1
|
Shi H, Bai H, Deng H, Xia Y. Revealing Acyl Chain Selectivity of Cis-to-Trans Isomerase through Profiling of C═C Geometry and Location Isomers of Bacterial Lipids. Anal Chem 2025; 97:10378-10387. [PMID: 40331359 DOI: 10.1021/acs.analchem.5c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Bacteria adapt to environmental stress by modifying their membrane lipid structures, including the C═C geometry. Profiling of bacterial lipids with accurate C═C geometry assignment is challenging due to the lack of standards and interference from C═C location isomers. By leveraging two radical reactions: thiyl radical-catalyzed C═C isomerization and the Paternò-Büchi (PB) reaction, we developed an analytical workflow to profile C═C geometric and location isomers in bacterial lipidomes. The high yield (∼80%) of cis (Z)-to-trans (E) C═C isomerization catalyzed by thiyl radicals allows for on-demand synthesis of commercially unavailable lipid C═C geometric isomers. By comparing the retention behavior of Z vs E isomers from reversed-phase liquid chromatography-mass spectrometry (RPLC-MS), we can determine C═C geometry at sub-nM levels. The location of C═C can be further obtained by conducting an online acetone PB reaction after RPLC separation. Applying this workflow to Pseudomonas putida, we profiled 60 lipid species across six subclasses, including the rarely reported glucosaminyl phosphatidylglycerol. We found that both Z and E isomers were present in bacterial lipids, however, with an increase in E isomers after toluene exposure, which correlated with an upregulation of cis-to-trans isomerase (Cti). Our workflow further revealed the chain selectivity of Cti, with a preference for C16:1(n-7Z) > C18:1(n-7Z) > C18:1(n-9Z). This finding provides valuable insights into the dynamics of lipid metabolism during bacterial stress responses.
Collapse
Affiliation(s)
- Hengxue Shi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 10084, China
| | - Huijiao Bai
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing 100730, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 10084, China
| |
Collapse
|
2
|
Ren QX, Wang R, Mu QR, Chen L, Chen M, Wang LJ, Li P, Yang H, Gao W. Molecular networking and Paterno-Büchi reaction guided glycerides characterization and antioxidant activity assessment of Ganoderma lucidum spore oil. Food Chem 2025; 468:142500. [PMID: 39700810 DOI: 10.1016/j.foodchem.2024.142500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/10/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Ganoderma lucidum spore oil (GLSO) is a dietary supplement, with glycerides (GLs) recognized as its important active component. However, comprehensive profiling and accurate structural characterization of GLs in GLSO remain underexplored. In this study, 59 GLs from GLSO were identified by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF MS) and molecular networking (MN). The double bond isomers of these compounds were further resolved by the Paterno-Büchi (PB) reaction coupled with UPLC-Q-TOF MS, resulting in the identification of 36 unsaturated GLs, including 5 pairs of positional isomers. In summary, 64 GLs were characterized, consisting of 9 diacylglycerols (DGs) and 55 triacylglycerols (TGs). Additionally, the compositional variations, antioxidant activities, and relative isomer ratios of CC positional isomers of GLSO from eight different manufacturers were revealed, with 11 GLs correlating with antioxidant activity. This study enhances the understanding of the nutritional value of GLSO and lays a foundation for future quality standard formulation.
Collapse
Affiliation(s)
- Qing-Xuan Ren
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Rui Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qin-Ru Mu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ling Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Min Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Li-Jiang Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
3
|
Chen Y, Yang J, Wang X, Zhang Y, Shao Y, Li H, Dong X, Jiang F, Hu C, Xu G. Structural Annotation Method for Locating sn- and C═C Positions of Lipids Using Liquid Chromatography-Electron Impact Excitation of Ions from Organics (EIEIO)-Mass Spectrometry. Anal Chem 2025; 97:4998-5007. [PMID: 40008860 DOI: 10.1021/acs.analchem.4c05560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Definitive structural elucidation of lipids is pivotal for unraveling the functions of lipids in biological systems. Despite advancements in mass spectrometry (MS) for lipid analysis, challenges in annotation scope and efficiency remain, especially in resolving isomers. Herein, we introduce an optimized method using liquid chromatography coupled with electron impact excitation of ions from organic tandem mass spectrometry (LC-EIEIO-MS/MS) for comprehensive analysis and structural annotation of lipids. This approach integrates a six-step analytical protocol for precise lipid annotation, including (1) extracting MS information, (2) classifying lipids, (3) aligning sum composition, (4) determining sn-positions, (5) locating C═C positions, and (6) ascertaining annotation levels. In analyzing 34 lipid standards spiked into serum, our method achieved 100% and 82.4% annotation accuracy at the sn- and C═C isomer levels, respectively, compared to 26.5% and 0% in the CID mode using MS-DIAL. A total of 1312 sn-positions and 1033 C═C locations of lipids were annotated in quality control plasma pooled from healthy individuals and patients with Alzheimer's disease. The isomers of lipids revealed more pronounced differences between the healthy and diseased groups compared to the sum compositions of the lipids. Overall, the LC-EIEIO-MS/MS approach provides a comprehensive profiling and efficient annotation method for lipidomics, promising to shed new light on lipid-related biological pathways and disease mechanisms.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Jun Yang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Xinxin Wang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Yuqing Zhang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Yaping Shao
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Hang Li
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoyan Dong
- Dalian Seventh People's Hospital, Dalian 116023, China
- Department of Psychiatry, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Fei Jiang
- Dalian Seventh People's Hospital, Dalian 116023, China
- Department of Psychiatry, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Chunxiu Hu
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Guowang Xu
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| |
Collapse
|
4
|
Liu Y, Xia Y, Zhang W. Structural Lipidomics Enabled by Isomer-Resolved Tandem Mass Spectrometry. Anal Chem 2025; 97:4275-4286. [PMID: 39960352 DOI: 10.1021/acs.analchem.4c06680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Affiliation(s)
- Yikun Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
5
|
Hu P, Yang W, Zhang J, Yu Z, Zhang X, Chingin K, Chen H, Zhang X. Rapid evaluation of vegetable oil varieties and geographical origins by ambient corona discharge ionization mass spectrometry. Food Chem 2025; 464:141699. [PMID: 39442212 DOI: 10.1016/j.foodchem.2024.141699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
The composition and ratio of unsaturated fatty acids in vegetable oils play a crucial role in determining their overall quality. In this study, we present a corona discharge ionization mass spectrometry (MS) method for the rapid differentiation of vegetable oil varieties and their geographical origins under environmental conditions. Abundant water dimer radical cations, (H2O)2+•, were generated by the ionization setup, which effectively activated carbon‑carbon double bonds (C=C) to form epoxidized products. These epoxidation products were analyzed using tandem MS, generating diagnostic fragment ions that precisely identified CC bond positions. Statistical analysis models were subsequently developed using the resulting MS fingerprint data, revealing significant differences between various vegetable oils and olive oils from different origins. Key advantages of this method include minimal sample preparation, rapid analysis, and easily interpretable spectra. This study provides a new MS-based strategy for food quality assessment and offers a promising tool for identifying CC positional isomers in complex systems.
