1
|
Song J, Guo X, Tang Y, Li J, Han L. Specific Quenching of Natural Clusterization-Triggered Emission Probes for Rapid Fluorescent Detection of Antipsychotics. Chemistry 2025; 31:e202500950. [PMID: 40251124 DOI: 10.1002/chem.202500950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
The development of rapid, cost-effective fluorescent probes for antipsychotic drug detection remains challenging due to the synthetic complexity of conventional probes and limited exploration of natural alternatives. Herein, we pioneered bovine serum albumin (BSA) as a natural clusterization-triggered emission (CTE) probe for one-step detection of chlorpromazine hydrochloride (CPZ) and perphenazine (PPZ). The unique CTE property of BSA displayed concentration-dependent quenching with CPZ and PPZ. Moreover, the quenching effect achieved balance within 5 minutes and maintained stability for more than 30 minutes. Based on these advantages, the proposed detection platform showed rapid response, operational simplicity, visual signal readout, wide detection range, ultra-low detection limits, compared with other methods. Moreover, the assay method exhibited excellent selectivity, facilitating satisfactory reliability for the real sample assay. Thermodynamic analyses revealed distinct interaction mechanisms between BSA and antipsychotics, both inducing static quenching by suppressing clusterization-induced electron transitions. Overall, this research not only develops a novel assay method for CPZ and PPZ, but also broadens the application potential of the CTE effect in natural biomacromolecules. As the first demonstration of natural CTE probes for antipsychotic detection, this work opens new frontiers for sustainable analytical technologies by circumventing synthetic probe complexities and leveraging inherent biorecognition.
Collapse
Affiliation(s)
- Jiying Song
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
| | - Xinyan Guo
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
| | - Yunge Tang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
| | - Junde Li
- Affiliated Hospital, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, 266109, China
| |
Collapse
|
2
|
Zhang J, Jin Y, Lu X, Sun C, Ma W, Li Y, Zhang L, Chen R. Triggering anti-Kasha organic room temperature phosphorescence of clusteroluminescent materials. Chem Sci 2025; 16:7829-7837. [PMID: 40177316 PMCID: PMC11959490 DOI: 10.1039/d5sc01471a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/21/2025] [Indexed: 04/05/2025] Open
Abstract
Clusterization-triggered emission (CTE) from organic materials without π-conjugated structures for room temperature phosphorescence (RTP) is fascinating with extraordinary photophysical properties and diversified applications, but rather challenging in material design owing to the limited mechanism understanding. Here, we demonstrate a facile strategy to construct CTE polymers with stimuli-responsive emission, anti-Kasha RTP and organic ultralong RTP (OURTP) by introducing ions into the hydrolyzed nonconjugated maleic anhydride and acrylamide copolymers. Thanks to the synergistic effects of hydrogen and ionic bonding with the ion-triggered electrostatic and coordinate interactions to suppress non-radiative decays and promote intersystem crossing, the amorphous copolymers show efficient photoluminescence with quantum efficiencies up to 13.5%, anti-Kasha RTP blue-shift of 29 nm, and OURTP lifetime up to 420 ms. Moreover, the temperature-dependent and water-sensitive anti-Kasha RTP and OURTP are also observed due to the formation of highly emissive CTE structure regulated by ionization. With the excellent processability and flexibility of the copolymer, lifetime-, temperature- and color-encrypted information anti-counterfeiting is designed and explored. The anti-Kasha RTP in CTE materials realized for the first time demonstrates impressive potential for multi-level encryption/anti-counterfeiting applications and more importantly, providing fundamental mechanism understanding for the rational modulation and design of CTE materials with extraordinary photophysical properties.
Collapse
Affiliation(s)
- Jingyu Zhang
- State Key Laboratory of Flexible Electronics (LoFE), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Yishan Jin
- State Key Laboratory of Flexible Electronics (LoFE), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Xinchi Lu
- State Key Laboratory of Flexible Electronics (LoFE), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Chengxi Sun
- State Key Laboratory of Flexible Electronics (LoFE), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Wei Ma
- State Key Laboratory of Flexible Electronics (LoFE), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Yuhang Li
- State Key Laboratory of Flexible Electronics (LoFE), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Longyan Zhang
- State Key Laboratory of Flexible Electronics (LoFE), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Runfeng Chen
- State Key Laboratory of Flexible Electronics (LoFE), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 P. R. China
| |
Collapse
|
3
|
Li P, Zhang J, Shao T, Jiang J, Tang X, Yang J, Li J, Fang B, Huang Z, Fang H, Wang H, Hu W, Peng B, Bai H, Li L. NIR-II Photosensitizer-Based Nanoparticles Defunctionalizing Mitochondria to Overcome Tumor Self-Defense by Promoting Heat Shock Protein 40. ACS NANO 2025; 19:15751-15766. [PMID: 40241294 DOI: 10.1021/acsnano.4c18937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Inherent self-defense pathways within malignant tumors include the action of heat shock proteins (HSPs) and often impede photothermal therapy efficacy. Interestingly, HSP40 inhibits glycolysis and disrupts mitochondrial function to overcome tumor self-defense mechanisms and exhibits a tumor-suppressive effect. Reactive oxygen species (ROS), especially hydroxyl radicals, generated by type-I photodynamic therapy inhibit adenosine triphosphate (ATP) production and lead to ATP-independent HSP40 overexpression during heat stress. However, the regulatory mechanisms linking heat and hydroxyl radicals to induce HSP40 expression remain unclear. Therefore, it is imperative to elucidate the underlying mechanism governing the induction of HSP40 expression during heat stress and explore its potential as a promising therapeutic strategy against tumor development. By strategically modifying the aza-BODIPY structure to precisely distribute the excited-state energy, we have demonstrated that HSP40 specific expression is correlated with the proportion of heat to hydroxyl radicals rather than their individual levels. This orchestrated NIR-II photosensitizer-based nanoparticles reduced tumor glycolysis and disrupted ATP production, driving cell apoptosis and amplifying the efficacy of photothermal therapy. Silencing and compensation of HSPs under heat and ROS stress represent a promising and effective strategy for overcoming tumor self-defense mechanisms in cancer therapy.
Collapse
Affiliation(s)
- Panpan Li
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jiaxin Zhang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Tao Shao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jiamin Jiang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xiao Tang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jiaqi Yang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jintao Li
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Bin Fang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Ze Huang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Xiamen University, Xiamen 361102, China
| | - Haixiao Fang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Xiamen University, Xiamen 361102, China
| | - Hui Wang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Xiamen University, Xiamen 361102, China
| | - Wenbo Hu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Bo Peng
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Hua Bai
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Lin Li
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Xiamen University, Xiamen 361102, China
| |
Collapse
|
4
|
Zhang J, Xiong Z, Zhang H, Tang BZ. Emergent clusteroluminescence from nonemissive molecules. Nat Commun 2025; 16:3910. [PMID: 40280920 PMCID: PMC12032425 DOI: 10.1038/s41467-025-59212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Once considered the exclusive property of conjugated molecules, efficient and visible-light luminescence from non-conjugated and nonemissive molecules in the clustered state, known as clusteroluminescence (CL), has attracted much attention recently due to its special photophysical behaviors and behind electronic interactions. This perspective discusses the development of the CL phenomenon, followed by the typical photophysical features, examples, mechanisms, and potential applications of CL materials, to provide a comprehensive picture of this emerging field. Starting with organic clusters, inorganic, metallic, and hybrid clusters with CL properties are also introduced, and the perspective shift from covalent interactions at the molecular level to non-covalent interactions at the aggregate level is invoked.
