1
|
Liao H, Chen Y, He Y, Zou M, Zheng L, Liao J, Rana K, Qian W, Ding Y. Stress responsive glycosylphosphatidylinositol-anchored protein SsGSP1 contributes to Sclerotinia sclerotiorum virulence. Virulence 2025; 16:2503434. [PMID: 40353429 PMCID: PMC12091936 DOI: 10.1080/21505594.2025.2503434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 04/23/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025] Open
Abstract
Fungal cell wall acts as a defense barrier, shielding the cell from varying environmental stresses. Cell wall proteins, such as glycosylphosphatidylinositol (GPI)-anchored proteins, are involved in swift and appropriate responses to minor environmental changes in fungi. However, the roles of these proteins in the pathogenic Sclerotinia sclerotiorum remain largely unexplored. Here, we identified a novel GPI-anchored protein in S. sclerotiorum, SsGSP1, comprising a Kre9_KNH domain. SsGSP1 was upregulated during infection, and the loss-of-function mutants of SsGSP1 exhibited the compromised cell wall integrity and reduced β-glucan content. During inoculation on Arabidopsis thaliana, Nicotiana benthamiana, and Brassica napus, the SsGSP1-deletion strains demonstrated the decreased virulence. The transgenic A. thaliana line carrying the sRNA targeting SsGSP1 enhanced resistance to S. sclerotiorum via Host-Induced Gene Silencing (HIGS). The SsGSP1-deficient strains displayed the heightened sensitivity to various stresses, including osmotic pressure, oxidative stress, and heat shock. The yeast two-hybrid and BiFC assays confirmed that SsGSP1 interacted with the key stress-related proteins catalase SsCat2, heat shock protein Sshsp60, and ABC transporter SsBMR1. Accordingly, transcriptome analysis revealed that the disruption of SsGSP1 downregulated the expression of genes involved in oxidative stress response, heat shock response, and chemical agent resistance. These results collectively delineate the intricate role of GPI-anchored protein SsGSP1 in β-glucan, cell wall integrity, and virulence and may act as a potential surface sensor to elicit signal transduction in response to environmental stresses in S. sclerotiorum.
Collapse
Affiliation(s)
- Hongmei Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yangui Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yujia He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Minghong Zou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Lintao Zheng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Jinghang Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kusum Rana
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Wei Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yijuan Ding
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
2
|
Tian P, Mi Y, Xu J, Wu Y, Zhao L, Tie S, Zhang J, Fan Q, Gu S. Antifungal activity of volatile organic compounds produced by Weizmannia coagulans CGMCC 9951 on Ceratocystis fimbriata in postharvest sweet potatoes and its potential biocontrol. Int J Food Microbiol 2025; 440:111281. [PMID: 40446470 DOI: 10.1016/j.ijfoodmicro.2025.111281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/22/2025] [Accepted: 05/22/2025] [Indexed: 06/11/2025]
Abstract
Volatile organic compounds (VOCs) produced by microorganisms are regarded as potential eco-friendly fumigants for managing black spot disease in postharvest sweet potatoes. This study aimed to assess the efficacy of Weizmannia coagulans CGMCC 9951 VOCs in inhibiting Ceratocystis fimbriata. The findings indicated that C. fimbriata was effectively inhibited both in vitro and in vivo. The GC-MS analysis revealed that the VOCs primarily consist of Benzyl alcohol, Eugenol, Isoamyl acetate, Linalool, and Benzothiazole. Among these, Linalool and Benzothiazole exhibited the most significant inhibitory effects against C. fimbriata. Sweet potatoes treated with VOCs exhibited a significant decrease in the size and depth of black spots. Transcriptome analysis and fluorescence microscopy demonstrated that VOCs could substantially down-regulate the expression of genes associated with spore germination, cell wall integrity, DNA replication and repair, and pathogenicity. These results suggest that W. coagulans CGMCC 9951 VOCs effectively inhibit C. fimbriata and protect postharvest sweet potatoes.
Collapse
Affiliation(s)
- Pingping Tian
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Yuanyuan Mi
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Jia Xu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471023, China
| | - Lina Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Shanshan Tie
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Jie Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Qiuxia Fan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Research Center of Food Microbiology, Luoyang 471023, China; National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471023, China.
| |
Collapse
|
3
|
Miao G, Xie J, Fu Y, Li B, Chen T, Lin Y, Yu X, Hsiang T, Jiang D, Cheng J. A Necrotrophic Phytopathogen-Derived GPI-Anchored Protein Functions as an Elicitor to Activate Plant Immunity and Enhance Resistance. MOLECULAR PLANT PATHOLOGY 2025; 26:e70072. [PMID: 40151048 PMCID: PMC11950629 DOI: 10.1111/mpp.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
GPI-anchored proteins are widely distributed in eukaryotic cells. However, their functions are still poorly understood in necrotrophic pathogenic fungi. Here, based on Agrobacterium tumefaciens-mediated transient expression screening, a novel secreted GPI-anchored protein, SsGP1, that induces plant cell death was characterised in Sclerotinia sclerotiorum. The homologues of SsGP1 are broadly distributed among ascomycetes. SsGP1 can activate plant immune responses, including reactive oxygen species (ROS) burst and the up-regulated expression of immunity genes, in a manner that is dependent on BAK1 but independent of SOBIR1. Treatment of plants with SsGP1 protein enhanced the resistance of Nicotiana benthamiana and Arabidopsis thaliana to S. sclerotiorum. Our findings reveal that SsGP1 functions as a pathogen-associated molecular pattern (PAMP) and is recognised by plants in a BAK1-dependent manner.
Collapse
Affiliation(s)
- Guangxing Miao
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jiatao Xie
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Bo Li
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Tao Chen
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xiao Yu
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Tom Hsiang
- School of Environmental SciencesUniversity of GuelphGuelphOntarioCanada
| | - Daohong Jiang
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jiasen Cheng
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
4
|
Degli Esposti C, Guerrisi L, Peruzzi G, Giulietti S, Pontiggia D. Cell wall bricks of defence: the case study of oligogalacturonides. FRONTIERS IN PLANT SCIENCE 2025; 16:1552926. [PMID: 40201780 PMCID: PMC11975879 DOI: 10.3389/fpls.2025.1552926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/25/2025] [Indexed: 04/10/2025]
Abstract
The plant cell wall (CW) is more than a structural barrier; it serves as the first line of defence against pathogens and environmental stresses. During pathogen attacks or physical damage, fragments of the CW, known as CW-derived Damage-Associated Molecular Patterns (CW-DAMPs), are released. These molecular signals play a critical role in activating the plant's immune responses. Among CW-DAMPs, oligogalacturonides (OGs), fragments derived from the breakdown of pectin, are some of the most well-studied. This review highlights recent advances in understanding the functional and signalling roles of OGs, beginning with their formation through enzymatic CW degradation during pathogen invasion or mechanical injury. We discuss how OGs perception triggers intracellular signalling pathways that enhance plant defence and regulate interactions with microbes. Given that excessive OG levels can negatively impact growth and development, we also examine the regulatory mechanisms plants use to fine-tune their responses, avoiding immune overactivation or hyper- immunity. As natural immune modulators, OGs (and more generally CW-DAMPs), offer a promising, sustainable alternative to chemical pesticides by enhancing crop resilience without harming the environment. By strengthening plant defences and supporting eco-friendly agricultural practices, OGs hold great potential for advancing resilient and sustainable farming systems.
Collapse
Affiliation(s)
- Chiara Degli Esposti
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Laura Guerrisi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Giulia Peruzzi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Sarah Giulietti
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Daniela Pontiggia
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Research Center for Applied Sciences for the Protection of the Environment and Cultural Heritage, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Sun H, Xin J, Ullah A, Song H, Chen L, Yang D, Deng X, Liu J, Ming R, Zhang M, Yang H, Dong G, Yang M. Unveiling the secrets of lotus seed longevity: insights into adaptive strategies for extended storage. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1147-1163. [PMID: 39432815 DOI: 10.1093/jxb/erae432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/19/2024] [Indexed: 10/23/2024]
Abstract
Seed longevity is crucial for long-term storage, but prolonged unfavorable conditions can lead to loss of viability. This study integrated theoretical and experimental techniques to elucidate the inherent mechanisms underlying the unique ability of lotus seeds to maintain stable viability over many years. Transcriptome analysis and microscopy revealed a sturdy structure of the lotus seed pericarp, which predominantly expressed cellulose synthase genes involved in cell wall biogenesis. The cotyledon serves as a nutrient source for seeds during long-term storage. Additionally, the inactivation of chlorophyll degradation pathways may allow for the retention of chlorophyll in the lotus seed plumule, potentially enhancing the environmental adaptability of lotus seedlings. Reduced abundance of transcripts corresponding to heat shock protein genes could impact protein processing and consequently diminish the vitality of aging lotus seeds. Moreover, an expansion in the number of seed maturation and defense response genes was observed in the lotus genome compared with 11 other species, which might represent an adaptive strategy against long-term adverse storage conditions. Overall, these findings are crucial for understanding the mechanisms underlying lotus seed longevity and may inform future improvements in the extended storage periods of seed crops.
