumour immunity. These mechanisms of immune evasion are selected and reinforced during tumour evolution under immune pressure. Some immunogenic subclones are effectively eliminated by antitumour T cell responses (a process known as immunoediting), which results in a clonally selected tumour. Other cancer cells arise to resist immunoediting, which leads to a tumour that includes several distinct cancer cell populations (referred to as intratumour heterogeneity (ITH)). Tumours with high ITH are associated with poor patient outcomes and a lack of responsiveness to immune checkpoint blockade therapy. In this Review, we discuss the different ways that cancer cells evade the immune system and how these mechanisms impact immunoediting and tumour evolution. We also describe how subclonal antigen presentation in tumours with high ITH can result in immune evasion.
Collapse
Affiliation(s)
- Malte Roerden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, MA, USA
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute for Technology, Cambridge, MA, USA.
- Ragon Institute of Mass General Hospital, Massachusetts Institute for Technology and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Baba K, Suzuki N, Imamura CK, Booka E, Takeuchi M, Takahari D, Kawakami T, Kawakubo H, Kitagawa C, Kono Y, Ogura K, Kito Y, Saito K, Yamamoto S, Takeuchi H, Kudo T, Tsunoda T, Mizukami T, Yamaguchi T, Shoji H, Saito K, Tanoue K, Baba E, Nagashima K, Boku N. A phase I/II trial evaluating the safety of increased-dose S- 1 with oxaliplatin and nivolumab in HER2-negative advanced gastric cancer. BMC Cancer 2025; 25:675. [PMID: 40221699 PMCID: PMC11993961 DOI: 10.1186/s12885-025-14084-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND We developed and refined an S-1 dosage formula based on renal function, sex, and body surface area (BSA) to achieve the target area under the concentration-time curve of 5-fluorouracil in two prospective pharmacokinetic studies. The clinical validity of the refined formula (BBT formula) was evaluated using data from the two phase III trials of fist-line chemotherapy including S-1 for advanced gastric cancer, which demonstrated that overall survival and progression-free survival tended to be shorter in patients whose S-1 standard dose, based on BSA alone, was lower than that determined using the BBT formula. METHODS Chemo-naïve patients with HER2-negative advanced gastric or gastroesophageal junction cancer, whose standard S-1 dose is lower than that determined using the BBT formula, receive S-1 at an increased dose based on the BBT formula plus oxaliplatin (130 mg/m2) and nivolumab (360 mg/body). The primary endpoint is the incidence of dose-limiting toxicity in six patients in the phase I part and the proportion of patients requiring S-1 dose reduction in a total of 20 patients, expecting 30% and rejecting 50% with an alpha error of 0.1 and beta error of 0.2. The secondary endpoints are adverse events, relative dose intensity, response rate, disease control rate, progression-free survival, and overall survival. A correlation study is conducted to investigate the immune profiles associated with efficacy. DISCUSSION This phase I/II trial evaluates the safety and efficacy of S-1 at increased doses, determined by the BBT formula, in combination with oxaliplatin and nivolumab in patients with HER2-negative advanced gastric cancer, whose standard dose of S- 1 is lower than the dose recommended dose by the BBT formula. TRIAL REGISTRATION This study was approved by the University of Tokyo Clinical Research Review Board (URL: https://www.ut-crescent.jp/patients/chiken_jisshi/ , review number: 2022529SP) and was initiated at 19 institutions in June 2023 (registered as jRCTs031230127).
Collapse
Affiliation(s)
- Keisuke Baba
- Department of Oncology and General Medicine, IMSUT Hospital, the Institute of Medical Science Hospital, the University of Tokyo, Tokyo, Japan
| | - Nobumi Suzuki
- Department of Gastroenterology Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Chiyo K Imamura
- Advanced Cancer Translational Research Institute, Showa University, Tokyo, Japan
| | - Eisuke Booka
- Department of Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Masashi Takeuchi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Takahari
- Department of Gastroenterological Chemotherapy, The Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takeshi Kawakami
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Hirofumi Kawakubo
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Chiyoe Kitagawa
- Medical Oncology and Respiratory Medicine, NHO Nagoya Medical Center, Aichi, Japan
| | - Yoshiyasu Kono
- Department of Gastroenterology and Hepatology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Keiji Ogura
- Department of Gastroenterology, Tokyo Metropolitan Police Hospital, Tokyo, Japan
| | - Yosuke Kito
- Department of Medical Oncology, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | - Kei Saito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shinzo Yamamoto
- Department of Gastroenterology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Hiroya Takeuchi
- Department of Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Toshihiro Kudo
- Department of Medical Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Takuya Tsunoda
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Takuro Mizukami
- Department of Medical Oncology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Toshifumi Yamaguchi
- Cancer Chemotherapy Center, Osaka Medical and Pharmaceutical University Hospital, Osaka, Japan
| | - Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kanako Saito
- Department of Medical Oncology, Mie University Hospital, Mie, Japan
| | - Kenro Tanoue
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eishi Baba
- Department of Comprehensive Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kengo Nagashima
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
| | - Narikazu Boku
- Department of Oncology and General Medicine, IMSUT Hospital, the Institute of Medical Science Hospital, the University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Han SH, Ju MH, Pak MG. Prognostic and therapeutic potential of CXCR6 expression on CD8 + T cells in gastric cancer: a retrospective cohort study. BMC Gastroenterol 2025; 25:139. [PMID: 40050760 PMCID: PMC11884069 DOI: 10.1186/s12876-025-03735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/26/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) is a pressing global health concern, with prognosis intricately linked to the tumour stage and tumour microenvironment, especially, the presence of immune cells. Notably, CD8 + T cells play a pivotal role in the anti-tumour immune response, prompting investigations into their correlation with GC survival. This study aimed to investigate the intricate interplay between CD8 + T cells, particularly within the context of CXCR6, and survival outcomes in patients with GC. METHODS Utilising datasets from The Cancer Genome Atlas, Gene Expression Omnibus, and Tumor Immune Dysfunction and Exclusion, the study employed xCell and Weighted Gene Co-expression Network Analysis to assess CD8 + T cell infiltration and identify key gene clusters. The prognostic significance of CXCR6 was evaluated via immunohistochemical staining of a GC tissue microarray. RESULTS High CD8 + T cell infiltration correlated with improved survival in patients with GC. CXCR6 was identified as a prognostic gene and its expression was predominantly observed in CD8 + T cells. CXCR6 expression positively correlated with improved overall and disease-free survival. Furthermore, CXCR6 expression was associated with an immunoreactive microenvironment. CONCLUSION This study established that high CD8 + T-cell infiltration is related to CXCR6 expression, making it a key factor in predicting a favorable GC prognosis. The role of CXCR6 in shaping the tumour microenvironment and its potential utility in immunotherapy response prediction highlights its significance in GC management.
Collapse
Affiliation(s)
- Song-Hee Han
- Department of Pathology, Dong-A University College of Medicine, Busan, 49201, Republic of Korea.
| | - Mi Ha Ju
- Department of Pathology, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Min Gyoung Pak
- Department of Pathology, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| |
Collapse
|
4
|
Ruan L, Wang L. Adoptive cell therapy against tumor immune evasion: mechanisms, innovations, and future directions. Front Oncol 2025; 15:1530541. [PMID: 40094019 PMCID: PMC11906336 DOI: 10.3389/fonc.2025.1530541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
Tumors employ a range of strategies to evade detection and eradication by the host's immune system. These include downregulating antigen expression, altering antigen presentation processes, and inhibiting immune checkpoint pathways. etc. Adoptive Cell Therapy (ACT) represents a strategy that boosts anti-tumor immunity. This is achieved by amplifying or genetically engineering immune cells, which are either sourced from the patient or a donor, in a laboratory setting. Subsequently, these cells are reintroduced into the patient to bolster their immune response against cancer. ACT has successfully restored anti-tumor immune responses by amplifying the activity of T cells from patients or donors. This review focuses on the mechanisms underlying tumor escape, including alterations in tumor cell antigens, the immunosuppressive tumor microenvironment (TME), and modulation of immune checkpoint pathways. It further explores how ACT can avddress these factors to enhance therapeutic efficacy. Additionally, the review discusses the application of gene-editing technologies (such as CRISPR) in ACT, highlighting their potential to strengthen the anti-tumor capabilities of T cells. Looking forward, the personalized design of ACT, combined with immune checkpoint inhibitors and targeted therapies, is expected to significantly improve treatment outcomes, positioning this approach as a key strategy in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Liqin Ruan
- Department of Hepatobiliary Surgery, JiuJiang City Key Laboratory of Cell Therapy, JiuJiang No.1 People's Hospital, Jiujiang, Jiangxi, China
| | - Lu Wang
- Department of Oncology, JiuJiang City Key Laboratory of Cell Therapy, JiuJiang No.1 People's Hospital, Jiujiang, Jiangxi, China
| |
Collapse
|
5
|
Shi H, Li Z, Zhu M. Circulating Immune Cells Predict Prognosis and Clinical Response to Chemotherapy in Cholangiocarcinoma. Curr Med Chem 2025; 32:595-607. [PMID: 38698750 DOI: 10.2174/0109298673296618240424095548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND The immune system is linked to the prognosis and response to treatment of patients with cancer. However, the clinical implication of peripheral blood immune cells in cholangiocarcinoma (CCA) remains vague. Thus, we aimed to assess whether peripheral circulating immune cells could be used as an indicator for prognosis and chemotherapeutic efficacy in CCA. METHODS The distributions of immune subsets were analyzed in peripheral blood samples from 141 patients with CCA and 131 healthy volunteers by using flow cytometry. The variation in the subset distribution in the two groups and the relationship between clinicopathological features and the subpopulations were investigated. Meanwhile, we assessed the implications of lymphocyte subsets as predictors of chemotherapy outcomes and overall survival (OS). RESULTS The proportion of total lymphocytes decreased, while the percentages of activated T cells as well as CD4+CD25+ regulatory T cells (Tregs) increased in CCA. Notably, lymphocyte proportion decreased in patients with regional lymph node (N) (p=0.016) and distant metastasis (M) (p= 0.001). Furthermore, our study showed that peripheral blood lymphocyte subsets were significantly correlated with chemotherapy efficacy, with increased proportions of CD3+ cells (p=0.021) and CD4+ cells (p=0.016) in the effective group. Finally, the Kaplan-Meier analysis indicated that patients with high natural killer (NK) cell proportion might have prolonged OS (p = 0.028). CONCLUSION The relationship between circulating immune cells with prognosis and chemotherapy response in patients with CCA highlights their potential application as an indicator of CCA prognosis and stratification of chemotherapy response.
Collapse
Affiliation(s)
- Huina Shi
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zhaosheng Li
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Mingchen Zhu
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Aparicio B, Theunissen P, Hervas-Stubbs S, Fortes P, Sarobe P. Relevance of mutation-derived neoantigens and non-classical antigens for anticancer therapies. Hum Vaccin Immunother 2024; 20:2303799. [PMID: 38346926 PMCID: PMC10863374 DOI: 10.1080/21645515.2024.2303799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/06/2024] [Indexed: 02/15/2024] Open
Abstract
Efficacy of cancer immunotherapies relies on correct recognition of tumor antigens by lymphocytes, eliciting thus functional responses capable of eliminating tumor cells. Therefore, important efforts have been carried out in antigen identification, with the aim of understanding mechanisms of response to immunotherapy and to design safer and more efficient strategies. In addition to classical tumor-associated antigens identified during the last decades, implementation of next-generation sequencing methodologies is enabling the identification of neoantigens (neoAgs) arising from mutations, leading to the development of new neoAg-directed therapies. Moreover, there are numerous non-classical tumor antigens originated from other sources and identified by new methodologies. Here, we review the relevance of neoAgs in different immunotherapies and the results obtained by applying neoAg-based strategies. In addition, the different types of non-classical tumor antigens and the best approaches for their identification are described. This will help to increase the spectrum of targetable molecules useful in cancer immunotherapies.
