1
|
Subramaniam S, Jeet V, Gunter JH, Janjua Khan T, Feng Y, Clements JA, Srinivasan S, Popat A, Batra J. Lactoferrin-encapsulated dichloroacetophenone (DAP) nanoparticles enhance drug delivery and anti-tumor efficacy in prostate cancer. Cancer Lett 2025; 616:217522. [PMID: 39924080 DOI: 10.1016/j.canlet.2025.217522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
Pyruvate Dehydrogenase Kinase 1 (PDK1) regulates glycolysis and oxidative phosphorylation pathways and is linked to prostate cancer metastasis and poor prognosis. The therapeutic application of 2,2-dichloroacetophenone (DAP), a PDK1 inhibitor, remains underexplored in prostate cancer. In this study we demonstrated that DAP exhibited a superior ability to inhibit prostate cancer cell proliferation, migration and colony formation at a lower concentration (20 μM) compared to a previously established inhibitor, dichloroacetate (DCA), which required concentrations of 30 mM or higher. However, poor aqueous solubility and lower stability of DAP limits its therapeutic application. Nano formulation of DAP with natural lactoferrin enhanced its dispersion and stability by increasing polydispersity index and intensity, and reduced zeta potential values upon conjugation that overcame the solubility limitations of DAP. The lactoferrin-DAP nanoparticles exhibited enhanced therapeutic efficacy by precisely targeting prostate cancer cells that express high lactoferrin receptors and high anti-tumor activity in vitro (at 1 μM) and in mouse prostate tumor xenografts (20 mg/kg). Mechanistically, these nanoparticles induce apoptosis in cancer cells by inducing caspase3/7 activity and disrupting the glycolytic and oxidative phosphorylation pathways. Moreover, lactoferrin-conjugated DAP nanoparticles suppressed the viability of docetaxel-resistant cells exhibiting a higher inhibitory efficacy compared to free DAP and DCA. Targeting PDK1 through lactoferrin-conjugated DAP nanoparticles represents a potent targeted therapeutic strategy for disrupting prostate tumor metabolism and offers promising implications for overcoming drug resistance.
Collapse
Affiliation(s)
- Sugarniya Subramaniam
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland (QLD), Australia; Translational Research Institute, Woolloongabba, QLD, Australia
| | - Varinder Jeet
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland (QLD), Australia
| | - Jennifer H Gunter
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland (QLD), Australia; Translational Research Institute, Woolloongabba, QLD, Australia; The Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | | | - Yuran Feng
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Judith A Clements
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland (QLD), Australia; Translational Research Institute, Woolloongabba, QLD, Australia
| | - Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland (QLD), Australia; Translational Research Institute, Woolloongabba, QLD, Australia; The Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia; Mater Research Institute, Woolloongabba, QLD, Australia; Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland (QLD), Australia; Translational Research Institute, Woolloongabba, QLD, Australia; The Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, 4059, Australia.
| |
Collapse
|
2
|
Mulpuri N, Yao XQ, Hamelberg D. Uncovering the Role of Distal Regions in PDK1 Allosteric Activation. ACS BIO & MED CHEM AU 2025; 5:299-309. [PMID: 40255282 PMCID: PMC12006859 DOI: 10.1021/acsbiomedchemau.5c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 04/22/2025]
Abstract
Allosteric regulation is a pivotal mechanism governing a wide array of cellular functions. Essential to this process is a flexible biomolecule allowing distant sites to interact through coordinated or sequential conformational shifts. Phosphoinositide-dependent kinase 1 (PDK1) possesses a conserved allosteric binding site, the PIF-pocket, which regulates the kinase's ATP binding, catalytic activity, and substrate interactions. We elucidated the allosteric mechanisms of PDK1 by comparing conformational ensembles of the kinase bound with different small-molecule allosteric modulators in the PIF-pocket with that of the modulator-free kinase. Analysis of over 48 μs of simulations consistently shows that the allosteric modulators predominantly influence the conformational dynamics of specific distal regions from the PIF-pocket, driving allosteric activation. Furthermore, a recently developed advanced difference contact network community analysis is employed to elucidate allosteric communications. This approach integrates multiple conformational ensembles into a single community network, offering a valuable tool for future studies aimed at identifying function-related dynamics in proteins.
Collapse
Affiliation(s)
- Nagaraju Mulpuri
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United
States
| | - Xin-Qiu Yao
- Department
of Chemistry, University of Nebraska at
Omaha, Omaha, Nebraska 68182-0266, United States
| | - Donald Hamelberg
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United
States
| |
Collapse
|
3
|
Lentini G, Querqui A, Giuliani A, Verna R, Bizzarri M. Inositol and PIP2/PIP3 Ratio: At the Crossroad of the Biodynamic Interface Between Cells and Their Microenvironment. Biomolecules 2025; 15:451. [PMID: 40149987 PMCID: PMC11940430 DOI: 10.3390/biom15030451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Plasma membrane plays a pivotal role in orchestrating motility and invasive processes, as well as mitosis and genome expression. Indeed, specialized regions of the plasma membrane enriched in phosphoinositides-namely PIP2 and PIP3-can accommodate the requirements of the dynamic interface, which mediates the interplay between cells and their microenvironment. The fine-tuned balance between the two phosphoinositides is instrumental in regulating cytoskeleton organization, motility, ion channel activation, and membrane traffic. The balanced expression of PIP2/PIP3 fulfills these functions by activating pathways through several transporter and receptor proteins. These dynamic interactions modulate the interplay with the extracellular environment by decreasing/increasing their exposure on the cell surface. In this way, lipid structures can rapidly either dismiss or recruit specific proteins, eventually favoring their cooperation with membrane receptors and ion channels. Particularly, exposure of proteins can be managed through the internalization of plasma membrane segments, while receptor signaling can be desensitized by their removal from the cell surface. Notably, the equilibrium between PIP2 and PIP3 is largely dependent on inositol availability, as inositol addition enhances PIP2 content while reducing PIP3 via PI3K inhibition. Pharmacological modulation of PIP2/PIP3 balance promises to be an interesting target in different clinical settings.
Collapse
Affiliation(s)
- Guglielmo Lentini
- Space Biomedicine Laboratory, Department of Experimental Medicine, University Sapienza, 00161 Rome, Italy; (A.Q.); (R.V.)
| | - Alessandro Querqui
- Space Biomedicine Laboratory, Department of Experimental Medicine, University Sapienza, 00161 Rome, Italy; (A.Q.); (R.V.)
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Roberto Verna
- Space Biomedicine Laboratory, Department of Experimental Medicine, University Sapienza, 00161 Rome, Italy; (A.Q.); (R.V.)
| | - Mariano Bizzarri
- Space Biomedicine Laboratory, Department of Experimental Medicine, University Sapienza, 00161 Rome, Italy; (A.Q.); (R.V.)
| |
Collapse
|
4
|
Cho YB, Park KS. The Effect and Treatment of PIK3CA Mutations in Breast Cancer: Current Understanding and Future Directions. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:518. [PMID: 40142329 PMCID: PMC11944057 DOI: 10.3390/medicina61030518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025]
Abstract
Gene mutations in PIK3CA, the catalytic subunit of phosphoinositide 3-kinases, are significantly associated with prognosis in breast cancer. This association suggests that breast cancer patients with PIK3CA mutations should receive PIK3CA mutant-specific treatment. This review aimed to investigate novel treatments for PIK3CA-mutant breast cancer. This study investigated the effects of PIK3CA mutations in breast cancer with respect to gene ontology and the PI3K/AKT/mTOR pathway. Subsequently, we comprehensively examined all clinical trials that targeted breast cancer patients with PIK3CA mutations. Finally, this review explored the potential of a new treatment for noncoding RNA.
Collapse
Affiliation(s)
- Young-Bin Cho
- Department of Medicine, Graduate School of Konkuk University, Seoul 05029, Republic of Korea
| | - Kyoung-Sik Park
- Department of Surgery, Konkuk University Medical Center, Seoul 05029, Republic of Korea
- Department of Surgery, Konkuk University School of Medicine, Seoul 05029, Republic of Korea
| |
Collapse
|
5
|
Gambarotto L, Russo L, Bresolin S, Persano L, D'Amore R, Ronchi G, Zen F, Muratori L, Cani A, Negro S, Megighian A, Calabrò S, Braghetta P, Bizzotto D, Cescon M. Schwann Cell-Specific Ablation of Beclin 1 Impairs Myelination and Leads to Motor and Sensory Neuropathy in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2308965. [PMID: 39680476 PMCID: PMC11792035 DOI: 10.1002/advs.202308965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/24/2024] [Indexed: 12/18/2024]
Abstract
The core component of the class III phosphatidylinositol 3-kinase complex, Beclin 1, takes part in different protein networks, thus switching its role from inducing autophagy to regulating autophagosomal maturation and endosomal trafficking. While assessed in neurons, astrocytes, and microglia, its role is far less investigated in myelinating glia, including Schwann cells (SCs), responsible for peripheral nerve myelination. Remarkably, the dysregulation in endosomal trafficking is emerging as a pathophysiological mechanism underlying peripheral neuropathies, such as demyelinating Charcot-Marie-Tooth (CMT) diseases. By knocking out Beclin 1 in SCs here a novel mouse model (Becn1 cKO) is generated, developing a severe and progressive neuropathy, accompanied by involuntary tremors, body weight loss, and premature death. Ultrastructural analysis revealed abated myelination and SCs displaying enlarged cytoplasm with progressive accumulation of intracellular vesicles. Transcriptomic and histological analysis from sciatic nerves of 10-day and 2-month-old mice revealed pro-mitotic gene deregulation and increased SCs proliferation at both stages with axonal loss and increased immune infiltration in adults, well reflecting the progressive motor and sensory functional impairment that characterizes Becn1 cKO mice, compared to controls. The study establishes a further step in understanding key mechanisms in SC development and points to Beclin 1 and its regulated pathways as targets for demyelinating CMT forms.
Collapse
Affiliation(s)
- Lisa Gambarotto
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
- Department of BiologyUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Loris Russo
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Silvia Bresolin
- Department of Women and Children's HealthUniversity of Padovavia Giustiniani 3Padova35127Italy
- Istituto di Ricerca Pediatrica – Città della SperanzaCorso Stati Uniti 4Padova35128Italy
| | - Luca Persano
- Department of Women and Children's HealthUniversity of Padovavia Giustiniani 3Padova35127Italy
- Istituto di Ricerca Pediatrica – Città della SperanzaCorso Stati Uniti 4Padova35128Italy
| | - Rachele D'Amore
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO)University of TorinoRegione Gonzole 10, OrbassanoTorino10043Italy
| | - Federica Zen
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO)University of TorinoRegione Gonzole 10, OrbassanoTorino10043Italy
| | - Luisa Muratori
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO)University of TorinoRegione Gonzole 10, OrbassanoTorino10043Italy
| | - Alice Cani
- Department of Women and Children's HealthUniversity of Padovavia Giustiniani 3Padova35127Italy
| | - Samuele Negro
- U.O.C. Clinica NeurologicaAzienda Ospedale‐Università PadovaVia Giustiniani 5Padova35128Italy
| | - Aram Megighian
- Department of Biomedical SciencesUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
- Padova Neuroscience CenterUniversity of PadovaVia G. Orus, 2Padova35131Italy
| | - Sonia Calabrò
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
- Department of BiologyUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Paola Braghetta
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Dario Bizzotto
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Matilde Cescon
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| |
Collapse
|
6
|
Manne RK, Kant R, Lin HK. PDK1 neddylation by Smurf1 drives Akt activation. Cell Res 2025; 35:95-96. [PMID: 39209976 PMCID: PMC11770076 DOI: 10.1038/s41422-024-01020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Affiliation(s)
- Rajesh Kumar Manne
- Department of Pathology, School of Medicine, Duke University, Durham, NC, USA
| | - Rajni Kant
- Department of Pathology, School of Medicine, Duke University, Durham, NC, USA
| | - Hui-Kuan Lin
- Department of Pathology, School of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
7
|
Bdzhola A, Malanchuk O, Palchevskyi S, Gout I, Filonenko V, Zhyvoloup A. Co-expression of the RPS6KB1 and PDPK1 genes for production of activated p70S6K1 using bac-to-bac baculovirus expression system. Mol Biol Rep 2025; 52:130. [PMID: 39821712 PMCID: PMC11742003 DOI: 10.1007/s11033-024-10136-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/25/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Ribosomal protein S6 kinase 1 (p70S6K1) is a member of the AGC family of serine/threonine kinases which plays a role in various cellular processes, including protein synthesis, cell growth, and survival. Dysregulation of p70S6K1, characterized by its overexpression and/or hyperactivation, has been implicated in numerous human pathologies, particularly in several types of cancer. Therefore, generating active, recombinant p70S6K1 is critical for investigating its role in cancer biology and for developing novel diagnostic or therapeutic approaches. METHODS The baculovirus dual expression system was utilized, enabling the co-expression of two recombinant proteins in infected cells: (a) His-tagged S6K1 with a deletion of the C-terminal autoinhibitory motif and a phosphomimetic mutation at the mTORC1 phosphorylation site (T389D), and (b) untagged PDPK1 lacking the PH domain. The high activity of the purified kinase was confirmed by immunoblotting, as well as by Kinase-Glo and AlphaScreen kinase assays. RESULTS Efficient expression of both recombinant proteins was achieved, resulting in highly pure preparations of His-tagged p70S6K1. The high activity of the purified kinase was confirmed through multiple kinase assays, demonstrating significantly higher levels of substrate phosphorylation compared to the tested commercial product. CONCLUSION Here, we report a reliable and efficient methodology for the expression and purification of highly active p70S6K1 (His-actS6K1) in quantity and quality that is suitable for biochemical/biophysical studies and high-throughput enzymatic assays. Our developed methodology offers a rapid and cost-effective approach for producing constitutively active His-actS6K1, which can be utilized in academic research and biotechnology.