Collapse
Affiliation(s)
- Pinghua Hu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan Ave, Nanchang 330013, China
| | - Wenwen Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan Ave, Nanchang 330013, China
| | - Jun Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan Ave, Nanchang 330013, China
| | - Zhendong Yu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan Ave, Nanchang 330013, China
| | - Xinglei Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan Ave, Nanchang 330013, China
| | - Konstantin Chingin
- School of Pharmacy, Jiangxi University of Chinese Medicine, 1688 Meiling Ave, Nanchang 330004, China
| | - Huanwen Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, 1688 Meiling Ave, Nanchang 330004, China
| | - Xiaoping Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan Ave, Nanchang 330013, China.
| |
Collapse
|
6
|
Pan Y, Zhang X, Yan Q, Li J, Kouame KJEP, Li X, Liu L, Zong X, Si K, Liu X, Yu M. Sphingomyelin-enriched milk phospholipids offer superior benefits in improving the physicochemical properties, microstructure, and surface characteristics of infant formula. Food Chem 2025; 463:141549. [PMID: 39395349 DOI: 10.1016/j.foodchem.2024.141549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Phospholipids from different sources have varying chemical compositions, but how they contribute to different properties of infant formula is unclear. In this study, four types of phospholipids, milk phospholipids (MPLs), soybean phospholipids (SBPLs), sunflower phospholipids (SFPLs), and egg yolk phospholipids (EYPLs), were added to infant formula to investigate their physicochemical properties, microstructure, and surface characteristics. MPLs uniquely offer high sphingomyelin and saturated fatty acid levels. The MPL-based emulsion had the smallest particle size (334.50 nm), lowest stability constant (0.30), and highest viscosity among all groups tested. Furthermore, the abundance of sphingomyelin in MPLs allowed for a denser interfacial film and the complete phospholipid-coated structure of lipid droplets in infant formula emulsion. This consequently improved the microstructure and fat encapsulation of the powder, leading to significantly lower surface fat content in the MPL group. Therefore, the proper selection of phospholipids is crucial for modulating the stability and surface characteristics of infant formula.
Collapse
Affiliation(s)
- Yue Pan
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Xueying Zhang
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Qingquan Yan
- Inner Mongolia Mengniu Cheese Company Ltd., 011517, Hohhot, China
| | - Jiayu Li
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Kouadio Jean Eric-Parfait Kouame
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China.
| | - Lu Liu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China.
| | - Xuexing Zong
- Inner Mongolia Mengniu Cheese Company Ltd., 011517, Hohhot, China
| | - Kuolin Si
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Inner Mongolia Mengniu Cheese Company Ltd., 011517, Hohhot, China
| | - Xiaoyan Liu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Mengna Yu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| |
Collapse
|
7
|
Fu R, Feng G, Wang L, Hou M, Tang Z, Li X, Xu C, Qi X, Xu G, Chen S. Tracking the Geometric and Positional Isomerization of Lipid C═C Bonds in the Bacterial Stress Responses by Mass Spectrometry. Anal Chem 2025; 97:555-564. [PMID: 39754552 DOI: 10.1021/acs.analchem.4c04797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The position and configuration of the C═C bond have a significant impact on the spatial conformation of unsaturated lipids, which subsequently affects their biological functions. Double bond isomerization of lipids is an important mechanism of bacterial stress response, but its in-depth mechanistic study still lacks effective analytical tools. Here, we developed a visible-light-activated dual-pathway reaction system that enables simultaneous [2 + 2] cycloaddition and catalytic cis-trans isomerization of the C═C bond of unsaturated lipids via directly excited anthraquinone radicals. Density functional theory calculations revealed the oxygen radical addition transition state and the addition-elimination isomerization mechanism of the reaction. A full-dimensional resolution method for C═C bond position and configuration was developed based on the bifunctional reaction and liquid chromatography-mass spectrometry. This method was then applied to the study of bacterial environmental stress response mechanisms. The C═C bond cis-trans and positional isomerization patterns of Pseudomonas membrane lipids under temperature stress were discovered, and the effect of temperature stress on fatty acid biosynthesis was also revealed. This study not only provides an effective tool and key information for the study of bacterial stress response mechanisms, but also enriches the toolbox of visible light chemical reactions.