Collapse
Affiliation(s)
- Belen Aparicio
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Patrick Theunissen
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Puri Fortes
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Spanish Network for Advanced Therapies (TERAV ISCIII), Spain
| | - Pablo Sarobe
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| |
Collapse
|
7
|
O’Brien H, Salm M, Morton LT, Szukszto M, O’Farrell F, Boulton C, King L, Bola SK, Becker PD, Craig A, Nielsen M, Samuels Y, Swanton C, Mansour MR, Hadrup SR, Quezada SA. A modular protein language modelling approach to immunogenicity prediction. PLoS Comput Biol 2024; 20:e1012511. [PMID: 39527593 PMCID: PMC11581412 DOI: 10.1371/journal.pcbi.1012511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/21/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
Neoantigen immunogenicity prediction is a highly challenging problem in the development of personalised medicines. Low reactivity rates in called neoantigens result in a difficult prediction scenario with limited training datasets. Here we describe ImmugenX, a modular protein language modelling approach to immunogenicity prediction for CD8+ reactive epitopes. ImmugenX comprises of a pMHC encoding module trained on three pMHC prediction tasks, an optional TCR encoding module and a set of context specific immunogenicity prediction head modules. Compared with state-of-the-art models for each task, ImmugenX's encoding module performs comparably or better on pMHC binding affinity, eluted ligand prediction and stability tasks. ImmugenX outperforms all compared models on pMHC immunogenicity prediction (Area under the receiver operating characteristic curve = 0.619, average precision: 0.514), with a 7% increase in average precision compared to the next best model. ImmugenX shows further improved performance on immunogenicity prediction with the integration of TCR context information. ImmugenX performance is further analysed for interpretability, which locates areas of weakness found across existing immunogenicity models and highlight possible biases in public datasets.
Collapse
Affiliation(s)
| | - Max Salm
- Achilles Therapeutics UK Ltd, United Kingdom
| | | | - Maciej Szukszto
- Research Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | | | - Charlotte Boulton
- Research Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Laurence King
- Achilles Therapeutics UK Ltd, United Kingdom
- Research Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Supreet Kaur Bola
- Research Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | | | | | | | | | | | - Marc R. Mansour
- Research Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
- Department of Developmental Biology and Cancer, Great Ormond Street Institute of Child Health, UCL
| | | | - Sergio A. Quezada
- Achilles Therapeutics UK Ltd, United Kingdom
- Research Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
8
|
Li X, Liu Y, Gui J, Gan L, Xue J. Cell Identity and Spatial Distribution of PD-1/PD-L1 Blockade Responders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400702. [PMID: 39248327 PMCID: PMC11538707 DOI: 10.1002/advs.202400702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/08/2024] [Indexed: 09/10/2024]
Abstract
The programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) axis inhibits T cell activity, impairing anti-tumor immunity. Blocking this axis with therapeutic antibodies is one of the most promising anti-tumor immunotherapies. It has long been recognized that PD-1/PD-L1 blockade reinvigorates exhausted T (TEX) cells already present in the tumor microenvironment (TME). However, recent advancements in high-throughput gene sequencing and bioinformatic tools have provided researchers with a more granular and dynamic insight into PD-1/PD-L1 blockade-responding cells, extending beyond the TME and TEX populations. This review provides an update on the cell identity, spatial distribution, and treatment-induced spatiotemporal dynamics of PD-1/PD-L1 blockade responders. It also provides a synopsis of preliminary reports of potential PD-1/PD-L1 blockade responders other than T cells to depict a panoramic picture. Important questions to answer in further studies and the translational and clinical potential of the evolving understandings are also discussed.
Collapse
Affiliation(s)
- Xintong Li
- Division of Thoracic Tumor Multimodality TreatmentState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Yuanxin Liu
- Division of Thoracic Tumor Multimodality TreatmentState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Jun Gui
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Lu Gan
- Research Laboratory of Emergency MedicineDepartment of Emergency MedicineNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality TreatmentState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsLaboratory of Clinical Cell TherapyWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
9
|
Alban TJ, Riaz N, Parthasarathy P, Makarov V, Kendall S, Yoo SK, Shah R, Weinhold N, Srivastava R, Ma X, Krishna C, Mok JY, van Esch WJE, Garon E, Akerley W, Creelan B, Aanur N, Chowell D, Geese WJ, Rizvi NA, Chan TA. Neoantigen immunogenicity landscapes and evolution of tumor ecosystems during immunotherapy with nivolumab. Nat Med 2024; 30:3209-3222. [PMID: 39349627 PMCID: PMC12066197 DOI: 10.1038/s41591-024-03240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 08/08/2024] [Indexed: 11/16/2024]
Abstract
Neoantigen immunoediting drives immune checkpoint blockade efficacy, yet the molecular features of neoantigens and how neoantigen immunogenicity shapes treatment response remain poorly understood. To address these questions, 80 patients with non-small cell lung cancer were enrolled in the biomarker cohort of CheckMate 153 (CA209-153), which collected radiographic guided biopsy samples before treatment and during treatment with nivolumab. Early loss of mutations and neoantigens during therapy are both associated with clinical benefit. We examined 1,453 candidate neoantigens, including many of which that had reduced cancer cell fraction after treatment with nivolumab, and identified 196 neopeptides that were recognized by T cells. Mapping these neoantigens to clonal dynamics, evolutionary trajectories and clinical response revealed a strong selection against immunogenic neoantigen-harboring clones. We identified position-specific amino acid and physiochemical features related to immunogenicity and developed an immunogenicity score. Nivolumab-induced microenvironmental evolution in non-small cell lung cancer shared some similarities with melanoma, yet critical differences were apparent. This study provides unprecedented molecular portraits of neoantigen landscapes underlying nivolumab's mechanism of action.
Collapse
Affiliation(s)
- Tyler J Alban
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prerana Parthasarathy
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vladimir Makarov
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sviatoslav Kendall
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Seong-Keun Yoo
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Rachna Shah
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nils Weinhold
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Raghvendra Srivastava
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaoxiao Ma
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | - Edward Garon
- Department of Thoracic Medical Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Wallace Akerley
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Benjamin Creelan
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Diego Chowell
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Naiyer A Rizvi
- Synthekine, Menlo Park, CA, USA
- Thoracic Oncology, Columbia University, New York, NY, USA
| | - Timothy A Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA.
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
- National Center for Regenerative Medicine, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
10
|
Tanoue K, Ohmura H, Uehara K, Ito M, Yamaguchi K, Tsuchihashi K, Shinohara Y, Lu P, Tamura S, Shimokawa H, Isobe T, Ariyama H, Shibata Y, Tanaka R, Kusaba H, Esaki T, Mitsugi K, Kiyozawa D, Iwasaki T, Yamamoto H, Oda Y, Akashi K, Baba E. Spatial dynamics of CD39 +CD8 + exhausted T cell reveal tertiary lymphoid structures-mediated response to PD-1 blockade in esophageal cancer. Nat Commun 2024; 15:9033. [PMID: 39426955 PMCID: PMC11490492 DOI: 10.1038/s41467-024-53262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
Despite the success of immune checkpoint blockade (ICB) therapy for esophageal squamous cell cancer, the key immune cell populations that affect ICB efficacy remain unclear. Here, imaging mass cytometry of tumor tissues from ICB-treated patients identifies a distinct cell population of CD39+PD-1+CD8+ T cells, specifically the TCF1+ subset, precursor exhausted T (CD39+ Tpex) cells, which positively correlate with ICB benefit. CD39+ Tpex cells are predominantly in the stroma, while differentiated CD39+ exhausted T cells are abundantly and proximally within the parenchyma. Notably, CD39+ Tpex cells are concentrated within and around tertiary lymphoid structure (TLS). Accordingly, tumors harboring TLSs have more of these cells in tumor areas than tumors lacking TLSs, suggesting Tpex cell recruitment from TLSs to tumors. In addition, circulating CD39+ Tpex cells are also increased in responders following ICB therapy. Our findings show that this unique subpopulation of CD39+PD-1+CD8+ T cells is crucial for ICB benefit, and suggest a key role in TLS-mediated immune responses against tumors.
Collapse
Affiliation(s)
- Kenro Tanoue
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirofumi Ohmura
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Oncology and Social Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koki Uehara
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mamoru Ito
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kyoko Yamaguchi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenji Tsuchihashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yudai Shinohara
- Department of Hematology/Oncology, Japan Community Healthcare Organization Kyushu Hospital, Fukuoka, Japan
| | - Peng Lu
- Department of Imaging Science Program, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Shingo Tamura
- Department of Medical Oncology, NHO National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Hozumi Shimokawa
- Department of Medical Oncology, Hamanomachi Hospital, Fukuoka, Japan
| | - Taichi Isobe
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Oncology and Social Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Ariyama
- Department of Medical Oncology, Kitakyushu Municipal Medical Center, Fukuoka, Japan
| | - Yoshihiro Shibata
- Department of Medical Oncology, Fukuoka Wajiro Hospital, Fukuoka, Japan
| | - Risa Tanaka
- Department of Medical Oncology, St Mary's Hospital, Kurume, Japan
| | - Hitoshi Kusaba
- Department of Medical Oncology, Hamanomachi Hospital, Fukuoka, Japan
| | - Taito Esaki
- Department of Gastrointestinal and Medical Oncology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Kenji Mitsugi
- Department of Medical Oncology, Sasebo Kyosai Hospital, Nagasaki, Japan
| | - Daisuke Kiyozawa
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Iwasaki
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eishi Baba
- Department of Oncology and Social Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
11
|
Skadborg SK, Maarup S, Draghi A, Borch A, Hendriksen S, Mundt F, Pedersen V, Mann M, Christensen IJ, Skjøth-Ramussen J, Yde CW, Kristensen BW, Poulsen HS, Hasselbalch B, Svane IM, Lassen U, Hadrup SR. Nivolumab Reaches Brain Lesions in Patients with Recurrent Glioblastoma and Induces T-cell Activity and Upregulation of Checkpoint Pathways. Cancer Immunol Res 2024; 12:1202-1220. [PMID: 38885356 PMCID: PMC11369628 DOI: 10.1158/2326-6066.cir-23-0959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/10/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Glioblastoma (GBM) is an aggressive brain tumor with poor prognosis. Although immunotherapy is being explored as a potential treatment option for patients with GBM, it is unclear whether systemic immunotherapy can reach and modify the tumor microenvironment in the brain. We evaluated immune characteristics in patients receiving the anti-PD-1 immune checkpoint inhibitor nivolumab 1 week prior to surgery, compared with control patients receiving salvage resection without prior nivolumab treatment. We observed saturating levels of nivolumab bound to intratumorally and tissue-resident T cells in the brain, implicating saturating levels of nivolumab reaching brain tumors. Following nivolumab treatment, significant changes in T-cell activation and proliferation were observed in the tumor-resident T-cell population, and peripheral T cells upregulated chemokine receptors related to brain homing. A strong nivolumab-driven upregulation in compensatory checkpoint inhibition molecules, i.e., TIGIT, LAG-3, TIM-3, and CTLA-4, was observed, potentially counteracting the treatment effect. Finally, tumor-reactive tumor-infiltrating lymphocytes (TIL) were found in a subset of nivolumab-treated patients with prolonged survival, and neoantigen-reactive T cells were identified in both TILs and blood. This indicates a systemic response toward GBM in a subset of patients, which was further boosted by nivolumab, with T-cell responses toward tumor-derived neoantigens. Our study demonstrates that nivolumab does reach the GBM tumor lesion and enhances antitumor T-cell responses both intratumorally and systemically. However, various anti-inflammatory mechanisms mitigate the clinical efficacy of the anti-PD-1 treatment.
Collapse
Affiliation(s)
- Signe K. Skadborg
- Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Simone Maarup
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- National Center for Cancer Immune Therapy, CCIT-DK, Copenhagen University Hospital, Herlev, Denmark.
| | - Arianna Draghi
- National Center for Cancer Immune Therapy, CCIT-DK, Copenhagen University Hospital, Herlev, Denmark.
| | - Annie Borch
- Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Sille Hendriksen
- Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Filip Mundt
- Novo Nordisk Foundation Center for Protein Research, CPR, University of Copenhagen, Copenhagen, Denmark.
| | - Vilde Pedersen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- Department of Pathology, The Bartholin Institute, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, CPR, University of Copenhagen, Copenhagen, Denmark.