Collapse
Affiliation(s)
- Anna Bdzhola
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
| | - Oksana Malanchuk
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Sergii Palchevskyi
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
| | - Ivan Gout
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine.
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK.
| | - Valeriy Filonenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine.
| | - Alexander Zhyvoloup
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
8
|
Lu W, Feng W, Zhen H, Jiang S, Li Y, Liu S, Ru Q, Xiao W. Unlocking the therapeutic potential of WISP-1: A comprehensive exploration of its role in age-related musculoskeletal disorders. Int Immunopharmacol 2025; 145:113791. [PMID: 39667044 DOI: 10.1016/j.intimp.2024.113791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/03/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
As the global population ages, the incidence of age-related musculoskeletal diseases continues to increase, driven by numerous complex and poorly understood factors. WNT-1 inducible secreted protein 1 (WISP-1), a secreted matrix protein, plays a critical role in the growth and development of the musculoskeletal system, including chondrogenesis, osteogenesis, and myogenesis. Numerous in vivo and in vitro studies have demonstrated that WISP-1 is significantly upregulated in age-related musculoskeletal conditions, such as osteoarthritis, osteoporosis, and sarcopenia, suggesting its involvement in the pathogenesis of these diseases. Regulating WISP-1 expression holds promise as a therapeutic strategy for improving musculoskeletal function, potentially offering new avenues for treating age-related musculoskeletal diseases in clinical practice. This review highlights the signaling pathways associated with WISP-1, its physiological roles within the musculoskeletal system, and its therapeutic potential in treating age-related musculoskeletal disorders.
Collapse
Affiliation(s)
- Wenhao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wenjie Feng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Haozu Zhen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Shide Jiang
- The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shuguang Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710001, Shaanxi, China.
| | - Qin Ru
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
9
|
Xiang X, Shuya P, Jiamin Z, Zihan Z, Xumei Y, Jingjin L. 3-Phosphoinositide-Dependent Kinase 1 as a Therapeutic Target for Treating Diabetes. Curr Diabetes Rev 2025; 21:47-56. [PMID: 38468518 DOI: 10.2174/0115733998278669240226061329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/09/2024] [Accepted: 01/30/2024] [Indexed: 03/13/2024]
Abstract
The role of 3-phosphoinositide-dependent kinase 1 (PDK1) has been welldocumented in the development of diabetes. This review offers a thorough examination of its composition and associated routes, specifically focusing on insulin signaling and glucose processing. By examining the precise connection between PDK1 and diabetes, various strategies specifically targeting PDK1 were also investigated. Additionally, recent discoveries from mouse models were compiled where PDK1 was knocked out in certain tissues, which demonstrated encouraging outcomes for focused treatments despite the absence of any currently approved clinical PDK1 activators. Moreover, the dual nature of PDK1 activation was discussed, encompassing both anti-diabetic and pro-oncogenic effects. Hence, the development of a PDK1 modifier is of utmost importance, as it can activate anti-diabetic pathways while inhibiting pro-oncogenic pathways, thus aiding in the treatment of diabetes. In general, PDK1 presents a noteworthy opportunity for future therapeutic strategies in the treatment of diabetes.
Collapse
Affiliation(s)
- Xie Xiang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Childrens' Hospital of Wenzhou Medical University, Wenzhou, Zhejieng 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejieng 325027, China
| | - Pan Shuya
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejieng, China
| | - Zhang Jiamin
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejieng, China
| | - Zhang Zihan
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejieng, China
| | - Yang Xumei
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Childrens' Hospital of Wenzhou Medical University, Wenzhou, Zhejieng 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejieng 325027, China
| | - Liu Jingjin
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| |
Collapse
|
10
|
Peng Z, Fang W, Wu B, He M, Li S, Wei J, Hao Y, Jin L, Liu M, Zhang X, Wei Y, Ge Y, Wei Y, Qian H, Zhang Y, Jiang J, Chang Z, Rao Y, Zhang X, Cui CP, Zhang L. Targeting Smurf1 to block PDK1-Akt signaling in KRAS-mutated colorectal cancer. Nat Chem Biol 2025; 21:59-70. [PMID: 39039255 DOI: 10.1038/s41589-024-01683-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 06/23/2024] [Indexed: 07/24/2024]
Abstract
The phosphoinositide 3-kinase (PI3K)-Akt axis is one of the most frequently activated pathways and is demonstrated as a therapeutic target in Kirsten rat sarcoma viral oncogene homolog (KRAS)-mutated colorectal cancer (CRC). Targeting the PI3K-Akt pathway has been a challenging undertaking through the decades. Here we unveiled an essential role of E3 ligase SMAD ubiquitylation regulatory factor 1 (Smurf1)-mediated phosphoinositide-dependent protein kinase 1 (PDK1) neddylation in PI3K-Akt signaling and tumorigenesis. Upon growth factor stimulation, Smurf1 immediately triggers PDK1 neddylation and the poly-neural precursor cell expressed developmentally downregulated protein 8 (poly-Nedd8) chains recruit methyltransferase SET domain bifurcated histone lysine methyltransferase 1 (SETDB1). The cytoplasmic complex of PDK1 assembled with Smurf1 and SETDB1 (cCOMPASS) consisting of PDK1, Smurf1 and SETDB1 directs Akt membrane attachment and T308 phosphorylation. Smurf1 deficiency dramatically reduces CRC tumorigenesis in a genetic mouse model. Furthermore, we developed a highly selective Smurf1 degrader, Smurf1-antagonizing repressor of tumor 1, which exhibits efficient PDK1-Akt blockade and potent tumor suppression alone or combined with PDK1 inhibitor in KRAS-mutated CRC. The findings presented here unveil previously unrecognized roles of PDK1 neddylation and offer a potential strategy for targeting the PI3K-Akt pathway and KRAS mutant cancer therapy.
Collapse
Affiliation(s)
- Zhiqiang Peng
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- Shanghai Fengxian Central Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Wei Fang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- Shanghai Fengxian Central Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China
| | - Bo Wu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Ming He
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Shaohua Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- Shanghai Fengxian Central Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China
| | - Jun Wei
- Shanghai Fengxian Central Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China
| | - Yang Hao
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Lujia Jin
- Department of Gastrointestinal Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Mingqiu Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Xin Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yange Wei
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yingwei Ge
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yinghua Wei
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yangjun Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Junyi Jiang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Zhijie Chang
- School of Medicine, Tsinghua University, Beijing, China
| | - Yu Rao
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China.
| | - Xueli Zhang
- Shanghai Fengxian Central Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China.
| | - Chun-Ping Cui
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| | - Lingqiang Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| |
Collapse
|
11
|
Tian X, Zhang R, Yi S, Chen Y, Jiang Y, Zhang X, Zhang Z, Li Y. Non-Structural Protein V of Canine Distemper Virus Induces Autophagy via PI3K/AKT/mTOR Pathway to Facilitate Viral Replication. Int J Mol Sci 2024; 26:84. [PMID: 39795943 PMCID: PMC11720535 DOI: 10.3390/ijms26010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Canine distemper (CD) is a highly infectious disease of dogs which is caused by canine distemper virus (CDV). Previous studies have demonstrated that CDV infection can induce autophagy in cells. However, the mechanism underlying CDV-induced autophagy remains not fully understood. The CDV non-structural protein V plays a vital role in viral replication and pathogenicity in the host. In this study, we investigated the relationship between the CDV-V protein and autophagy induction and further explored its impact on the viral replication and the mechanism behind this. Our results showed that the V protein induced autophagy via inhibiting the phosphorylation of PI3K, AKT, and mTOR to promote viral replication. The activation or inhibition of PI3K phosphorylation resulted in enhancing or reducing viral replication, respectively. Further studies revealed that the V protein interacted with PI3K to induce cellular autophagy. The present study demonstrated that the CDV-V protein can induce cellular autophagy by inhibiting the PI3K/AKT signaling pathway to enhance viral replication. The results improve the understanding of the molecular mechanism of CDV infection and offer new perspectives for the development of effective treatment and prevention strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhidong Zhang
- Key Laboratory of Veterinary Medicine in Universities of Sichuan Province, College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, 16 Yihuan Rd., Chengdu 610041, China
| | - Yanmin Li
- Key Laboratory of Veterinary Medicine in Universities of Sichuan Province, College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, 16 Yihuan Rd., Chengdu 610041, China
| |
Collapse
|
12
|
Yao Z, Chen H. Everolimus in pituitary tumor: a review of preclinical and clinical evidence. Front Endocrinol (Lausanne) 2024; 15:1456922. [PMID: 39736867 PMCID: PMC11682973 DOI: 10.3389/fendo.2024.1456922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Although pituitary tumors (PTs) are mostly benign, some PTs are characterized by low surgical resection rates, high recurrence rates, and poor response to conventional treatments and profoundly affect patients' quality of life. Everolimus (EVE) is the only FDA-approved mTOR inhibitor, which can be used for oral treatment. It effectively inhibits tumor cell proliferation and angiogenesis. It has been administered for various neuroendocrine tumors of the digestive tract, lungs, and pancreas. EVE not only suppresses the growth and proliferation of APT cells but also enhances their sensitivity to radiotherapy and chemotherapy. This review introduces the role of the PI3K/AKT/mTOR pathway in the development of APTs, comprehensively explores the current status of preclinical and clinical research of EVE in APTs, and discusses the blood-brain barrier permeability and safety of EVE.
Collapse
Affiliation(s)
- Zihong Yao
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hui Chen
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
13
|
Cipak L, Sivakova B, Bellova J, Danchenko M, Jurcik J, Cipakova I, Lalakova LO, Gregan J, Barath P. Characterization of Ksg1 protein kinase-dependent phosphoproteome in the fission yeast S. pombe. Biochem Biophys Res Commun 2024; 736:150895. [PMID: 39476757 DOI: 10.1016/j.bbrc.2024.150895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/10/2024]
Abstract
Ksg1 is an essential protein kinase of the fission yeast S. pombe that belongs to the AGC kinase family and is homologous to the mammalian PDPK1 kinase. Previous studies have shown that Ksg1 functions in the nutrient-sensing TOR signaling pathway and is involved in the phosphorylation and activation of other AGC kinases, thereby affecting various downstream targets related to metabolism, cell division, stress response, and gene expression. To date, the molecular function of Ksg1 has been analyzed using its temperature sensitive mutants or mutants expressing its truncated isoforms, which are not always suitable for functional studies of Ksg1 and the identification of its targets. To overcome these limitations, we employed a chemical genetic strategy and used a conditional ksg1as mutant sensitive to an ATP analog. Combining this mutant with quantitative phosphoproteomics analysis, we identified 1986 phosphosites that were differentially phosphorylated when Ksg1as kinase was inhibited by an ATP analog. We found that proteins whose phosphorylation was dysregulated after inhibition of Ksg1as kinase were mainly represented by those involved in the regulation of cytokinesis, contractile ring contraction, cell division, septation initiation signaling cascade, intracellular protein kinase cascade, barrier septum formation, protein phosphorylation, intracellular signal transduction, cytoskeleton organization, cellular response to stimulus, or in RNA, ncRNA and rRNA processing. Importantly, proteins with significantly down-regulated phosphorylation were specifically enriched for R-X-X-S and R-X-R-X-X-S motifs, which are typical consensus substrate sequences for phosphorylation by the AGC family of kinases. The results of this study provide a basis for further analysis of the role of the Ksg1 kinase and its targets in S. pombe and may also be useful for studying Ksg1 orthologs in other organisms.