Collapse
Affiliation(s)
- Rongrong Fu
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Guifang Feng
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Liwei Wang
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Menglu Hou
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhijuan Tang
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Chengshi Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Xiaotian Qi
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Guoyong Xu
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Suming Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
8
|
Chen KL, Kuo TH, Hsu CC. Mapping Lipid C═C Isomer Profiles of Human Gut Bacteria through a Novel Structural Lipidomics Workflow Assisted by Chemical Epoxidation. Anal Chem 2024; 96:17526-17536. [PMID: 39437332 PMCID: PMC11541895 DOI: 10.1021/acs.analchem.4c02697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
The unsaturated lipids produced by human gut bacteria have an extraordinary range of structural diversity, largely because of the isomerism of the carbon-carbon double bond (C═C) in terms of its position and stereochemistry. Characterizing distinct C═C configurations poses a considerable challenge in research, primarily owing to limitations in current bioanalytical methodologies. This study developed a novel structural lipidomics workflow by combining MELDI (meta-chloroperoxybenzoic acid epoxidation for lipid double-bond identification) with liquid chromatography-tandem mass spectrometry for C═C characterization. We utilized this workflow to quantitatively assess more than 50 C═C positional and cis/trans isomers of fatty acids and phospholipids from selected human gut bacteria. Strain-specific isomer profiles revealed unexpectedly high productivity of trans-10-octadecenoic acid by Enterococcus faecalis, Bifidobacterium longum, and Lactobacillus acidophilus among numerous trans-fatty acid isomers produced by gut bacteria. Isotope-tracking experiments suggested that gut bacteria produce trans-10-octadecenoic acid through the isomeric biotransformation of oleic acid in vitro and that such isomeric biotransformation of dietary oleic acid is dependent on the presence of gut bacteria in vivo.
Collapse
Affiliation(s)
- Kai-Li Chen
- Department
of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Ting-Hao Kuo
- Department
of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Cheng-Chih Hsu
- Department
of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
9
|
Tang S, Wang H, Zhang H, Zhang M, Xu J, Yang C, Chen X, Guo X. Simultaneous Determination of the Position and Cis- Trans Configuration of Lipid C═C Bonds via Asymmetric Derivatization and Ion Mobility-Mass Spectrometry. J Am Chem Soc 2024; 146:29503-29512. [PMID: 39412160 DOI: 10.1021/jacs.4c08980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The position and cis-trans configuration of C═C bonds in unsaturated lipids significantly affect their biological activities. Simultaneous identification of the position and cis-trans configuration of C═C bonds in unsaturated lipids is important; nonetheless, it still remains a challenging task. Herein, a stereoselective asymmetric reaction was used to recognize cis-trans isomers of the C═C bonds, and the derivatized precursor ions and product ions were subjected to tandem ion mobility-mass spectrometry (IM-MS) analysis. The theoretical calculation revealed that the formation of intramolecular hydrogen bonds after the cyclization reaction amplified the structural difference between diastereomers and increased the separation efficiency in IM. Consequently, a simple, sensitive, and highly selective platform for simultaneous determination of the position and cis-trans configuration of various C═C bonds in unsaturated lipids was established. It was then successfully applied to pinpoint the cis-trans geometry conversion of the located C═C bonds in lipids of the bacterial membrane under environmental stress and track the heterogeneous distribution of unsaturated lipids in rats after spinal cord injury. The present study also offers new insights into the application of IM-MS technology in resolving molecular structures and demonstrates the potential as a platform for a broad range of applications.
Collapse
Affiliation(s)
- Shuai Tang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Huihui Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Mingyu Zhang
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Jiancheng Xu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Chun Yang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130012, China
| |
Collapse
|
10
|
Huang L, Huang M, Zhou T. Efficient Strategy for Characterization and Quantification of Polyunsaturated Lipids by Microwave-Assisted MMPP Epoxidation. Anal Chem 2024; 96:11189-11197. [PMID: 38965741 DOI: 10.1021/acs.analchem.4c00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Lipids play integral roles in biological processes, with carbon-carbon double bonds (C═C) markedly influencing their structure and function. Precise characterization and quantification of unsaturated lipids are crucial for understanding lipid physiology and discovering disease biomarkers. However, using mass spectrometry for these purposes presents significant challenges. In this study, we developed a microwave-assisted magnesium monoperoxyphthalate hexahydrate (MMPP) epoxidation reaction, coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS), to analyze unsaturated lipids. Microwave irradiation expedited the MMPP epoxidation, achieving complete derivatization in 10 min without byproducts. A diagnostic ion pair, displaying a 16 Da mass difference, effectively identified the location of the C═C bond in mass spectra. Microwave irradiation also significantly facilitated the epoxidation reaction of polyunsaturated lipids, achieving yields greater than 85% and yielding a complete epoxidation product. This simplifies chromatographic separation and aids in accurate quantification. Additionally, a purification process was implemented to remove excess derivatization reagents, significantly reducing mass spectrometry response suppression and enhancing analytical reproducibility. The method's effectiveness was validated by analyzing unsaturated lipids in rat plasma from a type I diabetes model. We quantified nine unsaturated lipids and characterized 42 fatty acids and glycerophospholipids. The results indicated that unsaturated fatty acids increased in diabetic plasma while unsaturated glycerophospholipids decreased. Furthermore, the relative abundances of Δ9/Δ11 isomer pairs also exhibited a close association with diabetes. In conclusion, microwave-assisted MMPP epoxidation coupled with LC-MS/MS provides an effective strategy for characterization and quantification of polyunsaturated lipids, offering deeper insight into the physiological impact of unsaturated lipids in related diseases.