Collapse
Affiliation(s)
- Heng Sun
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Jia Xin
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Abid Ullah
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Heyun Song
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Dong Yang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xianbao Deng
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Juan Liu
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Minghua Zhang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Yang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Mei Yang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
6
|
Li Z, Wu R, Guo F, Wang Y, Nick P, Wang X. Advances in the molecular mechanism of grapevine resistance to fungal diseases. MOLECULAR HORTICULTURE 2025; 5:1. [PMID: 39743511 DOI: 10.1186/s43897-024-00119-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/14/2024] [Indexed: 01/04/2025]
Abstract
Grapevine is an important economic fruit tree worldwide, but grape production has been plagued by a vast number of fungal diseases, which affect tree vigor and the quality and yield of berries. To seek remedies for such issues, researchers have always been committed to conventional and biotechnological breeding. In recent years, increasing progress has been made in elucidating the molecular mechanisms of grape-pathogenic fungi interactions and resistance regulation. Here, we summarize the current knowledge on the molecular basis of grapevine resistance to fungal diseases, including fungal effector-mediated susceptibility and resistance, resistant regulatory networks in grapevine, innovative approaches of genetic transformation, and strategies to improve grape resistance. Understanding the molecular basis is important for exploring and accurately regulating grape resistance to fungal diseases.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Ronghui Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fangying Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuejin Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | - Xiping Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
7
|
Sun G, Xia Y, Li K, Zhu Q, Ding F, Gu H, Zhang Z, Li X, Mi X, Chen J, Yao R, Zhang S, Ouyang H, Chen X, Liu T, Jiang H, Zhao Y, Qiu M, Ye W, Duan K, Ma Z, Dong S, Yin H, Wang Y, Wang Y. Dual activation of soybean resistance against Phytophthora sojae by pectin lyase and degraded pectin oligosaccharides. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2746-2760. [PMID: 39549112 DOI: 10.1007/s11427-024-2724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 11/18/2024]
Abstract
Phytophthora pathogens secrete numerous apoplastic effectors to manipulate host immunity. Herein, we identified a polysaccharide lyase 1 protein, PsPL1, which acts as an essential virulence factor of P. sojae infection in soybean. However, the overexpression of PsPL1 in P. sojae reduced infection and triggered enhanced immune responses in soybean. PsPL1 exhibited pectin lyase activity and degraded plant pectin to generate pectin oligosaccharides (POSs) with a polymerization degree of 3-14, exhibiting different levels of acetylation and methylation modifications. PsPL1 and the degraded pectin products triggered immune responses in soybean and different Solanaceous plants. The PsPL1-triggered immune responses required RSPL1, a membrane-localized leucine-rich repeat receptor-like protein, which is essential for Phytophthora resistance. Conversely, the PsPL1-degraded product-triggered immune responses depended on the membrane-localized lysin motif receptor-like kinase CERK1. This study reveals that the pectin lyase exhibits a dual immunogenic role during P. sojae infection, which activates plant resistance through different immune receptors and provides novel insights into the function of pectin lyase in host-pathogen interactions.
Collapse
Affiliation(s)
- Guangzheng Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
- Suzhou Academy of Agricultural Sciences, Suzhou, 234000, China
| | - Yeqiang Xia
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Kuikui Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Qinsheng Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Feifei Ding
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Gu
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinrui Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Mi
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruoting Yao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Sicong Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Haibing Ouyang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Tengfei Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Haibin Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Yao Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
- Suzhou Academy of Agricultural Sciences, Suzhou, 234000, China
| | - Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaixuan Duan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenchuan Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Yuan J, Li Q, Li X, Su C. AI-based protein engineering: A novel strategy for enhancing broad-spectrum plant resistance. MOLECULAR PLANT 2024; 17:1648-1650. [PMID: 39370650 DOI: 10.1016/j.molp.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Affiliation(s)
- Jinhong Yuan
- College of Life Science and Technology of Huazhong Agricultural University, Wuhan 430070, China
| | - Qianqian Li
- College of Plant Science and Technology of Huazhong Agricultural University, Wuhan 430070, China
| | - Xia Li
- College of Plant Science and Technology of Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Wuhan 430070, China; Hubei Hongshan Labortory, Wuhan 430070, China.
| | - Chao Su
- College of Plant Science and Technology of Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Wuhan 430070, China; Hubei Hongshan Labortory, Wuhan 430070, China.
| |
Collapse
|
9
|
Gao Y, Wei Y, Chen Y, Jiang S, Ye J, Xu F, Jin P, Ding P, Shao X. PpWRKY33 positively regulates PpPGIP1 to enhance defense against Monilinia fructicola in peach fruit. Int J Biol Macromol 2024; 279:135350. [PMID: 39242007 DOI: 10.1016/j.ijbiomac.2024.135350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/04/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
In plant-pathogen interactions, numerous pathogens secrete polygalacturonase (PG) to degrade plants cell walls, whereas plants produce PG-inhibiting protein (PGIP) that specifically binds to pathogen-derived PG to inhibit its activity and resist pathogen infection. In the present study, we dshowed that PpPGIP1 was significantly upregulated in peaches after Monilinia fructicola infection, and the prokaryotic expression of the PpPGIP1 protein inhibited M. fructicola by mitigating its PG activity. Transient overexpression of PpPGIP1 in peaches significantly enhanced their resistance to M. fructicola. PpPGIP1 promoter had several W-box the defense elements that can bind to WRKY transcription factors. Transcriptome analysis identified 20 differentially expressed WRKY genes, including the classic disease resistance gene WRKY33. PpWRKY33 is significantly upregulated in M. fructicola infected peaches. PpWRKY33 is localized in the nucleus and can bind to the W-box in the PpPGIP1 promoter to transcriptional activate the expression of PpPGIP1. Transient overexpression PpWRKY33 upregulated PpPGIP1 expression in peaches, and silencing PpWRKY33 decreased the PpPGIP1 expression. These results indicated that PpPGIP1 positively regulates fungal disease resistance in peaches and is transcriptionally activated by PpWRKY33. These findings reveal the disease resistant role of PpPGIP1 in peaches, and provide new insights into its transcriptional regulation.
Collapse
Affiliation(s)
- Yinli Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Yingying Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China.
| | - Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Shu Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Jianfen Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Feng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Phebe Ding
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Xingfeng Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China.
| |
Collapse
|
10
|
Liu X, Zhao H, Yuan M, Li P, Xie J, Fu Y, Li B, Yu X, Chen T, Lin Y, Chen W, Jiang D, Cheng J. An effector essential for virulence of necrotrophic fungi targets plant HIRs to inhibit host immunity. Nat Commun 2024; 15:9391. [PMID: 39477937 PMCID: PMC11525884 DOI: 10.1038/s41467-024-53725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/20/2024] [Indexed: 11/02/2024] Open
Abstract
Phytopathogens often secrete effectors to enhance their infection of plants. In the case of Sclerotinia sclerotiorum, a necrotrophic phytopathogen, a secreted protein named SsPEIE1 (Sclerotinia sclerotiorum Plant Early Immunosuppressive Effector 1) plays a crucial role in its virulence. During the early stages of infection, SsPEIE1 is significantly up-regulated. Additionally, transgenic plants expressing SsPEIE1 exhibit increased susceptibility to different phytopathogens. Further investigations revealed that SsPEIE1 interacts with a plasma membrane protein known as hypersensitive induced reaction (HIR) that dampens immune responses. SsPEIE1 is required for S. sclerotiorum virulence on wild-type Arabidopsis but not on Arabidopsis hir4 mutants. Moreover, Arabidopsis hir2 and hir4 mutants exhibit suppressed pathogen-associated molecular pattern-triggered reactive oxygen species (ROS) bursts and salicylic acid (SA)-associated immune gene induction, all of which are phenocopied by the SsPEIE1 transgenic plants. We find that the oligomerization of AtHIR4 is essential for its role in mediating immunity, and that SsPEIE1 inhibits its oligomerization through competitively binding to AtHIR4. Remarkably, both Arabidopsis and rapeseed plants overexpress AtHIR4 display significantly increased resistance to S. sclerotiorum. In summary, these results demonstrate that SsPEIE1 inhibits AtHIR4 oligomerization-mediated immune responses by interacting with the key immune factor AtHIR4, thereby promoting S. sclerotiorum infection.
Collapse
Affiliation(s)
- Xiaofan Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Huihui Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Mingyun Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Pengyue Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Yang Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Weidong Chen
- United States Department of Agriculture, Agricultural Research Service, and Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China.