- Research Department Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Ib J. Christensen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Jane Skjøth-Ramussen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Christina W. Yde
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Bjarne W. Kristensen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- Department of Pathology, The Bartholin Institute, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| | - Hans S. Poulsen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Benedikte Hasselbalch
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Inge M. Svane
- National Center for Cancer Immune Therapy, CCIT-DK, Copenhagen University Hospital, Herlev, Denmark.
| | - Ulrik Lassen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Sine R. Hadrup
- Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
12
|
Nguyen DH, You SH, Ngo HTT, Van Nguyen K, Tran KV, Chu TH, Kim SY, Ha SJ, Hong Y, Min JJ. Reprogramming the tumor immune microenvironment using engineered dual-drug loaded Salmonella. Nat Commun 2024; 15:6680. [PMID: 39107284 PMCID: PMC11303714 DOI: 10.1038/s41467-024-50950-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/22/2024] [Indexed: 08/09/2024] Open
Abstract
Synergistic combinations of immunotherapeutic agents can improve the performance of anti-cancer therapies but may lead to immune-mediated adverse effects. These side-effects can be overcome by using a tumor-specific delivery system. Here, we report a method of targeted immunotherapy using an attenuated Salmonella typhimurium (SAM-FC) engineered to release dual payloads: cytolysin A (ClyA), a cytolytic anti-cancer agent, and Vibrio vulnificus flagellin B (FlaB), a potent inducer of anti-tumor innate immunity. Localized secretion of ClyA from SAM-FC induces immunogenic cancer cell death and promotes release of tumor-specific antigens and damage-associated molecular patterns, which establish long-term antitumor memory. Localized secretion of FlaB promotes phenotypic and functional remodeling of intratumoral macrophages that markedly inhibits tumor metastasis in mice bearing tumors of mouse and human origin. Both primary and metastatic tumors from bacteria-treated female mice are characterized by massive infiltration of anti-tumorigenic innate immune cells and activated tumor-specific effector/memory T cells; however, the percentage of immunosuppressive cells is low. Here, we show that SAM-FC induces functional reprogramming of the tumor immune microenvironment by activating both the innate and adaptive arms of the immune system and can be used for targeted delivery of multiple immunotherapeutic payloads for the establishment of potent and long-lasting antitumor immunity.
Collapse
Affiliation(s)
- Dinh-Huy Nguyen
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, 58128, Republic of Korea
- Department of Biomedical Science (BrainKorea21 Plus) Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | | | - Hien Thi-Thu Ngo
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Department of Biomedical Science (BrainKorea21 Plus) Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
- Department of Biochemistry, Hanoi Medical University, Dong Da, No 1, Ton That Tung St., Hanoi, 100000, Vietnam
| | - Khuynh Van Nguyen
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Department of Biomedical Science (BrainKorea21 Plus) Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | - Khang Vuong Tran
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Department of Biomedical Science (BrainKorea21 Plus) Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | - Tan-Huy Chu
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - So-Young Kim
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- CNCure Co. Ltd, Hwasun, 58128, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Yeongjin Hong
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
- Department of Biomedical Science (BrainKorea21 Plus) Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea.
- CNCure Co. Ltd, Hwasun, 58128, Republic of Korea.
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, 58128, Republic of Korea.
- Department of Biomedical Science (BrainKorea21 Plus) Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea.
- CNCure Co. Ltd, Hwasun, 58128, Republic of Korea.
| |
Collapse
|
13
|
Machaca V, Goyzueta V, Cruz MG, Sejje E, Pilco LM, López J, Túpac Y. Transformers meets neoantigen detection: a systematic literature review. J Integr Bioinform 2024; 21:jib-2023-0043. [PMID: 38960869 PMCID: PMC11377031 DOI: 10.1515/jib-2023-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/20/2024] [Indexed: 07/05/2024] Open
Abstract
Cancer immunology offers a new alternative to traditional cancer treatments, such as radiotherapy and chemotherapy. One notable alternative is the development of personalized vaccines based on cancer neoantigens. Moreover, Transformers are considered a revolutionary development in artificial intelligence with a significant impact on natural language processing (NLP) tasks and have been utilized in proteomics studies in recent years. In this context, we conducted a systematic literature review to investigate how Transformers are applied in each stage of the neoantigen detection process. Additionally, we mapped current pipelines and examined the results of clinical trials involving cancer vaccines.
Collapse
Affiliation(s)
| | | | | | - Erika Sejje
- Universidad Nacional de San Agustín, Arequipa, Perú
| | | | | | - Yván Túpac
- 187038 Universidad Católica San Pablo , Arequipa, Perú
| |
Collapse
|
14
|
Tang X, Mao X, Ling P, Yu M, Pan H, Wang J, Liu M, Pan H, Qiu W, Che N, Zhang K, Bao F, Peng H, Ding Q, Wang S, Zhou W. Glycolysis inhibition induces anti-tumor central memory CD8 +T cell differentiation upon combination with microwave ablation therapy. Nat Commun 2024; 15:4665. [PMID: 38821965 PMCID: PMC11143264 DOI: 10.1038/s41467-024-49059-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
Minimally invasive thermal therapy is a successful alternative treatment to surgery in solid tumors with high complete ablation rates, however, tumor recurrence remains a concern. Central memory CD8+ T cells (TCM) play important roles in protection from chronic infection and cancer. Here we find, by single-cell RNA analysis of human breast cancer samples, that although the memory phenotype of peripheral CD8+ T cells increases slightly after microwave ablation (MWA), the metabolism of peripheral CD8+ T cells remains unfavorable for memory phenotype. In mouse models, glycolysis inhibition by 2-deoxy-D-glucose (2DG) in combination with MWA results in long-term anti-tumor effect via enhancing differentiation of tumor-specific CD44hiCD62L+CD8+ TCM cells. Enhancement of CD8+ TCM cell differentiation determined by Stat-1, is dependent on the tumor-draining lymph nodes (TDLN) but takes place in peripheral blood, with metabolic remodeling of CD8+ T cells lasting the entire course of the the combination therapy. Importantly, in-vitro glycolysis inhibition in peripheral CD8+ T cells of patients with breast or liver tumors having been treated with MWA thrice leads to their differentiation into CD8+ TCM cells. Our work thus offers a potential strategy to avoid tumor recurrence following MWA therapy and lays down the proof-of-principle for future clinical trials.
Collapse
Affiliation(s)
- Xinyu Tang
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xinrui Mao
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Peiwen Ling
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Muxin Yu
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hua Pan
- Department of General Surgery, Liyang Branch of Jiangsu Provincial People's Hospital, 70 Jianshe West Road, 213399, Liyang, China
| | - Jiaming Wang
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mingduo Liu
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hong Pan
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wen Qiu
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, China
| | - Nan Che
- Department of Rheumatology and Immunology, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Kai Zhang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Pancreatic Center & Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
- Pancreas Institute of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Feifan Bao
- The First Clinical Medical College of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Hongwei Peng
- Department of General Surgery, Liyang Branch of Jiangsu Provincial People's Hospital, 70 Jianshe West Road, 213399, Liyang, China
| | - Qiang Ding
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shui Wang
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Wenbin Zhou
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
15
|
Huang KCY, Chen WTL, Chen JY, Lee CY, Wu CH, Lai CY, Yang PC, Liang JA, Shiau AC, Chao KSC, Ke TW. Neoantigen-augmented iPSC cancer vaccine combined with radiotherapy promotes antitumor immunity in poorly immunogenic cancers. NPJ Vaccines 2024; 9:95. [PMID: 38821980 PMCID: PMC11143272 DOI: 10.1038/s41541-024-00881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 06/02/2024] Open
Abstract
Although irradiated induced-pluripotent stem cells (iPSCs) as a prophylactic cancer vaccine elicit an antitumor immune response, the therapeutic efficacy of iPSC-based cancer vaccines is not promising due to their insufficient antigenicity and the immunosuppressive tumor microenvironment. Here, we found that neoantigen-engineered iPSC cancer vaccines can trigger neoantigen-specific T cell responses to eradicate cancer cells and increase the therapeutic efficacy of RT in poorly immunogenic colorectal cancer (CRC) and triple-negative breast cancer (TNBC). We generated neoantigen-augmented iPSCs (NA-iPSCs) by engineering AAV2 vector carrying murine neoantigens and evaluated their therapeutic efficacy in combination with radiotherapy. After administration of NA-iPSC cancer vaccine and radiotherapy, we found that ~60% of tumor-bearing mice achieved a complete response in microsatellite-stable CRC model. Furthermore, splenocytes from mice treated with NA-iPSC plus RT produced high levels of IFNγ secretion in response to neoantigens and had a greater cytotoxicity to cancer cells, suggesting that the NA-iPSC vaccine combined with radiotherapy elicited a superior neoantigen-specific T-cell response to eradicate cancer cells. The superior therapeutic efficacy of NA-iPSCs engineered by mouse TNBC neoantigens was also observed in the syngeneic immunocompetent TNBC mouse model. We found that the risk of spontaneous lung and liver metastasis was dramatically decreased by NA-iPSCs plus RT in the TNBC animal model. Altogether, these results indicated that autologous iPSC cancer vaccines engineered by neoantigens can elicit a high neoantigen-specific T-cell response, promote tumor regression, and reduce the risk of distant metastasis in combination with local radiotherapy.
Collapse
Affiliation(s)
- Kevin Chih-Yang Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 406040, Taiwan, ROC.
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan, ROC.
| | - William Tzu-Liang Chen
- Department of Surgery, School of Medicine, China Medical University, Taichung, 406040, Taiwan, ROC
- Department of Colorectal Surgery, China Medical University HsinChu Hospital, China Medical University, HsinChu, 302, Taiwan, ROC
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
| | - Jia-Yi Chen
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
| | - Chien-Yueh Lee
- Innovation Frontier Institute of Research for Science and Technology, National Taipei University of Technology, Taipei, 106344, Taiwan, ROC
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, 106344, Taiwan, ROC
- Department of Biomedical Engineering, China Medical University, Taichung, 406040, Taiwan, ROC
| | - Chia-Hsin Wu
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
- Bioinformatics and Biostatistics Core, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, 10055, Taiwan, ROC
| | - Chia-Ying Lai
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 406040, Taiwan, ROC
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
| | - Pei-Chen Yang
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
| | - Ji-An Liang
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
- Department of Radiotherapy, School of Medicine, China Medical University, Taichung, 406040, Taiwan, ROC
| | - An-Cheng Shiau
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 406040, Taiwan, ROC
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC
| | - K S Clifford Chao
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC.
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC.
- Department of Radiotherapy, School of Medicine, China Medical University, Taichung, 406040, Taiwan, ROC.
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan, ROC.
- School of Chinese Medicine and Graduate Institute of Chinese Medicine, China Medical University, Taichung, 406040, Taiwan, ROC.
| |
Collapse
|
16
|
Mørk SK, Skadborg SK, Albieri B, Draghi A, Bol K, Kadivar M, Westergaard MCW, Stoltenborg Granhøj J, Borch A, Petersen NV, Thuesen N, Rasmussen IS, Andreasen LV, Dohn RB, Yde CW, Noergaard N, Lorentzen T, Soerensen AB, Kleine-Kohlbrecher D, Jespersen A, Christensen D, Kringelum J, Donia M, Hadrup SR, Marie Svane I. Dose escalation study of a personalized peptide-based neoantigen vaccine (EVX-01) in patients with metastatic melanoma. J Immunother Cancer 2024; 12:e008817. [PMID: 38782542 PMCID: PMC11116868 DOI: 10.1136/jitc-2024-008817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Neoantigens can serve as targets for T cell-mediated antitumor immunity via personalized neopeptide vaccines. Interim data from our clinical study NCT03715985 showed that the personalized peptide-based neoantigen vaccine EVX-01, formulated in the liposomal adjuvant, CAF09b, was safe and able to elicit EVX-01-specific T cell responses in patients with metastatic melanoma. Here, we present results from the dose-escalation part of the study, evaluating the feasibility, safety, efficacy, and immunogenicity of EVX-01 in addition to anti-PD-1 therapy. METHODS Patients with metastatic melanoma on anti-PD-1 therapy were treated in three cohorts with increasing vaccine dosages (twofold and fourfold). Tumor-derived neoantigens were selected by the AI platform PIONEER and used in personalized therapeutic cancer peptide vaccines EVX-01. Vaccines were administered at 2-week intervals for a total of three intraperitoneal and three intramuscular injections. The study's primary endpoint was safety and tolerability. Additional endpoints were immunological responses, survival, and objective response rates. RESULTS Compared with the base dose level previously reported, no new vaccine-related serious adverse events were observed during dose escalation of EVX-01 in combination with an anti-PD-1 agent given according to local guidelines. Two patients at the third dose level (fourfold dose) developed grade 3 toxicity, most likely related to pembrolizumab. Overall, 8 out of the 12 patients had objective clinical responses (6 partial response (PR) and 2 CR), with all 4 patients at the highest dose level having a CR (1 CR, 3 PR). EVX-01 induced peptide-specific CD4+ and/or CD8+T cell responses in all treated patients, with CD4+T cells as the dominating responses. The magnitude of immune responses measured by IFN-γ ELISpot assay correlated with individual peptide doses. A significant correlation between the PIONEER quality score and induced T cell immunogenicity was detected, while better CRs correlated with both the number of immunogenic EVX-01 peptides and the PIONEER quality score. CONCLUSION Immunization with EVX-01-CAF09b in addition to anti-PD-1 therapy was shown to be safe and well tolerated and elicit vaccine neoantigen-specific CD4+and CD8+ T cell responses at all dose levels. In addition, objective tumor responses were observed in 67% of patients. The results encourage further assessment of the antitumor efficacy of EVX-01 in combination with anti-PD-1 therapy.