Collapse
Affiliation(s)
- Longhui Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Minhan Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ting Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
11
|
Li Y, Wang Y, Guo K, Tseng KF, Zhang X, Sun W. Aza-Prilezhaev Aziridination-Enabled Multidimensional Analysis of Isomeric Lipids via High-Resolution U-Shaped Mobility Analyzer-Mass Spectrometry. Anal Chem 2024; 96:7111-7119. [PMID: 38648270 DOI: 10.1021/acs.analchem.4c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Unsaturated lipids constitute a significant portion of the lipidome, serving as players of multifaceted functions involving cellular signaling, membrane structure, and bioenergetics. While derivatization-assisted liquid chromatography tandem mass spectrometry (LC-MS/MS) remains the gold standard technique in lipidome, it mainly faces challenges in efficiently labeling the carbon-carbon double bond (C═C) and differentiating isomeric lipids in full dimension. This presents a need for new orthogonal methodologies. Herein, a metal- and additive-free aza-Prilezhaev aziridination (APA)-enabled ion mobility mass spectrometric method is developed for probing multiple levels of unsaturated lipid isomerization with high sensitivity. Both unsaturated polar and nonpolar lipids can be efficiently labeled in the form of N-H aziridine without significant side reactions. The signal intensity can be increased by up to 3 orders of magnitude, achieving the nM detection limit. Abundant site-specific fragmentation ions indicate C═C location and sn-position in MS/MS spectra. Better yet, a stable monoaziridination product is dominant, simplifying the spectrum for lipids with multiple double bonds. Coupled with a U-shaped mobility analyzer, identification of geometric isomers and separation of different lipid classes can be achieved. Additionally, a unique pseudo MS3 mode with UMA-QTOF MS boosts the sensitivity for generating diagnostic fragments. Overall, the current method provides a comprehensive solution for deep-profiling lipidomics, which is valuable for lipid marker discovery in disease monitoring and diagnosis.
Collapse
Affiliation(s)
- Yuling Li
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Yiming Wang
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Kang Guo
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Kuo-Feng Tseng
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Xiaoqiang Zhang
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Wenjian Sun
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| |
Collapse
|
12
|
Yang T, Tang S, Feng J, Yan X. Lipid Isobaric Mass Tagging for Enhanced Relative Quantification of Unsaturated sn-Positional Isomers. ACS MEASUREMENT SCIENCE AU 2024; 4:213-222. [PMID: 38645577 PMCID: PMC11027206 DOI: 10.1021/acsmeasuresciau.3c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 04/23/2024]
Abstract
Changes in the levels of lipid sn-positional isomers are associated with perturbation of the physiological environment within the biological system. Consequently, knowing the concentrations of these lipids holds significant importance for unraveling their involvement in disease diagnosis and pathological mechanisms. However, existing methods for lipid quantification often fall short in accuracy due to the structural diversity and isomeric forms of lipids. To address this challenge, we have developed an aziridine-based isobaric tag labeling strategy that allows (i) differentiation and (ii) enhanced relative quantification of lipid sn-positional isomers from distinct samples in a single run. The methodology enabled by aziridination, isobaric tag labeling, and lithiation has been applied to various phospholipids, enabling the determination of the sn-positions of fatty acyl chains and enhanced relative quantification. The analysis of Escherichia coli lipid extracts demonstrated the enhanced determination of the concentration ratios of lipid isomers by measuring the intensity ratios of mass reporters released from sn-positional diagnostic ions. Moreover, we applied the method to the analysis of human colon cancer plasma. Intriguingly, 17 PC lipid sn-positional isomers were identified and quantified simultaneously, and among them, 7 showed significant abundance changes in the colon cancer plasma, which can be used as potential plasma markers for diagnosis of human colon cancer.
Collapse
Affiliation(s)
- Tingyuan Yang
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Shuli Tang
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Jiaxin Feng
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Xin Yan
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| |
Collapse
|
13
|
Feng G, Gao M, Chen H, Zhang Z, Chen J, Tong Y, Wu P, Fu R, Lin Y, Chen S. Stable-Isotope N-Me Aziridination Enables Accurate Quantitative C═C Isomeric Lipidomics. Anal Chem 2024; 96:2524-2533. [PMID: 38308578 DOI: 10.1021/acs.analchem.3c04824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Accurate lipid quantification is essential to revealing their roles in physiological and pathological processes. However, difficulties in the structural resolution of lipid isomers hinder their further accurate quantification. To address this challenge, we developed a novel stable-isotope N-Me aziridination strategy that enables simultaneous qualification and quantification of unsaturated lipid isomers. The one-step introduction of the 1-methylaziridine structure not only serves as an activating group for the C═C bond to facilitate positional identification but also as an isotopic inserter to achieve accurate relative quantification. The high performance of this reaction for the identification of unsaturated lipids was verified by large-scale resolution of the C═C positions of 468 lipids in serum. More importantly, by using this bifunctional duplex labeling method, various unsaturated lipids such as fatty acids, phospholipids, glycerides, and cholesterol ester were accurately and individually quantified at the C═C bond isomeric level during the mouse brain ischemia. This study provides a new approach to quantitative structural lipidomics.