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China.
| |
Collapse
|
11
|
Wang Y, Dong Y, Liu K, Li G, Cheng J, Cao Y, Yang Y, Qin L, Huang B. Conserved fungal effector NLS1 suppresses Lepidoptera insect immunity by targeting the host defense protein Hdd11. INSECT SCIENCE 2024. [PMID: 39382256 DOI: 10.1111/1744-7917.13454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024]
Abstract
Entomopathogenic fungi have been widely used as the main mycoinsecticide for controlling agricultural and forest pests. The effector molecules of these mycopathogens have evolved to adapt to their hosts. The role of fungal effectors in evading the host immune system in insects remains mainly unclear. We characterized the widely distributed fungal effector necrosis-inducing-like secreted protein 1 (NLS1) in the entomopathogenic fungus Metarhizium robertsii. Our findings revealed the presence of M. robertsii NLS1 (MrNLS1) in host hemocytes during the early stage of hemocoel infection. MrNLS1 knock down (ΔMrNLS1) reduced fungal pathogenicity during infection and altered the expression of host immune genes. The molecular docking results and the yeast 2-hybrid assay confirmed that MrNLS1 interacts with the host defense protein Hdd11. The phylogenetic analysis indicated that Hdd11 is conserved across a broad range of Lepidoptera species. Knock down of hdd11 in Helicoverpa armigera, Bombyx mori, and Galleria mellonella markedly suppressed their immune responses against M. robertsii. However, no significant difference was observed in the mean lethal time between hdd11-knockdown Lepidoptera species infected with ΔMrNLS1 and those infected with wild-type M. robertsii. Therefore, in Lepidoptera insects, Hdd11 is essential for fungal defense. In conclusion, M. robertsii infects Lepidoptera insects by targeting host Hdd11 through its protein MrNLS1, thereby suppressing the host immune response. Our findings clarify the molecular mechanisms underlying fungal infection pathogenesis.
Collapse
Affiliation(s)
- Yulong Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Ying Dong
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Kexin Liu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Gen Li
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Jing Cheng
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Yin Cao
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Yang Yang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Li Qin
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| |
Collapse
|
12
|
Xia Y, Sun G, Xiao J, He X, Jiang H, Zhang Z, Zhang Q, Li K, Zhang S, Shi X, Wang Z, Liu L, Zhao Y, Yang Y, Duan K, Ye W, Wang Y, Dong S, Wang Y, Ma Z, Wang Y. AlphaFold-guided redesign of a plant pectin methylesterase inhibitor for broad-spectrum disease resistance. MOLECULAR PLANT 2024; 17:1344-1368. [PMID: 39030909 DOI: 10.1016/j.molp.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/18/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024]
Abstract
Plant cell walls are a critical site where plants and pathogens continuously struggle for physiological dominance. Here we show that dynamic remodeling of pectin methylesterification of plant cell walls is a component of the physiological and co-evolutionary struggles between hosts and pathogens. A pectin methylesterase (PsPME1) secreted by Phytophthora sojae decreases the degree of pectin methylesterification, thus synergizing with an endo-polygalacturonase (PsPG1) to weaken plant cell walls. To counter PsPME1-mediated susceptibility, a plant-derived pectin methylesterase inhibitor protein, GmPMI1, protects pectin to maintain a high methylesterification status. GmPMI1 protects plant cell walls from enzymatic degradation by inhibiting both soybean and P. sojae pectin methylesterases during infection. However, constitutive expression of GmPMI1 disrupted the trade-off between host growth and defense responses. We therefore used AlphaFold structure tools to design a modified form of GmPMI1 (GmPMI1R) that specifically targets and inhibits pectin methylesterases secreted from pathogens but not from plants. Transient expression of GmPMI1R enhanced plant resistance to oomycete and fungal pathogens. In summary, our work highlights the biochemical modification of the cell wall as an important focal point in the physiological and co-evolutionary conflict between hosts and microbes, providing an important proof of concept that AI-driven structure-based tools can accelerate the development of new strategies for plant protection.
Collapse
Affiliation(s)
- Yeqiang Xia
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guangzheng Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Junhua Xiao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xinyi He
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Haibin Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qi Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kainan Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Sicong Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xuechao Shi
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhaoyun Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Lin Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yao Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuheng Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kaixuan Duan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yiming Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhenchuan Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
13
|
Sofianos G, Piombo E, Dubey M, Karlsson M, Karaoglanidis G, Tzelepis G. Transcriptomic and functional analyses on a Botrytis cinerea multidrug-resistant (MDR) strain provides new insights into the potential molecular mechanisms of MDR and fitness. MOLECULAR PLANT PATHOLOGY 2024; 25:e70004. [PMID: 39244735 PMCID: PMC11380696 DOI: 10.1111/mpp.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024]
Abstract
Botrytis cinerea is a notorious pathogen causing pre- and post-harvest spoilage in many economically important crops. Excessive application of site-specific fungicides to control the pathogen has led to the selection of strains possessing target site alterations associated with resistance to these fungicides and/or strains overexpressing efflux transporters associated with multidrug resistance (MDR). MDR in B. cinerea has been correlated with the overexpression of atrB and mfsM2, encoding an ATP-binding cassette (ABC) and a major facilitator superfamily (MFS) transporter, respectively. However, it remains unknown whether other transporters may also contribute to the MDR phenotype. In the current study, the transcriptome of a B. cinerea multidrug-resistant (MDR) field strain was analysed upon exposure to the fungicide fludioxonil, and compared to the B05.10 reference strain. The transcriptome of this field strain displayed significant differences as compared to B05.10, including genes involved in sugar membrane transport, toxin production and virulence. Among the induced genes in the field strain, even before exposure to fludioxonil, were several putatively encoding ABC and MFS transmembrane transporters. Overexpression of a highly induced MFS transporter gene in the B05.10 strain led to an increased tolerance to the fungicides fluopyram and boscalid, indicating an involvement in efflux transport of these compounds. Overall, the data from this study give insights towards better understanding the molecular mechanisms involved in MDR and fitness cost, contributing to the development of more efficient control strategies against this pathogen.
Collapse
Affiliation(s)
- Georgios Sofianos
- Faculty of Agriculture, Forestry and Natural Environment, Laboratory of Plant Pathology, Aristotelian University of Thessaloniki, Thessaloniki, Greece
| | - Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala Biocenter, Uppsala, Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala Biocenter, Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala Biocenter, Uppsala, Sweden
| | - George Karaoglanidis
- Faculty of Agriculture, Forestry and Natural Environment, Laboratory of Plant Pathology, Aristotelian University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Tzelepis
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala Biocenter, Uppsala, Sweden
| |
Collapse
|
14
|
McClelland AJ, Ma W. Zig, Zag, and 'Zyme: leveraging structural biology to engineer disease resistance. ABIOTECH 2024; 5:403-407. [PMID: 39279864 PMCID: PMC11399530 DOI: 10.1007/s42994-024-00152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 09/18/2024]
Abstract
Dynamic host-pathogen interactions determine whether disease will occur. Pathogen effector proteins are central players in such disease development. On one hand, they improve susceptibility by manipulating host targets; on the other hand, they can trigger immunity after recognition by host immune receptors. A major research direction in the study of molecular plant pathology is to understand effector-host interactions, which has informed the development and breeding of crops with enhanced disease resistance. Recent breakthroughs on experiment- and artificial intelligence-based structure analyses significantly accelerate the development of this research area. Importantly, the detailed molecular insight of effector-host interactions enables precise engineering to mitigate disease. Here, we highlight a recent study by Xiao et al., who describe the structure of an effector-receptor complex that consists of a fungal effector, with polygalacturonase (PG) activity, and a plant-derived polygalacturonase-inhibiting protein (PGIP). PGs weaken the plant cell wall and produce immune-suppressive oligogalacturonides (OGs) as a virulence mechanism; however, PGIPs directly bind to PGs and alter their enzymatic activity. When in a complex with PGIPs, PGs produce OG polymers with longer chains that can trigger immunity. Xiao et al. demonstrate that a PGIP creates a new active site tunnel, together with a PG, which favors the production of long-chain OGs. In this way, the PGIP essentially acts as both a PG receptor and enzymatic manipulator, converting virulence to defense activation. Taking a step forward, the authors used the PG-PGIP complex structure as a guide to generate PGIP variants with enhanced long-chain OG production, likely enabling further improved disease resistance. This study discovered a novel mechanism by which a plant receptor plays a dual role to activate immunity. It also demonstrates how fundamental knowledge, obtained through structural analyses, can be employed to guide the design of proteins with desired functions in agriculture.