Collapse
Affiliation(s)
- Sofie Kirial Mørk
- Department of Oncology, Copenhagen University Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark
| | | | - Benedetta Albieri
- Department of Oncology, Copenhagen University Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark
| | - Arianna Draghi
- Department of Oncology, Copenhagen University Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark
| | - Kalijn Bol
- Medical Oncology, Radboudumc, Nijmegen, The Netherlands
| | - Mohammad Kadivar
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Joachim Stoltenborg Granhøj
- Department of Oncology, Copenhagen University Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark
| | - Annie Borch
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | | | | | - Rebecca Bach Dohn
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Nis Noergaard
- Department of Urology, Copenhagen University Hospital, Herlev, Denmark
| | - Torben Lorentzen
- Department of Gastroenterology, Copenhagen University Hospital, Herlev, Denmark
| | | | | | | | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Marco Donia
- Department of Oncology, Copenhagen University Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark
| | - Sine Reker Hadrup
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Inge Marie Svane
- Department of Oncology, Copenhagen University Hospital, National Center for Cancer Immune Therapy (CCIT-DK), Herlev, Denmark
| |
Collapse
|
17
|
Ibrahim OM, Kalinski P. Breaking Barriers: Modulation of Tumor Microenvironment to Enhance Bacillus Calmette-Guérin Immunotherapy of Bladder Cancer. Cells 2024; 13:699. [PMID: 38667314 PMCID: PMC11049012 DOI: 10.3390/cells13080699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The clinical management of bladder cancer continues to present significant challenges. Bacillus Calmette-Guérin (BCG) immunotherapy remains the gold standard of treatment for non-muscle invasive bladder cancer (NMIBC), but many patients develop recurrence and progression to muscle-invasive disease (MIBC), which is resistant to BCG. This review focuses on the immune mechanisms mobilized by BCG in bladder cancer tumor microenvironments (TME), mechanisms of BCG resistance, the dual role of the BCG-triggered NFkB/TNFα/PGE2 axis in the regulation of anti-tumor and tumor-promoting aspects of inflammation, and emerging strategies to modulate their balance. A better understanding of BCG resistance will help develop new treatments and predictive biomarkers, paving the way for improved clinical outcomes in bladder cancer patients.
Collapse
Affiliation(s)
- Omar M. Ibrahim
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
18
|
Borch A, Carri I, Reynisson B, Alvarez HMG, Munk KK, Montemurro A, Kristensen NP, Tvingsholm SA, Holm JS, Heeke C, Moss KH, Hansen UK, Schaap-Johansen AL, Bagger FO, de Lima VAB, Rohrberg KS, Funt SA, Donia M, Svane IM, Lassen U, Barra C, Nielsen M, Hadrup SR. IMPROVE: a feature model to predict neoepitope immunogenicity through broad-scale validation of T-cell recognition. Front Immunol 2024; 15:1360281. [PMID: 38633261 PMCID: PMC11021644 DOI: 10.3389/fimmu.2024.1360281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/07/2024] [Indexed: 04/19/2024] Open
Abstract
Background Mutation-derived neoantigens are critical targets for tumor rejection in cancer immunotherapy, and better tools for neoepitope identification and prediction are needed to improve neoepitope targeting strategies. Computational tools have enabled the identification of patient-specific neoantigen candidates from sequencing data, but limited data availability has hindered their capacity to predict which of the many neoepitopes will most likely give rise to T cell recognition. Method To address this, we make use of experimentally validated T cell recognition towards 17,500 neoepitope candidates, with 467 being T cell recognized, across 70 cancer patients undergoing immunotherapy. Results We evaluated 27 neoepitope characteristics, and created a random forest model, IMPROVE, to predict neoepitope immunogenicity. The presence of hydrophobic and aromatic residues in the peptide binding core were the most important features for predicting neoepitope immunogenicity. Conclusion Overall, IMPROVE was found to significantly advance the identification of neoepitopes compared to other current methods.
Collapse
Affiliation(s)
- Annie Borch
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Ibel Carri
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Birkir Reynisson
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Heli M. Garcia Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Kamilla K. Munk
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | | | | - Siri A. Tvingsholm
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Jeppe Sejerø Holm
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Christina Heeke
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Keith Henry Moss
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Ulla Kring Hansen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | | - Samuel A. Funt
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Marco Donia
- National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | - Ulrik Lassen
- Department of Oncology, Phase 1 Unit, Rigshospitalet, Copenhagen, Denmark
| | - Carolina Barra
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Sine Reker Hadrup
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
19
|
Manoutcharian K, Gevorkian G. Are we getting closer to a successful neoantigen cancer vaccine? Mol Aspects Med 2024; 96:101254. [PMID: 38354548 DOI: 10.1016/j.mam.2024.101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Although significant advances in immunotherapy have revolutionized the treatment of many cancer types over the past decade, the field of vaccine therapy, an important component of cancer immunotherapy, despite decades-long intense efforts, is still transmitting signals of promises and awaiting strong data on efficacy to proceed with regulatory approval. The field of cancer vaccines faces standard challenges, such as tumor-induced immunosuppression, immune response in inhibitory tumor microenvironment (TME), intratumor heterogeneity (ITH), permanently evolving cancer mutational landscape leading to neoantigens, and less known obstacles: neoantigen gain/loss upon immunotherapy, the timing and speed of appearance of neoantigens and responding T cell clonotypes and possible involvement of immune interference/heterologous immunity, in the complex interplay between evolving tumor epitopes and the immune system. In this review, we discuss some key issues related to challenges hampering the development of cancer vaccines, along with the current approaches focusing on neoantigens. We summarize currently well-known ideas/rationales, thus revealing the need for alternative vaccine approaches. Such a discussion should stimulate vaccine researchers to apply out-of-box, unconventional thinking in search of new avenues to deal with critical, often yet unaddressed challenges on the road to a new generation of therapeutics and vaccines.
Collapse
Affiliation(s)
- Karen Manoutcharian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), CDMX, Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP, 04510, Mexico.
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), CDMX, Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP, 04510, Mexico.
| |
Collapse
|
20
|
Hou J, Yang X, Xie S, Zhu B, Zha H. Circulating T cells: a promising biomarker of anti-PD-(L)1 therapy. Front Immunol 2024; 15:1371559. [PMID: 38576625 PMCID: PMC10991692 DOI: 10.3389/fimmu.2024.1371559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Anti-PD-(L)1 therapy has shown great efficacy in some patients with cancer. However, a significant proportion of patients with cancer do not respond to it. Another unmet clinical need for anti-PD-(L)1 therapy is the dynamic monitoring of treatment effects. Therefore, identifying biomarkers that can stratify potential responders before PD-(L)1 treatment and timely monitoring of the efficacy of PD-(L)1 treatment are crucial in the clinical setting. The identification of biomarkers by liquid biopsy has attracted considerable attention. Among the identified biomarkers, circulating T cells are one of the most promising because of their indispensable contribution to anti-PD-(L)1 therapy. The present review aimed to thoroughly explore the potential of circulating T cells as biomarkers of anti-PD-(L)1 therapy and its advantages and limitations.
Collapse
Affiliation(s)
- Junlei Hou
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xuezhi Yang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Shuanglong Xie
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Haoran Zha
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
21
|
Stergiopoulos GM, Iankov I, Galanis E. Personalizing Oncolytic Immunovirotherapy Approaches. Mol Diagn Ther 2024; 28:153-168. [PMID: 38150172 DOI: 10.1007/s40291-023-00689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2023] [Indexed: 12/28/2023]
Abstract
Development of successful cancer therapeutics requires exploration of the differences in genetics, metabolism, and interactions with the immune system among malignant and normal cells. The clinical observation of spontaneous tumor regression following natural infection with microorganism has created the premise of their use as cancer therapeutics. Oncolytic viruses (OVs) originate from viruses with attenuated virulence in humans, well-characterized vaccine strains of known human pathogens, or engineered replication-deficient viral vectors. Their selectivity is based on receptor expression level and post entry restriction factors that favor replication in the tumor, while keeping the normal cells unharmed. Clinical trials have demonstrated a wide range of patient responses to virotherapy, with subgroups of patients significantly benefiting from OV administration. Tumor-specific gene signatures, including antiviral interferon-stimulated gene (ISG) expression profile, have demonstrated a strong correlation with tumor permissiveness to infection. Furthermore, the combination of OVs with immunotherapeutics, including anticancer vaccines and immune checkpoint inhibitors [ICIs, such as anti-PD-1/PD-L1 or anti-CTLA-4 and chimeric antigen receptor (CAR)-T or CAR-NK cells], could synergistically improve the therapeutic outcome. Creating response prediction algorithms represents an important step for the transition to individualized immunovirotherapy approaches in the clinic. Integrative predictors could include tumor mutational burden (TMB), inflammatory gene signature, phenotype of tumor-infiltrating lymphocytes, tumor microenvironment (TME), and immune checkpoint receptor expression on both immune and target cells. Additionally, the gut microbiota has recently been recognized as a systemic immunomodulatory factor and could further be used in the optimization of individualized immunovirotherapy algorithms.
Collapse
Affiliation(s)
| | - Ianko Iankov
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Evanthia Galanis
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
22
|
Hato L, Vizcay A, Eguren I, Pérez-Gracia JL, Rodríguez J, Gállego Pérez-Larraya J, Sarobe P, Inogés S, Díaz de Cerio AL, Santisteban M. Dendritic Cells in Cancer Immunology and Immunotherapy. Cancers (Basel) 2024; 16:981. [PMID: 38473341 DOI: 10.3390/cancers16050981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Cancer immunotherapy modulates the immune system, overcomes immune escape and stimulates immune defenses against tumors. Dendritic cells (DCs) are professional promoters of immune responses against tumor antigens with the outstanding ability to coordinate the innate and adaptive immune systems. Evidence suggests that there is a decrease in both the number and function of DCs in cancer patients. Therefore, they represent a strong scaffold for therapeutic interventions. DC vaccination (DCV) is safe, and the antitumoral responses induced are well established in solid tumors. Although the addition of checkpoint inhibitors (CPIs) to chemotherapy has provided new options in the treatment of cancer, they have shown no clinical benefit in immune desert tumors or in those tumors with dysfunctional or exhausted T-cells. In this way, DC-based therapy has demonstrated the ability to modify the tumor microenvironment for immune enriched tumors and to potentiate systemic host immune responses as an active approach to treating cancer patients. Application of DCV in cancer seeks to obtain long-term antitumor responses through an improved T-cell priming by enhancing previous or generating de novo immune responses. To date, DCV has induced immune responses in the peripheral blood of patients without a significant clinical impact on outcome. Thus, improvements in vaccines formulations, selection of patients based on biomarkers and combinations with other antitumoral therapies are needed to enhance patient survival. In this work, we review the role of DCV in different solid tumors with their strengths and weaknesses, and we finally mention new trends to improve the efficacy of this immune strategy.