Collapse
Affiliation(s)
- Guifang Feng
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072 China
| | - Ming Gao
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072 China
| | - Hongyu Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072 China
| | - Zhourui Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072 China
| | - Jiayi Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430072 China
| | - Yongjia Tong
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072 China
| | - Pengfei Wu
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072 China
| | - Rongrong Fu
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072 China
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430072 China
| | - Suming Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072 China
| |
Collapse
|
14
|
Xu J, Dai CM, Xu X, Jian J. Structural and spectroscopic characterization of large boron heterocyclic radicals: Matrix infrared spectroscopy and quantum chemical calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123539. [PMID: 37857070 DOI: 10.1016/j.saa.2023.123539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Six boron heterocyclic radicals with different conformations or configurations were synthesized in solid neon and identified by matrix isolation infrared spectroscopy as well as quantum-chemical calculations. The ground-state boron atom selectively attacks the C = C bond of cycloheptene forming η2 (1,2)-BC7H12 complex (A), which contains a chair conformation and a boat conformation. Species A isomerizes to the 2,3,4,5,6,7-hexahydroborocine radical (B), which involves an eight-membered boron heterocyclic ring and also has two isomers observed. The 1-(prop-1-en-1-yl)-2,3,4-dihydro borole radical (C) with E-configuration and Z-configuration is generated as the final product under UV light irradiation through ring contraction reaction and the hydrogen atom transfer reaction. The observation of species A and further photo-isomerization to species C is consistent with theoretical predictions that these reactions are thermodynamically exothermic and kinetically facile. This work not only provides a possible route for future design and synthesis of corresponding borole derivatives, but also provides new insights into the structural and spectroscopic information of boron heterocyclic radicals with different conformations and configurations.
Collapse
Affiliation(s)
- Jiaping Xu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang 311231, China
| | - Chuan-Ming Dai
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang 311231, China
| | - Xin Xu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang 311231, China
| | - Jiwen Jian
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang 311231, China.
| |
Collapse
|
15
|
Gauci SC, Vranic A, Blasco E, Bräse S, Wegener M, Barner-Kowollik C. Photochemically Activated 3D Printing Inks: Current Status, Challenges, and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306468. [PMID: 37681744 DOI: 10.1002/adma.202306468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Indexed: 09/09/2023]
Abstract
3D printing with light is enabled by the photochemistry underpinning it. Without fine control over the ability to photochemically gate covalent bond formation by the light at a certain wavelength and intensity, advanced photoresists with functions spanning from on-demand degradability, adaptability, rapid printing speeds, and tailored functionality are impossible to design. Herein, recent advances in photoresist design for light-driven 3D printing applications are critically assessed, and an outlook of the outstanding challenges and opportunities is provided. This is achieved by classing the discussed photoresists in chemistries that function photoinitiator-free and those that require a photoinitiator to proceed. Such a taxonomy is based on the efficiency with which photons are able to generate covalent bonds, with each concept featuring distinct advantages and drawbacks.
Collapse
Affiliation(s)
- Steven C Gauci
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland, 4000, Australia
| | - Aleksandra Vranic
- Institute of Organic Chemistry (IOC), Karlsruhe institute of Technology (KIT), Fritz-Haber-Weg 6, 76133, Karlsruhe, Germany
| | - Eva Blasco
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, 69120, Heidelberg, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe institute of Technology (KIT), Fritz-Haber-Weg 6, 76133, Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), 76133, Karlsruhe, Germany
| | - Martin Wegener
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland, 4000, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
16
|
Edwards M, Freitas DP, Hirtzel EA, White N, Wang H, Davidson LA, Chapkin RS, Sun Y, Yan X. Interfacial Electromigration for Analysis of Biofluid Lipids in Small Volumes. Anal Chem 2023; 95:18557-18563. [PMID: 38050376 PMCID: PMC10862378 DOI: 10.1021/acs.analchem.3c04309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023]
Abstract
Lipids are important biomarkers within the field of disease diagnostics and can serve as indicators of disease progression and predictors of treatment effectiveness. Although lipids can provide important insight into how diseases initiate and progress, mass spectrometric methods for lipid characterization and profiling are limited due to lipid structural diversity, particularly the presence of various lipid isomers. Moreover, the difficulty of handling small-volume samples exacerbates the intricacies of biological analyses. In this work, we have developed a strategy that electromigrates a thin film of a small-volume biological sample directly to the air-liquid interface formed at the tip of a theta capillary. Importantly, we seamlessly integrated in situ biological lipid extraction with accelerated chemical derivatization, enabled by the air-liquid interface, and conducted isomeric structural characterization within a unified platform utilizing theta capillary nanoelectrospray ionization mass spectrometry, all tailored for small-volume sample analysis. We applied this unified platform to the analysis of lipids from small-volume human plasma and Alzheimer's disease mouse serum samples. Accelerated electro-epoxidation of unsaturated lipids at the interface allowed us to characterize lipid double-bond positional isomers. The unique application of electromigration of a thin film to the air-liquid interface in combination with accelerated interfacial reactions holds great potential in small-volume sample analysis for disease diagnosis and prevention.