Collapse
Affiliation(s)
| | - Wenbo Ma
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH UK
| |
Collapse
|
15
|
Xiao S, Wang J, Bai Z, Pan Y, Li Q, Zhao D, Zhang D, Yang Z, Zhu J. Alternaria solani effectors AsCEP19 and AsCEP20 reveal novel functions in pathogenicity and conidiogenesis. Microbiol Spectr 2024; 12:e0421423. [PMID: 38912810 PMCID: PMC11302675 DOI: 10.1128/spectrum.04214-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/15/2024] [Indexed: 06/25/2024] Open
Abstract
Previous work identified a pair of specific effectors AsCEP19 and AsCEP20 in Alternaria solani as contributors to the virulence of A. solani. Here, we constructed AsCEP19 and AsCEP20 deletion mutants in A. solani strain HWC168 to further reveal the effects of these genes on the biology and pathogenicity of A. solani. Deletion of AsCEP19 and AsCEP20 did not affect vegetative growth but did affect conidial maturation, with an increase in the percentage of abnormal conidia produced. Furthermore, we determined the expression patterns of genes involved in the conidiogenesis pathway and found that the regulatory gene abaA was significantly upregulated and chsA, a positive regulator for conidiation, was significantly downregulated in the mutant strains compared to the wild-type strain. These results suggest that AsCEP19 and AsCEP20 indirectly affect the conidial development and maturation of A. solani. Pathogenicity assays revealed significantly impaired virulence of ΔAsCEP19, ΔAsCEP20, and ΔAsCEP19 + AsCEP20 mutants on potato and tomato plants. Moreover, we performed localization assays with green fluorescent protein-tagged proteins in chili pepper leaves. We found that AsCEP19 can specifically localize to the chloroplasts of chili pepper epidermal cells, while AsCEP20 can localize to both chloroplasts and the plasma membrane. Weighted gene co-expression network analysis revealed enrichment of genes of this module in the photosynthesis pathway, with many hub genes associated with chloroplast structure and photosynthesis. These results suggest that chloroplasts are the targets for AsCEP19 and AsCEP20. IMPORTANCE Alternaria solani is an important necrotrophic pathogen causing potato early blight. Previous studies have provide preliminary evidence that specific effectors AsCEP19 and AsCEP20 contribute to virulence, but their respective functions, localization, and pathogenic mechanisms during the infection process of A. solani remain unclear. Here, we have systematically studied the specific effectors AsCEP19 and AsCEP20 for the first time, which are essential for conidial maturation. The deletion of AsCEP19 and AsCEP20 can significantly impair fungal pathogenicity. Additionally, we preliminarily revealed that AsCEP19 and AsCEP20 target the chloroplasts of host cells. Our findings further enhance our understanding of the molecular mechanisms underlying the virulence of necrotrophic pathogens.
Collapse
Affiliation(s)
- Siyu Xiao
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Jinhui Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, Hebei, China
| | - Zihan Bai
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Yang Pan
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Qian Li
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Dongmei Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Dai Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Zhihui Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, Hebei, China
| | - Jiehua Zhu
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, Hebei, China
| |
Collapse
|
16
|
Ma M, Tang L, Sun R, Lyu X, Xie J, Fu Y, Li B, Chen T, Lin Y, Yu X, Chen W, Jiang D, Cheng J. An effector SsCVNH promotes the virulence of Sclerotinia sclerotiorum through targeting class III peroxidase AtPRX71. MOLECULAR PLANT PATHOLOGY 2024; 25:e13464. [PMID: 38695733 PMCID: PMC11064801 DOI: 10.1111/mpp.13464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
Many plant pathogens secrete effector proteins into the host plant to suppress host immunity and facilitate pathogen colonization. The necrotrophic pathogen Sclerotinia sclerotiorum causes severe plant diseases and results in enormous economic losses, in which secreted proteins play a crucial role. SsCVNH was previously reported as a secreted protein, and its expression is significantly upregulated at 3 h after inoculation on the host plant. Here, we further demonstrated that deletion of SsCVNH leads to attenuated virulence. Heterologous expression of SsCVNH in Arabidopsis enhanced pathogen infection, inhibited the host PAMP-triggered immunity (PTI) response and increased plant susceptibility to S. sclerotiorum. SsCVNH interacted with class III peroxidase AtPRX71, a positive regulator of innate immunity against plant pathogens. SsCVNH could also interact with other class III peroxidases, thus reducing peroxidase activity and suppressing plant immunity. Our results reveal a new infection strategy employed by S. sclerotiorum in which the fungus suppresses the function of class III peroxidases, the major component of PTI to promote its own infection.
Collapse
Affiliation(s)
- Ming Ma
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Liguang Tang
- Wuhan Vegetable Research InstituteWuhan Academy of Agricultural ScienceWuhanHubeiChina
| | - Rui Sun
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xueliang Lyu
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jiatao Xie
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Bo Li
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Tao Chen
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xiao Yu
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Weidong Chen
- United States Department of Agriculture, Agricultural Research ServiceWashington State UniversityPullmanWashingtonUSA
| | - Daohong Jiang
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jiasen Cheng
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
17
|
Liu X, Zhao H, Xie J, Fu Y, Li B, Yu X, Chen T, Lin Y, Jiang D, Cheng J. A Glycosyl Hydrolase 5 Family Protein Is Essential for Virulence of Necrotrophic Fungi and Can Suppress Plant Immunity. Int J Mol Sci 2024; 25:2693. [PMID: 38473940 DOI: 10.3390/ijms25052693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Phytopathogenic fungi normally secrete large amounts of CWDEs to enhance infection of plants. In this study, we identified and characterized a secreted glycosyl hydrolase 5 family member in Sclerotinia sclerotiorum (SsGH5, Sclerotinia sclerotiorum Glycosyl Hydrolase 5). SsGH5 was significantly upregulated during the early stages of infection. Knocking out SsGH5 did not affect the growth and acid production of S. sclerotiorum but resulted in decreased glucan utilization and significantly reduced virulence. In addition, Arabidopsis thaliana expressing SsGH5 became more susceptible to necrotrophic pathogens and basal immune responses were inhibited in these plants. Remarkably, the lost virulence of the ΔSsGH5 mutants was restored after inoculating onto SsGH5 transgenic Arabidopsis. In summary, these results highlight that S. sclerotiorum suppresses the immune responses of Arabidopsis through secreting SsGH5, and thus exerts full virulence for successful infection.
Collapse
Affiliation(s)
- Xiaofan Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huihui Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanping Fu
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
18
|
Shang Q, Jiang D, Xie J, Cheng J, Xiao X. The schizotrophic lifestyle of Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2024; 25:e13423. [PMID: 38407560 PMCID: PMC10895550 DOI: 10.1111/mpp.13423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/30/2023] [Accepted: 01/07/2024] [Indexed: 02/27/2024]
Abstract
Sclerotinia sclerotiorum is a cosmopolitan and typical necrotrophic phytopathogenic fungus that infects hundreds of plant species. Because no cultivars highly resistant to S. sclerotiorum are available, managing Sclerotinia disease caused by S. sclerotiorum is still challenging. However, recent studies have demonstrated that S. sclerotiorum has a beneficial effect and can live mutualistically as an endophyte in graminaceous plants, protecting the plants against major fungal diseases. An in-depth understanding of the schizotrophic lifestyle of S. sclerotiorum during interactions with plants under different environmental conditions will provide new strategies for controlling fungal disease. In this review, we summarize the pathogenesis mechanisms of S. sclerotiorum during its attack of host plants as a destructive pathogen and discuss its lifestyle as a beneficial endophytic fungus.
Collapse
Affiliation(s)
- Qingna Shang
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Daohong Jiang
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jiatao Xie
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jiasen Cheng
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xueqiong Xiao
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
19
|
Lin M, Gao Z, Wang X, Huo H, Mao J, Gong X, Chen L, Ma S, Cao Y. Eco-friendly managements and molecular mechanisms for improving postharvest quality and extending shelf life of kiwifruit: A review. Int J Biol Macromol 2024; 257:128450. [PMID: 38035965 DOI: 10.1016/j.ijbiomac.2023.128450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/04/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Kiwifruit (Actinidia spp.) is a commercially important horticultural fruit crop worldwide. Kiwifruit contains numerous minerals, vitamins, and dietary phytochemicals, that not only responsible for the flavor but can also serve as adjuncts in the treatment of diabetes, digestive disorders, cardiovascular system, cancer and heart disease. However, fruit quality and shelf life affect consumer's acceptance and production chain. Understanding the methods of fruit storage preservation, as well as their biochemical, physiological, and molecular basis is essential. In recent years, eco-friendly (comprehensive and environmentally friendly) treatments such as hot water, ozone, chitosan, quercetin, and antifungal additive from biocontrol bacteria or yeast have been applied to improve postharvest fruit quality with longer shelf life. This review provides a comprehensive overview of the latest advancements in control measures, applications, and mechanisms related to water loss, chilling injury, and pathogen diseases in postharvest kiwifruit. Further studies should utilize genome editing techniques to enhance postharvest fruit quality and disease resistance through site-directed bio-manipulation of the kiwifruit genome.