Collapse
Affiliation(s)
- Laura Hato
- Immunology, Riberalab, 03203 Alicante, Spain
| | - Angel Vizcay
- Medical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Iñaki Eguren
- Medical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | | | - Javier Rodríguez
- Medical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | | | - Pablo Sarobe
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- Program of Immunology and Immunotherapy, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
- CIBEREHD, 31008 Pamplona, Spain
| | - Susana Inogés
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- Cell Therapy Unit, Program of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Ascensión López Díaz de Cerio
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- Cell Therapy Unit, Program of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Marta Santisteban
- Medical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
23
|
Hansen UK, Church CD, Carnaz Simões AM, Frej MS, Bentzen AK, Tvingsholm SA, Becker JC, Fling SP, Ramchurren N, Topalian SL, Nghiem PT, Hadrup SR. T antigen-specific CD8+ T cells associate with PD-1 blockade response in virus-positive Merkel cell carcinoma. J Clin Invest 2024; 134:e177082. [PMID: 38618958 PMCID: PMC11014655 DOI: 10.1172/jci177082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/23/2024] [Indexed: 04/16/2024] Open
Abstract
Merkel cell carcinoma (MCC) is a highly immunogenic skin cancer primarily induced by Merkel cell polyomavirus, which is driven by the expression of the oncogenic T antigens (T-Ags). Blockade of the programmed cell death protein-1 (PD-1) pathway has shown remarkable response rates, but evidence for therapy-associated T-Ag-specific immune response and therapeutic strategies for the nonresponding fraction are both limited. We tracked T-Ag-reactive CD8+ T cells in peripheral blood of 26 MCC patients under anti-PD1 therapy, using DNA-barcoded pMHC multimers, displaying all peptides from the predicted HLA ligandome of the oncoproteins, covering 33 class I haplotypes. We observed a broad T cell recognition of T-Ags, including identification of 20 T-Ag-derived epitopes we believe to be novel. Broadening of the T-Ag recognition profile and increased T cell frequencies during therapy were strongly associated with clinical response and prolonged progression-free survival. T-Ag-specific T cells could be further boosted and expanded directly from peripheral blood using artificial antigen-presenting scaffolds, even in patients with no detectable T-Ag-specific T cells. These T cells provided strong tumor-rejection capacity while retaining a favorable phenotype for adoptive cell transfer. These findings demonstrate that T-Ag-specific T cells are associated with the clinical outcome to PD-1 blockade and that Ag-presenting scaffolds can be used to boost such responses.
Collapse
Affiliation(s)
- Ulla Kring Hansen
- Section of Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
- PokeAcell Aps, BioInnovation Institute, Copenhagen, Denmark
| | - Candice D. Church
- Department of Dermatology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Marcus Svensson Frej
- Section of Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
- PokeAcell Aps, BioInnovation Institute, Copenhagen, Denmark
| | - Amalie Kai Bentzen
- Section of Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Siri A. Tvingsholm
- Section of Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jürgen C. Becker
- Department of Translational Skin Cancer Research, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | | | | | - Suzanne L. Topalian
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Paul T. Nghiem
- Department of Dermatology, Department of Medicine, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sine Reker Hadrup
- Section of Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
24
|
Yossef R, Krishna S, Sindiri S, Lowery FJ, Copeland AR, Gartner JJ, Parkhurst MR, Parikh NB, Hitscherich KJ, Levi ST, Chatani PD, Zacharakis N, Levin N, Vale NR, Nah SK, Dinerman A, Hill VK, Ray S, Bera A, Levy L, Jia L, Kelly MC, Goff SL, Robbins PF, Rosenberg SA. Phenotypic signatures of circulating neoantigen-reactive CD8 + T cells in patients with metastatic cancers. Cancer Cell 2023; 41:2154-2165.e5. [PMID: 38039963 PMCID: PMC10843665 DOI: 10.1016/j.ccell.2023.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 08/07/2023] [Accepted: 11/07/2023] [Indexed: 12/03/2023]
Abstract
Circulating T cells from peripheral blood (PBL) can provide a rich and noninvasive source for antitumor T cells. By single-cell transcriptomic profiling of 36 neoantigen-specific T cell clones from 6 metastatic cancer patients, we report the transcriptional and cell surface signatures of antitumor PBL-derived CD8+ T cells (NeoTCRPBL). Comparison of tumor-infiltrating lymphocyte (TIL)- and PBL-neoantigen-specific T cells revealed that NeoTCRPBL T cells are low in frequency and display less-dysfunctional memory phenotypes relative to their TIL counterparts. Analysis of 100 antitumor TCR clonotypes indicates that most NeoTCRPBL populations target the same neoantigens as TILs. However, NeoTCRPBL TCR repertoire is only partially shared with TIL. Prediction and testing of NeoTCRPBL signature-derived TCRs from PBL of 6 prospective patients demonstrate high enrichment of clonotypes targeting tumor mutations, a viral oncogene, and patient-derived tumor. Thus, the NeoTCRPBL signature provides an alternative source for identifying antitumor T cells from PBL of cancer patients, enabling immune monitoring and immunotherapies.
Collapse
Affiliation(s)
- Rami Yossef
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Sri Krishna
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Sivasish Sindiri
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frank J Lowery
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy R Copeland
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jared J Gartner
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria R Parkhurst
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neilesh B Parikh
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kyle J Hitscherich
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shoshana T Levi
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Praveen D Chatani
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nikolaos Zacharakis
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Noam Levin
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nolan R Vale
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shirley K Nah
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aaron Dinerman
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Victoria K Hill
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Satyajit Ray
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alakesh Bera
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lior Levy
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Jia
- National Institutes of Health Library, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael C Kelly
- Single Cell Analysis Facility, Cancer Research Technology Program, Frederick National Laboratory, Bethesda, MD 20892, USA
| | - Stephanie L Goff
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul F Robbins
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven A Rosenberg
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
25
|
O'Brien H, Salm M, Morton LT, Szukszto M, O'Farrell F, Boulton C, Becker PD, Samuels Y, Swanton C, Mansour MR, Reker Hadrup S, Quezada SA. Breaking the performance ceiling for neoantigen immunogenicity prediction. NATURE CANCER 2023; 4:1618-1621. [PMID: 38102360 DOI: 10.1038/s43018-023-00675-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Affiliation(s)
| | - Max Salm
- Achilles Therapeutics Ltd, London, UK.
| | | | - Maciej Szukszto
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | | | - Charlotte Boulton
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | | | | | | | - Marc R Mansour
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | | | - Sergio A Quezada
- Achilles Therapeutics Ltd, London, UK.
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK.
| |
Collapse
|
26
|
Pang Z, Lu MM, Zhang Y, Gao Y, Bai JJ, Gu JY, Xie L, Wu WZ. Neoantigen-targeted TCR-engineered T cell immunotherapy: current advances and challenges. Biomark Res 2023; 11:104. [PMID: 38037114 PMCID: PMC10690996 DOI: 10.1186/s40364-023-00534-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/22/2023] [Indexed: 12/02/2023] Open
Abstract
Adoptive cell therapy using T cell receptor-engineered T cells (TCR-T) is a promising approach for cancer therapy with an expectation of no significant side effects. In the human body, mature T cells are armed with an incredible diversity of T cell receptors (TCRs) that theoretically react to the variety of random mutations generated by tumor cells. The outcomes, however, of current clinical trials using TCR-T cell therapies are not very successful especially involving solid tumors. The therapy still faces numerous challenges in the efficient screening of tumor-specific antigens and their cognate TCRs. In this review, we first introduce TCR structure-based antigen recognition and signaling, then describe recent advances in neoantigens and their specific TCR screening technologies, and finally summarize ongoing clinical trials of TCR-T therapies against neoantigens. More importantly, we also present the current challenges of TCR-T cell-based immunotherapies, e.g., the safety of viral vectors, the mismatch of T cell receptor, the impediment of suppressive tumor microenvironment. Finally, we highlight new insights and directions for personalized TCR-T therapy.
Collapse
Affiliation(s)
- Zhi Pang
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Man-Man Lu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yu Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yuan Gao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Jin-Jin Bai
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian-Ying Gu
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lu Xie
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China.
| | - Wei-Zhong Wu
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
27
|
Rainey MA, Allen CT, Craveiro M. Egress of resident memory T cells from tissue with neoadjuvant immunotherapy: Implications for systemic anti-tumor immunity. Oral Oncol 2023; 146:106570. [PMID: 37738775 PMCID: PMC10591905 DOI: 10.1016/j.oraloncology.2023.106570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
INTRODUCTION Resident memory T (TRM) cells are embedded in peripheral tissue and capable of acting as sentinels that can respond quickly to repeat pathogen exposure as part of an endogenous anti-microbial immune response. Recent evidence suggests that chronic antigen exposure and other microenvironment cues may promote the development of TRM cells within solid tumors as well, and that this TRM phenotype can sequester tumor-specific T cells into tumors and out of circulation resulting in limited systemic antitumor immunity. Here, we perform a review of the published English literature and describe tissue-specific mediators of TRM cell differentiation in states of infection and malignancy with special focus on the role of TGF-β and how targeting TGF-β signaling could be used as a therapeutical approach to promote tumor systemic immunity. DISCUSSION The presence of TRM cells with antigen specificity to neoepitopes in tumors associates with positive clinical prognosis and greater responsiveness to immunotherapy. Recent evidence indicates that solid tumors may act as reservoirs for tumor specific TRM cells and limit their circulation - possibly resulting in impaired systemic antitumor immunity. TRM cells utilize specific mechanisms to egress from peripheral tissues into circulation and other peripheral sites, and emerging evidence indicates that immunotherapeutic approaches may initiate these processes and increase systemic antitumor immunity. CONCLUSIONS Reversing tumor sequestration of tumor-specific T cells prior to surgical removal or radiation of tumor may increase systemic antitumor immunity. This finding may underlie the improved recurrence free survival observed with neoadjuvant immunotherapy in clinical trials.
Collapse
Affiliation(s)
- Magdalena A Rainey
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clint T Allen
- National Institutes of Health, 9000 Rockville Pike, Building 10, Room 7N240C, Bethesda, MD 20892, USA.
| | - Marco Craveiro
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
28
|
Goubet AG, Rouanne M, Derosa L, Kroemer G, Zitvogel L. From mucosal infection to successful cancer immunotherapy. Nat Rev Urol 2023; 20:682-700. [PMID: 37433926 DOI: 10.1038/s41585-023-00784-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 07/13/2023]
Abstract
The clinical management of advanced malignancies of the upper and lower urinary tract has been revolutionized with the advent of immune checkpoint blockers (ICBs). ICBs reinstate or bolster pre-existing immune responses while creating new T cell specificities. Immunogenic cancers, which tend to benefit more from immunotherapy than cold tumours, harbour tumour-specific neoantigens, often associated with a high tumour mutational burden, as well as CD8+ T cell infiltrates and ectopic lymphoid structures. The identification of beneficial non-self tumour antigens and natural adjuvants is the focus of current investigation. Moreover, growing evidence suggests that urinary or intestinal commensals, BCG and uropathogenic Escherichia coli influence long-term responses in patients with kidney or bladder cancer treated with ICBs. Bacteria infecting urothelium could be a prominent target for T follicular helper cells and B cells, linking innate and cognate CD8+ memory responses. In the urinary tract, commensal flora differ between healthy and tumoural mucosae. Although antibiotics can affect the prognosis of urinary tract malignancies, bacteria can have a major influence on cancer immunosurveillance. Beyond their role as biomarkers, immune responses against uropathogenic commensals could be harnessed for the design of future immunoadjuvants that can be advantageously combined with ICBs.
Collapse
Affiliation(s)
- Anne-Gaëlle Goubet
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- AGORA Cancer Center, Lausanne, Switzerland
| | - Mathieu Rouanne
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Lisa Derosa
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicetre, France
| | - Guido Kroemer
- Gustave Roussy, Villejuif, France
- Equipe labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, Institut Universitaire de France, Inserm U1138, Centre de Recherche des Cordeliers, Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy, Villejuif, France.
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France.
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicetre, France.