Collapse
Affiliation(s)
- Madison
E. Edwards
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Dallas P. Freitas
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Erin A. Hirtzel
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Nicholas White
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Hongying Wang
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Laurie A. Davidson
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Robert S. Chapkin
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Yuxiang Sun
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Xin Yan
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| |
Collapse
|
17
|
Sun R, Tang W, Li P, Li B. Development of an Efficient On-Tissue Epoxidation Reaction Mediated by Urea Hydrogen Peroxide for MALDI MS/MS Imaging of Lipid C═C Location Isomers. Anal Chem 2023; 95:16004-16012. [PMID: 37844132 DOI: 10.1021/acs.analchem.3c03262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Unsaturated lipids containing different numbers and locations of C═C bonds are significantly associated with a variety of cellular and metabolic functions. Although matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) has been used to visualize the spatial distribution patterns of various lipids in biological tissues, in situ identification, discrimination, and visualization of lipid C═C location isomers remain challenging. Herein, an efficient and fast on-tissue chemical derivatization (OTCD) approach was developed to pinpoint the locations of C═C bonds in complex lipids in situ via methyltrioxorhenium (MTO)-catalyzed epoxidation of C═C with a urea hydrogen peroxide (UHP)/hexafluoroisopropanol (HFIP) system. The efficiency of OTCD could reach 100% via one-step spray deposition of the solution mixture of MTO/UHP/HFIP at room temperature. The developed OTCD method provided rich structural information on lipid C═C location isomers, and their accurate spatial distribution patterns were resolved in mouse brain tissues. Tissue-specific distributions and changes of lipid C═C location isomers in the liver sections of obese ob/ob and diabetic db/db mice were further investigated, and their correlation in two animal models was revealed. The simplicity and high efficiency of the OTCD method developed for MALDI tandem MSI of lipid C═C location isomers possess great potential for functional spatial lipidomics.
Collapse
Affiliation(s)
- Ruiyang Sun
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Weiwei Tang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
18
|
Wang D, Xiao H, Lv X, Chen H, Wei F. Mass Spectrometry Based on Chemical Derivatization Has Brought Novel Discoveries to Lipidomics: A Comprehensive Review. Crit Rev Anal Chem 2023; 55:21-52. [PMID: 37782560 DOI: 10.1080/10408347.2023.2261130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Lipids, as one of the most important organic compounds in organisms, are important components of cells and participate in energy storage and signal transduction of living organisms. As a rapidly rising field, lipidomics research involves the identification and quantification of multiple classes of lipid molecules, as well as the structure, function, dynamics, and interactions of lipids in living organisms. Due to its inherent high selectivity and high sensitivity, mass spectrometry (MS) is the "gold standard" analysis technique for small molecules in biological samples. The combination chemical derivatization with MS detection is a unique strategy that could improve MS ionization efficiency, facilitate structure identification and quantitative analysis. Herein, this review discusses derivatization-based MS strategies for lipidomic analysis over the past decade and focuses on all the reported lipid categories, including fatty acids and modified fatty acids, glycerolipids, glycerophospholipids, sterols and saccharolipids. The functional groups of lipids mainly involved in chemical derivatization include the C=C group, carboxyl group, hydroxyl group, amino group, carbonyl group. Furthermore, representative applications of these derivatization-based lipid profiling methods were summarized. Finally, challenges and countermeasures of lipid derivatization are mentioned and highlighted to guide future studies of derivatization-based MS strategy in lipidomics.
Collapse
Affiliation(s)
- Dan Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Huaming Xiao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Xin Lv
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Hong Chen
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Fang Wei
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
- Hubei Hongshan Laboratory, Wuhan, Hubei, PR China
| |
Collapse
|
19
|
Hirtzel E, Edwards M, Freitas D, Liu Z, Wang F, Yan X. Aziridination-Assisted Mass Spectrometry of Nonpolar Sterol Lipids with Isomeric Resolution. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1998-2005. [PMID: 37523498 PMCID: PMC10863044 DOI: 10.1021/jasms.3c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
Characterization of nonpolar lipids is crucial due to their essential biological functions and ability to exist in various isomeric forms. In this study, we introduce the N-H aziridination method to target carbon-carbon double bonds (C═C bonds) in nonpolar sterol lipids. The resulting fragments are readily dissociated upon collision-induced dissociation, generating specific fragment ions for C═C bond position determination and fingerprint fragments for backbone characterization. This method significantly enhances lipid ionization efficiency, thereby improving the sensitivity and accuracy of nonpolar lipid analysis. We demonstrated that aziridination of sterols leads to distinctive fragmentation pathways for chain and ring C═C bonds, enabling the identification of sterol isomers such as desmosterol and 7-dehydrocholesterol. Furthermore, aziridination can assist in identifying the sterol backbone by providing fingerprint tandem mass spectra. We also demonstrated the quantitative capacity of this approach with a limit of detection of 10 nM in the solvent mixture of methanol and water. To test the feasibility of this method in complex biological samples, we used mouse prostate cancerous tissues and found significant differences in nonpolar lipid profiles between healthy and cancerous samples. The high efficiency and specificity of aziridination-assisted mass spectrometric analysis, as well as its quantitative analysis ability, make it highly suitable for broad applications in nonpolar lipid research.
Collapse
Affiliation(s)
- Erin Hirtzel
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Madison Edwards
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Dallas Freitas
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ziying Liu
- Center
for Translational Cancer Research, Texas
A&M University, Houston, Texas 77030, United States
| | - Fen Wang
- Center
for Translational Cancer Research, Texas
A&M University, Houston, Texas 77030, United States
| | - Xin Yan
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
20
|
Menzel JP, Young RSE, Benfield AH, Scott JS, Wongsomboon P, Cudlman L, Cvačka J, Butler LM, Henriques ST, Poad BLJ, Blanksby SJ. Ozone-enabled fatty acid discovery reveals unexpected diversity in the human lipidome. Nat Commun 2023; 14:3940. [PMID: 37402773 DOI: 10.1038/s41467-023-39617-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023] Open
Abstract
Fatty acid isomers are responsible for an under-reported lipidome diversity across all kingdoms of life. Isomers of unsaturated fatty acids are often masked in contemporary analysis by incomplete separation and the absence of sufficiently diagnostic methods for structure elucidation. Here, we introduce a comprehensive workflow, to discover unsaturated fatty acids through coupling liquid chromatography and mass spectrometry with gas-phase ozonolysis of double bonds. The workflow encompasses semi-automated data analysis and enables de novo identification in complex media including human plasma, cancer cell lines and vernix caseosa. The targeted analysis including ozonolysis enables structural assignment over a dynamic range of five orders of magnitude, even in instances of incomplete chromatographic separation. Thereby we expand the number of identified plasma fatty acids two-fold, including non-methylene-interrupted fatty acids. Detection, without prior knowledge, allows discovery of non-canonical double bond positions. Changes in relative isomer abundances reflect underlying perturbations in lipid metabolism.