Collapse
Affiliation(s)
- Mengfei Lin
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China; Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi, China
| | - Zhu Gao
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China; Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi, China; Jinggangshan Institute of Biotechnology, Jiangxi Academy of Sciences, Ji'an, Jiangxi, China
| | - Xiaoling Wang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China; Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi, China.
| | - Heqiang Huo
- Mid-Florida Research & Education Center, IFAS, University of Florida, Apopka, FL 32703, USA
| | - Jipeng Mao
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China; Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi, China
| | - Xuchen Gong
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China; Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi, China
| | - Lu Chen
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China; Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi, China; Jinggangshan Institute of Biotechnology, Jiangxi Academy of Sciences, Ji'an, Jiangxi, China
| | - Shiying Ma
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China; Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi, China
| | - Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
20
|
Li W, Li P, Deng Y, Situ J, He Z, Zhou W, Li M, Xi P, Liang X, Kong G, Jiang Z. A plant cell death-inducing protein from litchi interacts with Peronophythora litchii pectate lyase and enhances plant resistance. Nat Commun 2024; 15:22. [PMID: 38167822 PMCID: PMC10761943 DOI: 10.1038/s41467-023-44356-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Cell wall degrading enzymes, including pectate lyases (PeLs), released by plant pathogens, break down protective barriers and/or activate host immunity. The direct interactions between PeLs and plant immune-related proteins remain unclear. We identify two PeLs, PlPeL1 and PlPeL1-like, critical for full virulence of Peronophythora litchii on litchi (Litchi chinensis). These proteins enhance plant susceptibility to oomycete pathogens in a PeL enzymatic activity-dependent manner. However, LcPIP1, a plant immune regulator secreted by litchi, binds to PlPeL1/PlPeL1-like, and attenuates PlPeL1/PlPeL1-like induced plant susceptibility to Phytophthora capsici. LcPIP1 also induces cell death and various immune responses in Nicotiana benthamiana. Conserved in plants, LcPIP1 homologs bear a conserved "VDMASG" motif and exhibit immunity-inducing activity. Furthermore, SERK3 interacts with LcPIP1 and is required for LcPIP1-induced cell death. NbPIP1 participates in immune responses triggered by the PAMP protein INF1. In summary, our study reveals the dual roles of PlPeL1/PlPeL1-like in plant-pathogen interactions: enhancing pathogen virulence through PeL enzymatic activity while also being targeted by LcPIP1, thus enhancing plant immunity.
Collapse
Affiliation(s)
- Wen Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Peng Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yizhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Junjian Situ
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zhuoyuan He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Wenzhe Zhou
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Minhui Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Pinggen Xi
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Xiangxiu Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Guanghui Kong
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.
| | - Zide Jiang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
21
|
Venice F, Spina F, Davolos D, Ghignone S, Varese GC. The genomes of Scedosporium between environmental challenges and opportunism. IMA Fungus 2023; 14:25. [PMID: 38049914 PMCID: PMC10694956 DOI: 10.1186/s43008-023-00128-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/05/2023] [Indexed: 12/06/2023] Open
Abstract
Emerging fungal pathogens are a global challenge for humankind. Many efforts have been made to understand the mechanisms underlying pathogenicity in bacteria, and OMICs techniques are largely responsible for those advancements. By contrast, our limited understanding of opportunism and antifungal resistance is preventing us from identifying, limiting and interpreting the emergence of fungal pathogens. The genus Scedosporium (Microascaceae) includes fungi with high tolerance to environmental pollution, whilst some species can be considered major human pathogens, such as Scedosporium apiospermum and Scedosporium boydii. However, unlike other fungal pathogens, little is known about the genome evolution of these organisms. We sequenced two novel genomes of Scedosporium aurantiacum and Scedosporium minutisporum isolated from extreme, strongly anthropized environments. We compared all the available Scedosporium and Microascaceae genomes, that we systematically annotated and characterized ex novo in most cases. The genomes in this family were integrated in a Phylum-level comparison to infer the presence of putative, shared genomic traits in filamentous ascomycetes with pathogenic potential. The analysis included the genomes of 100 environmental and clinical fungi, revealing poor evolutionary convergence of putative pathogenicity traits. By contrast, several features in Microascaceae and Scedosporium were detected that might have a dual role in responding to environmental challenges and allowing colonization of the human body, including chitin, melanin and other cell wall related genes, proteases, glutaredoxins and magnesium transporters. We found these gene families to be impacted by expansions, orthologous transposon insertions, and point mutations. With RNA-seq, we demonstrated that most of these anciently impacted genomic features responded to the stress imposed by an antifungal compound (voriconazole) in the two environmental strains S. aurantiacum MUT6114 and S. minutisporum MUT6113. Therefore, the present genomics and transcriptomics investigation stands on the edge between stress resistance and pathogenic potential, to elucidate whether fungi were pre-adapted to infect humans. We highlight the strengths and limitations of genomics applied to opportunistic human pathogens, the multifactoriality of pathogenicity and resistance to drugs, and suggest a scenario where pressures other than anthropic contributed to forge filamentous human pathogens.
Collapse
Affiliation(s)
- Francesco Venice
- Department of Life Sciences and System Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Federica Spina
- Department of Life Sciences and System Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Domenico Davolos
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements (DIT), INAIL, Research Area, Via R. Ferruzzi 38/40, 00143, Rome, Italy
| | - Stefano Ghignone
- Institute for Sustainable Plant Protection (IPSP), SS Turin-National Research Council (CNR), Viale Mattioli 25, 10125, Turin, Italy
| | - Giovanna Cristina Varese
- Department of Life Sciences and System Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy.
| |
Collapse
|
22
|
Derbyshire MC, Raffaele S. Till death do us pair: Co-evolution of plant-necrotroph interactions. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102457. [PMID: 37852141 DOI: 10.1016/j.pbi.2023.102457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 10/20/2023]
Abstract
Plants use programmed cell death as a potent defense response against biotrophic pathogens that require living host cells to thrive. However, cell death can promote infection by necrotrophic pathogens. This discrepancy creates specific co-evolutionary dynamics in the interaction between plants and necrotrophs. Necrotrophic pathogens produce diverse cell death-inducing effectors that act redundantly on several plant targets and sometimes suppress plant immune responses as an additional function. Plants use surface receptors that recognize necrotrophic effectors to increase quantitative disease resistance, some of which evolved independently in several plant lineages. Co-evolution has shaped molecular mechanisms involved in plant-necrotroph interactions into robust systems, relying on degenerate and multifunctional modules, general-purpose components, and compartmentalized functioning.
Collapse
Affiliation(s)
- Mark C Derbyshire
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Sylvain Raffaele
- Université de Toulouse, INRAE, CNRS, Laboratoire des Interactions Plantes Micro-organismes Environnement (LIPME), 31326, Castanet-Tolosan, France.
| |
Collapse
|
23
|
Kesten C, Leitner V, Dora S, Sims JW, Dindas J, Zipfel C, De Moraes CM, Sanchez-Rodriguez C. Soil-borne fungi alter the apoplastic purinergic signaling in plants by deregulating the homeostasis of extracellular ATP and its metabolite adenosine. eLife 2023; 12:e92913. [PMID: 37994905 PMCID: PMC10746138 DOI: 10.7554/elife.92913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/23/2023] [Indexed: 11/24/2023] Open
Abstract
Purinergic signaling activated by extracellular nucleotides and their derivative nucleosides trigger sophisticated signaling networks. The outcome of these pathways determine the capacity of the organism to survive under challenging conditions. Both extracellular ATP (eATP) and Adenosine (eAdo) act as primary messengers in mammals, essential for immunosuppressive responses. Despite the clear role of eATP as a plant damage-associated molecular pattern, the function of its nucleoside, eAdo, and of the eAdo/eATP balance in plant stress response remain to be fully elucidated. This is particularly relevant in the context of plant-microbe interaction, where the intruder manipulates the extracellular matrix. Here, we identify Ado as a main molecule secreted by the vascular fungus Fusarium oxysporum. We show that eAdo modulates the plant's susceptibility to fungal colonization by altering the eATP-mediated apoplastic pH homeostasis, an essential physiological player during the infection of this pathogen. Our work indicates that plant pathogens actively imbalance the apoplastic eAdo/eATP levels as a virulence mechanism.