- Center of Clinical Investigations for In Situ Biotherapies of Cancer (BIOTHERIS) INSERM, CIC1428, Villejuif, France.
| |
Collapse
|
29
|
Pu T, Peddle A, Zhu J, Tejpar S, Verbandt S. Neoantigen identification: Technological advances and challenges. Methods Cell Biol 2023; 183:265-302. [PMID: 38548414 DOI: 10.1016/bs.mcb.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Neoantigens have emerged as promising targets for cutting-edge immunotherapies, such as cancer vaccines and adoptive cell therapy. These neoantigens are unique to tumors and arise exclusively from somatic mutations or non-genomic aberrations in tumor proteins. They encompass a wide range of alterations, including genomic mutations, post-transcriptomic variants, and viral oncoproteins. With the advancements in technology, the identification of immunogenic neoantigens has seen rapid progress, raising new opportunities for enhancing their clinical significance. Prediction of neoantigens necessitates the acquisition of high-quality samples and sequencing data, followed by mutation calling. Subsequently, the pipeline involves integrating various tools that can predict the expression, processing, binding, and recognition potential of neoantigens. However, the continuous improvement of computational tools is constrained by the availability of datasets which contain validated immunogenic neoantigens. This review article aims to provide a comprehensive summary of the current knowledge as well as limitations in neoantigen prediction and validation. Additionally, it delves into the origin and biological role of neoantigens, offering a deeper understanding of their significance in the field of cancer immunotherapy. This article thus seeks to contribute to the ongoing efforts to harness neoantigens as powerful weapons in the fight against cancer.
Collapse
Affiliation(s)
- Ting Pu
- Digestive Oncology Unit, KULeuven, Leuven, Belgium
| | | | - Jingjing Zhu
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
30
|
Wang Z, Ahmed S, Labib M, Wang H, Wu L, Bavaghar-Zaeimi F, Shokri N, Blanco S, Karim S, Czarnecka-Kujawa K, Sargent EH, McGray AJR, de Perrot M, Kelley SO. Isolation of tumour-reactive lymphocytes from peripheral blood via microfluidic immunomagnetic cell sorting. Nat Biomed Eng 2023; 7:1188-1203. [PMID: 37037966 DOI: 10.1038/s41551-023-01023-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/11/2023] [Indexed: 04/12/2023]
Abstract
The clinical use of tumour-infiltrating lymphocytes for the treatment of solid tumours is hindered by the need to obtain large and fresh tumour fractions, which is often not feasible in patients with unresectable tumours or recurrent metastases. Here we show that circulating tumour-reactive lymphocytes (cTRLs) can be isolated from peripheral blood at high yield and purity via microfluidic immunomagnetic cell sorting, allowing for comprehensive downstream analyses of these rare cells. We observed that CD103 is strongly expressed by the isolated cTRLs, and that in mice with subcutaneous tumours, tumour-infiltrating lymphocytes isolated from the tumours and rapidly expanded CD8+CD103+ cTRLs isolated from blood are comparably potent and respond similarly to immune checkpoint blockade. We also show that CD8+CD103+ cTRLs isolated from the peripheral blood of patients and co-cultured with tumour cells dissociated from their resected tumours resulted in the enrichment of interferon-γ-secreting cell populations with T-cell-receptor clonotypes substantially overlapping those of the patients' tumour-infiltrating lymphocytes. Therapeutically potent cTRLs isolated from peripheral blood may advance the clinical development of adoptive cell therapies.
Collapse
Affiliation(s)
- Zongjie Wang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Sharif Ahmed
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Mahmoud Labib
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL, USA
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Hansen Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Licun Wu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Fatemeh Bavaghar-Zaeimi
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Nastaran Shokri
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Soraly Blanco
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Saraf Karim
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Kasia Czarnecka-Kujawa
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Edward H Sargent
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - A J Robert McGray
- Department of Immunology, Division of Translational Immuno-Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Marc de Perrot
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shana O Kelley
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL, USA.
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
- Department of Biochemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA.
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA.
| |
Collapse
|
31
|
Kang H, Zhu X, Cui Y, Xiong Z, Zong W, Bao Y, Jia P. A Comprehensive Benchmark of Transcriptomic Biomarkers for Immune Checkpoint Blockades. Cancers (Basel) 2023; 15:4094. [PMID: 37627121 PMCID: PMC10452274 DOI: 10.3390/cancers15164094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Immune checkpoint blockades (ICBs) have revolutionized cancer therapy by inducing durable clinical responses, but only a small percentage of patients can benefit from ICB treatments. Many studies have established various biomarkers to predict ICB responses. However, different biomarkers were found with diverse performances in practice, and a timely and unbiased assessment has yet to be conducted due to the complexity of ICB-related studies and trials. In this study, we manually curated 29 published datasets with matched transcriptome and clinical data from more than 1400 patients, and uniformly preprocessed these datasets for further analyses. In addition, we collected 39 sets of transcriptomic biomarkers, and based on the nature of the corresponding computational methods, we categorized them into the gene-set-like group (with the self-contained design and the competitive design, respectively) and the deconvolution-like group. Next, we investigated the correlations and patterns of these biomarkers and utilized a standardized workflow to systematically evaluate their performance in predicting ICB responses and survival statuses across different datasets, cancer types, antibodies, biopsy times, and combinatory treatments. In our benchmark, most biomarkers showed poor performance in terms of stability and robustness across different datasets. Two scores (TIDE and CYT) had a competitive performance for ICB response prediction, and two others (PASS-ON and EIGS_ssGSEA) showed the best association with clinical outcome. Finally, we developed ICB-Portal to host the datasets, biomarkers, and benchmark results and to implement the computational methods for researchers to test their custom biomarkers. Our work provided valuable resources and a one-stop solution to facilitate ICB-related research.
Collapse
Affiliation(s)
- Hongen Kang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuli Zhu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Cui
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuang Xiong
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Wenting Zong
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Yiming Bao
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Peilin Jia
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| |
Collapse
|
32
|
Anker J, Pal SK, Kim-Schulze S, Wang H, Halperin R, Uzilov A, Imai N, Eikawa S, Saito T, Sebra R, Hahn NM, Patel M, Qi J, Xie H, Bhardwaj N, Gnjatic S, Galsky MD. Antitumor immunity as the basis for durable disease-free treatment-free survival in patients with metastatic urothelial cancer. J Immunother Cancer 2023; 11:e007613. [PMID: 37607770 PMCID: PMC10445357 DOI: 10.1136/jitc-2023-007613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
Cisplatin-based chemotherapy has been associated with durable disease control in a small subset of patients with metastatic urothelial cancer. However, the mechanistic basis for this phenomenon has remained elusive. Antitumor immunity may underlie these exceptional responders. In a phase II trial evaluating a phased schedule of gemcitabine and cisplatin followed by gemcitabine and cisplatin with ipilimumab for metastatic urothelial cancer, 4 of 36 patients achieved durable disease-free treatment-free survival (DDFTFS) and remain in remission over 5 years after enrolment on the study. We sought to identify the genomic and immunological mechanisms associated with functional cures of such patients. Whole exome sequencing was performed on pretreatment archival tumor tissue. Neoantigen prediction and ranking were performed using a novel pipeline. For a subset of patients with available biospecimens, selected peptides were tested for neoantigen-specific T cell reactivity in peripheral blood CD4+ and CD8+ T cells cultured with autologous antigen-presenting cells at baseline, postchemotherapy, and postchemotherapy and ipilimumab timepoints. Multiplex assays of serum protein analytes were also assessed at each time point. Serum proteomic analysis revealed that pretreatment, patients achieving DDFTFS demonstrated an immune activated phenotype with elevations in TH1 adaptive immunity, costimulatory molecules, and immune checkpoint markers. After combination cisplatin-based chemotherapy and ipilimumab treatment, DDFTFS patients again displayed enrichment for markers of adaptive immunity, as well as T cell cytotoxicity. CD27 was uniquely enriched in DDFTFS patients at all timepoints. Neoantigen reactivity was not detected in any patient at baseline or post two cycles of chemotherapy. Both CD4+ and CD8+ neoantigen-specific T cell reactivity was detected in two of two DDFTFS patients in comparison to zero of five non-DDFTFS patients after combination cisplatin-based chemotherapy and ipilimumab treatment. Antitumor immunity may underlie functional cures achieved in patients with metastatic urothelial cancer treated with cisplatin-based chemotherapy and immune checkpoint blockade. Probing the mechanistic basis for DDFTFS may facilitate the identification of biomarkers, therapeutic components, and optimal treatment sequences necessary to extend this ultimate goal to a larger subset of patients.
Collapse
Affiliation(s)
- Jonathan Anker
- Department of Hematology and Medical Oncology, Mount Sinai School of Medicine, New York, New York, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sumanta K Pal
- Department of Hematology and Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Seunghee Kim-Schulze
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | - Naoko Imai
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shingo Eikawa
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Takuro Saito
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Osaka University School of Medicine Graduate School of Medicine, Suita, Osaka, Japan
| | - Robert Sebra
- Sema4, Branford, Connecticut, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Noah M Hahn
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Manishkumar Patel
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jingjing Qi
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hui Xie
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nina Bhardwaj
- Department of Hematology and Medical Oncology, Mount Sinai School of Medicine, New York, New York, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sacha Gnjatic
- Department of Hematology and Medical Oncology, Mount Sinai School of Medicine, New York, New York, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Matthew D Galsky
- Department of Hematology and Medical Oncology, Mount Sinai School of Medicine, New York, New York, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
33
|
Tvingsholm SA, Frej MS, Rafa VM, Hansen UK, Ormhøj M, Tyron A, Jensen AWP, Kadivar M, Bentzen AK, Munk KK, Aasbjerg GN, Ternander JSH, Heeke C, Tamhane T, Schmess C, Funt SA, Kjeldsen JW, Kverneland AH, Met Ö, Draghi A, Jakobsen SN, Donia M, Marie Svane I, Hadrup SR. TCR-engaging scaffolds selectively expand antigen-specific T-cells with a favorable phenotype for adoptive cell therapy. J Immunother Cancer 2023; 11:e006847. [PMID: 37586765 PMCID: PMC10432666 DOI: 10.1136/jitc-2023-006847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Adoptive cell therapy (ACT) has shown promising results for the treatment of cancer and viral infections. Successful ACT relies on ex vivo expansion of large numbers of desired T-cells with strong cytotoxic capacity and in vivo persistence, which constitutes the greatest challenge to current ACT strategies. Here, in this study, we present a novel technology for ex vivo expansion of antigen-specific T-cells; artificial antigen-presenting scaffolds (Ag-scaffolds) consisting of a dextran-polysaccharide backbone, decorated with combinations of peptide-Major Histocompatibility Complex (pMHC), cytokines and co-stimulatory molecules, enabling coordinated stimulation of antigen-specific T-cells. METHODS The capacity of Ag-scaffolds to expand antigen-specific T-cells was explored in ex vivo cultures with peripheral blood mononuclear cells from healthy donors and patients with metastatic melanoma. The resulting T-cell products were assessed for phenotypic and functional characteristics. RESULTS We identified an optimal Ag-scaffold for expansion of T-cells for ACT, carrying pMHC and interleukin-2 (IL-2) and IL-21, with which we efficiently expanded both virus-specific and tumor-specific CD8+ T cells from peripheral blood of healthy donors and patients, respectively. The resulting T-cell products were characterized by a high frequency of antigen-specific cells with high self-renewal capacity, low exhaustion, a multifunctional cytokine profile upon antigen-challenge and superior tumor killing capacity. This demonstrates that the coordinated stimuli provided by an optimized stoichiometry of TCR engaging (pMHC) and stimulatory (cytokine) moieties is essential to obtain desired T-cell characteristics. To generate an 'off-the-shelf' multitargeting Ag-scaffold product of relevance to patients with metastatic melanoma, we identified the 30 most frequently recognized shared HLA-A0201-restricted melanoma epitopes in a cohort of 87 patients. By combining these in an Ag-scaffold product, we were able to expand tumor-specific T-cells from 60-70% of patients with melanoma, yielding a multitargeted T-cell product with up to 25% specific and phenotypically and functionally improved T cells. CONCLUSIONS Taken together, the Ag-scaffold represents a promising new technology for selective expansion of antigen-specific CD8+ T cells directly from blood, yielding a highly specific and functionally enhanced T-cell product for ACT.