Collapse
Affiliation(s)
- Jianyu Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zuping Xiong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China.
| | - Ben Zhong Tang
- Guangdong Basic Research Center of Excellence for Aggregate Science, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| |
Collapse
|
5
|
Liu RH, Feng ZQ, Ge SJ, Wang Y, Yu ZH, Wu JR, Yan HY, Zhou DY, Liao LS, Jiang ZQ. Integration of Through-Space Conjugation of an Adjacent Arene with a Nitrogen/Carbonyl Framework for Narrowband Emission. Angew Chem Int Ed Engl 2025; 64:e202424950. [PMID: 39973150 DOI: 10.1002/anie.202424950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/21/2025]
Abstract
Organic luminescent materials featuring noncovalent through-space conjugation (TSC) have attracted considerable attention. However, the presence of multiple vibrational energy levels and weak spatial electron delocalization typically results in broad emission peaks for TSC-based emitters, significantly impeding their extensive application in optoelectronic technologies. Herein, two TSC emitters, TSFQ-TRZ and TSFQ-Ph, were synthesized by integrating a fused nitrogen/carbonyl skeleton with various adjacent arene 2,4,6-triphenyl-1,3,5-triazine (TPTRZ) and phenyl group segments through a rigid spiro spacer. These emitters exhibited narrow emissions, with full widths at half-maximum of 19 nm and 25 nm, respectively. Experimental and theoretical investigations unveiled that the TPTRZ segment introduces steric hindrance, while simultaneously suppressing molecular vibrations through intramolecular interactions-a key factor in achieving narrow emissions. Leveraging this narrow blue emission, electroluminescent devices employing TSFQ-TRZ as the emitter achieved an impressive maximum external quantum efficiency of 26.7 %, which further increased to 28.3 % when sensitized by phosphorescent emitter. This work demonstrates highly efficient, narrowband emissions from TSC-based emitters, thereby expanding their potential applications in the electroluminescence field.
Collapse
Affiliation(s)
- Rui-Hong Liu
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Zi-Qi Feng
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shi-Jie Ge
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yu Wang
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhe-Hong Yu
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jian-Rong Wu
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Hong-Yan Yan
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Dong-Ying Zhou
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Liang-Sheng Liao
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Macao Institute⋅of.Materials⋅Science⋅and⋅Engineering, Macau⋅Universityof⋅Scienceand⋅Technology, Taipa, Macau⋅, 999078, P. R. China
| | - Zuo-Quan Jiang
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
6
|
Ma F, Wu B, Zhang S, Jiang J, Shi J, Ding Z, Zhang Y, Tan H, Alam P, Lam JWY, Xiong Y, Li Z, Tang BZ, Zhao Z. Lone Pairs-Mediated Multiple Through-Space Interactions for Efficient Room-Temperature Phosphorescence. J Am Chem Soc 2025; 147:10803-10814. [PMID: 40099863 DOI: 10.1021/jacs.5c02567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The simultaneous generation and stabilization of triplet excitons are the key to realizing efficient organic room temperature phosphorescence (RTP), which is challenging owing to the obscure mechanism and structure-property relationships. Herein, a strategy of lone-pair-mediated multiple through-space interactions (TSIs) is proposed to availably induce RTP. By incorporating heteroatoms to facilitate through-space n-n and n-π interactions, the lone pairs are delocalized throughout the structure, resulting in the dense splitting of the excited-state energy levels. Thus, more matched energy levels with a small energy gap between singlet and triplet states (ΔEST) emerge, resulting in multiple intersystem crossing (ISC) transition channels that assist triplet excitons generation. The strong TSIs also effectively rigidify the molecular structures and thus stabilize triplet excitons for radiation. Furthermore, the manipulation of TSI intensity allows efficiency enhancement, persistent time prolongation, and tolerance to high temperatures of RTP. This work not only explores the fundamental principle of the RTP mechanism from a new view but also provides a universal strategy for ISC promotion and triple excitons stabilization.
Collapse
Affiliation(s)
- Fulong Ma
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Bo Wu
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Siwei Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Jinhui Jiang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Jinghong Shi
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Zeyang Ding
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Yue Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Haozhe Tan
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Parvej Alam
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Yu Xiong
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518061, China
| | - Zhen Li
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| |
Collapse
|
7
|
Zhu W, Chen X, Wang Y, Li T, Zhang X, Xia B, Huang J, Dong W. Tunable Cluster Luminescence and High Quantum Yield in Amine-Modified Maleic Anhydride Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2843-2850. [PMID: 39829132 DOI: 10.1021/acs.langmuir.4c04715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Cluster luminescent materials (CLgens) with nonconjugated structures have attracted considerable attention. However, their low quantum yield and limited emission wavelengths, which are confined to the blue-green spectrum, continue to restrict their applicability. In this study, maleic anhydride polymer chains were modified with N-tristyrylene-1,2-diamine (TPM-NH2), creating a secondary donor-acceptor structure through freely rotatable phenyl groups and amino-anhydride interactions. This modification facilitated the formation of charge transfer (CT) states and strengthened the through-space interaction (TSI), resulting in a remarkable red shift in emission wavelength from 400 to 640 nm. The flexible ethyl chain acted as a bridging unit within this framework, enhancing through-space charge transfer (TSCT) and elevating the quantum yield (QY) to 28.28%. This research offers a strategy for improving the QY of anhydride copolymers and demonstrates the potential for controllable emission wavelengths, thereby broadening their application domains, including in light-conversion agricultural films.
Collapse
Affiliation(s)
- Weida Zhu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xiang Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xuhui Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Bihua Xia
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jing Huang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
8
|
Deng Z, Huang C, Luo Y, He J, Li L, Pang X, Huang G, Phillips DL. Revealing the excited-state mechanisms of the polymorphs of a hot exciton material. Nat Commun 2025; 16:258. [PMID: 39747841 PMCID: PMC11696127 DOI: 10.1038/s41467-024-55569-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
As the investigation of high efficiency thermally activated delayed fluorescence (TADF) materials become more mature, regulating the emission properties for single organic luminescence molecules has gained increasing interest recently. Herein, the donor-acceptor compounds F-AQ comprised of fluorene and anthraquinone is reported, and it exhibits a polymorphism with muti-color emission and TADF from high-level intersystem crossing (hRISC). The photodynamics and excited-state transient species were studied by femtosecond transient absorption (fs-TA) spectroscopy. As a result, an unambiguous signal of through space charge transfer (TSCT) was observed in the fs-TA spectra of the crystal with the π-π interaction between the fluorene and anthraquinone groups, whereas the other amorphous solids and crystal only show a conventional deactivation pathway of hRISC-TADF. In this study, we successfully realize the direct observation of the morphism-dependent TSCT in a crystal, which provides the observations in solid-state ultrafast excited-state dynamics and deepens the insight into the design of potential mechanochromic materials and thermochromic utilization of the polymorphism of organic luminescence molecules.
Collapse
Affiliation(s)
- Ziqi Deng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Chao Huang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Yunfeng Luo
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Jiaxing He
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Lan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Xinyu Pang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guanheng Huang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China.
| |
Collapse
|
9
|
Zhang J, Shen H, Xiong Z, Du L, Li M, Ou X, Zhu X, Lam JWY, Liu TM, Xu C, Zhang H, Zhong Tang B. Two-Photon Clusteroluminescence Enabled by Through-Space Conjugation for In Vivo Bioimaging. Angew Chem Int Ed Engl 2025; 64:e202413751. [PMID: 39191645 DOI: 10.1002/anie.202413751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
Clusteroluminescence (CL) materials without largely conjugated structures have gained significant attention due to their unique photophysical properties and potential in bioimaging. However, low luminescence efficiency and short emission wavelength limit their development. This work designs three luminogens with CL properties (CLgens) by introducing n-electron-involved through-space conjugation (TSC) into diarylmethane. Apart from single-photon excited long-wavelength (686 nm) and high-efficiency (29 %) CL, two-photon clusteroluminescence (TPCL) is successfully achieved in such small luminogens with only two isolated heteroatomic units. TSC stabilized in the aggregate state has been proven to realize efficient spatial electron delocalization similar to conventionally conjugated compounds. Encouraged by the excellent TPCL properties, two-photon imaging of blood vessels in vivo and biocompatibility verification utilizing CLgens are also achieved. This work illustrates the essential role of TSC in promoting nonlinear optical properties of CLgens and may facilitate further design and development of the next generation of bioprobes with excellent biocompatibility.