Collapse
Affiliation(s)
- Christopher Kesten
- Department of Biology and Zürich-Basel Plant Science CenterZürichSwitzerland
- Department for Plant and Environmental Sciences, University of CopenhagenCopenhagenDenmark
| | - Valentin Leitner
- Department of Biology and Zürich-Basel Plant Science CenterZürichSwitzerland
| | - Susanne Dora
- Department of Biology and Zürich-Basel Plant Science CenterZürichSwitzerland
| | - James W Sims
- Department of Environmental Systems Science, ETH ZürichZurichSwitzerland
| | - Julian Dindas
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of ZürichZürichSwitzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of ZürichZürichSwitzerland
| | | | - Clara Sanchez-Rodriguez
- Department of Biology and Zürich-Basel Plant Science CenterZürichSwitzerland
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC)Pozuelo de AlarcónSpain
| |
Collapse
|
24
|
Poudel RS, Belay K, Nelson B, Brueggeman R, Underwood W. Population and genome-wide association studies of Sclerotinia sclerotiorum isolates collected from diverse host plants throughout the United States. Front Microbiol 2023; 14:1251003. [PMID: 37829452 PMCID: PMC10566370 DOI: 10.3389/fmicb.2023.1251003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/29/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction Sclerotinia sclerotiorum is a necrotrophic fungal pathogen causing disease and economic loss on numerous crop plants. This fungus has a broad host range and can infect over 400 plant species, including important oilseed crops such as soybean, canola, and sunflower. S. sclerotiorum isolates vary in aggressiveness of lesion formation on plant tissues. However, the genetic basis for this variation remains to be determined. The aims of this study were to evaluate a diverse collection of S. sclerotiorum isolates collected from numerous hosts and U.S. states for aggressiveness of stem lesion formation on sunflower, to evaluate the population characteristics, and to identify loci associated with isolate aggressiveness using genome-wide association mapping. Methods A total of 219 S. sclerotiorum isolates were evaluated for stem lesion formation on two sunflower inbred lines and genotyped using genotyping-by-sequencing. DNA markers were used to assess population differentiation across hosts, regions, and climatic conditions and to perform a genome-wide association study of isolate aggressiveness. Results and discussion We observed a broad range of aggressiveness for lesion formation on sunflower stems, and only a moderate correlation between aggressiveness on the two lines. Population genetic evaluations revealed differentiation between populations from warmer climate regions compared to cooler regions. Finally, a genome-wide association study of isolate aggressiveness identified three loci significantly associated with aggressiveness on sunflower. Functional characterization of candidate genes at these loci will likely improve our understanding of the virulence strategies used by this pathogen to cause disease on a wide array of agriculturally important host plants.
Collapse
Affiliation(s)
- Roshan Sharma Poudel
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Kassaye Belay
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Berlin Nelson
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Robert Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - William Underwood
- Edward T. Schafer Agricultural Research Center, Sunflower and Plant Biology Research Unit, USDA Agricultural Research Service, Fargo, ND, United States
| |
Collapse
|
25
|
Qiu Y, Wu X, Wen T, Hu L, Rui L, Zhang Y, Ye J. The Bursaphelenchus xylophilus candidate effector BxLip-3 targets the class I chitinases to suppress immunity in pine. MOLECULAR PLANT PATHOLOGY 2023; 24:1033-1046. [PMID: 37448165 PMCID: PMC10423331 DOI: 10.1111/mpp.13334] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 07/15/2023]
Abstract
Lipase is involved in lipid hydrolysis, which is related to nematodes' energy reserves and stress resistance. However, the role of lipases in Bursaphelenchus xylophilus, a notorious plant-parasitic nematode responsible for severe damage to pine forest ecosystems, remains largely obscure. Here, we characterized a class III lipase as a candidate effector and named it BxLip-3. It was transcriptionally up-regulated in the parasitic stages of B. xylophilus and specifically expressed in the oesophageal gland cells and the intestine. In addition, BxLip-3 suppressed cell death triggered by the pathogen-associated molecular patterns PsXEG1 and BxCDP1 in Nicotiana benthamiana, and its Lipase-3 domain is essential for immunosuppression. Silencing of the BxLip-3 gene resulted in a delay in disease onset and increased the activity of antioxidant enzymes and the expression of pathogenesis-related (PR) genes. Plant chitinases are thought to be PR proteins involved in the defence system against pathogen attack. Using yeast two-hybrid and co-immunoprecipitation assays, we identified two class I chitinases in Pinus thunbergii, PtChia1-3 and PtChia1-4, as targets of BxLip-3. The expression of these two chitinases was up-regulated during B. xylophilus inoculation and inhibited by BxLip-3. Overall, this study illustrated that BxLip-3 is a crucial virulence factor that plays a critical role in the interaction between B. xylophilus and host pine.
Collapse
Affiliation(s)
- Yi‐Jun Qiu
- Co‐Innovation Center for Sustainable Forestry in Southern China, College of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Xiao‐Qin Wu
- Co‐Innovation Center for Sustainable Forestry in Southern China, College of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Tong‐Yue Wen
- Co‐Innovation Center for Sustainable Forestry in Southern China, College of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Long‐Jiao Hu
- Co‐Innovation Center for Sustainable Forestry in Southern China, College of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
- Institute of BotanyJiangsu Province and Chinese Academy of SciencesNanjingChina
| | - Lin Rui
- Co‐Innovation Center for Sustainable Forestry in Southern China, College of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Yan Zhang
- Co‐Innovation Center for Sustainable Forestry in Southern China, College of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Jian‐Ren Ye
- Co‐Innovation Center for Sustainable Forestry in Southern China, College of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| |
Collapse
|
26
|
Singh L, Sinha A, Gupta M, Xiao S, Hammond R, Rawat N. Wheat Pore-Forming Toxin-Like Protein Confers Broad-Spectrum Resistance to Fungal Pathogens in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:489-501. [PMID: 36892820 DOI: 10.1094/mpmi-12-22-0247-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fusarium head blight (FHB), caused by the hemibiotrophic fungus Fusarium graminearum, is one of the major threats to global wheat productivity. A wheat pore-forming toxin-like (PFT) protein was previously reported to underlie Fhb1, the most widely used quantitative trait locus in FHB breeding programs worldwide. In the present work, wheat PFT was ectopically expressed in the model dicot plant Arabidopsis. Heterologous expression of wheat PFT in Arabidopsis provided a broad-spectrum quantitative resistance to fungal pathogens including F. graminearum, Colletotrichum higginsianum, Sclerotinia sclerotiorum, and Botrytis cinerea. However, there was no resistance to bacterial or oomycete pathogens Pseudomonas syringae and Phytophthora capsici, respectively in the transgenic Arabidopsis plants. To explore the reason for the resistance response to, exclusively, the fungal pathogens, purified PFT protein was hybridized to a glycan microarray having 300 different types of carbohydrate monomers and oligomers. It was found that PFT specifically hybridized with chitin monomer, N-acetyl glucosamine (GlcNAc), which is present in fungal cell walls but not in bacteria or oomycete species. This exclusive recognition of chitin may be responsible for the specificity of PFT-mediated resistance to fungal pathogens. Transfer of the atypical quantitative resistance of wheat PFT to a dicot system highlights its potential utility in designing broad-spectrum resistance in diverse host plants. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Lovepreet Singh
- Department of Plant Science and Landscape Architecture, University of Maryland College Park, MD 20742, U.S.A
| | - Arunima Sinha
- Department of Plant Science and Landscape Architecture, University of Maryland College Park, MD 20742, U.S.A
| | - Megha Gupta
- Department of Plant Science and Landscape Architecture, University of Maryland College Park, MD 20742, U.S.A
| | - Shunyuan Xiao
- Department of Plant Science and Landscape Architecture, University of Maryland College Park, MD 20742, U.S.A
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, U.S.A
| | - Rosemarie Hammond
- Molecular Plant Pathology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, U.S.A
| | - Nidhi Rawat
- Department of Plant Science and Landscape Architecture, University of Maryland College Park, MD 20742, U.S.A
| |
Collapse
|
27
|
Rastija V, Vrandečić K, Ćosić J, Kanižai Šarić G, Majić I, Agić D, Šubarić D, Karnaš M, Bešlo D, Brahmbhatt H, Komar M. Antifungal Activities of Fluorinated Pyrazole Aldehydes on Phytopathogenic Fungi, and Their Effect on Entomopathogenic Nematodes, and Soil-Beneficial Bacteria. Int J Mol Sci 2023; 24:ijms24119335. [PMID: 37298285 DOI: 10.3390/ijms24119335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Fluoro-substituted pyrazoles have a wide range of biological activities, such as antibacterial, antiviral, and antifungal activities. The aim of this study was to evaluate the antifungal activities of fluorinated 4,5-dihydro-1H-pyrazole derivatives on four phytopathogenic fungi: Sclerotinia sclerotiorum, Macrophomina phaseolina, Fusarium oxysporum f. sp. lycopersici, and F. culmorum. Moreover, they were tested on two soil beneficial bacteria-Bacillus mycoides and Bradyrhizobium japonicum-as well as two entomopathogenic nematodes (EPNs)-Heterorhabditis bacteriophora and Steinernema feltiae. The molecular docking was performed on the three enzymes responsible for fungal growth, the three plant cell wall-degrading enzymes, and acetylcholinesterase (AChE). The most active compounds against fungi S. sclerotiorum were 2-chlorophenyl derivative (H9) (43.07% of inhibition) and 2,5-dimethoxyphenyl derivative (H7) (42.23% of inhibition), as well as H9 against F. culmorum (46.75% of inhibition). Compounds were shown to be safe for beneficial soil bacteria and nematodes, except for compound H9 on EPN H. bacteriophora (18.75% mortality), which also showed the strongest inhibition against AChE (79.50% of inhibition). The molecular docking study revealed that antifungal activity is possible through the inhibition of proteinase K, and nematicidal activity is possible through the inhibition of AChE. The fluorinated pyrazole aldehydes are promising components of future plant protection products that could be environmentally and toxicologically acceptable.