Collapse
Affiliation(s)
- Jan Philipp Menzel
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
| | - Reuben S E Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Faculty of Science, Medicine and Health, School of Chemistry and Molecular Bioscience, Wollongong, NSW, Australia
| | - Aurélie H Benfield
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Julia S Scott
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Puttandon Wongsomboon
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Lukáš Cudlman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 16600, Prague, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 16600, Prague, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Sónia T Henriques
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
21
|
Zhu P, Bu G, Hu R, Ruan X, Fu R, Zhang Z, Wan Q, Liu X, Miao Y, Chen S. Lipidomic Characterization of Oocytes at Single-Cell Level Using Nanoflow Chromatography-Trapped Ion Mobility Spectrometry-Mass Spectrometry. Molecules 2023; 28:molecules28104202. [PMID: 37241942 DOI: 10.3390/molecules28104202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Mass spectrometry (MS)-based lipidomic has become a powerful tool for studying lipids in biological systems. However, lipidome analysis at the single-cell level remains a challenge. Here, we report a highly sensitive lipidomic workflow based on nanoflow liquid chromatography and trapped ion mobility spectrometry (TIMS)-MS. This approach enables the high-coverage identification of lipidome landscape at the single-oocyte level. By using the proposed method, comprehensive lipid changes in porcine oocytes during their maturation were revealed. The results provide valuable insights into the structural changes of lipid molecules during porcine oocyte maturation, highlighting the significance of sphingolipids and glycerophospholipids. This study offers a new approach to the single-cell lipidomic.
Collapse
Affiliation(s)
- Pujia Zhu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Guowei Bu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruifeng Hu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianqin Ruan
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Rongrong Fu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Zhourui Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Qiongqiong Wan
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Xin Liu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiliang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Suming Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
22
|
Shi H, Tan Z, Guo X, Ren H, Wang S, Xia Y. Visible-Light Paternò-Büchi Reaction for Lipidomic Profiling at Detailed Structure Levels. Anal Chem 2023; 95:5117-5125. [PMID: 36898165 DOI: 10.1021/acs.analchem.3c00085] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The Paternò-Büchi (PB) derivatization of carbon-carbon double bond (C═C) has been increasingly employed with tandem mass spectrometry to analyze unsaturated lipids. It enables the discovery of altered or uncanonical lipid desaturation metabolism, which would be otherwise undetected by conventional methods. Although highly useful, the reported PB reactions only provide moderate yield (∼30%). Herein, we aim to determine the key factors that affect the PB reactions and develop a system with improved capabilities for lipidomic analysis. An Ir(III) photocatalyst is chosen as the triplet energy donor for the PB reagent under 405 nm light irradiation, while phenylglyoxalate and its charge-tagging version, pyridylglyoxalate, are developed as the most efficient PB reagents. The above visible-light PB reaction system provides higher PB conversions than all previously reported PB reactions. Around 90% conversion can be achieved at high concentrations (>0.5 mM) for different classes of lipids but drops as the lipid concentration decreases. The visible-light PB reaction has then been integrated with shotgun and liquid chromatography-based workflows. The limits of detection for locating C═C in standard lipids of glycerophospholipids (GPLs) and triacylglycerides (TGs) are in the sub-nM to nM range. More than 600 distinct GPLs and TGs have been profiled at the C═C location level or the sn-position level from the total lipid extract of bovine liver, demonstrating that the developed method is capable of large-scale lipidomic analysis.
Collapse
Affiliation(s)
- Hengxue Shi
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China
| | - Zhenshu Tan
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China
| | - Xiangyu Guo
- Department of Precision Instrument, Tsinghua University, Beijing 10084, China
| | - Hanlin Ren
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China
| | - Shengzhuo Wang
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China
| | - Yu Xia
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China
| |
Collapse
|
23
|
Kirschbaum C, Young RSE, Greis K, Menzel JP, Gewinner S, Schöllkopf W, Meijer G, von Helden G, Causon T, Narreddula VR, Poad BLJ, Blanksby SJ, Pagel K. Establishing carbon-carbon double bond position and configuration in unsaturated fatty acids by gas-phase infrared spectroscopy. Chem Sci 2023; 14:2518-2527. [PMID: 36908944 PMCID: PMC9993887 DOI: 10.1039/d2sc06487a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
Fatty acids are an abundant class of lipids that are characterised by wide structural variation including isomeric diversity arising from the position and configuration of functional groups. Traditional approaches to fatty acid characterisation have combined chromatography and mass spectrometry for a description of the composition of individual fatty acids while infrared (IR) spectroscopy has provided insights into the functional groups and bond configurations at the bulk level. Here we exploit universal 3-pyridylcarbinol ester derivatization of fatty acids to acquire IR spectra of individual lipids as mass-selected gas-phase ions. Intramolecular interactions between the protonated pyridine moiety and carbon-carbon double bonds present highly sensitive probes for regiochemistry and configuration through promotion of strong and predictable shifts in IR resonances. Gas-phase IR spectra obtained from unsaturated fatty acids are shown to discriminate between isomers and enable the first unambiguous structural assignment of 6Z-octadecenoic acid in human-derived cell lines. Compatibility of 3-pyridylcarbinol ester derivatization with conventional chromatography-mass spectrometry and now gas-phase IR spectroscopy paves the way for comprehensive structure elucidation of fatty acids that is sensitive to regio- and stereochemical variations and with the potential to uncover new pathways in lipid metabolism.