Collapse
Affiliation(s)
- Lubos Cipak
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Barbara Sivakova
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia; Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - Jana Bellova
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Maksym Danchenko
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Jurcik
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Nitra, Slovakia
| | - Ingrid Cipakova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Laura Olivia Lalakova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Juraj Gregan
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria; Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Tulln an der Donau, Austria
| | - Peter Barath
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia; Medirex Group Academy, Nitra, Slovakia.
| |
Collapse
|
14
|
Spirrison AN, Lannigan DA. RSK1 and RSK2 as therapeutic targets: an up-to-date snapshot of emerging data. Expert Opin Ther Targets 2024; 28:1047-1059. [PMID: 39632509 PMCID: PMC11801519 DOI: 10.1080/14728222.2024.2433123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION The four members of the p90 ribosomal S6 kinase (RSK) family are serine/threonine protein kinases, which are phosphorylated and activated by ERK1/2. RSK1/2/3 are further phosphorylated by PDK1. Receiving inputs from two major signaling pathways places RSK as a key signaling node in numerous pathologies. A plethora of RSK1/2 substrates have been identified, and in the majority of cases the causative roles these RSK substrates play in the pathology are unknown. AREAS COVERED The majority of studies have focused on RSK1/2 and their functions in a diverse group of cancers. However, RSK1/2 are known to have important functions in cardiovascular disease and neurobiological disorders. Based on the literature, we identified substrates that are common in these pathologies with the goal of identifying fundamental physiological responses to RSK1/2. EXPERT OPINION The core group of targets in pathologies driven by RSK1/2 are associated with the immune response. However, there is a paucity of the literature addressing RSK function in inflammation, which is critical to know as the pan RSK inhibitor, PMD-026, is entering phase II clinical trials for metastatic breast cancer. A RSK inhibitor has the potential to be used in numerous diverse diseases and disorders.
Collapse
Affiliation(s)
| | - Deborah A. Lannigan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
15
|
Burton JC, Royer F, Grimsey NJ. Spatiotemporal control of kinases and the biomolecular tools to trace activity. J Biol Chem 2024; 300:107846. [PMID: 39362469 PMCID: PMC11550616 DOI: 10.1016/j.jbc.2024.107846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
The delicate balance of cell physiology is implicitly tied to the expression and activation of proteins. Post-translational modifications offer a tool to dynamically switch protein activity on and off to orchestrate a wide range of protein-protein interactions to tune signal transduction during cellular homeostasis and pathological responses. There is a growing acknowledgment that subcellular locations of kinases define the spatial network of potential scaffolds, adaptors, and substrates. These highly ordered and localized biomolecular microdomains confer a spatially distinct bias in the outcomes of kinase activity. Furthermore, they may hold essential clues to the underlying mechanisms that promote disease. Developing tools to dissect the spatiotemporal activation of kinases is critical to reveal these mechanisms and promote the development of spatially targeted kinase inhibitors. Here, we discuss the spatial regulation of kinases, the tools used to detect their activity, and their potential impact on human health.
Collapse
Affiliation(s)
- Jeremy C Burton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA
| | - Fredejah Royer
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA
| | - Neil J Grimsey
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA.
| |
Collapse
|
16
|
Jarocki M, Turek K, Saczko J, Tarek M, Kulbacka J. Lipids associated with autophagy: mechanisms and therapeutic targets. Cell Death Discov 2024; 10:460. [PMID: 39477959 PMCID: PMC11525783 DOI: 10.1038/s41420-024-02224-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Autophagy is a molecular process essential for maintaining cellular homeostasis, with its impairment or dysregulation linked to the progression of various diseases in mammals. Specific lipids, including phosphoinositides, sphingolipids, and oxysterols, play pivotal roles in inducing and regulating autophagy, highlighting their significance in this intricate process. This review focuses on the critical involvement of these lipids in autophagy and lipophagy, providing a comprehensive overview of the current understanding of their functions. Moreover, we delve into how abnormalities in autophagy, influenced by these lipids, contribute to the pathogenesis of various diseases. These include age-related conditions such as cardiovascular diseases, neurodegenerative disorders, type 2 diabetes, and certain cancers, as well as inflammatory and liver diseases, skeletal muscle pathologies and age-related macular degeneration (AMD). This review aims to highlight function of lipids and their potential as therapeutic targets in treating diverse human pathologies by elucidating the specific roles of phosphoinositides, sphingolipids, and oxysterols in autophagy.
Collapse
Affiliation(s)
- Michał Jarocki
- University Clinical Hospital, Wroclaw Medical University, Wroclaw, Poland
| | | | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, Nancy, France
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| |
Collapse
|
17
|
Xu L, Jang H, Nussinov R. Capturing Autoinhibited PDK1 Reveals the Linker's Regulatory Role, Informing Innovative Inhibitor Design. J Chem Inf Model 2024; 64:7709-7724. [PMID: 39348509 DOI: 10.1021/acs.jcim.4c01392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
PDK1 is crucial for PI3K/AKT/mTOR and Ras/MAPK cancer signaling. It phosphorylates AKT in a PIP3-dependent but S6K, SGK, and RSK kinases in a PIP3-independent manner. Unlike its substrates, its autoinhibited monomeric state has been unclear, likely due to its low population time, and phosphorylation in the absence of PIP3 has been puzzling too. Here, guided by experimental data, we constructed models and performed all-atom molecular dynamics simulations. In the autoinhibited PDK1 conformation that resembles autoinhibited AKT, binding of the linker between the kinase and PH domains to the PIF-binding pocket promotes the formation of the Glu130-Lys111 salt bridge and weakens the association of the kinase domain with the PH domain, shifting the population from the autoinhibited state to states accessible to the membrane and its kinase substrates. The interaction of the substrates' hydrophobic motif and the PDK1 PIF-binding pocket facilitates the release of the autoinhibition even in the absence of PIP3. Phosphorylation of the serine-rich motif within the linker further attenuates the association of the PH domain with the kinase domain. These suggest that while the monomeric autoinhibited state is relatively stable, it can readily shift to its active, catalysis-prone state to phosphorylate its diverse substrates. Our findings reveal the PDK1 activation mechanism and discover the regulatory role of PDK1's linker, which lead to two innovative linker-based inhibitor strategies: (i) locking the autoinhibited PDK1 through optimization of the interactions of AKT inhibitors with the PH domain of PDK1 and (ii) analogs (small molecules or peptidomimetics) that mimic the linker interactions with the PIF-binding pocket.
Collapse
Affiliation(s)
- Liang Xu
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
18
|
Jung EJ, Lee WJ, Bae JW, Kwon WS. Miltefosine induces reproductive toxicity during sperm capacitation by altering PI3K/AKT signaling pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104565. [PMID: 39265707 DOI: 10.1016/j.etap.2024.104565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
Miltefosine is the first and only drug approved for the treatment of leishmaniasis. It is also known as a PI3K/AKT signaling pathway inhibitor utilized in anti-cancer or anti-viral therapies. However, the impact of miltefosine on male fertility has not been fully understood. Therefore, this study was performed to investigate the effects of miltefosine on sperm function during capacitation. Duroc spermatozoa were exposed to 0, 2.5, 5, 10, 20, 40, and 80 μM miltefosine and induced for capacitation. Our results showed that miltefosine dramatically increased the expression of PI3K/AKT signaling pathway-associated proteins. Sperm motility, motion kinetics, capacitation, and tyrosine phosphorylation were significantly suppressed by miltefosine. However, intracellular ATP levels and cell viability were not significantly affected. Our findings suggest that miltefosine may disrupt sperm function by abnormally increasing the levels of PI3K/AKT signaling pathway-associated proteins. Therefore, the harmful effects of miltefosine on male reproduction should be considered when using this drug.
Collapse
Affiliation(s)
- Eun-Ju Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea.
| | - Woo-Jin Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea.
| | - Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea.
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea.
| |
Collapse
|
19
|
Sergi D, Melloni M, Passaro A, Neri LM. Influence of Type 2 Diabetes and Adipose Tissue Dysfunction on Breast Cancer and Potential Benefits from Nutraceuticals Inducible in Microalgae. Nutrients 2024; 16:3243. [PMID: 39408212 PMCID: PMC11478231 DOI: 10.3390/nu16193243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Breast cancer (BC) represents the most prevalent cancer in women at any age after puberty. From a pathogenetic prospective, despite a wide array of risk factors being identified thus far, poor metabolic health is emerging as a putative risk factor for BC. In particular, type 2 diabetes mellitus (T2DM) provides a perfect example bridging the gap between poor metabolic health and BC risk. Indeed, T2DM is preceded by a status of hyperinsulinemia and is characterised by hyperglycaemia, with both factors representing potential contributors to BC onset and progression. Additionally, the aberrant secretome of the dysfunctional, hypertrophic adipocytes, typical of obesity, characterised by pro-inflammatory mediators, is a shared pathogenetic factor between T2DM and BC. In this review, we provide an overview on the effects of hyperglycaemia and hyperinsulinemia, hallmarks of type 2 diabetes mellitus, on breast cancer risk, progression, treatment and prognosis. Furthermore, we dissect the role of the adipose-tissue-secreted adipokines as additional players in the pathogenesis of BC. Finally, we focus on microalgae as a novel superfood and a source of nutraceuticals able to mitigate BC risk by improving metabolic health and targeting cellular pathways, which are disrupted in the context of T2DM and obesity.
Collapse
Affiliation(s)
- Domenico Sergi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Mattia Melloni
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
20
|
Conduit SE, Pearce W, Bhamra A, Bilanges B, Bozal-Basterra L, Foukas LC, Cobbaut M, Castillo SD, Danesh MA, Adil M, Carracedo A, Graupera M, McDonald NQ, Parker PJ, Cutillas PR, Surinova S, Vanhaesebroeck B. A class I PI3K signalling network regulates primary cilia disassembly in normal physiology and disease. Nat Commun 2024; 15:7181. [PMID: 39168978 PMCID: PMC11339396 DOI: 10.1038/s41467-024-51354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Primary cilia are antenna-like organelles which sense extracellular cues and act as signalling hubs. Cilia dysfunction causes a heterogeneous group of disorders known as ciliopathy syndromes affecting most organs. Cilia disassembly, the process by which cells lose their cilium, is poorly understood but frequently observed in disease and upon cell transformation. Here, we uncover a role for the PI3Kα signalling enzyme in cilia disassembly. Genetic PI3Kα-hyperactivation, as observed in PIK3CA-related overgrowth spectrum (PROS) and cancer, induced a ciliopathy-like phenotype during mouse development. Mechanistically, PI3Kα and PI3Kβ produce the PIP3 lipid at the cilia transition zone upon disassembly stimulation. PI3Kα activation initiates cilia disassembly through a kinase signalling axis via the PDK1/PKCι kinases, the CEP170 centrosomal protein and the KIF2A microtubule-depolymerising kinesin. Our data suggest diseases caused by PI3Kα-activation may be considered 'Disorders with Ciliary Contributions', a recently-defined subset of ciliopathies in which some, but not all, of the clinical manifestations result from cilia dysfunction.