Collapse
Affiliation(s)
- Jianyu Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 3100587, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Present address: Stratingh Institute for Chemistry, University of Groningen, Groningen, 9747 AG, The, Netherlands
| | - Hanchen Shen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Zuping Xiong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 3100587, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Lidong Du
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, 999077, China
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macao, 999078, China
| | - Moxin Li
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macao, 999078, China
| | - Xinwen Ou
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Xinyan Zhu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Tzu-Ming Liu
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macao, 999078, China
| | - Changhuo Xu
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macao, 999078, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 3100587, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 3100587, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
10
|
Song X, Wang X, Wang Y, Hao Y, Li C, Chai L, Ren H, Chen J, Hu W, James TD. Monitoring Glutathione Content of the Endoplasmic Reticulum under Scrap Leather-Induced Endoplasmic Reticulum Stress via an Endoplasmic Reticulum-Targeted Two-Photon Fluorescent Probe. Anal Chem 2024; 96:18132-18140. [PMID: 39472451 PMCID: PMC11561880 DOI: 10.1021/acs.analchem.4c04157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 11/13/2024]
Abstract
Maintaining tissue homeostasis necessitates the coordinated efforts of various cell types to regulate inflammation. Endoplasmic reticulum (ER) stress, a hallmark of inflammation, exacerbates tissue pathology in various human diseases. Glutathione (GSH), a pivotal regulator of cellular redox balance, controls disulfide bond formation in the ER, thereby shielding cells from oxidative stress. In this study, we developed a two-photon fluorescent probe, ER-GSH, with specific ER targeting and demonstrated its high sensitivity and rapid response to GSH. Experiments conducted on BV2 cells and a mice model of neuroinflammation induced by scrap leather revealed that inflammatory reactions led to ER stress and a substantial reduction in GSH levels. Notably, the anti-inflammatory drug NS-398 effectively inhibited cell inflammation and ER stress by maintaining GSH levels. These findings underscore the potential therapeutic significance of modulating GSH levels to alleviate the impact of neuroinflammation.
Collapse
Affiliation(s)
- Xinjian Song
- Hubei Key
Laboratory of Biological Resources Protection and Utilization, School
of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, China
| | - Xumei Wang
- Hubei Key
Laboratory of Biological Resources Protection and Utilization, School
of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, China
| | - Yan Wang
- Hubei Key
Laboratory of Biological Resources Protection and Utilization, School
of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, China
| | - Yiqian Hao
- Department
of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi 034000, China
| | - Chenchen Li
- Hubei Key
Laboratory of Biological Resources Protection and Utilization, School
of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, China
| | - Li Chai
- Department
of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi 034000, China
| | - Haixian Ren
- Department
of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi 034000, China
| | - Jianbin Chen
- School
of
Chemistry and Chemical Engineering, Qilu
University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Wei Hu
- Hubei Key
Laboratory of Biological Resources Protection and Utilization, School
of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, China
- Department
of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi 034000, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA27AY, United Kingdom
- School of
Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| |
Collapse
|
11
|
Zhu H, Li K. A Facile One-Step Self-Assembly Strategy for Novel Carbon Dots Supramolecular Crystals with Ultralong Phosphorescence Controlled by NH 4. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402236. [PMID: 38970543 DOI: 10.1002/smll.202402236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Indexed: 07/08/2024]
Abstract
A new methodological design is proposed for carbon dots (CDs)-based crystallization-induced phosphorescence (CIP) materials via one-step self-assembled packaging controlled by NH4 +. O-phenylenediamine (o-PD) as a nitrogen/carbon source and the ammonium salts as oxidants are used to obtain CDs supramolecular crystals with a well-defined staircase-like morphology, pink fluorescence and ultralong green room-temperature phosphorescence (RTP) (733.56 ms) that is the first highest value for CDs-based CIP materials using pure nitrogen/carbon source by one-step packaging. Wherein, NH4 + and o-PD-derived oxidative polymers are prerequisites for self-assembled crystallization so as to receive the ultralong RTP. Density functional theory calculation indicates that NH4 + tends to anchor to the dimer on the surface state of CDs and guides CDs to cross-arrange in an X-type stacking mode, leading to the spatially separated frontier orbitals and the through-space charge transfer (TSCT) excited state in turn. Such a self-assembled mode contributes to both the small singlet-triplet energy gap (ΔEST) and the fast inter-system crossing (ISC) process that is directly related to ultralong RTP. This work not only proposes a new strategy to prepare CDs-based CIP materials in one step but also reveals the potential for the self-assembled behavior controlled by NH4 +.
Collapse
Affiliation(s)
- Hanping Zhu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Kang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
12
|
Wu R, Lian S, He Y, Li Z, Feng W, Zhao Y, Yan H. Thiol-containing hyperbranched polysiloxane for scavenging reactive oxygen species. J Mater Chem B 2024; 12:10584-10592. [PMID: 39318226 DOI: 10.1039/d4tb01567c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Unconventional luminescent polymers have attracted considerable attention in the biological field due to their intrinsic fluorescence properties and excellent biocompatibility. However, exploring the luminescent properties of thiol-containing polymers and the mechanism of their scavenging of ROS remains unclear. In this work, we synthesised three kinds of hyperbranched polysiloxanes (HE, HP, and HB) with terminal thiol groups containing different chain lengths by the polycondensation reaction. Surprisingly, HP exhibits longer-wavelength emission at 480 nm with a quantum yield of 12.23% compared to HE and HB. Experiments and density functional theory (DFT) calculations have revealed that the rigidity of the conformation is enhanced by substantial hydrogen bonds and through-space O⋯O interactions in the polymer structure. These interactions, combined with the rigid carbon chains, balance the flexibility of the Si-O-C chain segments, which emerges as a critical factor contributing to the superior fluorescence performance of HP. In addition, HP exhibits excellent biocompatibility and ROS scavenging ability with a scavenging capacity of up to 35.095%. This work provides a new fluorescent polymer for scavenging ROS for the treatment of ROS-related diseases.
Collapse
Affiliation(s)
- Rui Wu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Sixian Lian
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yanyun He
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Zheng Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Weixu Feng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yan Zhao
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Hongxia Yan
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| |
Collapse
|
13
|
Li Y, Zhu Y, Li X, Chen P. Unexpected full-color luminescence produced from the aggregation of unconventional chromophores in novel polyborosilazane dendrimers. Chem Sci 2024:d4sc04320k. [PMID: 39397819 PMCID: PMC11467778 DOI: 10.1039/d4sc04320k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Non-conjugated fluorescent polymers (NCPLs) are of interest due to their remarkable biocompatibility, processability and biodegradability. However, the realization of multicolor emitting NCPLs through structure modulation remains a great challenge. In this work, a series of novel yttrium-branched polyborosilazane (PBSZ) structures (PY1-PY3) were prepared. PBSZ exhibits a blue emission peaked at 450 nm, and the introduction of an yttrium-branched-chain generates a new long-wavelength emission center. As the degree of yttrium branching increases, the emerged emission peak shifts from 532 to 646 nm, and its intensity gradually increases to 1.4 times that of the blue emission. CIE chromaticity coordinates indicate that yttrium-branching modulates the emission color from blue (0.19, 0.21) to near white (0.34, 0.40) and red (0.43, 0.36). Particularly, the PY3 sample exhibits an ultra-broad emission spectrum; covering the range of 400-750 nm. Theoretical calculation indicates that the yttrium-branched-chains promote heteroatom delocalization to form "cluster chromophores", generating new orbitals with lower gaps. In addition, experimental results prove that the yttrium-branched-chains balance the flexibility of the molecular backbone and generate stable fluorescent clusters, which intensifies the non-conjugated linking and through-space-conjugation (TSC) effects, thus generating long-wavelength emission. This work proves that yttrium "end-grafting" is a feasible strategy for equilibrium flexibility and to realize full-color emission in non-conjugated polymers.
Collapse
Affiliation(s)
- Yuang Li
- The State Key Laboratory of Refractories and Metallurgy, Key Laboratory of High Temperature Electromagnetic Materials and Structure of MOE, Wuhan University of Science and Technology Wuhan 430081 PR China
| | - Yingli Zhu
- The State Key Laboratory of Refractories and Metallurgy, Key Laboratory of High Temperature Electromagnetic Materials and Structure of MOE, Wuhan University of Science and Technology Wuhan 430081 PR China
| | - Xiangcheng Li
- The State Key Laboratory of Refractories and Metallurgy, Key Laboratory of High Temperature Electromagnetic Materials and Structure of MOE, Wuhan University of Science and Technology Wuhan 430081 PR China
| | - Pingan Chen
- The State Key Laboratory of Refractories and Metallurgy, Key Laboratory of High Temperature Electromagnetic Materials and Structure of MOE, Wuhan University of Science and Technology Wuhan 430081 PR China
| |
Collapse
|
14
|
Barnwal N, Nandi N, Sarkar P, Sahu K. White Light Emission from Zn(II) and DMSO-Induced Copper Nanocluster Assembly. Chem Asian J 2024; 19:e202400633. [PMID: 39031487 DOI: 10.1002/asia.202400633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/05/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
An assembly of metal nanoclusters driven by appropriate surface ligands and solvent environment may engender entirely new photoluminescence (PL). Herein, we first synthesize histidine (His) stabilized copper nanoparticles (CuNPs) and, subsequently, copper nanoclusters (CuNCs) from it using 3-mercaptopropionic acid (MPA) as an etchant. The CuNCs originally emit bluish-green (λem=470 nm) PL with a low quantum yield (QY∼1.8 %). However, it transformed into a dual-emissive nanocluster assembly (Zn-CuNCs) in the presence of Zn(II) salt, having a distinct blue emission band (λem=420 nm) and a red emission band (λem=615 nm) with eight times QY (∼9.1 %) enhancement. The temperature-dependent emission spectra of Zn-CuNCs depicted that the blue emission band persists for all the temperature ranges (0-80 °C) while the red emission band vanishes at high temperatures (70-80 °C). Thus, the blue emission may originate from the locally excited state (LES) emission of the nanoclusters, while the red emission originates from through-space interaction (TSI) and Cu(I)…Cu(I) interaction within the assembly. Adding dimethyl sulfoxide (DMSO) further modifies the emission intensities; the red band was amplified four times, while the blue band was diminished by 2.5 times. The transmission electron microscopy (TEM) images unveiled that the Zn-CuNCs are a large assembly of tiny nanoclusters, which become more compact in DMSO. The blue emission possesses steady-state fluorescence anisotropy, while the red emission shows no anisotropy. Further, near-perfect white light emission(WLE) was rendered with CIE coordinates of (0.33, 0.32) by combining the dual emission of the Zn-CuNCs with the original green emission of the CuNCs.
