1
|
Ma Y, Gao Q, Li Y, Du Y, Huang Y, Sun Y, Chen X, Wu W, Wu F, Wang Z, Zhao L, Hu Y, Han C, Li L, Yang C, Hu W. Tuning Absorption State and Intermolecular Potential of Organic Semiconductors for Narrowband Ultraviolet Photodetection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414589. [PMID: 39916537 DOI: 10.1002/adma.202414589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/15/2025] [Indexed: 03/21/2025]
Abstract
Narrowband response of organic semiconductors determines the band selectivity and anti-interference of the organic photodetectors, which are pursued for a long time but have not yet been resolved in the UV band. Herein, a feasible strategy is developed to realize narrowband UV response by tuning the absorption state and intermolecular potential of organic semiconductors. The as-designed non-Donor-Acceptor molecule, 2,5-diphenylthieno[3,2-b]thiophene (2,5-DPTT), exhibits narrowband absorption by fully suppressing the charge transfer state absorption. Simultaneously, the intermolecular potential is significantly enhanced (to ≈90 KJ mol-1) by modulating the molecular planarity. Consequently, the UV photodetector based on 2,5-DPTT achieves excellent narrowband response at 310 nm wavelength and a record-breaking photosensitivity (P = 1.21 × 106) in the deep UV range. In the demonstration application of flame alarm, the flame detector based on 2,5-DPTT single crystal exhibits excellent anti-interference capability. This work provides the inspiration for designing narrowband responsive organic semiconductors and building up multifunctional optoelectronic devices.
Collapse
Affiliation(s)
- Yining Ma
- State Key Laboratory of Advanced Materials for Intelligent Sensing & Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Quan Gao
- State Key Laboratory of Advanced Materials for Intelligent Sensing & Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yudong Li
- State Key Laboratory of Advanced Materials for Intelligent Sensing & Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yuankai Du
- State Key Laboratory of Advanced Materials for Intelligent Sensing & Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yinan Huang
- State Key Laboratory of Advanced Materials for Intelligent Sensing & Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yajing Sun
- State Key Laboratory of Advanced Materials for Intelligent Sensing & Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Xiaosong Chen
- State Key Laboratory of Advanced Materials for Intelligent Sensing & Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Wenbo Wu
- State Key Laboratory of Advanced Materials for Intelligent Sensing & Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Fan Wu
- State Key Laboratory of Advanced Materials for Intelligent Sensing & Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Zhongwu Wang
- State Key Laboratory of Advanced Materials for Intelligent Sensing & Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Radio Frequency Heterogeneous Integration, and International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Advanced Intelligent Protective Equipment Technology, Ministry of Education, Hebei University of Technology, Tianjin, 300401, China
| | - Libin Zhao
- Key Laboratory of Advanced Intelligent Protective Equipment Technology, Ministry of Education, Hebei University of Technology, Tianjin, 300401, China
| | - Yongxu Hu
- State Key Laboratory of Advanced Materials for Intelligent Sensing & Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Cheng Han
- State Key Laboratory of Radio Frequency Heterogeneous Integration, and International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Liqiang Li
- State Key Laboratory of Advanced Materials for Intelligent Sensing & Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wenping Hu
- State Key Laboratory of Advanced Materials for Intelligent Sensing & Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
2
|
Yao X, Li Y, Sun Y, Li Y, Li T, Tang Z, Wu J, Fei Z. High External Quantum Efficiency and Ultra-Narrowband Organic Photodiodes Using Single-Component Photoabsorber With Multiple-Resonance Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414465. [PMID: 39655355 DOI: 10.1002/adma.202414465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/16/2024] [Indexed: 02/13/2025]
Abstract
Organic photodiodes (OPDs) that utilize wavelength-selective absorbing molecules offer a direct approach to capturing specific wavelengths of light in multispectral sensors/imaging systems without filters. However, they exhibit broad response bandwidths, low external quantum efficiency (EQE), and often require compromises in two-component photoactive materials. Herein, the first utility of boron-nitrogen (BN) single-component photoabsorbers, leveraging a multi-resonance effect are introduced to attain OPDs with both record-high EQE of 33.77% and ultra-small full-width half-maximum (FWHM) of 36 nm in the reported narrowband OPDs using single-component photoabsorbers. It is found that the outstanding performance of these narrowband OPDs can be attributed to the ultra-small FWHM, slow charge recombination, low activation energy, and balanced bipolar charge transport within the para-tert-butyl substituted B,N-embedded rigid polycyclic molecule (BNCz) film. Furthermore, BN derivatives such as BN(p)SCH3, BN(p)SO2CH3, and pyBN-m-H have also shown high EQE, minimal FWHM, and tunable photoresponse peaks ranging from blue-violet to blue-turquoise, highlighting the potential of BN molecules and molecular engineering in the development of novel narrowband absorbers for advanced wavelength-selective OPDs. Such pioneering working can provide a class of novel narrowband absorbers to propel the advancement of high-performance wavelength-selective OPDs.