Collapse
Affiliation(s)
- Sarah E Conduit
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| | - Wayne Pearce
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Amandeep Bhamra
- Proteomics Research Translational Technology Platform, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Benoit Bilanges
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Laura Bozal-Basterra
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Lazaros C Foukas
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Mathias Cobbaut
- Signalling and Structural Biology laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sandra D Castillo
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Mohammad Amin Danesh
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Mahreen Adil
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
- Translational Prostate Cancer Research Laboratory, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080, Bilbao, Spain
| | - Mariona Graupera
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, Barcelona, Spain
| | - Neil Q McDonald
- Signalling and Structural Biology laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Institute of Structural and Molecular Biology, School of Natural Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | - Peter J Parker
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- King's College London, Guy's Campus, London, UK
| | - Pedro R Cutillas
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Silvia Surinova
- Proteomics Research Translational Technology Platform, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Bart Vanhaesebroeck
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| |
Collapse
|
21
|
Huang Y, Feng Q, Zhang Y, Zeng Y, Shi N, Chen Y, Tang X, Li Z. The effect of PDK1 in maintaining immune cell development and function. Biochem Biophys Res Commun 2024; 721:150106. [PMID: 38795634 DOI: 10.1016/j.bbrc.2024.150106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/28/2024]
Abstract
3-phosphoinositide-dependent protein kinase 1 (PDK1) exhibits a substantial influence on immune cell development by establishing a vital connection between PI3K and downstream mTOR signaling cascades. However, it remains unclear whether PDK1 signaling affects the homeostasis and functionality of immune cells. To explore the impact of PDK1 on different immune cells within immune organs, transgenic mouse strains with lymphocyte-specific PDK1 knockout (PDK1fl/fl CD2-Cre) were generated. Unlike wild-type (WT) mice, lymphocyte-specific PDK1 knockout (KO) mice exhibited thymic atrophy, elevated percentages of CD8+ T cells and neutrophils, and reduced proportions of γδ T cells, B cells, and NK cells in the spleen. Functional analysis revealed elevated release of IFN-γ and IL-17A by T cells in PDK1 KO mice, contrasting with diminished levels observed in γδ T cells and Treg cells. Furthermore, the activation, cytotoxicity, and migratory potential of γδ T cells in PDK1 KO mice are heightened, indicating a potential association with the regulation of the mTOR signaling pathway. To conclude, the findings of this research demonstrated that specific knockout of PDK1 in lymphocytes hindered T cell development in the thymus and exhibited a substantial influence on immune cell homeostasis in the spleen and lymph nodes.
Collapse
Affiliation(s)
- Yu Huang
- Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Qiuyue Feng
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yawen Zhang
- Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Yingying Zeng
- Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Nanxi Shi
- Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Yiming Chen
- Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Xin Tang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
| | - Zhenhua Li
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou 510632, China; Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
22
|
Herneisen AL, Peters ML, Smith TA, Shortt E, Lourido S. SPARK regulates AGC kinases central to the Toxoplasma gondii asexual cycle. eLife 2024; 13:RP93877. [PMID: 39136687 PMCID: PMC11321763 DOI: 10.7554/elife.93877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Apicomplexan parasites balance proliferation, persistence, and spread in their metazoan hosts. AGC kinases, such as PKG, PKA, and the PDK1 ortholog SPARK, integrate environmental signals to toggle parasites between replicative and motile life stages. Recent studies have cataloged pathways downstream of apicomplexan PKG and PKA; however, less is known about the global integration of AGC kinase signaling cascades. Here, conditional genetics coupled to unbiased proteomics demonstrates that SPARK complexes with an elongin-like protein to regulate the stability of PKA and PKG in the model apicomplexan Toxoplasma gondii. Defects attributed to SPARK depletion develop after PKG and PKA are down-regulated. Parasites lacking SPARK differentiate into the chronic form of infection, which may arise from reduced activity of a coccidian-specific PKA ortholog. This work delineates the signaling topology of AGC kinases that together control transitions within the asexual cycle of this important family of parasites.
Collapse
Affiliation(s)
- Alice L Herneisen
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Michelle L Peters
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Tyler A Smith
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Emily Shortt
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
23
|
Rios-Valencia DG, Estrada K, Calderón-Gallegos A, Tirado-Mendoza R, Bobes RJ, Laclette JP, Cabrera-Bravo M. Effect of Hydroxyurea on Morphology, Proliferation, and Protein Expression on Taenia crassiceps WFU Strain. Int J Mol Sci 2024; 25:6061. [PMID: 38892261 PMCID: PMC11172544 DOI: 10.3390/ijms25116061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Flatworms are known for their remarkable regenerative ability, one which depends on totipotent cells known as germinative cells in cestodes. Depletion of germinative cells with hydroxyurea (HU) affects the regeneration of the parasite. Here, we studied the reduction and recovery of germinative cells in T. crassiceps cysticerci after HU treatment (25 mM and 40 mM of HU for 6 days) through in vitro assays. Viability and morphological changes were evaluated. The recovery of cysticerci's mobility and morphology was evaluated at 3 and 6 days, after 6 days of treatment. The number of proliferative cells was evaluated using EdU. Our results show morphological changes in the size, shape, and number of evaginated cysticerci at the 40 mM dose. The mobility of cysticerci was lower after 6 days of HU treatment at both concentrations. On days 3 and 6 of recovery after 25 mM of HU treatment, a partial recovery of the proliferative cells was observed. Proteomic and Gene Ontology analyses identified modifications in protein groups related to DNA binding, DNA damage, glycolytic enzymes, cytoskeleton, skeletal muscle, and RNA binding.
Collapse
Affiliation(s)
- Diana G. Rios-Valencia
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacan, Mexico City 04510, Mexico; (D.G.R.-V.); (R.T.-M.)
| | - Karel Estrada
- Unit for Massive Sequencing and Bioinformatics, Biotechnology Institute, Universidad Nacional Autónoma de México, Coyoacan, Mexico City 04510, Mexico;
| | - Arturo Calderón-Gallegos
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Mexico City 04510, Mexico; (A.C.-G.); (R.J.B.)
| | - Rocío Tirado-Mendoza
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacan, Mexico City 04510, Mexico; (D.G.R.-V.); (R.T.-M.)
| | - Raúl J. Bobes
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Mexico City 04510, Mexico; (A.C.-G.); (R.J.B.)
| | - Juan P. Laclette
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Mexico City 04510, Mexico; (A.C.-G.); (R.J.B.)
| | - Margarita Cabrera-Bravo
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacan, Mexico City 04510, Mexico; (D.G.R.-V.); (R.T.-M.)
| |
Collapse
|
24
|
Zhang W, Liu Y, Jang H, Nussinov R. CDK2 and CDK4: Cell Cycle Functions Evolve Distinct, Catalysis-Competent Conformations, Offering Drug Targets. JACS AU 2024; 4:1911-1927. [PMID: 38818077 PMCID: PMC11134382 DOI: 10.1021/jacsau.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
Cyclin-dependent kinases (CDKs), particularly CDK4 and CDK2, are crucial for cell cycle progression from the Gap 1 (G1) to the Synthesis (S) phase by phosphorylating targets such as the Retinoblastoma Protein (Rb). CDK4, paired with cyclin-D, operates in the long G1 phase, while CDK2 with cyclin-E, manages the brief G1-to-S transition, enabling DNA replication. Aberrant CDK signaling leads to uncontrolled cell proliferation, which is a hallmark of cancer. Exactly how they accomplish their catalytic phosphorylation actions with distinct efficiencies poses the fundamental, albeit overlooked question. Here we combined available experimental data and modeling of the active complexes to establish their conformational functional landscapes to explain how the two cyclin/CDK complexes differentially populate their catalytically competent states for cell cycle progression. Our premise is that CDK catalytic efficiencies could be more important for cell cycle progression than the cyclin-CDK biochemical binding specificity and that efficiency is likely the prime determinant of cell cycle progression. We observe that CDK4 is more dynamic than CDK2 in the ATP binding site, the regulatory spine, and the interaction with its cyclin partner. The N-terminus of cyclin-D acts as an allosteric regulator of the activation loop and the ATP-binding site in CDK4. Integrated with a suite of experimental data, we suggest that the CDK4 complex is less capable of remaining in the active catalytically competent conformation, and may have a lower catalytic efficiency than CDK2, befitting their cell cycle time scales, and point to critical residues and motifs that drive their differences. Our mechanistic landscape may apply broadly to kinases, and we propose two drug design strategies: (i) allosteric Inhibition by conformational stabilization for targeting allosteric CDK4 regulation by cyclin-D, and (ii) dynamic entropy-optimized targeting which leverages the dynamic, entropic aspects of CDK4 to optimize drug binding efficacy.
Collapse
Affiliation(s)
- Wengang Zhang
- Cancer
Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Yonglan Liu
- Cancer
Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Computational
Structural Biology Section, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational
Structural Biology Section, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
- Department
of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
25
|
Wixler V, Boergeling Y, Leite Dantas R, Varga G, Ludwig S. Conversion of dendritic cells into tolerogenic or inflammatory cells depends on the activation threshold and kinetics of the mTOR signaling pathway. Cell Commun Signal 2024; 22:281. [PMID: 38773618 PMCID: PMC11106905 DOI: 10.1186/s12964-024-01655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/08/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Restoring impaired peripheral immune tolerance is the primary challenge in treating autoimmune diseases. Our previous research demonstrated the effectiveness of small spleen peptides (SSPs), a fraction of low molecular weight proteins, in inhibiting the progression of psoriatic arthritis, even in the presence of high levels of the proinflammatory cytokine TNFα in the bloodstream. When specifically targeting dendritic cells (DCs), SSPs transform them into tolerogenic cells, which efficiently induce the development of regulatory Foxp3+ Treg cells. In this study, we provide further insights into the mechanism of action of SSPs. RESULTS We found that SSPs stimulate the activation of the mTOR signaling pathway in dendritic cells, albeit in a different manner than the classical immunogenic stimulus LPS. While LPS-induced activation is rapid, strong, and sustained, the activity induced by SSPs is delayed, less intense, yet still significant. These distinct patterns of activation, as measured by phosphorylation of key components of the pathway are also observed in response to other immunogenic and tolerogenic stimuli such as GM-CSF + IL-4 or IL-10 and TGFβ. The disparity in mTOR activation between immunogenic and tolerogenic stimuli is quantitative rather than qualitative. In both cases, mTOR activation primarily occurs through the PI3K/Akt signaling axis and involves ERK and GSK3β kinases, with minimal involvement of AMPK or NF-kB pathways. Furthermore, in the case of SSPs, mTOR activation seems to involve adenosine receptors. Additionally, we observed that DCs treated with SSPs exhibit an energy metabolism with high plasticity, which is typical of tolerogenic cells rather than immunogenic cells. CONCLUSION Hence, the decision whether dendritic cells enter an inflammatory or tolerogenic state seems to rely on varying activation thresholds and kinetics of the mTOR signaling pathway.