Collapse
Affiliation(s)
| | | | - Vibeke Mindahl Rafa
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | | - Maria Ormhøj
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Alexander Tyron
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Agnete W P Jensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Mohammad Kadivar
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Amalie Kai Bentzen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Kamilla K Munk
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Gitte N Aasbjerg
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | | - Christina Heeke
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Tripti Tamhane
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Christian Schmess
- NMI Natural and Medical Science Institute, University of Tübingen, Tubingen, Germany
| | - Samuel A Funt
- Deptartment of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Julie Westerlin Kjeldsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Anders Handrup Kverneland
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Özcan Met
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Copenhagen, Denmark
| | - Arianna Draghi
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Søren Nyboe Jakobsen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Sine Reker Hadrup
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
34
|
Wang R, Xiong K, Wang Z, Wu D, Hu B, Ruan J, Sun C, Ma D, Li L, Liao S. Immunodiagnosis - the promise of personalized immunotherapy. Front Immunol 2023; 14:1216901. [PMID: 37520576 PMCID: PMC10372420 DOI: 10.3389/fimmu.2023.1216901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023] Open
Abstract
Immunotherapy showed remarkable efficacy in several cancer types. However, the majority of patients do not benefit from immunotherapy. Evaluating tumor heterogeneity and immune status before treatment is key to identifying patients that are more likely to respond to immunotherapy. Demographic characteristics (such as sex, age, and race), immune status, and specific biomarkers all contribute to response to immunotherapy. A comprehensive immunodiagnostic model integrating all these three dimensions by artificial intelligence would provide valuable information for predicting treatment response. Here, we coined the term "immunodiagnosis" to describe the blueprint of the immunodiagnostic model. We illustrated the features that should be included in immunodiagnostic model and the strategy of constructing the immunodiagnostic model. Lastly, we discussed the incorporation of this immunodiagnosis model in clinical practice in hopes of improving the prognosis of tumor immunotherapy.
Collapse
Affiliation(s)
- Renjie Wang
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kairong Xiong
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhimin Wang
- Division of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Di Wu
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bai Hu
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinghan Ruan
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujie Liao
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Liu Y, Li Z, Zhao X, Xiao J, Bi J, Li XY, Chen G, Lu L. Review immune response of targeting CD39 in cancer. Biomark Res 2023; 11:63. [PMID: 37287049 DOI: 10.1186/s40364-023-00500-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023] Open
Abstract
The ATP-adenosine pathway has emerged as a promising target for cancer therapy, but challenges remain in achieving effective tumor control. Early research focused on blocking the adenosine generating enzyme CD73 and the adenosine receptors A2AR or A2BR in cancer. However, recent studies have shown that targeting CD39, the rate-limiting ecto-enzyme of the ATP-adenosine pathway, can provide more profound anti-tumor efficacy by reducing immune-suppressive adenosine accumulation and increasing pro-inflammatory ATP levels. In addition, combining CD39 blocking antibody with PD-1 immune checkpoint therapy may have synergistic anti-tumor effects and improve patient survival. This review will discuss the immune components that respond to CD39 targeting in the tumor microenvironment. Targeting CD39 in cancer has been shown to not only decrease adenosine levels in the tumor microenvironment (TME), but also increase ATP levels. Additionally, targeting CD39 can limit the function of Treg cells, which are known to express high levels of CD39. With phase I clinical trials of CD39 targeting currently underway, further understanding and rational design of this approach for cancer therapy are expected.
Collapse
Affiliation(s)
- Yao Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Zhongliang Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Xiaoguang Zhao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Jing Xiao
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jiacheng Bi
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xian-Yang Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, Guangdong, P.R. China.
- Department of R&D, OriCell Therapeutics Co. Ltd, No.1227, Zhangheng Rd, Pudong, Shanghai, China.
| | - Guokai Chen
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, Guangdong, P.R. China.
| |
Collapse
|
36
|
Jani S, Church CD, Nghiem P. Insights into anti-tumor immunity via the polyomavirus shared across human Merkel cell carcinomas. Front Immunol 2023; 14:1172913. [PMID: 37287968 PMCID: PMC10242112 DOI: 10.3389/fimmu.2023.1172913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/27/2023] [Indexed: 06/09/2023] Open
Abstract
Understanding and augmenting cancer-specific immunity is impeded by the fact that most tumors are driven by patient-specific mutations that encode unique antigenic epitopes. The shared antigens in virus-driven tumors can help overcome this limitation. Merkel cell carcinoma (MCC) is a particularly interesting tumor immunity model because (1) 80% of cases are driven by Merkel cell polyomavirus (MCPyV) oncoproteins that must be continually expressed for tumor survival; (2) MCPyV oncoproteins are only ~400 amino acids in length and are essentially invariant between tumors; (3) MCPyV-specific T cell responses are robust and strongly linked to patient outcomes; (4) anti-MCPyV antibodies reliably increase with MCC recurrence, forming the basis of a standard clinical surveillance test; and (5) MCC has one of the highest response rates to PD-1 pathway blockade among all solid cancers. Leveraging these well-defined viral oncoproteins, a set of tools that includes over 20 peptide-MHC class I tetramers has been developed to facilitate the study of anti-tumor immunity across MCC patients. Additionally, the highly immunogenic nature of MCPyV oncoproteins forces MCC tumors to develop robust immune evasion mechanisms to survive. Indeed, several immune evasion mechanisms are active in MCC, including transcriptional downregulation of MHC expression by tumor cells and upregulation of inhibitory molecules including PD-L1 and immunosuppressive cytokines. About half of patients with advanced MCC do not persistently benefit from PD-1 pathway blockade. Herein, we (1) summarize the lessons learned from studying the anti-tumor T cell response to virus-positive MCC; (2) review immune evasion mechanisms in MCC; (3) review mechanisms of resistance to immune-based therapies in MCC and other cancers; and (4) discuss how recently developed tools can be used to address open questions in cancer immunotherapy. We believe detailed investigation of this model cancer will provide insight into tumor immunity that will likely also be applicable to more common cancers without shared tumor antigens.
Collapse
Affiliation(s)
- Saumya Jani
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Candice D. Church
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Paul Nghiem
- Department of Medicine, University of Washington, Seattle, WA, United States
- Fred Hutchinson Cancer Center, Seattle, WA, United States
| |
Collapse
|
37
|
Mortaezaee K, Majidpoor J. Mechanisms of CD8 + T cell exclusion and dysfunction in cancer resistance to anti-PD-(L)1. Biomed Pharmacother 2023; 163:114824. [PMID: 37141735 DOI: 10.1016/j.biopha.2023.114824] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/06/2023] Open
Abstract
CD8+ T cells are the front-line defensive cells against cancer. Reduced infiltration and effector function of CD8+ T cells occurs in cancer and is contributed to defective immunity and immunotherapy resistance. Exclusion and exhaustion of CD8+ T cells are the two key factors associated with reduced durability of immune checkpoint inhibitor (ICI) therapy. Initially activated T cells upon exposure to chronic antigen stimulation or immunosuppressive tumor microenvironment (TME) acquire a hyporesponsive state that progressively lose their effector function. Thus, a key strategy in cancer immunotherapy is to look for factors contributed to defective CD8+ T cell infiltration and function. Targeting such factors can define a promising supplementary approach in patients receiving anti-programmed death-1 receptor (PD-1)/anti-programmed death-ligand 1 (PD-L1) therapy. Recently, bispecific antibodies are developed against PD-(L)1 and a dominant factor within TME, representing higher safety profile and exerting more desired outcomes. The focus of this review is to discuss about promoters of deficient infiltration and effector function of CD8+ T cells and their addressing in cancer ICI therapy.
Collapse
Affiliation(s)
- Keywan Mortaezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
38
|
Huang R, Zhao B, Hu S, Zhang Q, Su X, Zhang W. Adoptive neoantigen-reactive T cell therapy: improvement strategies and current clinical researches. Biomark Res 2023; 11:41. [PMID: 37062844 PMCID: PMC10108522 DOI: 10.1186/s40364-023-00478-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
Neoantigens generated by non-synonymous mutations of tumor genes can induce activation of neoantigen-reactive T (NRT) cells which have the ability to resist the growth of tumors expressing specific neoantigens. Immunotherapy based on NRT cells has made preeminent achievements in melanoma and other solid tumors. The process of manufacturing NRT cells includes identification of neoantigens, preparation of neoantigen expression vectors or peptides, induction and activation of NRT cells, and analysis of functions and phenotypes. Numerous improvement strategies have been proposed to enhance the potency of NRT cells by engineering TCR, promoting infiltration of T cells and overcoming immunosuppressive factors in the tumor microenvironment. In this review, we outline the improvement of the preparation and the function assessment of NRT cells, and discuss the current status of clinical trials related to NRT cell immunotherapy.
Collapse
Affiliation(s)
- Ruichen Huang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Bi Zhao
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Shi Hu
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
| | - Qian Zhang
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
| | - Xiaoping Su
- School of Basic Medicine, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China.
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
39
|
Borch A, Bjerregaard AM, Araujo Barbosa de Lima V, Østrup O, Yde CW, Eklund AC, Mau-Sørensen M, Barra C, Svane IM, Nielsen FC, Funt SA, Lassen U, Hadrup SR. Neoepitope load, T cell signatures and PD-L2 as combined biomarker strategy for response to checkpoint inhibition immunotherapy. Front Genet 2023; 14:1058605. [PMID: 37035751 PMCID: PMC10076713 DOI: 10.3389/fgene.2023.1058605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Immune checkpoint inhibition for the treatment of cancer has provided a breakthrough in oncology, and several new checkpoint inhibition pathways are currently being investigated regarding their potential to provide additional clinical benefit. However, only a fraction of patients respond to such treatment modalities, and there is an urgent need to identify biomarkers to rationally select patients that will benefit from treatment. In this study, we explore different tumor associated characteristics for their association with favorable clinical outcome in a diverse cohort of cancer patients treated with checkpoint inhibitors. We studied 29 patients in a basket trial comprising 12 different tumor types, treated with 10 different checkpoint inhibition regimens. Our analysis revealed that even across this diverse cohort, patients achieving clinical benefit had significantly higher neoepitope load, higher expression of T cell signatures, and higher PD-L2 expression, which also correlated with improved progression-free and overall survival. Importantly, the combination of biomarkers serves as a better predictor than each of the biomarkers alone. Basket trials are frequently used in modern immunotherapy trial design, and here we identify a set of biomarkers of potential relevance across multiple cancer types, allowing for the selection of patients that most likely will benefit from immune checkpoint inhibition.
Collapse
Affiliation(s)
- Annie Borch
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Anne-Mette Bjerregaard
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- Department of Bioinformatics and Datamining, Novo Nordisk, Bagsvaerd, Denmark
| | | | - Olga Østrup
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | - Carolina Barra
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Lyngby, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | - Finn Cilius Nielsen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Samuel A. Funt
- Weill Cornell Medical College, New York, NY, United States
| | - Ulrik Lassen
- Department of Oncology, Phase 1 Unit, Rigshospitalet, Copenhagen, Denmark
| | - Sine Reker Hadrup
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
40
|
Current Trends in Neoantigen-Based Cancer Vaccines. Pharmaceuticals (Basel) 2023; 16:ph16030392. [PMID: 36986491 PMCID: PMC10056833 DOI: 10.3390/ph16030392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Cancer immunotherapies are treatments that use drugs or cells to activate patients’ own immune systems against cancer cells. Among them, cancer vaccines have recently been rapidly developed. Based on tumor-specific antigens referred to as neoantigens, these vaccines can be in various forms such as messenger (m)RNA and synthetic peptides to activate cytotoxic T cells and act with or without dendritic cells. Growing evidence suggests that neoantigen-based cancer vaccines possess a very promising future, yet the processes of immune recognition and activation to relay identification of a neoantigen through the histocompatibility complex (MHC) and T-cell receptor (TCR) remain unclear. Here, we describe features of neoantigens and the biological process of validating neoantigens, along with a discussion of recent progress in the scientific development and clinical applications of neoantigen-based cancer vaccines.
Collapse
|
41
|
Biswas N, Chakrabarti S, Padul V, Jones LD, Ashili S. Designing neoantigen cancer vaccines, trials, and outcomes. Front Immunol 2023; 14:1105420. [PMID: 36845151 PMCID: PMC9947792 DOI: 10.3389/fimmu.2023.1105420] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Neoantigen vaccines are based on epitopes of antigenic parts of mutant proteins expressed in cancer cells. These highly immunogenic antigens may trigger the immune system to combat cancer cells. Improvements in sequencing technology and computational tools have resulted in several clinical trials of neoantigen vaccines on cancer patients. In this review, we have looked into the design of the vaccines which are undergoing several clinical trials. We have discussed the criteria, processes, and challenges associated with the design of neoantigens. We searched different databases to track the ongoing clinical trials and their reported outcomes. We observed, in several trials, the vaccines boost the immune system to combat the cancer cells while maintaining a reasonable margin of safety. Detection of neoantigens has led to the development of several databases. Adjuvants also play a catalytic role in improving the efficacy of the vaccine. Through this review, we can conclude that the efficacy of vaccines can make it a potential treatment across different types of cancers.