Collapse
Affiliation(s)
- Vesna Rastija
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Karolina Vrandečić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Jasenka Ćosić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Gabriella Kanižai Šarić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Ivana Majić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Dejan Agić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Domagoj Šubarić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Maja Karnaš
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Drago Bešlo
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Harshad Brahmbhatt
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University, Franje Kuhača 20, 31000 Osijek, Croatia
| | - Mario Komar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University, Franje Kuhača 20, 31000 Osijek, Croatia
| |
Collapse
|
28
|
He J, Kong M, Qian Y, Gong M, Lv G, Song J. Cellobiose elicits immunity in lettuce conferring resistance to Botrytis cinerea. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1022-1038. [PMID: 36385320 DOI: 10.1093/jxb/erac448] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Cellobiose is the primary product of cellulose hydrolysis and is expected to function as a type of pathogen/damage-associated molecular pattern in evoking plant innate immunity. In this study, cellobiose was demonstrated to be a positive regulator in the immune response of lettuce, but halted autoimmunity when lettuce was exposed to concentrations of cellobiose >60 mg l-1. When lettuce plants were infected by Botrytis cinerea, cellobiose endowed plants with enhanced pre-invasion resistance by activating high β-1,3-glucanase and antioxidative enzyme activities at the initial stage of pathogen infection. Cellobiose-activated core regulatory factors such as EDS1, PTI6, and WRKY70, as well as salicylic acid signaling, played an indispensable role in modulating plant growth-defense trade-offs. Transcriptomics data further suggested that the cellobiose-activated plant-pathogen pathways are involved in microbe/pathogen-associated molecular pattern-triggered immune responses. Genes encoding receptor-like kinases, transcription factors, and redox homeostasis, phytohormone signal transduction, and pathogenesis-related proteins were also up- or down-regulated by cellobiose. Taken together, the findings of this study demonstrated that cellobiose serves as an elicitor to directly activate disease-resistance-related cellular functions. In addition, multiple genes have been identified as potential modulators of the cellobiose-induced immune response, which could aid understanding of underlying molecular events.
Collapse
Affiliation(s)
- Jiuxing He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Meng Kong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuanchao Qian
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Gong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guohua Lv
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiqing Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
29
|
Xiao K, Qiao K, Cui W, Xu X, Pan H, Wang F, Wang S, Yang F, Xuan Y, Li A, Han X, Song Z, Liu J. Comparative transcriptome profiling reveals the importance of GmSWEET15 in soybean susceptibility to Sclerotinia sclerotiorum. Front Microbiol 2023; 14:1119016. [PMID: 36778863 PMCID: PMC9909833 DOI: 10.3389/fmicb.2023.1119016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Soybean sclerotinia stem rot (SSR) is a disease caused by Sclerotinia sclerotiorum that causes incalculable losses in soybean yield each year. Considering the lack of effective resistance resources and the elusive resistance mechanisms, we are urged to develop resistance genes and explore their molecular mechanisms. Here, we found that loss of GmSWEET15 enhanced the resistance to S. sclerotiorum, and we explored the molecular mechanisms by which gmsweet15 mutant exhibit enhanced resistance to S. sclerotiorum by comparing transcriptome. At the early stage of inoculation, the wild type (WT) showed moderate defense response, whereas gmsweet15 mutant exhibited more extensive and intense transcription reprogramming. The gmsweet15 mutant enriched more biological processes, including the secretory pathway and tetrapyrrole metabolism, and it showed stronger changes in defense response, protein ubiquitination, MAPK signaling pathway-plant, plant-pathogen interaction, phenylpropanoid biosynthesis, and photosynthesis. The more intense and abundant transcriptional reprogramming of gmsweet15 mutant may explain how it effectively delayed colonization by S. sclerotiorum. In addition, we identified common and specific differentially expressed genes between WT and gmsweet15 mutant after inoculation with S. sclerotiorum, and gene sets and genes related to gmsweet15_24 h were identified through Gene Set Enrichment Analysis. Moreover, we constructed the protein-protein interaction network and gene co-expression networks and identified several groups of regulatory networks of gmsweet15 mutant in response to S. sclerotiorum, which will be helpful for the discovery of candidate functional genes. Taken together, our results elucidate molecular mechanisms of delayed colonization by S. sclerotiorum after loss of GmSWEET15 in soybean, and we propose novel resources for improving resistance to SSR.
Collapse
Affiliation(s)
- Kunqin Xiao
- College of Plant Sciences, Jilin University, Changchun, China
| | - Kaibin Qiao
- College of Plant Sciences, Jilin University, Changchun, China
| | - Wenjing Cui
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xun Xu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, China
| | - Fengting Wang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Shoudong Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Feng Yang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Anmo Li
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xiao Han
- College of Plant Sciences, Jilin University, Changchun, China
| | - Zhuojian Song
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China,*Correspondence: Jinliang Liu,
| |
Collapse
|
30
|
Zhang Q, Wang Z, Li Y, Liu X, Liu L, Yan J, Hu X, Qin W. Thymol Edible Coating Controls Postharvest Anthracnose by Regulating the Synthesis Pathway of Okra Lignin. Foods 2023; 12:395. [PMID: 36673486 PMCID: PMC9858591 DOI: 10.3390/foods12020395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Okra has received extensive attention due to its high nutritional value and remarkable functional characteristics, but postharvest diseases have severely limited its application. It is important to further explore the methods and potential methods to control the postharvest diseases of okra. In this study, Colletotrichum fioriniae is the major pathogen that causes okra anthracnose, which can be isolated from naturally decaying okra. The pathogenicity of C. fioriniae against okra was preliminarily verified, and the related biological characteristics were explored. At the same time, an observational study was conducted to investigate the in vitro antifungal effect of thymol edible coating (TKL) on C. fioriniae. After culturing at 28 °C for 5 days, it was found that TKL showed an obvious growth inhibition effect on C. fioriniae. The concentration for 50% of the maximal effect was 95.10 mg/L, and the minimum inhibitory concentration was 1000 mg/L. In addition, it was found that thymol edible coating with a thymol concentration of 100 mg/L (TKL100) may cause different degrees of damage to the cell membrane, cell wall, and metabolism of C. fioriniae, thereby inhibiting the growth of hyphae and causing hyphal rupture. Refer to the results of the in vitro bacteriostatic experiment. Furthermore, the okra was sprayed with TKL100. It was found that the TKL100 coating could significantly inhibit the infection of C. fioriniae to okra, reduce the rate of brown spots and fold on the okra surface, and inhibit mycelium growth. In addition, the contents of total phenols and flavonoids of okra treated with TKL100 were higher than those of the control group. Meanwhile, the activities of phenylalaninammo-nialyase, cinnamic acid-4-hydroxylase, and 4-coumarate-CoA ligase in the lignin synthesis pathway were generally increased, especially after 6 days in a 28 °C incubator. The lignin content of TKL-W was the highest, reaching 65.62 ± 0.68 mg/g, which was 2.24 times of that of CK-W. Therefore, TKL may promote the synthesis of total phenols and flavonoids in okra, then stimulate the activity of key enzymes in the lignin synthesis pathway, and finally regulate the synthesis of lignin in okra. Thus, TKL could have a certain controlling effect on okra anthracnose.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| |
Collapse
|
31
|
Srivastava AK, Srivastava R, Yadav J, Singh AK, Tiwari PK, Srivastava AK, Sahu PK, Singh SM, Kashyap PL. Virulence and pathogenicity determinants in whole genome sequence of Fusarium udum causing wilt of pigeon pea. Front Microbiol 2023; 14:1066096. [PMID: 36876067 PMCID: PMC9981795 DOI: 10.3389/fmicb.2023.1066096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/23/2023] [Indexed: 02/19/2023] Open
Abstract
The present study deals with whole genome analysis of Fusarium udum, a wilt causing pathogen of pigeon pea. The de novo assembly identified a total of 16,179 protein-coding genes, of which 11,892 genes (73.50%) were annotated using BlastP and 8,928 genes (55.18%) from KOG annotation. In addition, 5,134 unique InterPro domains were detected in the annotated genes. Apart from this, we also analyzed genome sequence for key pathogenic genes involved in virulence, and identified 1,060 genes (6.55%) as virulence genes as per the PHI-BASE database. The secretome profiling of these virulence genes indicated the presence of 1,439 secretory proteins. Of those, an annotation of 506 predicted secretory proteins through CAZyme database indicated maximum abundance of Glycosyl hydrolase (GH, 45%) family proteins followed by auxiliary activity (AA) family proteins. Interestingly, the presence of effectors for cell wall degradation, pectin degradation, and host cell death was found. The genome comprised approximately 895,132 bp of repetitive elements, which includes 128 long terminal repeats (LTRs), and 4,921 simple sequence repeats (SSRs) of 80,875 bp length. The comparative mining of effector genes among different Fusarium species revealed five common and two specific effectors in F. udum that are related to host cell death. Furthermore, wet lab experiment validated the presence of effector genes like SIX (for Secreted in Xylem). We conclude that deciphering the whole genome of F. udum would be instrumental in understanding evolution, virulence determinants, host-pathogen interaction, possible control strategies, ecological behavior, and many other complexities of the pathogen.