Collapse
Affiliation(s)
- Viktor Wixler
- Institute of Molecular Virology, Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms- University, Von-Esmarch-Str. 56, 48149, Muenster, Germany.
| | - Yvonne Boergeling
- Institute of Molecular Virology, Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms- University, Von-Esmarch-Str. 56, 48149, Muenster, Germany
| | - Rafael Leite Dantas
- Institute of Molecular Virology, Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms- University, Von-Esmarch-Str. 56, 48149, Muenster, Germany
- Department of Mental Health, Westfaelische Wilhelms-University, 48149, Muenster, Germany
| | - Georg Varga
- Pediatric Rheumatology and Immunology, University Children's Hospital Muenster, 48149, Muenster, Germany
| | - Stephan Ludwig
- Institute of Molecular Virology, Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms- University, Von-Esmarch-Str. 56, 48149, Muenster, Germany
| |
Collapse
|
26
|
Kang JB, Koh PO. Retinoic acid alleviates the reduction of Akt and Bad phosphorylation and regulates Bcl-2 family protein interactions in animal models of ischemic stroke. PLoS One 2024; 19:e0303213. [PMID: 38753710 PMCID: PMC11098415 DOI: 10.1371/journal.pone.0303213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/21/2024] [Indexed: 05/18/2024] Open
Abstract
Ischemic stroke causes a lack of oxygen and glucose supply to brain, eventually leads to severe neurological disorders. Retinoic acid is a major metabolic product of vitamin A and has various biological effects. The PI3K-Akt signaling pathway is an important survival pathway in brain. Phosphorylated Akt is important in regulating survival and apoptosis. We examined whether retinoic acid has neuroprotective effects in stroke model by regulating Akt and its downstream protein, Bad. Moreover, we investigated the relationship between retinoic acid and Bcl-2 family protein interactions. Animals were intraperitoneally administered vehicle or retinoic acid (5 mg/kg) for four days before surgery and ischemic stroke was induced by middle cerebral artery occlusion (MCAO) surgery. Neurobehavioral tests were performed 24 h after MCAO and cerebral cortical tissues were collected. Cresyl violet staining and TUNEL histochemistry were performed, Western blot and immunoprecipitation analysis were performed to elucidate the expression of various proteins. Retinoic acid reduced neurological deficits and histopathological changes, decreased the number of TUNEL-positive cells, and alleviated reduction of phospho-PDK1, phospho-Akt, and phospho-Bad expression caused by MCAO damage. Immunoprecipitation analysis showed that MCAO damage reduced the interaction between phospho-Bad and 14-3-3, which was attenuated by retinoic acid. Furthermore, retinoic acid mitigated the increase in Bcl-2/Bad and Bcl-xL/Bad binding levels and the reduction in Bcl-2/Bax and Bcl-xL/Bax binding levels caused by MCAO damage. Retinoic acid alleviated MCAO-induced increase of caspase-3 and cleaved caspase-3 expression. We demonstrate that retinoic acid prevented apoptosis against cerebral ischemia through phosphorylation of Akt and Bad, maintenance of phospho-Bad and 14-3-3 binding, and regulation of Bcl-2 family protein interactions. .
Collapse
Affiliation(s)
- Ju-Bin Kang
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
27
|
Estevam GO, Linossi EM, Macdonald CB, Espinoza CA, Michaud JM, Coyote-Maestas W, Collisson EA, Jura N, Fraser JS. Conserved regulatory motifs in the juxtamembrane domain and kinase N-lobe revealed through deep mutational scanning of the MET receptor tyrosine kinase domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.03.551866. [PMID: 37577651 PMCID: PMC10418267 DOI: 10.1101/2023.08.03.551866] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
MET is a receptor tyrosine kinase (RTK) responsible for initiating signaling pathways involved in development and wound repair. MET activation relies on ligand binding to the extracellular receptor, which prompts dimerization, intracellular phosphorylation, and recruitment of associated signaling proteins. Mutations, which are predominantly observed clinically in the intracellular juxtamembrane and kinase domains, can disrupt typical MET regulatory mechanisms. Understanding how juxtamembrane variants, such as exon 14 skipping (METΔEx14), and rare kinase domain mutations can increase signaling, often leading to cancer, remains a challenge. Here, we perform a parallel deep mutational scan (DMS) of the MET intracellular kinase domain in two fusion protein backgrounds: wild type and METΔEx14. Our comparative approach has revealed a critical hydrophobic interaction between a juxtamembrane segment and the kinase αC-helix, pointing to potential differences in regulatory mechanisms between MET and other RTKs. Additionally, we have uncovered a β5 motif that acts as a structural pivot for the kinase domain in MET and other TAM family of kinases. We also describe a number of previously unknown activating mutations, aiding the effort to annotate driver, passenger, and drug resistance mutations in the MET kinase domain.
Collapse
Affiliation(s)
- Gabriella O. Estevam
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco,United States
- Tetrad Graduate Program, University of California San Francisco, San Francisco, United States
| | - Edmond M. Linossi
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, United States
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, United States
| | - Christian B. Macdonald
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco,United States
| | - Carla A. Espinoza
- Tetrad Graduate Program, University of California San Francisco, San Francisco, United States
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, United States
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, United States
| | - Jennifer M. Michaud
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco,United States
| | - Willow Coyote-Maestas
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco,United States
- Quantitative Biosciences Institute, University of California, San Francisco, United States, United States
| | - Eric A. Collisson
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, United States
- Department of Medicine/Hematology and Oncology, University of California, San Francisco, United States
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, United States
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, United States
- Quantitative Biosciences Institute, University of California, San Francisco, United States, United States
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco,United States
- Quantitative Biosciences Institute, University of California, San Francisco, United States, United States
| |
Collapse
|
28
|
Herneisen AL, Peters ML, Smith TA, Shortt E, Lourido S. SPARK regulates AGC kinases central to the Toxoplasma gondii asexual cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.30.564746. [PMID: 37961644 PMCID: PMC10634940 DOI: 10.1101/2023.10.30.564746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Apicomplexan parasites balance proliferation, persistence, and spread in their metazoan hosts. AGC kinases, such as PKG, PKA, and the PDK1 ortholog SPARK, integrate environmental signals to toggle parasites between replicative and motile life stages. Recent studies have cataloged pathways downstream of apicomplexan PKG and PKA; however, less is known about the global integration of AGC kinase signaling cascades. Here, conditional genetics coupled to unbiased proteomics demonstrates that SPARK complexes with an elongin-like protein to regulate the stability of PKA and PKG in the model apicomplexan Toxoplasma gondii. Defects attributed to SPARK depletion develop after PKG and PKA are down-regulated. Parasites lacking SPARK differentiate into the chronic form of infection, which may arise from reduced activity of a coccidian-specific PKA ortholog. This work delineates the signaling topology of AGC kinases that together control transitions within the asexual cycle of this important family of parasites.
Collapse
Affiliation(s)
- Alice L. Herneisen
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Michelle L. Peters
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Tyler A. Smith
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Emily Shortt
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
29
|
Mayr F, Kruse V, Fuhrmann DC, Wolf S, Löber J, Alsouri S, Paglilla N, Lee K, Chapuy B, Brüne B, Zenz T, Häupl B, Oellerich T, Engelke M. SH2 domain-containing inositol 5-phosphatases support the survival of Burkitt lymphoma cells by promoting energy metabolism. Haematologica 2024; 109:1445-1459. [PMID: 37916396 PMCID: PMC11063853 DOI: 10.3324/haematol.2023.283663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
Burkitt lymphoma cells (BL) exploit antigen-independent tonic signals transduced by the B-cell antigen receptor (BCR) for their survival, but the molecular details of the rewired BL-specific BCR signal network remain unclear. A loss of function screen revealed the SH2 domain-containing 5`-inositol phosphatase 2 (SHIP2) as a potential modulator of BL fitness. We characterized the role of SHIP2 in BL survival in several BL cell models and show that perturbing SHIP2 function renders cells more susceptible to apoptosis, while attenuating proliferation in a BCR-dependent manner. Unexpectedly, SHIP2 deficiency did neither affect PI3K survival signals nor MAPK activity, but attenuated ATP production. We found that an efficient energy metabolism in BL cells requires phosphatidylinositol-3,4-bisphosphate (PI(3,4)P2), which is the enzymatic product of SHIP proteins. Consistently, interference with the function of SHIP1 and SHIP2 augments BL cell susceptibility to PI3K inhibition. Notably, we provide here a molecular basis of how tonic BCR signals are connected to energy supply, which is particularly important for such an aggressively growing neoplasia. These findings may help to improve therapies for the treatment of BL by limiting energy metabolism through the inhibition of SHIP proteins, which renders BL cells more susceptible to the targeting of survival signals.
Collapse
Affiliation(s)
- Florian Mayr
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen
| | - Vanessa Kruse
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen
| | - Dominik C Fuhrmann
- Institute for Biochemistry I, Faculty of Medicine, Johann Wolfgang Goethe-University Frankfurt
| | - Sebastian Wolf
- Department of Hematology/Oncology, Johann Wolfgang Goethe University, Frankfurt
| | - Jens Löber
- Department of Hematology, Oncology and Cancer Immunology, Charité, Campus Benjamin Franklin
| | - Saed Alsouri
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen
| | - Nadia Paglilla
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen
| | - Kwang Lee
- Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg
| | - Björn Chapuy
- Department of Hematology, Oncology and Cancer Immunology, Charité, Campus Benjamin Franklin
| | - Bernhard Brüne
- Institute for Biochemistry I, Faculty of Medicine, Johann Wolfgang Goethe-University Frankfurt
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, University Hospital Zurich
| | - Björn Häupl
- Department of Hematology/Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK), Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Frankfurt Cancer Institute, Johann Wolfgang Goethe University Frankfurt, Frankfurt
| | - Thomas Oellerich
- Department of Hematology/Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK), Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Frankfurt Cancer Institute, Johann Wolfgang Goethe University Frankfurt, Frankfurt
| | - Michael Engelke
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen.
| |
Collapse
|
30
|
Yarmohammadi F, Wallace Hayes A, Karimi G. Molecular mechanisms involved in doxorubicin-induced cardiotoxicity: A bibliometrics analysis by VOSviewer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1971-1984. [PMID: 37812241 DOI: 10.1007/s00210-023-02773-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Doxorubicin is a potent chemotherapeutic agent that can cause cardiotoxicity. Many documents (more than 14,000) have been published in the area of doxorubicin-induced cardiotoxicity (DIC) since 1970. A comprehensive bibliographic analysis of author keywords was used to describe better and understand the molecular mechanisms involved in DIC. The objective was to consider the state of the author keywords of research on the molecular mechanisms involved in DIC based on a bibliometrics study of articles published over the past fifty years. A bibliometrics analysis was conducted using VOSviewer with data collected from the Web of Science Core Collection database of over 14,000 documents (from 1970 to July 19, 2023). Using scientific publications retrieved about DIC, author keywords were assessed at the scientific field level. The current study showed that the annual number of DIC-related publications has increased over the past 50 years. The Journal of Clinical Oncology is the leading journal in this field. The top cited DIC document was published in 2004. The top keywords with high frequency were "doxorubicin," "cardiotoxicity," and "adriamycin." According to the results of this study, the most common mechanisms involved in DIC were as follows oxidative stress, apoptosis, inflammation, autophagy, mitophagy, endoplasmic reticulum stress, pyroptosis, and ferroptosis. The highest occurrences of regulators-related author keywords were "AKT," "Sirt1," and "AMPK." Based on the findings, oxidative stress, apoptosis, inflammation, autophagy, mitophagy, endoplasmic reticulum stress, pyroptosis, and ferroptosis were hot research mechanisms of DIC from 1970 to July 19, 2023.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
31
|
Tang S, Li S, Shi X, Sheng L, Mu Q, Wang Y, Zhu H, Xu K, Zhou M, Xu Z, Wu A, Ouyang G. CALCRL induces resistance to daunorubicin in acute myeloid leukemia cells through upregulation of XRCC5/TYK2/JAK1 pathway. Anticancer Drugs 2024; 35:163-176. [PMID: 37948318 DOI: 10.1097/cad.0000000000001547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Chemotherapy is the main treatment option for acute myeloid leukemia (AML), but acquired resistance of leukemic cells to chemotherapeutic agents often leads to difficulties in AML treatment and disease relapse. High calcitonin receptor-like (CALCRL) expression is closely associated with poorer prognosis in AML patients. Therefore, this study was performed by performing CALCRL overexpression constructs in AML cell lines HL-60 and Molm-13 with low CALCRL expression. The results showed that overexpression of CALCRL in HL-60 and Molm-13 could confer resistance properties to AML cells and reduce the DNA damage and cell cycle G0/G1 phase blocking effects caused by daunorubicin (DNR) and others. Overexpression of CALCRL also reduced DNR-induced apoptosis. Mechanistically, the Cancer Clinical Research Database analyzed a significant positive correlation between XRCC5 and CALCRL in AML patients. Therefore, the combination of RT-PCR and Western blot studies further confirmed that the expression levels of XRCC5 and PDK1 genes and proteins were significantly upregulated after overexpression of CALCRL. In contrast, the phosphorylation levels of AKT/PKCε protein, a downstream pathway of XRCC5/PDK1, were significantly upregulated. In the response study, transfection of overexpressed CALCRL cells with XRCC5 siRNA significantly upregulated the drug sensitivity of AML to DNR. The expression levels of PDK1 protein and AKT/PKCε phosphorylated protein in the downstream pathway were inhibited considerably, and the expression of apoptosis-related proteins Bax and cleaved caspase-3 were upregulated. Animal experiments showed that the inhibitory effect of DNR on the growth of HL-60 cells and the number of bone marrow invasions were significantly reversed after overexpression of CALCRL in nude mice. However, infection of XCRR5 shRNA lentivirus in HL-60 cells with CALCRL overexpression attenuated the effect of CALCRL overexpression and upregulated the expression of apoptosis-related proteins induced by DNR. This study provides a preliminary explanation for the relationship between high CALCRL expression and poor prognosis of chemotherapy in AML patients. It offers a more experimental basis for DNR combined with molecular targets for precise treatment in subsequent studies.