Collapse
Affiliation(s)
- Nupur Biswas
- Rhenix Lifesciences, Hyderabad, India,*Correspondence: Nupur Biswas, ;
| | | | | | | | | |
Collapse
|
42
|
Jia W, Guo H, Wang M, Li J, Yu J, Zhu H, Wu G. High post-chemotherapy TIL and increased CD4+TIL are independent prognostic factors of surgically resected NSCLC following neoadjuvant chemotherapy. MedComm (Beijing) 2023; 4:e213. [PMID: 36789099 PMCID: PMC9911612 DOI: 10.1002/mco2.213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 02/12/2023] Open
Abstract
Neoadjuvant chemotherapy (NCT) has significantly improved the overall survival of patients with operable non-small cell lung cancer (NSCLC). Chemotherapy can remodel the tumor immune microenvironment (TIME) and has an important influence on antitumor immunity. For patients who underwent surgery for resected NSCLC following NCT (NCT-NSCLC), a prognostic value comparison between naïve and post-chemotherapy TIME is absent. We enrolled 89 patients with NCT-NSCLC in this study; the tumor-infiltrating lymphocyte (TIL), CD4+TIL, and CD8+TIL levels in naïve and post-chemotherapy tumor tissues were detected using immunohistochemistry staining and divided into high and low groups. Kaplan-Meier analysis revealed that major pathology response, pathological tumor, node, and metastasis stage post-NCT (ypTNM), high post-chemotherapy TIL, high post-chemotherapy CD8+TIL, low naïve CD4+TIL, low naïve CD4+/CD8+TIL ratio, and increased CD4+TIL levels post-chemotherapy were favorable prognostic factors in patients with NCT-NSCLC. Multivariate Cox analysis found that ypTNM, high post-chemotherapy TIL, and increased CD4+TIL levels post-chemotherapy were independent prognostic factors in patients with NCT-NSCLC. These results indicate that a TIME remodeled by chemotherapy plays an important role in antitumor immunity and has a better prognostic value than the naïve TIME.
Collapse
Affiliation(s)
- Wenxiao Jia
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical UniversityShandong Academy of Medical SciencesJinanShandongChina
| | - Hongbo Guo
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical UniversityShandong Academy of Medical SciencesJinanShandongChina
| | - Min Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical UniversityShandong Academy of Medical SciencesJinanShandongChina
| | - Ji Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical UniversityShandong Academy of Medical SciencesJinanShandongChina
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical UniversityShandong Academy of Medical SciencesJinanShandongChina
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical UniversityShandong Academy of Medical SciencesJinanShandongChina
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
43
|
Mortezaee K, Majidpoor J, Najafi S, Tasa D. Bypassing anti-PD-(L)1 therapy: Mechanisms and management strategies. Biomed Pharmacother 2023; 158:114150. [PMID: 36577330 DOI: 10.1016/j.biopha.2022.114150] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Resistance to immune checkpoint inhibitors (ICIs) is a major issue of the current era in cancer immunotherapy. Immune evasion is a multi-factorial event, which occurs generally at a base of cold immunity. Despite advances in the field, there are still unsolved challenges about how to combat checkpoint hijacked by tumor cells and what are complementary treatment strategies to render durable anti-tumor outcomes. A point is that anti-programed death-1 receptor (PD-1)/anti-programmed death-ligand 1 (PD-L1) is not the solo path of immune escape, and responses in many types of solid tumors to the PD-1/PD-L1 inhibitors are not satisfactory. Thus, seeking mechanisms inter-connecting tumor with its immune ecosystem nearby unravel more about resistance mechanisms so as to develop methods for sustained reinvigoration of immune activity against cancer. In this review, we aimed to discuss about common and specific paths taken by tumor cells to evade immune surveillance, describing novel detection strategies, as well as suggesting some approaches to recover tumor sensitivity to the anti-PD-(L)1 therapy based on the current knowledge.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Tasa
- Hepatopancreatobiliary Surgery Fellowship, Organ Transplantation Group, Massih Daneshvari Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Surgery, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
44
|
Dianat-Moghadam H, Sharifi M, Salehi R, Keshavarz M, Shahgolzari M, Amoozgar Z. Engaging stemness improves cancer immunotherapy. Cancer Lett 2023; 554:216007. [PMID: 36396102 DOI: 10.1016/j.canlet.2022.216007] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Intra-tumoral immune cells promote the stemness of cancer stem cells (CSCs) in the tumor microenvironment (TME). CSCs promote tumor progression, relapse, and resistance to immunotherapy. Cancer stemness induces the expression of neoantigens and neo-properties in CSCs, creating an opportunity for targeted immunotherapies. Isolation of stem-like T cells or retaining stemness in T clonotypes strategies produces exhaustion-resistance T cells with superior re-expansion capacity and long-lasting responses after adoptive cell therapies. Stem cells-derived NK cells may be the next generation of NK cell products for immunotherapy. Here, we have reviewed mechanisms by which stemness factors modulated the immunoediting of the TME and summarized the potentials of CSCs in the development of immunotherapy regimens, including CAR-T cells, CAR-NK cells, cancer vaccines, and monoclonal antibodies. We have discussed the natural or genetically engineered stem-like T cells and stem cell-derived NK cells with increased cytotoxicity to tumor cells. Finally, we have provided a perspective on approaches that may improve the therapeutic efficacy of these novel adoptive cell-based products in targeting immunosuppressive TME.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehdi Shahgolzari
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zohreh Amoozgar
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Hannani D, Leplus E, Laulagnier K, Chaperot L, Plumas J. Leveraging a powerful allogeneic dendritic cell line towards neoantigen-based cancer vaccines. Genes Cancer 2023; 14:3-11. [PMID: 36726965 PMCID: PMC9886307 DOI: 10.18632/genesandcancer.229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, immunotherapy has finally found its place in the anti-cancer therapeutic arsenal, even becoming standard of care as first line treatment for metastatic forms. The clinical benefit provided by checkpoint blockers such as anti-PD-1/PD-L1 in many cancers revolutionized the field. However, too many patients remain refractory to these treatments due to weak baseline anti-cancer immunity. There is therefore a need to boost the frequency and function of patients' cytotoxic CD8+ cellular effectors by targeting immunogenic and tumor-restricted antigens, such as neoantigens using an efficient vaccination platform. Dendritic cells (DC) are the most powerful immune cell subset for triggering cellular immune response. However, autologous DC-based vaccines display several limitations, such as the lack of reproducibility and the limited number of cells that can be manufactured. Here we discuss the advantages of a new therapeutic vaccine based on an allogeneic Plasmacytoid DC cell line, which is easy to produce and represents a powerful platform for priming and expanding anti-neoantigen cytotoxic CD8+ T-cells.
Collapse
Affiliation(s)
| | | | | | - Laurence Chaperot
- 2R&D Laboratory, Etablissement Français du Sang Auvergne Rhône-Alpes (EFS AURA), Grenoble, France
| | - Joël Plumas
- 1PDC*line Pharma, Grenoble, France,2R&D Laboratory, Etablissement Français du Sang Auvergne Rhône-Alpes (EFS AURA), Grenoble, France,Correspondence to:Joël Plumas, email:
| |
Collapse
|
46
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 383] [Impact Index Per Article: 191.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|
47
|
Abstract
Historically, cancer research and therapy have focused on malignant cells and their tumor microenvironment. However, the vascular, lymphatic and nervous systems establish long-range communication between the tumor and the host. This communication is mediated by metabolites generated by the host or the gut microbiota, as well by systemic neuroendocrine, pro-inflammatory and immune circuitries-all of which dictate the trajectory of malignant disease through molecularly defined biological mechanisms. Moreover, aging, co-morbidities and co-medications have a major impact on the development, progression and therapeutic response of patients with cancer. In this Perspective, we advocate for a whole-body 'ecological' exploration of malignant disease. We surmise that accumulating knowledge on the intricate relationship between the host and the tumor will shape rational strategies for systemic, bodywide interventions that will eventually improve tumor control, as well as quality of life, in patients with cancer.
Collapse
|
48
|
Jürgens L, Wethmar K. The Emerging Role of uORF-Encoded uPeptides and HLA uLigands in Cellular and Tumor Biology. Cancers (Basel) 2022; 14:6031. [PMID: 36551517 PMCID: PMC9776223 DOI: 10.3390/cancers14246031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Recent technological advances have facilitated the detection of numerous non-canonical human peptides derived from regulatory regions of mRNAs, long non-coding RNAs, and other cryptic transcripts. In this review, we first give an overview of the classification of these novel peptides and summarize recent improvements in their annotation and detection by ribosome profiling, mass spectrometry, and individual experimental analysis. A large fraction of the novel peptides originates from translation at upstream open reading frames (uORFs) that are located within the transcript leader sequence of regular mRNA. In humans, uORF-encoded peptides (uPeptides) have been detected in both healthy and malignantly transformed cells and emerge as important regulators in cellular and immunological pathways. In the second part of the review, we focus on various functional implications of uPeptides. As uPeptides frequently act at the transition of translational regulation and individual peptide function, we describe the mechanistic modes of translational regulation through ribosome stalling, the involvement in cellular programs through protein interaction and complex formation, and their role within the human leukocyte antigen (HLA)-associated immunopeptidome as HLA uLigands. We delineate how malignant transformation may lead to the formation of novel uORFs, uPeptides, or HLA uLigands and explain their potential implication in tumor biology. Ultimately, we speculate on a potential use of uPeptides as peptide drugs and discuss how uPeptides and HLA uLigands may facilitate translational inhibition of oncogenic protein messages and immunotherapeutic approaches in cancer therapy.
Collapse
Affiliation(s)
| | - Klaus Wethmar
- University Hospital Münster, Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, 48149 Münster, Germany
| |
Collapse
|
49
|
Rouzbahani E, Majidpoor J, Najafi S, Mortezaee K. Cancer stem cells in immunoregulation and bypassing anti-checkpoint therapy. Biomed Pharmacother 2022; 156:113906. [DOI: 10.1016/j.biopha.2022.113906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 11/26/2022] Open
|
50
|
Rajasekaran K, Guan X, Tafazzol A, Hamidi H, Darwish M, Yadav M. Tetramer-aided sorting and single-cell RNA sequencing facilitate transcriptional profiling of antigen-specific CD8+ T cells. Transl Oncol 2022; 27:101559. [PMID: 36279715 PMCID: PMC9594627 DOI: 10.1016/j.tranon.2022.101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent advances in single-cell technologies and an improved understanding of tumor antigens have empowered researchers to investigate tumor antigen-specific CD8+ T cells at the single-cell level. Peptide-MHC I tetramers are often utilized to enrich antigen-specific CD8+ T cells, which however, introduces the undesired risk of altering their clonal distribution or their transcriptional state. This study addresses the feasibility of utilizing tetramers to enrich antigen-specific CD8+ T cells for single-cell analysis. METHODS HLA-A*02:01-restricted human cytomegalovirus (CMV) pp65 peptide-specific CD8+ T cells were used as a model for analyzing antigen-specific CD8+ T cells. Single-cell RNA sequencing and TCR sequencing were performed to compare the frequency and gene expression profile of pp65-specific TCR clones between tetramer-sorted, unstimulated- and tetramer-stimulated total CD8+ T cells. RESULTS The relative frequency of pp65-specific TCR clones and their transcriptional profile remained largely unchanged following tetramer-based sorting. In contrast, tetramer-mediated stimulation of CD8+ T cells resulted in significant gene expression changes in pp65-specific CD8+ T cells. An Antigen-Specific Response (ASR) gene signature was derived from tetramer-stimulated pp65-specific CD8+ T cells. The ASR signature had a predictive value and was significantly associated with progression free survival in lung cancer patients treated with anti-PD-L1, anti-VEGF, chemotherapy combination (NCT02366143). The predictive power of the ASR signature was independent of the conventional CD8 effector signature. CONCLUSIONS Our findings validate the approach of enriching antigen-specific CD8+ T cells through tetramer-aided Fluorescence-Activated Cell Sorting (FACS) sorting for single-cell analysis and also identifies an ASR gene signature that has value in predicting response to cancer immunotherapy.
Collapse
|