Collapse
Affiliation(s)
- Carla Kirschbaum
- Institut für Chemie und Biochemie, Freie Universität Berlin Altensteinstraße 23a 14195 Berlin Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| | - Reuben S E Young
- School of Chemistry and Physics, Queensland University of Technology Brisbane QLD 4000 Australia
- Central Analytical Research Facility, Queensland University of Technology Brisbane QLD 4000 Australia
| | - Kim Greis
- Institut für Chemie und Biochemie, Freie Universität Berlin Altensteinstraße 23a 14195 Berlin Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| | - Jan Philipp Menzel
- School of Chemistry and Physics, Queensland University of Technology Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology Brisbane QLD 4000 Australia
| | - Sandy Gewinner
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| | - Wieland Schöllkopf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| | - Gerard Meijer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| | - Gert von Helden
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| | - Tim Causon
- Institute of Analytical Chemistry, University of Natural Resources and Life Sciences Vienna 1190 Vienna Austria
| | - Venkateswara R Narreddula
- School of Chemistry and Physics, Queensland University of Technology Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology Brisbane QLD 4000 Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology Brisbane QLD 4000 Australia
- Central Analytical Research Facility, Queensland University of Technology Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology Brisbane QLD 4000 Australia
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology Brisbane QLD 4000 Australia
- Central Analytical Research Facility, Queensland University of Technology Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology Brisbane QLD 4000 Australia
| | - Kevin Pagel
- Institut für Chemie und Biochemie, Freie Universität Berlin Altensteinstraße 23a 14195 Berlin Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| |
Collapse
|
24
|
Xie C, Chen Y, Wang X, Song Y, Shen Y, Diao X, Zhu L, Wang J, Cai Z. Chiral derivatization-enabled discrimination and on-tissue detection of proteinogenic amino acids by ion mobility mass spectrometry. Chem Sci 2022; 13:14114-14123. [PMID: 36540812 PMCID: PMC9728562 DOI: 10.1039/d2sc03604e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2023] Open
Abstract
The importance of chiral amino acids (AAs) in living organisms has been widely recognized since the discovery of endogenous d-AAs as potential biomarkers in several metabolic disorders. Chiral analysis by ion mobility spectrometry-mass spectrometry (IMS-MS) has the advantages of high speed and sensitivity but is still in its infancy. Here, an N α-(2,4-dinitro-5-fluorophenyl)-l-alaninamide (FDAA) derivatization is combined with trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) for chiral AA analysis. For the first time, we demonstrate the simultaneous separation of 19 pairs of chiral proteinogenic AAs in a single fixed condition TIMS-MS run. The utility of this approach is presented for mouse brain extracts by direct-infusion TIMS-MS. The robust separation ability in complex biological samples was proven in matrix-assisted laser desorption/ionization (MALDI) TIMS mass spectrometry imaging (MSI) as well by directly depositing 19 pairs of chiral AAs on a tissue slide following on-tissue derivatization. In addition, endogenous chiral amino acids were also detected and distinguished. The developed methods show compelling application prospects in biomarker discovery and biological research.
Collapse
Affiliation(s)
- Chengyi Xie
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University Hong Kong SAR China +852-34117348 +852-34117070
| | - Yanyan Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University Hong Kong SAR China +852-34117348 +852-34117070
| | - Xiaoxiao Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University Hong Kong SAR China +852-34117348 +852-34117070
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University Hong Kong SAR China +852-34117348 +852-34117070
| | - Yuting Shen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University Hong Kong SAR China +852-34117348 +852-34117070
| | - Xin Diao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University Hong Kong SAR China +852-34117348 +852-34117070
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University Hong Kong SAR China +852-34117348 +852-34117070
| | - Jianing Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University Hong Kong SAR China +852-34117348 +852-34117070
- Institute for Research and Continuing Education, Hong Kong Baptist University Hong Kong SAR China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University Hong Kong SAR China +852-34117348 +852-34117070
| |
Collapse
|
25
|
Chen X, Tang S, Freitas D, Hirtzel E, Cheng H, Yan X. Characterization of glycerophospholipids at multiple isomer levels via Mn(II)-catalyzed epoxidation. Analyst 2022; 147:4838-4844. [PMID: 36128870 PMCID: PMC9704799 DOI: 10.1039/d2an01174c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Characterization of glycerophospholipid isomers is of significant importance as they play different roles in physiological and pathological processes. In this work, we present a novel and bifunctional derivatization method utilizing Mn(II)-catalyzed epoxidation to simultaneously identify carbon-carbon double bond (CC bond)- and stereonumbering (sn)-positional isomers of phosphatidylcholine. Mn(II) coordinates with picolinic acid and catalyzes epoxidation of unsaturated lipids by peracetic acid. Collision-induced dissociation (CID) of the epoxides generates diagnostic ions that can be used to locate CC bond positions. Meanwhile, CID of Mn(II) ion-lipid complexes produces characteristic ions for determination of sn positions. This bifunctional derivatization takes place in seconds, and the diagnostic ions produced in CID are clear and easy to interpret. Moreover, relative quantification of CC bond-and sn-positional isomers was achieved. The capability of this method in identifying lipids at multiple isomer levels was shown using lipid standards and lipid extracts from complex biological samples.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Shuli Tang
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Dallas Freitas
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Erin Hirtzel
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Heyong Cheng
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Xin Yan
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| |
Collapse
|