Collapse
Affiliation(s)
- Shanhao Tang
- Department of Hematology, the First Affiliated Hospital of Ningbo University
| | - Shuangyue Li
- Department of Hematology, the Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Xiaowei Shi
- Department of Hematology, the Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Lixia Sheng
- Department of Hematology, the First Affiliated Hospital of Ningbo University
| | - Qitian Mu
- Department of Hematology, the First Affiliated Hospital of Ningbo University
| | - Yi Wang
- Department of Hematology, the First Affiliated Hospital of Ningbo University
| | - Huiling Zhu
- Department of Hematology, the First Affiliated Hospital of Ningbo University
| | - Kaihong Xu
- Department of Hematology, the First Affiliated Hospital of Ningbo University
| | - Miao Zhou
- Department of Hematology, the First Affiliated Hospital of Ningbo University
| | - Zhijuan Xu
- Department of Hematology, the First Affiliated Hospital of Ningbo University
| | - An Wu
- Department of Hematology, the First Affiliated Hospital of Ningbo University
| | - Guifang Ouyang
- Department of Hematology, the First Affiliated Hospital of Ningbo University
| |
Collapse
|
32
|
Bhattacharya A, Alam K, Roy NS, Kaur K, Kaity S, Ravichandiran V, Roy S. Exploring the interaction between extracellular matrix components in a 3D organoid disease model to replicate the pathophysiology of breast cancer. J Exp Clin Cancer Res 2023; 42:343. [PMID: 38102637 PMCID: PMC10724947 DOI: 10.1186/s13046-023-02926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
In vitro models are necessary to study the pathophysiology of the disease and the development of effective, tailored treatment methods owing to the complexity and heterogeneity of breast cancer and the large population affected by it. The cellular connections and tumor microenvironments observed in vivo are often not recapitulated in conventional two-dimensional (2D) cell cultures. Therefore, developing 3D in vitro models that mimic the complex architecture and physiological circumstances of breast tumors is crucial for advancing our understanding of the illness. A 3D scaffold-free in vitro disease model mimics breast cancer pathophysiology by allowing cells to self-assemble/pattern into 3D structures, in contrast with other 3D models that rely on artificial scaffolds. It is possible that this model, whether applied to breast tumors using patient-derived primary cells (fibroblasts, endothelial cells, and cancer cells), can accurately replicate the observed heterogeneity. The complicated interactions between different cell types are modelled by integrating critical components of the tumor microenvironment, such as the extracellular matrix, vascular endothelial cells, and tumor growth factors. Tissue interactions, immune cell infiltration, and the effects of the milieu on drug resistance can be studied using this scaffold-free 3D model. The scaffold-free 3D in vitro disease model for mimicking tumor pathophysiology in breast cancer is a useful tool for studying the molecular basis of the disease, identifying new therapeutic targets, and evaluating treatment modalities. It provides a more physiologically appropriate high-throughput platform for screening large compound library in a 96-384 well format. We critically discussed the rapid development of personalized treatment strategies and accelerated drug screening platforms to close the gap between traditional 2D cell culture and in vivo investigations.
Collapse
Affiliation(s)
- Anamitra Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Kamare Alam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Nakka Sharmila Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Kulwinder Kaur
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine a Health Sciences, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Santanu Kaity
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
33
|
Koirala R, Fongsaran C, Poston T, Rogge M, Rogers B, Thune R, Dubytska L. Edwardsiella ictaluri T3SS effector EseN is a phosphothreonine lyase that inactivates ERK1/2, p38, JNK, and PDK1 and modulates cell death in infected macrophages. Microbiol Spectr 2023; 11:e0300323. [PMID: 37796003 PMCID: PMC10714789 DOI: 10.1128/spectrum.03003-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE This work has global significance in the catfish industry, which provides food for increasing global populations. E. ictaluri is a leading cause of disease loss, and EseN is an important player in E. ictaluri virulence. The E. ictaluri T3SS effector EseN plays an essential role in establishing infection, but the specific role EseN plays is not well characterized. EseN belongs to a family of phosphothreonine lyase effectors that specifically target host mitogen activated protein kinase (MAPK) pathways important in regulating host responses to infection. No phosphothreonine lyase equivalents are known in eukaryotes, making this family of effectors an attractive target for indirect narrow-spectrum antibiotics. Targeting of major vault protein and PDK1 kinase by EseN has not been reported in EseN homologs in other pathogens and may indicate unique functions of E. ictaluri EseN. EseN targeting of PDK1 is particularly interesting in that it is linked to an extraordinarily diverse group of cellular functions.
Collapse
Affiliation(s)
- Ranjan Koirala
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| | - Chanida Fongsaran
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| | - Tanisha Poston
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| | - Matthew Rogge
- Department of Biology, University of Wisconsin-Stevens Point, Stevens Point, Wisconsin, USA
| | - Bryan Rogers
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| | - Ronald Thune
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Lidiya Dubytska
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| |
Collapse
|
34
|
Zheng N, Wei J, Wu D, Xu Y, Guo J. Master kinase PDK1 in tumorigenesis. Biochim Biophys Acta Rev Cancer 2023; 1878:188971. [PMID: 37640147 DOI: 10.1016/j.bbcan.2023.188971] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/13/2023] [Accepted: 08/05/2023] [Indexed: 08/31/2023]
Abstract
3-phosphoinositide-dependent protein kinase 1 (PDK1) is considered as master kinase regulating AGC kinase family members such as AKT, SGK, PLK, S6K and RSK. Although autophosphorylation regulates PDK1 activity, accumulating evidence suggests that PDK1 is manipulated by many other mechanisms, including S6K-mediated phosphorylation, and the E3 ligase SPOP-mediated ubiquitination and degradation. Dysregulation of these upstream regulators or downstream signals involves in cancer development, as PDK1 regulating cell growth, metastasis, invasion, apoptosis and survival time. Meanwhile, overexpression of PDK1 is also exposed in a plethora of cancers, whereas inhibition of PDK1 reduces cell size and inhibits tumor growth and progression. More importantly, PDK1 also modulates the tumor microenvironments and markedly influences tumor immunotherapies. In summary, we comprehensively summarize the downstream signals, upstream regulators, mouse models, inhibitors, tumor microenvironment and clinical treatments for PDK1, and highlight PDK1 as a potential cancer therapeutic target.
Collapse
Affiliation(s)
- Nana Zheng
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China
| | - Jiaqi Wei
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China.
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China.
| | - Jianping Guo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
35
|
Leroux AE, Biondi RM. The choreography of protein kinase PDK1 and its diverse substrate dance partners. Biochem J 2023; 480:1503-1532. [PMID: 37792325 DOI: 10.1042/bcj20220396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
The protein kinase PDK1 phosphorylates at least 24 distinct substrates, all of which belong to the AGC protein kinase group. Some substrates, such as conventional PKCs, undergo phosphorylation by PDK1 during their synthesis and subsequently get activated by DAG and Calcium. On the other hand, other substrates, including members of the Akt/PKB, S6K, SGK, and RSK families, undergo phosphorylation and activation downstream of PI3-kinase signaling. This review presents two accepted molecular mechanisms that determine the precise and timely phosphorylation of different substrates by PDK1. The first mechanism involves the colocalization of PDK1 with Akt/PKB in the presence of PIP3. The second mechanism involves the regulated docking interaction between the hydrophobic motif (HM) of substrates and the PIF-pocket of PDK1. This interaction, in trans, is equivalent to the molecular mechanism that governs the activity of AGC kinases through their HMs intramolecularly. PDK1 has been instrumental in illustrating the bi-directional allosteric communication between the PIF-pocket and the ATP-binding site and the potential of the system for drug discovery. PDK1's interaction with substrates is not solely regulated by the substrates themselves. Recent research indicates that full-length PDK1 can adopt various conformations based on the positioning of the PH domain relative to the catalytic domain. These distinct conformations of full-length PDK1 can influence the interaction and phosphorylation of substrates. Finally, we critically discuss recent findings proposing that PIP3 can directly regulate the activity of PDK1, which contradicts extensive in vitro and in vivo studies conducted over the years.
Collapse
Affiliation(s)
- Alejandro E Leroux
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Ricardo M Biondi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| |
Collapse
|
36
|
Pei J, Cong Q. Computational analysis of regulatory regions in human protein kinases. Protein Sci 2023; 32:e4764. [PMID: 37632170 PMCID: PMC10503413 DOI: 10.1002/pro.4764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Eukaryotic proteins often feature modular domain structures comprising globular domains that are connected by linker regions and intrinsically disordered regions that may contain important functional motifs. The intramolecular interactions of globular domains and nonglobular regions can play critical roles in different aspects of protein function. However, studying these interactions and their regulatory roles can be challenging due to the flexibility of nonglobular regions, the long insertions separating interacting modules, and the transient nature of some interactions. Obtaining the experimental structures of multiple domains and functional regions is more difficult than determining the structures of individual globular domains. High-quality structural models generated by AlphaFold offer a unique opportunity to study intramolecular interactions in eukaryotic proteins. In this study, we systematically explored intramolecular interactions between human protein kinase domains (KDs) and potential regulatory regions, including globular domains, N- and C-terminal tails, long insertions, and distal nonglobular regions. Our analysis identified intramolecular interactions between human KDs and 35 different types of globular domains, exhibiting a variety of interaction modes that could contribute to orthosteric or allosteric regulation of kinase activity. We also identified prevalent interactions between human KDs and their flanking regions (N- and C-terminal tails). These interactions exhibit group-specific characteristics and can vary within each specific kinase group. Although long-range interactions between KDs and nonglobular regions are relatively rare, structural details of these interactions offer new insights into the regulation mechanisms of several kinases, such as HASPIN, MAPK7, MAPK15, and SIK1B.
Collapse
Affiliation(s)
- Jimin Pei
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
37
|
Smolen KA, Papke CM, Swingle MR, Musiyenko A, Li C, Salter EA, Camp AD, Honkanen RE, Kettenbach AN. Quantitative proteomics and phosphoproteomics of PP2A-PPP2R5D variants reveal deregulation of RPS6 phosphorylation via converging signaling cascades. J Biol Chem 2023; 299:105154. [PMID: 37572851 PMCID: PMC10485637 DOI: 10.1016/j.jbc.2023.105154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023] Open
Abstract
Genetic germline variants of PPP2R5D (encoding: phosphoprotein phosphatase 2 regulatory protein 5D) result in PPP2R5D-related disorder (Jordan's Syndrome), which is characterized by intellectual disability, hypotonia, seizures, macrocephaly, autism spectrum disorder, and delayed motor skill development. The disorder originates from de novo single nucleotide mutations, generating missense variants that act in a dominant manner. Pathogenic mutations altering 13 different amino acids have been identified, with the E198K variant accounting for ∼40% of reported cases. However, the generation of a heterozygous E198K variant cell line to study the molecular effects of the pathogenic mutation has been challenging. Here, we use CRISPR-PRIME genomic editing to introduce a transition (c.592G>A) in a single PPP2R5D allele in HEK293 cells, generating E198K-heterozygous lines to complement existing E420K variant lines. We generate global protein and phosphorylation profiles of WT, E198K, and E420K cell lines and find unique and shared changes between variants and WT cells in kinase- and phosphatase-controlled signaling cascades. We observed ribosomal protein S6 (RPS6) hyperphosphorylation as a shared signaling alteration, indicative of increased ribosomal protein S6-kinase activity. Treatment with rapamycin or an RPS6-kinase inhibitor (LY2584702) suppressed RPS6 phosphorylation in both, suggesting upstream activation of mTORC1/p70S6K. Intriguingly, our data suggests ERK-dependent activation of mTORC1 in both E198K and E420K variant cells, with additional AKT-mediated mTORC1 activation in the E420K variant. Thus, although upstream activation of mTORC1 differs between PPP2R5D-related disorder genotypes, inhibition of mTORC1 or RPS6 kinases warrants further investigation as potential therapeutic strategies for patients.