Collapse
Affiliation(s)
- Neha Barnwal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nilanjana Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Priyanka Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Kalyanasis Sahu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
15
|
Zhang J, Wang W, Bian Y, Wang Y, Lu X, Guo Z, Sun C, Li Z, Zhang X, Yuan J, Tao Y, Huang W, Chen R. Exciton Dissociation and Recombination Afford Narrowband Organic Afterglow Through Efficient FRET. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404769. [PMID: 39135413 DOI: 10.1002/adma.202404769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/31/2024] [Indexed: 10/11/2024]
Abstract
Organic afterglow with long-persistent luminescence (LPL) after photoexcitation is highly attractive, but the realization of narrowband afterglow with small full-width at half-maximum (FWHM) is a huge challenge since it is intrinsically contradictory to the triplet- and solid-state emission nature of organic afterglow. Here, narrow-band, long-lived, and full-color organic LPL is realized by isolating multi-resonant thermally activated delayed fluorescent (MR-TADF) fluorophores in a glassy steroid-type host through a facile melt-cooling treatment. Such prepared host becomes capable of exciton dissociation and recombination (EDR) upon photoirradiation for both long-lived fluorescence and phosphorescence; and, the efficient Förster resonance energy transfer (FRET) from the host to various MR-TADF emitters leads to high-performance LPL, exhibiting small FWHM of 33 nm, long persistent time over 10 s, and facile color-tuning in a wide range from deep-blue to orange (414-600 nm). Moreover, with the extraordinary narrowband LPL and easy processability of the material, centimeter-scale flexible optical waveguide fibers and integrated FWHM/color/lifetime-resolved multilevel encryption/decryption devices have been designed and fabricated. This novel EDR and singlet/triplet-to-singlet FRET strategy to achieve excellent LPL performances illustrates a promising way for constructing flexible organic afterglow with easy preparation methods, shedding valuable scientific insights into the design of narrow-band emission in organic afterglow.
Collapse
Affiliation(s)
- Jingyu Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wuji Wang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yanfang Bian
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yike Wang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Xinchi Lu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zhenli Guo
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chengxi Sun
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zecai Li
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Xiao Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jie Yuan
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Nanjing Vocational University of Industry Technology, 1 Yangshan North Road, Nanjing, 210023, China
| | - Ye Tao
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shanxi, 710072, China
| | - Runfeng Chen
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
16
|
Zhang Y, Wu X, Liu S, Ma Y, Zhao Q. Unveiling the potential of triphenylphosphine salts in tuning organic room temperature phosphorescence. Chem Commun (Camb) 2024; 60:9328-9339. [PMID: 39113543 DOI: 10.1039/d4cc03156c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Triphenylphosphine (TPP) salt derivatives, with their rich chemistry of core-substitution, have emerged as promising candidates for ultralong room temperature phosphorescence (RTP) materials owing to their distinct molecular structures, high quantum efficiency and exceptional phosphorescence properties. This feature article highlights the vast potential of TPP salt derivatives in tunable RTP properties by exploring some factors such as the alkyl chains, halogen anions, through-space charge transfer states, etc., and recent advancements in multi-level information encryption, high-level anticounterfeiting tags and X-ray imaging applications. We anticipate that this article will assist in directing future analyses based on the mechanisms underlying the RTP behavior of TPP derivatives and offer guidance for the rational design of high-performance RTP materials.
Collapse
Affiliation(s)
- Yuxia Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China.
| | - Xiaomei Wu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China.
| | - Shujuan Liu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China.
| | - Yun Ma
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China.
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qiang Zhao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China.
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, P. R. China
| |
Collapse
|
17
|
Shen P, Jiao S, Zhuang Z, Dong X, Song S, Li J, Tang BZ, Zhao Z. Switchable Dual Circularly Polarized Luminescence in Through-Space Conjugated Chiral Foldamers. Angew Chem Int Ed Engl 2024; 63:e202407605. [PMID: 38698703 DOI: 10.1002/anie.202407605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Organic materials with switchable dual circularly polarized luminescence (CPL) are highly desired because they can not only directly radiate tunable circularly polarized light themselves but also induce CPL for guests by providing a chiral environment in self-assembled structures or serving as the hosts for energy transfer systems. However, most organic molecules only exhibit single CPL and it remains challenging to develop organic molecules with dual CPL. Herein, novel through-space conjugated chiral foldamers are constructed by attaching two biphenyl arms to the 9,10-positions of phenanthrene, and switchable dual CPL with opposite signs at different emission wavelengths are successfully realized in the foldamers containing high-polarizability substitutes (cyano, methylthiol and methylsulfonyl). The combined experimental and computational results demonstrate that the intramolecular through-space conjugation has significant contributions to stabilizing the folded conformations. Upon photoexcitation in high-polar solvents, strong interactions between the biphenyl arms substituted with cyano, methylthio or methylsulfonyl and the polar environment induce conformation transformation for the foldamers, resulting in two transformable secondary structures of opposite chirality, accounting for the dual CPL with opposite signs. These findings highlight the important influence of the secondary structures on the chiroptical property of the foldamers and pave a new avenue towards efficient and tunable dual CPL materials.
Collapse
Affiliation(s)
- Pingchuan Shen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Nanyang, 637371, Singapore
| | - Shaoshao Jiao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Zeyan Zhuang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Nanyang, 637371, Singapore
| | - Xiaobin Dong
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Shaoxin Song
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Jinshi Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
18
|
Wang Y, Zhang J, Xu Q, Tu W, Wang L, Xie Y, Sun JZ, Huang F, Zhang H, Tang BZ. Narrowband clusteroluminescence with 100% quantum yield enabled by through-space conjugation of asymmetric conformation. Nat Commun 2024; 15:6426. [PMID: 39080355 PMCID: PMC11289101 DOI: 10.1038/s41467-024-50815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Different from traditional organic luminescent materials based on covalent delocalization, clusteroluminescence from nonconjugated luminogens relies on noncovalent through-space conjugation of electrons. However, such spatial electron delocalization is usually weak, resulting in low luminescent efficiency and board emission peak due to multiple vibrational energy levels. Herein, several nonconjugated luminogens are constructed by employing biphenyl as the building unit to reveal the structure-property relationship and solve current challenges. The intramolecular through-space conjugation can be gradually strengthened by introducing building units and stabilized by rigid molecular skeleton and multiple intermolecular interactions. Surprisingly, narrowband clusteroluminescence with full width at half-maximum of 40 nm and 100% efficiency is successfully achieved via an asymmetric conformation, exhibiting comparable performance to the traditional conjugated luminogens. This work realizes highly efficient and narrowband clusteroluminescence from nonconjugated luminogens and highlights the essential role of structural conformation in manipulating the photophysical properties of unconventional luminescent materials.
Collapse
Affiliation(s)
- Yipu Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Qingyang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Weihao Tu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Lei Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Yuan Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Feihe Huang
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China.