Collapse
Affiliation(s)
- Alok K Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, Uttar Pradesh, India
| | - Ruchi Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, Uttar Pradesh, India
| | - Jagriti Yadav
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, Uttar Pradesh, India
| | - Alok K Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, Uttar Pradesh, India
| | - Praveen K Tiwari
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, Uttar Pradesh, India
| | - Anchal K Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, Uttar Pradesh, India
| | - Pramod K Sahu
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, Uttar Pradesh, India
| | - Shiv M Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Prem Lal Kashyap
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| |
Collapse
|
32
|
Guimaraes PM, Quintana AC, Mota APZ, Berbert PS, Ferreira DDS, de Aguiar MN, Pereira BM, de Araújo ACG, Brasileiro ACM. Engineering Resistance against Sclerotinia sclerotiorum Using a Truncated NLR (TNx) and a Defense-Priming Gene. PLANTS (BASEL, SWITZERLAND) 2022; 11:3483. [PMID: 36559595 PMCID: PMC9786959 DOI: 10.3390/plants11243483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The association of both cell-surface PRRs (Pattern Recognition Receptors) and intracellular receptor NLRs (Nucleotide-Binding Leucine-Rich Repeat) in engineered plants have the potential to activate strong defenses against a broad range of pathogens. Here, we describe the identification, characterization, and in planta functional analysis of a novel truncated NLR (TNx) gene from the wild species Arachis stenosperma (AsTIR19), with a protein structure lacking the C-terminal LRR (Leucine Rich Repeat) domain involved in pathogen perception. Overexpression of AsTIR19 in tobacco plants led to a significant reduction in infection caused by Sclerotinia sclerotiorum, with a further reduction in pyramid lines containing an expansin-like B gene (AdEXLB8) potentially involved in defense priming. Transcription analysis of tobacco transgenic lines revealed induction of hormone defense pathways (SA; JA-ET) and PRs (Pathogenesis-Related proteins) production. The strong upregulation of the respiratory burst oxidase homolog D (RbohD) gene in the pyramid lines suggests its central role in mediating immune responses in plants co-expressing the two transgenes, with reactive oxygen species (ROS) production enhanced by AdEXLB8 cues leading to stronger defense response. Here, we demonstrate that the association of potential priming elicitors and truncated NLRs can produce a synergistic effect on fungal resistance, constituting a promising strategy for improved, non-specific resistance to plant pathogens.
Collapse
Affiliation(s)
- Patricia Messenberg Guimaraes
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Brasilia 70770-917, Brazil
| | | | - Ana Paula Zotta Mota
- INRAE, Institut Sophia Agrobiotech, CNRS, Université Côte d’Azur, 06903 Sophia Antipolis, France
| | | | | | | | | | | | - Ana Cristina Miranda Brasileiro
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Brasilia 70770-917, Brazil
| |
Collapse
|
33
|
Arkwazee HA, Wallace LT, Hart JP, Griffiths PD, Myers JR. Genome-Wide Association Study (GWAS) of White Mold Resistance in Snap Bean. Genes (Basel) 2022; 13:2297. [PMID: 36553566 PMCID: PMC9777983 DOI: 10.3390/genes13122297] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
White mold can result in snap bean yield losses of 90 to 100% when field conditions favor the pathogen. A genome-wide association study (GWAS) was conducted to detect loci significantly associated with white mold resistance in a panel of snap bean (Phaseolus vulgaris L.) cultivars. Two populations of snap bean were used in this study. The first population was the BeanCAP (Coordinated Agriculture Project) Snap Bean Diversity Panel (SBDP) (n = 136), and the second population was the Snap Bean Association Panel (SnAP) (n = 378). SBDP was evaluated for white mold reaction in the field in 2012 and 2013, and SnAP was screened in a greenhouse only using the seedling straw test in 2016. Two reference genomes representing the Andean and Middle American centers of domestication were utilized to align the genotyping-by-sequencing (GBS) data. A GWAS was performed using FarmCPU with one principal component after comparing five models. Thirty-four single-nucleotide polymorphisms (SNPs) significantly associated with white mold resistance were detected. Eleven significant SNPs were identified by the seedling straw test, and 23 significant SNPs were identified by field data. Fifteen SNPs were identified within a 100 kb window containing pentatricopeptide repeat (PPR)-encoding genes, and eleven were close to leucine-rich repeat (LRR)-encoding genes, suggesting that these two classes are of outsized importance for snap bean resistance to white mold.
Collapse
Affiliation(s)
- Haidar A. Arkwazee
- Horticulture Department, College of Agricultural Engineering Sciences, University of Sulaimani, Sulaimani 46001, Iraq
| | - Lyle T. Wallace
- USDA-ARS, Plant Germplasm Introduction and Testing Research Unit, 201 Clark Hall, Washington State University, Pullman, WA 99164, USA
| | - John P. Hart
- USDA-ARS, Tropical Agriculture Research Station (TARS), 2200 P. A. Campos Ave., Suite 201, Mayagüez, PR 00680-5470, USA
| | - Phillip D. Griffiths
- School of Integrated Plant Sciences (Horticulture Section), Cornell University Agritech, 635 W. North St., Geneva, NY 14456, USA
| | - James R. Myers
- Department of Horticulture, Oregon State University, 4017 Ag & Life Sciences Bldg., Corvallis, OR 97331, USA
| |
Collapse
|
34
|
Zhang H, Kim MS, Huang J, Yan H, Yang T, Song L, Yu W, Shim WB. Transcriptome analysis of maize pathogen Fusarium verticillioides revealed FvLcp1, a secreted protein with type-D fungal LysM and chitin-binding domains, that plays important roles in pathogenesis and mycotoxin production. Microbiol Res 2022; 265:127195. [PMID: 36126492 DOI: 10.1016/j.micres.2022.127195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/21/2022] [Accepted: 09/07/2022] [Indexed: 11/15/2022]
Abstract
Fusarium verticillioides is a key maize pathogen and produces fumonisins, a group of mycotoxins detrimental to humans and animals. Unfortunately, our understanding on how this fungus interacts with maize to trigger mycotoxin biosynthesis is limited. We performed a systematic computational network-based analysis of large-scale F. verticillioides RNA-seq datasets to identify gene subnetwork modules associated with virulence and fumonisin regulation. F. verticillioides was inoculated on two different maize lines, moderately resistant line hybrid 33K44 and highly susceptible line maize inbred line B73, to generate time-course RNA-Seq data. Among the highly discriminative subnetwork modules, we identified a putative hub gene FvLCP1, which encodes a putative a type-D fungal LysM protein with a signal peptide, three LysM domains, and two chitin binding domains. FvLcp1 is a unique protein that harbors these domains amongst five representative Fusarium species. FvLcp1 is a secreted protein important for fumonisin production with the LysM domain playing a critical role. The chitin-binding domain was essential for in vitro chitin binding. Using Magnaporthe oryzae, we learned that FvLcp1 accumulates in appressoria, suggesting that FvLcp1 is involved in host recognition and infection. Full length FvLcp1 suppressed BAX-triggered plant cell death in Nicotiana benthamiana. This unique type-D LysM secreted protein with a chitin-binding domain in F. verticillioides was shown to be potentially involved in suppressing host cell death and promoting fumonisin biosynthesis while the pathogen colonizes maize kernels.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA.
| | - Man S Kim
- Clinical Research Institute, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Jun Huang
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huijuan Yan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA
| | - Tao Yang
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Linlin Song
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenying Yu
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Won Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA.
| |
Collapse
|
35
|
Plant immunity by damage-associated molecular patterns (DAMPs). Essays Biochem 2022; 66:459-469. [PMID: 35612381 DOI: 10.1042/ebc20210087] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022]
Abstract
Recognition by plant receptors of microbe-associated molecular patterns (MAMPs) and pathogenicity effectors activates immunity. However, before evolving the capacity of perceiving and responding to MAMPs and pathogenicity factors, plants, like animals, must have faced the necessity to protect and repair the mechanical wounds used by pathogens as an easy passage into their tissue. Consequently, plants evolved the capacity to react to damage-associated molecular patterns (DAMPs) with responses capable of functioning also in the absence of pathogens. DAMPs include not only primarily cell wall (CW) fragments but also extracellular peptides, nucleotides and amino acids that activate both local and long-distance systemic responses and, in some cases, prime the subsequent responses to MAMPs. It is conceivable that DAMPs and MAMPs act in synergy to activate a stronger plant immunity and that MAMPs exploit the mechanisms and transduction pathways traced by DAMPs. The interest for the biology and mechanism of action of DAMPs, either in the plant or animal kingdom, is expected to substantially increase in the next future. This review focuses on the most recent advances in DAMPs biology, particularly in the field of CW-derived DAMPs.
Collapse
|