Collapse
Affiliation(s)
- Kali A Smolen
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Cinta M Papke
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Mark R Swingle
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Alla Musiyenko
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Chenchen Li
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - E Alan Salter
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Ashley D Camp
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Richard E Honkanen
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA.
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA.
| |
Collapse
|
38
|
Powis G, Meuillet EJ, Indarte M, Booher G, Kirkpatrick L. Pleckstrin Homology [PH] domain, structure, mechanism, and contribution to human disease. Biomed Pharmacother 2023; 165:115024. [PMID: 37399719 DOI: 10.1016/j.biopha.2023.115024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
The pleckstrin homology [PH] domain is a structural fold found in more than 250 proteins making it the 11th most common domain in the human proteome. 25% of family members have more than one PH domain and some PH domains are split by one, or several other, protein domains although still folding to give functioning PH domains. We review mechanisms of PH domain activity, the role PH domain mutation plays in human disease including cancer, hyperproliferation, neurodegeneration, inflammation, and infection, and discuss pharmacotherapeutic approaches to regulate PH domain activity for the treatment of human disease. Almost half PH domain family members bind phosphatidylinositols [PIs] that attach the host protein to cell membranes where they interact with other membrane proteins to give signaling complexes or cytoskeleton scaffold platforms. A PH domain in its native state may fold over other protein domains thereby preventing substrate access to a catalytic site or binding with other proteins. The resulting autoinhibition can be released by PI binding to the PH domain, or by protein phosphorylation thus providing fine tuning of the cellular control of PH domain protein activity. For many years the PH domain was thought to be undruggable until high-resolution structures of human PH domains allowed structure-based design of novel inhibitors that selectively bind the PH domain. Allosteric inhibitors of the Akt1 PH domain have already been tested in cancer patients and for proteus syndrome, with several other PH domain inhibitors in preclinical development for treatment of other human diseases.
Collapse
Affiliation(s)
- Garth Powis
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA.
| | | | - Martin Indarte
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA
| | - Garrett Booher
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA
| | - Lynn Kirkpatrick
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA
| |
Collapse
|
39
|
Leonard TA, Loose M, Martens S. The membrane surface as a platform that organizes cellular and biochemical processes. Dev Cell 2023; 58:1315-1332. [PMID: 37419118 DOI: 10.1016/j.devcel.2023.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/22/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023]
Abstract
Membranes are essential for life. They act as semi-permeable boundaries that define cells and organelles. In addition, their surfaces actively participate in biochemical reaction networks, where they confine proteins, align reaction partners, and directly control enzymatic activities. Membrane-localized reactions shape cellular membranes, define the identity of organelles, compartmentalize biochemical processes, and can even be the source of signaling gradients that originate at the plasma membrane and reach into the cytoplasm and nucleus. The membrane surface is, therefore, an essential platform upon which myriad cellular processes are scaffolded. In this review, we summarize our current understanding of the biophysics and biochemistry of membrane-localized reactions with particular focus on insights derived from reconstituted and cellular systems. We discuss how the interplay of cellular factors results in their self-organization, condensation, assembly, and activity, and the emergent properties derived from them.
Collapse
Affiliation(s)
- Thomas A Leonard
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr. Bohr-Gasse 9, 1030, Vienna, Austria.
| | - Martin Loose
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Sascha Martens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell Biology, Dr. Bohr-Gasse 9, 1030, Vienna, Austria.
| |
Collapse
|
40
|
Reinhardt R, Leonard TA. A critical evaluation of protein kinase regulation by activation loop autophosphorylation. eLife 2023; 12:e88210. [PMID: 37470698 PMCID: PMC10359097 DOI: 10.7554/elife.88210] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
Phosphorylation of proteins is a ubiquitous mechanism of regulating their function, localization, or activity. Protein kinases, enzymes that use ATP to phosphorylate protein substrates are, therefore, powerful signal transducers in eukaryotic cells. The mechanism of phosphoryl-transfer is universally conserved among protein kinases, which necessitates the tight regulation of kinase activity for the orchestration of cellular processes with high spatial and temporal fidelity. In response to a stimulus, many kinases enhance their own activity by autophosphorylating a conserved amino acid in their activation loop, but precisely how this reaction is performed is controversial. Classically, kinases that autophosphorylate their activation loop are thought to perform the reaction in trans, mediated by transient dimerization of their kinase domains. However, motivated by the recently discovered regulation mechanism of activation loop cis-autophosphorylation by a kinase that is autoinhibited in trans, we here review the various mechanisms of autoregulation that have been proposed. We provide a framework for critically evaluating biochemical, kinetic, and structural evidence for protein kinase dimerization and autophosphorylation, and share some thoughts on the implications of these mechanisms within physiological signaling networks.
Collapse
Affiliation(s)
- Ronja Reinhardt
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- Medical University of Vienna, Center for Medical BiochemistryViennaAustria
| | - Thomas A Leonard
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- Medical University of Vienna, Center for Medical BiochemistryViennaAustria
| |
Collapse
|
41
|
You L, Dou Y, Zhang Y, Xiao H, Lv H, Wei GH, Xu D. SDC2 Stabilization by USP14 Promotes Gastric Cancer Progression through Co-option of PDK1. Int J Biol Sci 2023; 19:3483-3498. [PMID: 37496999 PMCID: PMC10367555 DOI: 10.7150/ijbs.84331] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Gastric cancer (GC) is a common malignancy and remains the fourth-leading cause of cancer-related deaths worldwide. Oncogenic potential of SDC2 has been implicated in multiple types of cancers, yet its role and underlying molecular mechanisms in GC remain unknown. Here, we found that SDC2 was highly expressed in GC and its upregulation correlated with poor prognosis in GC patients. Depletion of SDC2 significantly suppressed the growth and invasive capability of GC cells, while overexpressing SDC2 exerts opposite effects. Combined bioinformatics and experimental analyses substantiated that overexpression of SDC2 activated the AKT signaling pathway in GC, mechanistically through the interaction between SDC2 and PDK1-PH domain, thereby facilitating PDK1 membrane translocation to promote AKT activation. Moreover, SDC2 could also function as a co-receptor for FGF2 and was profoundly involved in the FGF2-AKT signaling axis in GC. Lastly, we revealed a mechanism on the USP14-mediated stabilization of SDC2 that is likely to contribute to SDC2 upregulation in GC tissues. Furthermore, we showed that IU1, a potent USP14 inhibitor, decreased the abundance of SDC2 in GC cells. Our findings indicate that SDC2 functions as a novel GC oncogene and has potential utility as a diagnostic marker and therapeutic target for GC.
Collapse
Affiliation(s)
- Li You
- Department of Gastric Surgery, Fudan University Shanghai Cancer, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi Dou
- Department of Gastric Surgery, Fudan University Shanghai Cancer, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu Zhang
- Department of Gastric Surgery, Fudan University Shanghai Cancer, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hongwei Xiao
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei province, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Hong Lv
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Gong-Hong Wei
- Department of Gastric Surgery, Fudan University Shanghai Cancer, Shanghai 200032, China
- MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Dazhi Xu
- Department of Gastric Surgery, Fudan University Shanghai Cancer, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
42
|
Sacerdoti M, Gross LZF, Riley AM, Zehnder K, Ghode A, Klinke S, Anand GS, Paris K, Winkel A, Herbrand AK, Godage HY, Cozier GE, Süß E, Schulze JO, Pastor-Flores D, Bollini M, Cappellari MV, Svergun D, Gräwert MA, Aramendia PF, Leroux AE, Potter BVL, Camacho CJ, Biondi RM. Modulation of the substrate specificity of the kinase PDK1 by distinct conformations of the full-length protein. Sci Signal 2023; 16:eadd3184. [PMID: 37311034 DOI: 10.1126/scisignal.add3184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 05/19/2023] [Indexed: 06/15/2023]
Abstract
The activation of at least 23 different mammalian kinases requires the phosphorylation of their hydrophobic motifs by the kinase PDK1. A linker connects the phosphoinositide-binding PH domain to the catalytic domain, which contains a docking site for substrates called the PIF pocket. Here, we used a chemical biology approach to show that PDK1 existed in equilibrium between at least three distinct conformations with differing substrate specificities. The inositol polyphosphate derivative HYG8 bound to the PH domain and disrupted PDK1 dimerization by stabilizing a monomeric conformation in which the PH domain associated with the catalytic domain and the PIF pocket was accessible. In the absence of lipids, HYG8 potently inhibited the phosphorylation of Akt (also termed PKB) but did not affect the intrinsic activity of PDK1 or the phosphorylation of SGK, which requires docking to the PIF pocket. In contrast, the small-molecule valsartan bound to the PIF pocket and stabilized a second distinct monomeric conformation. Our study reveals dynamic conformations of full-length PDK1 in which the location of the linker and the PH domain relative to the catalytic domain determines the selective phosphorylation of PDK1 substrates. The study further suggests new approaches for the design of drugs to selectively modulate signaling downstream of PDK1.
Collapse
Affiliation(s)
- Mariana Sacerdoti
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Lissy Z F Gross
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Andrew M Riley
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Karin Zehnder
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Abhijeet Ghode
- Biological Sciences, National University of Singapore, Singapore 119077, Singapore
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, and Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Buenos Aires C1405BWE, Argentina
| | - Ganesh Srinivasan Anand
- Biological Sciences, National University of Singapore, Singapore 119077, Singapore
- Department of Chemistry, Huck Institutes of the Life Sciences, Pennsylvania State University, 104 Chemistry Building, University Park, PA 16802, USA
| | - Kristina Paris
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Statistics, University of Pittsburgh, WWPH 1821, Pittsburgh, PA 15213, USA
| | - Angelika Winkel
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Amanda K Herbrand
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - H Yasmin Godage
- Wolfson Laboratory of Medicinal Chemistry, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Gyles E Cozier
- Wolfson Laboratory of Medicinal Chemistry, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Evelyn Süß
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Jörg O Schulze
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Daniel Pastor-Flores
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- KBI Biopharma, Technologielaan 8, B-3001 Leuven, Belgium
| | - Mariela Bollini
- Centro de Investigaciones en Bionanociencias 'Elizabeth Jares-Erijman' CIBION, CONICET, Buenos Aires C1425FQD, Argentina
| | - María Victoria Cappellari
- Centro de Investigaciones en Bionanociencias 'Elizabeth Jares-Erijman' CIBION, CONICET, Buenos Aires C1425FQD, Argentina
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, 22607 Hamburg, Germany
| | - Melissa A Gräwert
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, 22607 Hamburg, Germany
| | - Pedro F Aramendia
- Centro de Investigaciones en Bionanociencias 'Elizabeth Jares-Erijman' CIBION, CONICET, Buenos Aires C1425FQD, Argentina
- Departamento de Química Inorgánica, Analítica y Química Física, FCEN, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
| | - Alejandro E Leroux
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Barry V L Potter
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
- Wolfson Laboratory of Medicinal Chemistry, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Carlos J Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ricardo M Biondi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- DKTK German Cancer Consortium (DKTK), Frankfurt, Germany
- German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| |
Collapse
|
43
|
Martínez-Arenas L, Bayascas JR. Capturing conformational transitions of full-length PDK1 that dictate kinase substrate selectivity. Sci Signal 2023; 16:eadh5114. [PMID: 37311035 DOI: 10.1126/scisignal.adh5114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
PDK1 is a constitutively active master kinase that can phosphorylate and activate as many as 24 enzymes, all belonging to the AGC family of serine-threonine protein kinases. In this issue of Science Signaling, Sacerdoti et al. uncover how allosteric communication between different functional domains directs the selectivity of PDK1 toward particular subsets of substrates.