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-SZ), Guangzhou, 518172, China.
| |
Collapse
|
19
|
Zhou L, Song J, He Z, Liu Y, Jiang P, Li T, Ma X. Achieving Efficient Dark Blue Room-Temperature Phosphorescence with Ultra-Wide Range Tunable-Lifetime. Angew Chem Int Ed Engl 2024; 63:e202403773. [PMID: 38527962 DOI: 10.1002/anie.202403773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Tunable-lifetime room-temperature phosphorescence (RTP) materials have been widely studied due to their broad applications. However, only few reports have achieved wide-range lifetime modulation. In this work, ultra-wide range tunable-lifetime efficient dark blue RTP materials were realized by doping methyl benzoate derivatives into polyvinyl alcohol (PVA) matrix. The phosphorescence lifetimes of the doped films can be increased from 32.8 ms to 1925.8 ms. Such wide range of phosphorescence lifetime modulation is extremely rare in current reports. Moreover, the phosphorescence emission of the methyl 4-hydroxybenzoate-doped film is located in the dark blue region and the phosphorescence quantum yield reaches as high as 15.4 %, which broadens their applications in organic optoelectronic information. Further studies demonstrated that the reason for the tunable lifetime was that the magnitude of the electron-donating ability of the substituent group modulates the HOMO-LUMO and singlet-triplet energy gap of methyl benzoate derivatives, as well as the ability to non-covalent interactions with PVA. Moreover, the potential applications of luminescent displays and optical anti-counterfeiting of these high-performance dark blue RTP materials have been conducted.
Collapse
Affiliation(s)
- Lei Zhou
- Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Jinming Song
- Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Zhenyi He
- Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Yiwei Liu
- Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Ping Jiang
- Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Tao Li
- Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Xiang Ma
- Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| |
Collapse
|
20
|
Xu WT, Peng Z, Wu P, Jiang Y, Li WJ, Wang XQ, Chen J, Yang HB, Wang W. Tuning vibration-induced emission through macrocyclization and catenation. Chem Sci 2024; 15:7178-7186. [PMID: 38756822 PMCID: PMC11095381 DOI: 10.1039/d4sc00650j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/06/2024] [Indexed: 05/18/2024] Open
Abstract
In order to investigate the effect of macrocyclization and catenation on the regulation of vibration-induced emission (VIE), the typical VIE luminogen 9,14-diphenyl-9,14-dihydrodibenzo[a, c]phenazine (DPAC) was introduced into the skeleton of a macrocycle and corresponding [2]catenane to evaluate their dynamic relaxation processes. As investigated in detail by femtosecond transient absorption (TA) spectra, the resultant VIE systems revealed precisely tunable emissions upon changing the solvent viscosity, highlighting the key effect of the formation of [2]catenane. Notably, the introduction of an additional pillar[5]arene macrocycle featuring unique planar chirality endows the resultant chiral VIE-active [2]catenane with attractive circularly polarized luminescence in different states. This work not only develops a new strategy for the design of new luminescent systems with tunable vibration induced emission, but also provides a promising platform for the construction of smart chiral luminescent materials for practical applications.
Collapse
Affiliation(s)
- Wei-Tao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Zhiyong Peng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Peicong Wu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Yefei Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University Shanghai 200241 China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| |
Collapse
|
21
|
Wu J, Wang Y, Jiang P, Wang X, Jia X, Zhou F. Multiple hydrogen-bonding induced nonconventional red fluorescence emission in hydrogels. Nat Commun 2024; 15:3482. [PMID: 38664408 PMCID: PMC11045767 DOI: 10.1038/s41467-024-47880-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The development of unconventional long-wavelength fluorescent polymer hydrogels without using polycyclic aromatic hydrocarbons or extended π-conjugation is a fundamental challenge in luminescent materials owing to a lack of understanding regarding the spatial interactions induced inherent clustering-triggered emission under water-rich conditions. Inspired by the color change of protein astaxanthin as a result of heat-induced denaturation, we propose a thermodynamically driven strategy to develop red fluorescence (~610 nm) by boiling multiple hydrogen-bonded poly(N-acryloylsemicarbazide) hydrogels in a water bath. We reveal that thermodynamically driven conformational changes of polymer chains from isolated hydrogen bonding donor-acceptor structures to through-space interaction structures induce intrinsic fluorescence shifts from blue to red during clustering-triggered emission. The proposed multiple hydrogen-bonding supramolecular hydrogel shows good fluorescence stability, mechanical robustness, and 3D printability for customizable shaping. We provide a viable method to prepare nonconventional long-wavelength fluorescent hydrogels towards soft fluorescent devices without initially introducing any fluorescent components.
Collapse
Affiliation(s)
- Jiayu Wu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Yuhuan Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Jiang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Xiaolong Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Xin Jia
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
22
|
Dai W, Jiang Y, Lei Y, Huang X, Sun P, Shi J, Tong B, Yan D, Cai Z, Dong Y. Recent progress in ion-regulated organic room-temperature phosphorescence. Chem Sci 2024; 15:4222-4237. [PMID: 38516079 PMCID: PMC10952074 DOI: 10.1039/d3sc06931a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Organic room-temperature phosphorescence (RTP) materials have attracted considerable attention for their extended afterglow at ambient conditions, eco-friendliness, and wide-ranging applications in bio-imaging, data storage, security inks, and emergency illumination. Significant advancements have been achieved in recent years in developing highly efficient RTP materials by manipulating the intermolecular interactions. In this perspective, we have summarized recent advances in ion-regulated organic RTP materials based on the roles and interactions of ions, including the ion-π interactions, electrostatic interactions, and coordinate interactions. Subsequently, the current challenges and prospects of utilizing ionic interactions for inducing and modulating the phosphorescent properties are presented. It is anticipated that this perspective will provide basic guidelines for fabricating novel ionic RTP materials and further extend their application potential.
Collapse
Affiliation(s)
- Wenbo Dai
- College of Chemistry and Materials Engineering, Wenzhou University Wenzhou China
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology Beijing China
| | - Yitian Jiang
- College of Chemistry and Materials Engineering, Wenzhou University Wenzhou China
| | - Yunxiang Lei
- College of Chemistry and Materials Engineering, Wenzhou University Wenzhou China
| | - Xiaobo Huang
- College of Chemistry and Materials Engineering, Wenzhou University Wenzhou China
| | - Peng Sun
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology Beijing China
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology Beijing China
| | - Bin Tong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology Beijing China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing China
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology Beijing China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology Beijing China
| |
Collapse
|
23
|
Zhao W, Gao M, Kong L, Yu S, Zhao C, Chen C. Chirality-Regulated Clusteroluminescence in Polypeptides. Biomacromolecules 2024; 25:1897-1905. [PMID: 38330502 DOI: 10.1021/acs.biomac.3c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The low emission efficiency of clusteroluminogens restricts their practical applications in the fields of sensors and biological imaging. In this work, the clusteroluminescence of ordered/disordered polypeptides was observed, and the photoluminescence (PL) intensity of polypeptides can be modulated by the chirality of amino acid residues. Polyglutamates with different chiral compositions were synthesized, and the racemic polypeptides exhibited a significantly higher PL intensity than the enantiopure ones. This emission originates from the n-π* transition between C═O groups of polypeptides and is enhanced by clusterization of polypeptides. CD and Fourier transform infrared spectra demonstrated that the enantiopure and racemic polypeptides form α-helix and random coil structures, respectively. The disordered polypeptides can form more chain entanglements and interchain interactions because of their high flexibility, leading to more clusterizations and stronger PL intensity. The rigidity of ordered helical structures restrains the chain entanglements, and the formation of intrachain hydrogen bonds between amide groups of the backbone impairs the interchain interaction between polypeptides, resulting in lower PL intensity. The PL intensity of the polypeptides can also be manipulated by the addition of urea or trifluoroacetic acid. Our study not only elucidates the chirality/order-based structure-property relationship of clusteroluminescence in peptide-based polymers but also offers implications for the rational design of fluorescent peptides/proteins.