Collapse
Affiliation(s)
- Laura Martínez-Arenas
- Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Jose R Bayascas
- Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
44
|
Borkowsky S, Gass M, Alavizargar A, Hanewinkel J, Hallstein I, Nedvetsky P, Heuer A, Krahn MP. Phosphorylation of LKB1 by PDK1 Inhibits Cell Proliferation and Organ Growth by Decreased Activation of AMPK. Cells 2023; 12:cells12050812. [PMID: 36899949 PMCID: PMC10000615 DOI: 10.3390/cells12050812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The master kinase LKB1 is a key regulator of se veral cellular processes, including cell proliferation, cell polarity and cellular metabolism. It phosphorylates and activates several downstream kinases, including AMP-dependent kinase, AMPK. Activation of AMPK by low energy supply and phosphorylation of LKB1 results in an inhibition of mTOR, thus decreasing energy-consuming processes, in particular translation and, thus, cell growth. LKB1 itself is a constitutively active kinase, which is regulated by posttranslational modifications and direct binding to phospholipids of the plasma membrane. Here, we report that LKB1 binds to Phosphoinositide-dependent kinase (PDK1) by a conserved binding motif. Furthermore, a PDK1-consensus motif is located within the kinase domain of LKB1 and LKB1 gets phosphorylated by PDK1 in vitro. In Drosophila, knockin of phosphorylation-deficient LKB1 results in normal survival of the flies, but an increased activation of LKB1, whereas a phospho-mimetic LKB1 variant displays decreased AMPK activation. As a functional consequence, cell growth as well as organism size is decreased in phosphorylation-deficient LKB1. Molecular dynamics simulations of PDK1-mediated LKB1 phosphorylation revealed changes in the ATP binding pocket, suggesting a conformational change upon phosphorylation, which in turn can alter LKB1's kinase activity. Thus, phosphorylation of LKB1 by PDK1 results in an inhibition of LKB1, decreased activation of AMPK and enhanced cell growth.
Collapse
Affiliation(s)
- Sarah Borkowsky
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149 Münster, Germany
| | - Maximilian Gass
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149 Münster, Germany
| | - Azadeh Alavizargar
- Institute of Physical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Johannes Hanewinkel
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149 Münster, Germany
| | - Ina Hallstein
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149 Münster, Germany
| | - Pavel Nedvetsky
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149 Münster, Germany
| | - Andreas Heuer
- Institute of Physical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Michael P. Krahn
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149 Münster, Germany
- Correspondence: ; Tel.: +49-251-8357052
| |
Collapse
|
45
|
Reinhardt R, Hirzel K, Link G, Eisler SA, Hägele T, Parson MAH, Burke JE, Hausser A, Leonard TA. PKD autoinhibition in trans regulates activation loop autophosphorylation in cis. Proc Natl Acad Sci U S A 2023; 120:e2212909120. [PMID: 36745811 PMCID: PMC9962925 DOI: 10.1073/pnas.2212909120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023] Open
Abstract
Phosphorylation is a ubiquitous mechanism by which signals are transduced in cells. Protein kinases, enzymes that catalyze the phosphotransfer reaction are, themselves, often regulated by phosphorylation. Paradoxically, however, a substantial fraction of more than 500 human protein kinases are capable of catalyzing their own activation loop phosphorylation. Commonly, these kinases perform this autophosphorylation reaction in trans, whereby transient dimerization leads to the mutual phosphorylation of the activation loop of the opposing protomer. In this study, we demonstrate that protein kinase D (PKD) is regulated by the inverse mechanism of dimerization-mediated trans-autoinhibition, followed by activation loop autophosphorylation in cis. We show that PKD forms a stable face-to-face homodimer that is incapable of either autophosphorylation or substrate phosphorylation. Dissociation of this trans-autoinhibited dimer results in activation loop autophosphorylation, which occurs exclusively in cis. Phosphorylation serves to increase PKD activity and prevent trans-autoinhibition, thereby switching PKD on. Our findings not only reveal the mechanism of PKD regulation but also have profound implications for the regulation of many other eukaryotic kinases.
Collapse
Affiliation(s)
- Ronja Reinhardt
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter, Vienna1030, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Vienna1090, Austria
| | - Kai Hirzel
- Institute of Cell Biology and Immunology, University of Stuttgart70569, Stuttgart, Germany
| | - Gisela Link
- Institute of Cell Biology and Immunology, University of Stuttgart70569, Stuttgart, Germany
| | - Stephan A. Eisler
- Stuttgart Research Center Systems Biology, University of Stuttgart70569, Stuttgart, Germany
| | - Tanja Hägele
- Institute of Cell Biology and Immunology, University of Stuttgart70569, Stuttgart, Germany
| | - Matthew A. H. Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, CanadaV8W 2Y2
| | - John E. Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, CanadaV8W 2Y2
- Department of Biochemistry and Molecular Biology, The University of British Columbia, VancouverBCV6T 1Z3, Canada
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart70569, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart70569, Stuttgart, Germany
| | - Thomas A. Leonard
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter, Vienna1030, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Vienna1090, Austria
| |
Collapse
|
46
|
Azizidoost S, Nasrolahi A, Sheykhi-Sabzehpoush M, Akiash N, Assareh AR, Anbiyaee O, Antosik P, Dzięgiel P, Farzaneh M, Kempisty B. Potential roles of endothelial cells-related non-coding RNAs in cardiovascular diseases. Pathol Res Pract 2023; 242:154330. [PMID: 36696805 DOI: 10.1016/j.prp.2023.154330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Endothelial dysfunction is identified by a conversion of the endothelium toward decreased vasodilation and prothrombic features and is known as a primary pathogenic incident in cardiovascular diseases. An insight based on particular and promising biomarkers of endothelial dysfunction may possess vital clinical significances. Currently, non-coding RNAs due to their participation in critical cardiovascular processes like initiation and progression have gained much attention as possible diagnostic as well as prognostic biomarkers in cardiovascular diseases. Emerging line of proof has demonstrated that abnormal expression of non-coding RNAs is nearly correlated with the pathogenesis of cardiovascular diseases. In the present review, we focus on the expression and functional effects of various kinds of non-coding RNAs in cardiovascular diseases and negotiate their possible clinical implications as diagnostic or prognostic biomarkers and curative targets.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Nehzat Akiash
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Reza Assareh
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paweł Antosik
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Bartosz Kempisty
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland; Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wrocław, Poland; North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC 27695, USA.
| |
Collapse
|
47
|
Yuan H, Zhou L, Chen Y, You J, Hu H, Li Y, Huang R, Wu S. Salmonella effector SopF regulates PANoptosis of intestinal epithelial cells to aggravate systemic infection. Gut Microbes 2023; 15:2180315. [PMID: 36803521 PMCID: PMC9980482 DOI: 10.1080/19490976.2023.2180315] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
SopF, a newly discovered effector secreted by Salmonella pathogenicity island-1 type III secretion system (T3SS1), was reported to target phosphoinositide on host cell membrane and aggravate systemic infection, while its functional relevance and underlying mechanisms have yet to be elucidated. PANoptosis (pyroptosis, apoptosis, and necroptosis) of intestinal epithelial cells (IECs) has been characterized as a pivotal host defense to limit the dissemination of foodborne pathogens, whereas the effect of SopF on IECs PANoptosis induced by Salmonella is rather limited. Here, we show that SopF can attenuate intestinal inflammation and suppress IECs expulsion to promote bacterial dissemination in mice infected with Salmonella enterica serovar Typhimurium (S. Typhimurium). We revealed that SopF could activate phosphoinositide-dependent protein kinase-1 (PDK1) to phosphorylate p90 ribosomal S6 kinase (RSK) which down-regulated Caspase-8 activation. Caspase-8 inactivated by SopF resulted in inhibition of pyroptosis and apoptosis, but promotion of necroptosis. The administration of both AR-12 (PDK1 inhibitor) and BI-D1870 (RSK inhibitor) potentially overcame Caspase-8 blockade and subverted PANoptosis challenged by SopF. Collectively, these findings demonstrate that this virulence strategy elicited by SopF aggregates systemic infection via modulating IEC PANoptosis through PDK1-RSK signaling, which throws light on novel functions of bacterial effectors, as well as a mechanism employed by pathogens to counteract host immune defense.
Collapse
Affiliation(s)
- Haibo Yuan
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Department of Medical Technology, Suzhou Vocational Health College, Suzhou, China
| | - Liting Zhou
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine
| | - Yilin Chen
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiayi You
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China
| | - Hongye Hu
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yuanyuan Li
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine
| | - Rui Huang
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine
| | - Shuyan Wu
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine,CONTACT Shuyan Wu; Rui Huang ; Department of Medical Microbiology, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, No. 199, Ren Ai Road, Suzhou, Jiangsu215123, PR China
| |
Collapse
|
48
|
Perri F, Della Vittoria Scarpati G, Pontone M, Marciano ML, Ottaiano A, Cascella M, Sabbatino F, Guida A, Santorsola M, Maiolino P, Cavalcanti E, Togo G, Ionna F, Caponigro F. Cancer Cell Metabolism Reprogramming and Its Potential Implications on Therapy in Squamous Cell Carcinoma of the Head and Neck: A Review. Cancers (Basel) 2022; 14:3560. [PMID: 35892820 PMCID: PMC9332433 DOI: 10.3390/cancers14153560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Carcinogenesis is a multistep process that consists of the transformation of healthy cells into cancer cells. Such an alteration goes through various stages and is closely linked to random mutations of genes that have a key role in the neoplastic phenotype. During carcinogenesis, cancer cells acquire and exhibit several characteristics including sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, activating invasion and metastasis, and expressing an immune phenotype, which allow them to evade recognition and destruction through cognate immune cells. In addition, cancer cells may acquire the ability to reprogram their metabolism in order to further promote growth, survival, and energy production. This phenomenon, termed metabolic reprogramming, is typical of all solid tumors, including squamous carcinomas of the head and neck (SCCHN). In this review, we analyze the genetic and biological mechanisms underlying metabolic reprogramming of SCCHN, focusing on potential therapeutic strategies that are able to counteract it.
Collapse
Affiliation(s)
- Francesco Perri
- Medical and Experimental Head and Neck Oncology Unit, INT IRCSS Foundation G. Pascale, 80131 Naples, Italy; (M.P.); (M.L.M.); (F.C.)
| | | | - Monica Pontone
- Medical and Experimental Head and Neck Oncology Unit, INT IRCSS Foundation G. Pascale, 80131 Naples, Italy; (M.P.); (M.L.M.); (F.C.)
| | - Maria Luisa Marciano
- Medical and Experimental Head and Neck Oncology Unit, INT IRCSS Foundation G. Pascale, 80131 Naples, Italy; (M.P.); (M.L.M.); (F.C.)
| | - Alessandro Ottaiano
- SSD Innovative Therapies for Abdominal metastases, Abdominal Oncology, INT IRCCS Foundation G. Pascale, 80131 Naples, Italy; (A.O.); (M.S.)
| | - Marco Cascella
- Unit of Anestesiology and Pain Therapy, INT IRCCS Foundation G. Pascale, 80131 Naples, Italy;
| | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, 84081 Salerno, Italy;
| | - Agostino Guida
- U.O.C. Odontostomatologia, AORN A. Cardarelli Hospital, 80131 Naples, Italy;
| | - Mariachiara Santorsola
- SSD Innovative Therapies for Abdominal metastases, Abdominal Oncology, INT IRCCS Foundation G. Pascale, 80131 Naples, Italy; (A.O.); (M.S.)
| | - Piera Maiolino
- Pharmacy Unit, INT IRCCS Foundation G. Pascale, 80131 Naples, Italy;
| | - Ernesta Cavalcanti
- Laboratory Medicine, INT IRCCS Foundation G. Pascale, 80131 Naples, Italy;
| | - Giulia Togo
- Maxillofacial Surgery Unit, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy;
| | - Franco Ionna
- Otolaryngology Unit, INT IRCCS Foundation G. Pascale, 80131 Naples, Italy;
| | - Francesco Caponigro
- Medical and Experimental Head and Neck Oncology Unit, INT IRCSS Foundation G. Pascale, 80131 Naples, Italy; (M.P.); (M.L.M.); (F.C.)
| |
Collapse
|