Collapse
Affiliation(s)
- Wangtao Zhao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Mei Gao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Liufen Kong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Shunfeng Yu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chuanzhuang Zhao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chongyi Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
24
|
Wang L, Xiong Z, Zhi Sun J, Huang F, Zhang H, Zhong Tang B. How the Length of Through-Space Conjugation Influences the Clusteroluminescence of Oligo(Phenylene Methylene)s. Angew Chem Int Ed Engl 2024; 63:e202318245. [PMID: 38165147 DOI: 10.1002/anie.202318245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/03/2024]
Abstract
The length and mode of conjugation directly affect the molecular electronic structure, which has been extensively studied in through-bond conjugation (TBC) systems. Corresponding research greatly promotes the development of TBC-based luminophores. However, how the length and mode of through-space conjugation (TSC), one kind of weak interaction, influence the photophysical properties of non-conjugated luminophores remains a relatively unexplored field. Here, we unveil a non-linear relationship between TSC length and emission characteristics in non-conjugated systems, in contrast to the reported proportional correlation in TBC systems. More specifically, oligo(phenylene methylene)s (OPM[4]-OPM[7]) exhibit stronger TSC and prominent blue clusteroluminescence (CL) (≈440 nm) compared to shorter counterparts (OPM[2] and OPM[3]). OPM[6] demonstrates the highest solid-state quantum yield (40 %), emphasizing the importance of balancing flexibility and rigidity. Further theoretical calculations confirmed that CL of these oligo(phenylene methylene)s was determined by stable TSC derived from the inner rigid Diphenylmethane (DPM) segments within the oligomers instead of the outer ones. This discovery challenges previous assumptions and adds a new dimension to the understanding of TSC-based luminophores in non-conjugated systems.
Collapse
Affiliation(s)
- Lei Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Zuping Xiong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Feihe Huang
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| |
Collapse
|
25
|
Li H, Lei H, Ma S, Song T, Li Y, Yu H. Capturing Doublet Intermediate Emitters by Chemically Crosslinking Confinement towards Spatiotemporal Encryption. Angew Chem Int Ed Engl 2024; 63:e202312185. [PMID: 37985243 DOI: 10.1002/anie.202312185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Photoluminescence is one of the most meticulous ways to manipulate light energy. Typical photoluminescent emitters are mostly stable substances with a pure photophysical process of spontaneous photon-emission from their excited states. Intermediate emitters are elusive attributing to their synchronous energy transfer process including photophysical and incomplete photochemical pathways. An intermediate emitter containing radicals is more difficult to be observed due to its inherent chemical reactivity. Here, these challenges are overcome by spontaneously formed space limitations in polymer crosslinking networks meanwhile chemically active intermediates are captured. These doublet intermediates exhibit unique long-wavelength emissions under chemically crosslinking confinement conditions, and their luminous mechanism provides a novel perspective for designing intermediate emitters with liquid-crystal character and photoresponsive features towards spatiotemporal encryption, promising for the detection of photochemical reactions and the development of fascinating luminescent systems.
Collapse
Affiliation(s)
- Haomin Li
- School of Materials Science and Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191, China
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China
| | - Huanyu Lei
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Shudeng Ma
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China
| | - Tianfu Song
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China
| | - Yan Li
- School of Materials Science and Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Haifeng Yu
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
26
|
He Y, Feng W, Qiao Y, Tian Z, Tang BZ, Yan H. Hyperbranched Polyborosiloxanes: Non-traditional Luminescent Polymers with Red Delayed Fluorescence. Angew Chem Int Ed Engl 2023; 62:e202312571. [PMID: 37753802 DOI: 10.1002/anie.202312571] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
Non-traditional fluorescent polymers have attracted significant attention for their excellent biocompatibility and diverse applications. However, designing and preparing non-traditional fluorescent polymers that simultaneously possess long emission wavelengths and long fluorescence lifetime remains challenging. In this study, a series of novel hyperbranched polyborosiloxanes (P1-P4) were synthesized. As the electron density increases on the monomer diol, the optimal emission wavelengths of the P1-P4 polymers gradually red-shift to 510, 570, 575, and 640 nm, respectively. In particular, P4 not only exhibits red emission but also demonstrates delayed fluorescence with a lifetime of 9.73 μs and the lowest critical cluster concentration (1.76 mg/mL). The experimental results and theoretical calculations revealed that the synergistic effect of dual heteroatom-induced electron delocalization and through-space O⋅⋅⋅O and O⋅⋅⋅N interaction was the key factor contributing to the red-light emission with delayed fluorescence. Additionally, these polymers showed excellent potential in dual-information encryption. This study provides a universal design strategy for the development of unconventional fluorescent polymers with both delayed fluorescence and long-wavelength emission.
Collapse
Affiliation(s)
- Yanyun He
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Weixu Feng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yujie Qiao
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Zhixuan Tian
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, China
| | - Hongxia Yan
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| |
Collapse
|
27
|
Yang X, Waterhouse GIN, Lu S, Yu J. Recent advances in the design of afterglow materials: mechanisms, structural regulation strategies and applications. Chem Soc Rev 2023; 52:8005-8058. [PMID: 37880991 DOI: 10.1039/d2cs00993e] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Afterglow materials are attracting widespread attention owing to their distinctive and long-lived optical emission properties which create exciting opportunities in various fields. Recent research has led to the discovery of many new afterglow materials featuring high photoluminescence quantum yields (PLQY) and lifetimes of up to several hours under ambient conditions. Afterglow materials are typically categorized according to their luminescence mechanism, such as long-persistent luminescence (LPL), room temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). Through rational design and novel synthetic strategies to modulate spin-orbit coupling (SOC) and populate triplet exciton states (T1), luminophores with long lifetimes and bright afterglow characteristics can be realized. Initial research towards afterglow materials focused mainly on pure inorganic materials, many of which possessed inherent disadvantages such as metal toxicity or low energy emissions. In recent years, organic-inorganic hybrid afterglow materials (OIHAMs) have been developed with high PLQY and long lifetimes. These hybrid materials exploit the tunable structure and easy processing of organic molecules, as well as enhanced SOC and intersystem crossing (ISC) processes involving heavy atom dopants, to achieve excellent afterglow performance. In this review, we begin by briefly discussing the structure and composition of inorganic and organic-inorganic hybrid afterglow materials, including strategies for regulating their lifetime, PLQY and luminescence wavelength. The specific advantages of organic-inorganic hybrid afterglow materials, including low manufacturing costs, diverse molecular/electronic structures, tunable structures and optical properties, and compatibility with a variety of substrates, are emphasized. Subsequently, we discuss in detail the fundamental mechanisms used by afterglow materials, their classification, design principles, and end applications (including sensing, anticounterfeiting, and photoelectric devices, among others). Finally, existing challenges and promising future directions are discussed, laying a platform for the design of afterglow materials for specific applications.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| | | | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
28
|
Jiang N, Li KX, Xie W, Zhang SR, Li X, Hu Y, Xu YH, Liu XM, Bryce MR. Multicolor Luminescence of a Polyurethane Derivative Driven by Heat/Light-Induced Aggregation. Macromolecules 2023; 56:7721-7728. [PMID: 37841531 PMCID: PMC10569097 DOI: 10.1021/acs.macromol.3c01345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/04/2023] [Indexed: 10/17/2023]
Abstract
The study of aggregate formation and its controllable effect on luminescence behavior has a far-reaching influence in establishing a universal aggregation photophysical mechanism. In this paper, we obtained clusters with different extents of aggregation by heat-induced or light-triggered aggregation of a new polyurethane derivative (PUE). The controllable regulation of multicolor fluorescence of a single (nondoped) polymeric material is realized. The luminescence behavior of PUE varies with microscopic control of the aggregation structure. Compared with the powder state, the enhanced atom-atom and group-group interactions of PUE-gel effectively limit the nonradiative transitions in the excited state and result in a red-shift in emission. This work avoids complex organic synthesis and demonstrates a simple strategy to induce aggregation and regulate the emitting color of macromolecules, providing a template for developing new materials for multicolor fluorescence. In addition, a pattern was constructed with encryption, anticounterfeiting, and information transmission functions which provide a proof-of-concept demonstration of the practical potential of PUE as a smart material.
Collapse
Affiliation(s)
- Nan Jiang
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Ke-Xin Li
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Wei Xie
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Shu-Ran Zhang
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Xin Li
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Yue Hu
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Yan-Hong Xu
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Xing-Man Liu
- School
of Chemistry and Chemical Engineering, Ningxia
University, Yinchuan 750021, China
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| |
Collapse
|
29
|
Xie W, Deng J, Bai Y, Xiao J, Wang H. Hydrogen-Bonding-Driven Nontraditional Photoluminescence of a β-Enamino Ester. Molecules 2023; 28:5950. [PMID: 37630202 PMCID: PMC10458074 DOI: 10.3390/molecules28165950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Nontraditional luminogens (NTLs) do not contain any conventional chromophores (large π-conjugated structures), but they do show intrinsic photoluminescence. To achieve photoluminescence from NTLs, it is necessary to increase the extent of through-space conjugation (TSC) and suppress nonradiative decay. Incorporating strong physical interactions such as hydrogen bonding is an effective strategy to achieve this. In this work, we carried out comparative studies on the photoluminescence behaviors of two β-enamino esters with similar chemical structures, namely methyl 3-aminocrotonate (MAC) and methyl (E)-3-(1-pyrrolidinyl)-2-butenoate (MPB). MAC crystal emits blue fluorescence under UV irradiation. The critical cluster concentration of MAC in ethanol solutions was determined by studying the relationship between the photoluminescence intensity (UV-visible absorbance) and concentration. Furthermore, MAC exhibits solvatochromism, and its emission wavelength redshifts as the solvent polarity increases. On the contrary, MPB is non-emissive in both solid state and solutions. Crystal structures and theoretical calculation prove that strong inter- and intramolecular hydrogen bonds lead to the formation of large amounts of TSC of MAC molecules in aggregated states. No hydrogen bonds and thus no effective TSC can be formed between or within MPB molecules, and this is the reason for its non-emissive nature. This work provides a deeper understanding of how hydrogen bonding contributes to the luminescence of NTLs.
Collapse
Affiliation(s)
| | | | | | | | - Huiliang Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China; (W.X.)
| |
Collapse
|
30
|
Fu K, Fu J, Qin F, Gao X, Ye Z, Liu P, Wang Y. Multilevel Simultaneous Lighting-Imaging System. ACS OMEGA 2023; 8:19987-19993. [PMID: 37305297 PMCID: PMC10249127 DOI: 10.1021/acsomega.3c02072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023]
Abstract
In a III-nitride multiple quantum well (MQW) diode biased with a forward voltage, electrons recombine with holes inside the MQW region to emit light; meanwhile, the MQW diode utilizes the photoelectric effect to sense light when higher-energy photons hit the device to displace electrons in the diode. Both the injected electrons and the liberated electrons are gathered inside the diode, thereby giving rise to a simultaneous emission-detection phenomenon. The 4 × 4 MQW diodes could translate optical signals into electrical ones for image construction in the wavelength range from 320 to 440 nm. This technology will change the role of MQW diode-based displays since it can simultaneously transmit and receive optical signals, which is of crucial importance to the accelerating trend of multifunctional, intelligent displays using MQW diode technology.
Collapse
Affiliation(s)
- Kang Fu
- Grünberg
Research Centre, Nanjing University of Posts
and Telecommunications, Nanjing 210003, China
| | - Jianwei Fu
- Grünberg
Research Centre, Nanjing University of Posts
and Telecommunications, Nanjing 210003, China
| | - Feifei Qin
- Grünberg
Research Centre, Nanjing University of Posts
and Telecommunications, Nanjing 210003, China
| | - Xumin Gao
- Grünberg
Research Centre, Nanjing University of Posts
and Telecommunications, Nanjing 210003, China
| | - Ziqi Ye
- Grünberg
Research Centre, Nanjing University of Posts
and Telecommunications, Nanjing 210003, China
| | - Pengzhan Liu
- Grünberg
Research Centre, Nanjing University of Posts
and Telecommunications, Nanjing 210003, China
| | - Yongjin Wang
- GaN Optoelectronic Integration International Cooperation Joint Laboratory
of Jiangsu Province, Nanjing University
of Posts and Telecommunications, Nanjing 210003, China
| |
Collapse
|
31
|
Wu Z, Choi H, Hudson ZM. Achieving White-Light Emission Using Organic Persistent Room Temperature Phosphorescence. Angew Chem Int Ed Engl 2023:e202301186. [PMID: 37189285 DOI: 10.1002/anie.202301186] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Indexed: 05/17/2023]
Abstract
Artificial lighting currently consumes approximately one-fifth of global electricity production. Organic emitters with white persistent RTP have potential for applications in energy-efficient lighting technologies, due to their ability to harvest both singlet and triplet excitons. Compared to heavy metal phosphorescent materials, they have significant advantages in cost, processability, and reduced toxicity. Phosphorescence efficiency can be improved by introducing heteroatoms, heavy atoms, or by incorporating luminophores within a rigid matrix. White-light emission can be achieved by tuning the ratio of fluorescence to phosphorescence intensity or by pure phosphorescence with a broad emission spectrum. This review summarizes recent advances in the design of purely organic RTP materials with white-light emission, describing single-component and host-guest systems. White phosphorescent carbon dots and representative applications of white-light RTP materials are also introduced.
Collapse
Affiliation(s)
- Zhu Wu
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Heekyoung Choi
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
32
|
Li H, Jin B, Wang Y, Deng B, Wang D, Tang BZ. As Fiber Meets with AIE: Opening a Wonderland for Smart Flexible Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210085. [PMID: 36479736 DOI: 10.1002/adma.202210085] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Aggregation-induced emission luminogens (AIEgens) have recently been developed at a tremendous pace in the area of organic luminescent materials by virtue of their superior properties. However, the practical applications of AIEgens still face the challenge of transforming AIEgens from molecules into materials. Till now, many AIEgens have been integrated into fiber, endowing the fiber with prominent fluorescence and/or photosensitizing capacities. AIEgens and fiber complement each other for making progress in flexible smart materials, in which the utilization of AIEgens creates new application possibilities for fiber, and the fiber provides an excellent carrier for AIEgens towards realizing the conversion from molecule to materials and an ideal platform to research the aggregate state of AIEgens in mesoscale and macroscale. This review begins with a brief summary of the recent advances related to some typical AIEgens with various functions and the technology for the fabrication of AIEgen-functionalized fiber. The most representative applications are then highlighted by focusing on energy conversion, personal protective equipment, biomedical, sensor, and fluorescence-related fields. Finally, the challenges, opportunities, and tendencies in future development are discussed in detail. This review hopes to inspire innovation in AIEgens and fiber from the view of mesoscale and macroscale.
Collapse
Affiliation(s)
- Haoxuan Li
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Bingqi Jin
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yuanwei Wang
- Centre for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518061, P. R. China
| | - Bingyao Deng
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Dong Wang
- Centre for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518061, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
33
|
Ascorbic Acid-Caused Quenching Effect of Protein Clusteroluminescence Probe: The Fast Fluorescent Detection of Ascorbic Acid in Vegetables. Molecules 2023; 28:molecules28052162. [PMID: 36903407 PMCID: PMC10003969 DOI: 10.3390/molecules28052162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
It is interesting and meaningful to explore fluorescent probes for novel rapid detection methods. In this study, we discovered a natural fluorescence probe, bovine serum albumin (BSA), for the assay of ascorbic acid (AA). Due to clusterization-triggered emission (CTE), BSA has the character of clusteroluminescence. AA shows an obvious fluorescence quenching effect on BSA, and the quenching effect increases with increasing concentrations of AA. After optimization, a method for the rapid detection of AA is established by the AA-caused fluorescence quenching effect. The fluorescence quenching effect reaches saturation after 5 min of incubation time and the fluorescence is stable within more than one hour, suggesting a rapid and stable fluorescence response. Moreover, the proposed assay method shows good selectivity and a wide linear range. To further study the mechanisms of AA-caused fluorescence quenching effect, some thermodynamic parameters are calculated. The main intermolecular force between BSA and AA is electrostatic, presumably leading to the inhibiting CTE process of BSA. This method also shows acceptable reliability for the real vegetable sample assay. In summary, this work will not only provide an assay strategy for AA, but also open an avenue for the application expansion of CTE effect of natural biomacromolecules.
Collapse
|
34
|
Clusteroluminescence in Organic, Inorganic, and Hybrid Systems: A Review. THEOR EXP CHEM+ 2023. [DOI: 10.1007/s11237-023-09747-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
35
|
Li Q, Wang X, Huang Q, Li Z, Tang BZ, Mao S. Molecular-level enhanced clusterization-triggered emission of nonconventional luminophores in dilute aqueous solution. Nat Commun 2023; 14:409. [PMID: 36697406 PMCID: PMC9876902 DOI: 10.1038/s41467-023-36115-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Nonconjugated and nonaromatic luminophores based on clustering-triggered emission derived from through-space conjugation have drawn emerging attention in recent years. The reported nonconventional luminophores are emissive in concentrated solution and/or in the solid state, but they tend to be nonluminescent in dilute solution, which greatly limits their sensing and imaging applications. Herein, we design unique clusteroluminogens through modification of cyclodextrin (CD) with amino acids to enable the intermolecular and intramolecular clusterization of chromophores in CD-based confined space. The resulted through-space interactions along with conformation rigidification originated from hydrogen bond interaction and complexation interaction generate blue to cyan fluorescence even in the dilute solution (0.035 wt.%, quantum yield of 40.70%). Moreover, the prepared histidine-modified CD (CDHis) is demonstrated for fluorescent detection of chlortetracycline with high sensitivity and selectivity. This work provides a new and universal strategy to synthesize nonconventional luminophores with bright fluorescence in dilute aqueous solution through molecular-level enhanced clusterization-triggered emission.
Collapse
Affiliation(s)
- Qiuju Li
- grid.24516.340000000123704535College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092 PR China
| | - Xingyi Wang
- grid.24516.340000000123704535College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092 PR China
| | - Qisu Huang
- grid.24516.340000000123704535College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092 PR China
| | - Zhuo Li
- grid.24516.340000000123704535College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092 PR China
| | - Ben Zhong Tang
- grid.10784.3a0000 0004 1937 0482School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen City, Guangdong 518172 PR China
| | - Shun Mao
- grid.24516.340000000123704535College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092 PR China
| |
Collapse
|
36
|
Wang K, Qu L, Yang C. Long-Lived Dynamic Room Temperature Phosphorescence from Carbon Dots Based Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206429. [PMID: 36609989 DOI: 10.1002/smll.202206429] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
As a type of room temperature phosphorescence (RTP) material, carbon dots (CDs) always show short lifetime and low phosphorescence efficiency. To counter these disadvantages, several strategies, such as embedding in rigid matrix, introducing of heteroatom, crosslink-enhanced emission, etc., are well developed. Consequently, lots of CDs-based RTP materials are obtained. Doping of CDs into various matrix is the dominant method for preparation of long-lived CDs-based RTP materials so far. The desired CDs@matrix composites always display outstanding RTP performances. Meanwhile, matrix-free CDs and carbonized polymer dots-based RTP materials are also widely developed. Amounts of CDs possessing ultra-long lived, multiple colored, and dynamic RTP emission are successfully obtained. Herein, the recent progress achieved in CDs-based RTP materials as well as the corresponding efficient strategies and emission mechanisms are summarized and reviewed in detail. Due to CDs-based RTP materials possess excellent chemical stability, photostability and low biological toxicity, they exhibit great application potential in the fields of anti-counterfeiting, data encryption, and biological monitoring. The application of the CDs-based RTP materials is also introduced in this review. As a promising functional material, development of long wavelength RTP emitting CDs with long lifetime is still challengeable, especially for the red and near-infrared emitting RTP materials.
Collapse
Affiliation(s)
- Kaiti Wang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Lunjun Qu
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chaolong Yang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| |
Collapse
|
37
|
Zheng X, Han Q, Lin Q, Li C, Jiang J, Guo Q, Ye X, Yuan WZ, Liu Y, Tao X. A processable, scalable, and stable full-color ultralong afterglow system based on heteroatom-free hydrocarbon doped polymers. MATERIALS HORIZONS 2023; 10:197-208. [PMID: 36331106 DOI: 10.1039/d2mh00998f] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although room-temperature phosphorescence (RTP) organic materials are a widely-studied topic especially popular in recent decades, long-lived RTP able to fulfil broad time-resolved application requirements reliably, are still rare. Polymeric materials doped with phosphorescent chromophores generally feature high productivity and diverse applications, compared with their crystalline counterparts. This study proves that pure polycyclic aromatic hydrocarbons (PAHs) may even outperform chromophores containing hetero- or heavy-atoms. Full-color (blue, green, orange and red) polymer-PAHs with lifetimes >5000 ms under ambient conditions are constructed, which provide impressive values compared to the widely reported polymer-based RTP materials in the respective color regions. The polymer-PAHs could be fabricated on a large-scale using various methods (solution, melt and in situ polymerization), be processed into diverse forms (writing ink, fibers, films, and complex 3D architectures), and be used in a range of applications (anti-counterfeiting, information storage, and oxygen sensors). Plus their environmental (aqueous) stability makes the polymer-PAHs a promising option to expand the portfolio of organic RTPs.
Collapse
Affiliation(s)
- Xiaoxin Zheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Quanxiang Han
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Qinglian Lin
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Cuicui Li
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Jinke Jiang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Qing Guo
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Xin Ye
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Wang Zhang Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Xutang Tao
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| |
Collapse
|
38
|
Zhu Y, Chen Y, Xiong Z, Jiang M, Feng H, Qian Z. Base-gated photochromism of C3-Symmetric AIEgens through multicyano-sensitized benzene rings. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
39
|
Cheng X, Hu H, Wu Y, Ma Z, Ma Z. Photoinduced Clusteroluminescence Redshift of Poly(methyl acrylate) via Radicals. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56185-56192. [PMID: 36493313 DOI: 10.1021/acsami.2c19121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
One-step photopolymerization and photochromism of clusteroluminescence (CL) polymers mean that the polymer materials can be prepared on a large scale and applied widely. Herein, we reported unique photochromic CL polymers prepared by one-step radical photopolymerization. Seven copolymerized films (PMAxBA) with methyl acrylate and butyl acrylate as monomers, a cross-linked PMA (PMA-CL) film, a double-network PMAPBA film based on the first network PMA-CL, and four PMA films with increasing content of photoinitiator ethoxy benzoin (BEE) were prepared to study CL formation and transition. Experimental results prove that increasing the ratio of the PMA chains in PMAxBA enhances the photochromic effect, which verifies the main role of PMA chains with the shorter branched alkanes. Surprisingly, cross-linking in PMA-CL strengthens interchain packing and interchain through-space interactions (TSIs), leading to the formation of larger clusters and further CL redshift from 410 to 491 nm, whereas the PBA chains filled in the cross-linked network weakens interchain TSIs among PMA chains and makes CL red shift from 410 to 472 nm. In addition, as the BEE content increases in the PMA films, a higher radical concentration also promotes the formation of TSIs and clusters, which benefits the photochromism. For applications, colorless, dissolvable, and thermoplastic PMA featuring photochromism in this case can be widely used in information loading, rewriting, and multifunctional coating. This work provides a new strategy to enrich the properties of CL polymers toward diverse applications.
Collapse
Affiliation(s)
- Xin Cheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huan Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yu Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhimin Ma
- College of Engineering, Peking University, Beijing 100871, China
| | - Zhiyong Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
40
|
Clustering-triggered phosphorescence of nonconventional luminophores. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1378-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Huang R, Wang C, Tan D, Wang K, Zou B, Shao Y, Liu T, Peng H, Liu X, Fang Y. Single‐Fluorophore‐Based Organic Crystals with Distinct Conformers Enabling Wide‐Range Excitation‐Dependent Emissions. Angew Chem Int Ed Engl 2022; 61:e202211106. [DOI: 10.1002/anie.202211106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Rongrong Huang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education) School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Shaanxi 710119 P. R. China
| | - Chao Wang
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Davin Tan
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Kai Wang
- State Key Laboratory of Superhard Materials Jilin University Changchun Jilin 130012 P. R. China
| | - Bo Zou
- State Key Laboratory of Superhard Materials Jilin University Changchun Jilin 130012 P. R. China
| | - Yangtao Shao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education) School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Shaanxi 710119 P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education) School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Shaanxi 710119 P. R. China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education) School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Shaanxi 710119 P. R. China
| | - Xiaogang Liu
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education) School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Shaanxi 710119 P. R. China
| |
Collapse
|
42
|
Huang R, Wang C, Tan D, Wang K, Zou B, Shao Y, Liu T, Peng H, Liu X, Fang Y. Single‐Fluorophore‐Based Organic Crystals with Distinct Conformers Enabling Wide‐Range Excitation‐Dependent Emissions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rongrong Huang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Chao Wang
- Singapore University of Technology and Design Science, Math and Technology SINGAPORE
| | - Davin Tan
- Singapore University of Technology and Design Science, Math and Technology SINGAPORE
| | - Kai Wang
- Jilin University State Key Laboratory of Superhard Materials CHINA
| | - Bo Zou
- Jilin University State Key Laboratory of Superhard Materials CHINA
| | - Yangtao Shao
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Taihong Liu
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Haonan Peng
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Xiaogang Liu
- Singapore University of Technology and Design 8 Somapah Road487372Singapore 487372 Singapore SINGAPORE
| | - Yu Fang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| |
Collapse
|