Collapse
Affiliation(s)
- Xiang Yao
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Tianjin, 300072, China
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Yanru Li
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Yajing Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, School of Science, Tianjin University, Tianjin, 300072, China
| | - Yao Li
- Function Hub, Advanced Materials Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, 511400, China
| | - Ting Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jiaying Wu
- Function Hub, Advanced Materials Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, 511400, China
- School of Engineering, Department of Chemical Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
| | - Zhuping Fei
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
3
|
Mandal S, Mantilla HM, Loganathan K, Faber H, Sharma A, Gedda M, Yengel E, Goswami DK, Heeney M, Anthopoulos TD. Ultra-Fast Moisture Sensor for Respiratory Cycle Monitoring and Non-Contact Sensing Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414005. [PMID: 39821214 PMCID: PMC11854870 DOI: 10.1002/adma.202414005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/01/2025] [Indexed: 01/19/2025]
Abstract
As human-machine interface hardware advances, better sensors are required to detect signals from different stimuli. Among numerous technologies, humidity sensors are critical for applications across different sectors, including environmental monitoring, food production, agriculture, and healthcare. Current humidity sensors rely on materials that absorb moisture, which can take some time to equilibrate with the surrounding environment, thus slowing their temporal response and limiting their applications. Here, this challenge is tackled by combining a nanogap electrode (NGE) architecture with chicked egg-derived albumen as the moisture-absorbing component. The sensors offer inexpensive manufacturing, high responsivity, ultra-fast response, and selectivity to humidity within a relative humidity range of 10-70% RH. Specifically, the egg albumen-based sensor showed negligible response to relevant interfering species and remained specific to water moisture with a room-temperature responsivity of 1.15 × 104. The nm-short interelectrode distance (circa 20 nm) of the NGE architecture enables fast temporal response, with rise/fall times of 10/28 ms, respectively, making the devices the fastest humidity sensors reported to date based on a biomaterial. By leveraging these features, non-contact moisture sensing and real-time respiratory cycle monitoring suitable for diagnosing chronic diseases such as sleep apnea, asthma, and pulmonary disease are demonstrated.
Collapse
Affiliation(s)
- Suman Mandal
- Physical Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Harold Mazo Mantilla
- Physical Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Kalaivanan Loganathan
- Physical Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Hendrik Faber
- Physical Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Abhinav Sharma
- Physical Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Murali Gedda
- Physical Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Emre Yengel
- Physical Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Dipak Kumar Goswami
- Organic Electronics LaboratoryDepartment of PhysicsIndian Institute of Technology KharagpurKharagpur721302India
| | - Martin Heeney
- Physical Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Thomas D. Anthopoulos
- Henry Royce Institute and Photon Science InstituteDepartment of Electrical and Electronic EngineeringThe University of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
4
|
Zhang L, Lee S, Park SY, Sandberg OJ, Yang EJ, Meredith P, Kim Y, Kim J. High Thickness Tolerance in All-Polymer-Based Organic Photovoltaics Enables Efficient and Stable In-Door Operation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408181. [PMID: 39301923 PMCID: PMC11558079 DOI: 10.1002/advs.202408181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Organic photovoltaics (OPVs) have great potential to drive low-power consumption electronic devices under indoor light due to their highly tunable optoelectronic properties. Thick devices (>300 nm photo-active junctions) are desirable to maximize photocurrent and to manufacture large-scale modules via solution-processing. However, thick devices usually suffer from severe charge recombination, deteriorating device performances. Herein, the study demonstrates excellent thickness tolerance of all-polymer-based PVs for efficient and stable indoor applications. Under indoor light, device performance is less dependent on photoactive layer thickness, exhibiting the best maximum power output in thick devices (34.7 µW cm-2 in 320-475 nm devices). Thick devices also exhibit much better photostability compared with thin devices. Such high thickness tolerance of all-polymer-based PV devices under indoor operation is attributed to strongly suppressed space-charge effects, leading to reduced bimolecular recombination losses in thick devices. The unbalanced charge carrier mobilities are identified as the main cause for significant space-charge effects, which is confirmed by drift-diffusion simulations. This work suggests that all-polymer-based PVs, even with unbalanced mobilities, are highly desirable for thick, efficient, and stable devices for indoor applications.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Physics and Centre for Processable ElectronicsImperial College LondonPrince Consort RoadLondonSW7 2AZUK
| | - Seonjeong Lee
- Department of Chemistry and Research Institute of Molecular Alchemy (RIMA)Gyeongsang National UniversityJinjuGyeongnam660‐701South Korea
| | - Song Yi Park
- Department of Physics and Centre for Processable ElectronicsImperial College LondonPrince Consort RoadLondonSW7 2AZUK
- Present address:
Department of PhysicsPukyong National UniversityBusan48513Republic of Korea
| | - Oskar J. Sandberg
- Physics, Faculty of Science and EngineeringÅbo Akademi UniversityHenrikinkatu 2Turku20500Finland
| | - Emily J. Yang
- Department of Physics and Centre for Processable ElectronicsImperial College LondonPrince Consort RoadLondonSW7 2AZUK
| | - Paul Meredith
- Sustainable Advanced Materials (Sêr SAM) GroupCentre for Integrative Semiconductor Materials and Department of PhysicsSwansea UniversitySingleton ParkSwanseaSA2 8PPUK
| | - Yun‐Hi Kim
- Department of Chemistry and Research Institute of Molecular Alchemy (RIMA)Gyeongsang National UniversityJinjuGyeongnam660‐701South Korea
| | - Ji‐Seon Kim
- Department of Physics and Centre for Processable ElectronicsImperial College LondonPrince Consort RoadLondonSW7 2AZUK
| |
Collapse
|
5
|
Li C, Yao G, Gu X, Lv J, Hou Y, Lin Q, Yu N, Abbasi MS, Zhang X, Zhang J, Tang Z, Peng Q, Zhang C, Cai Y, Huang H. Highly efficient organic solar cells enabled by suppressing triplet exciton formation and non-radiative recombination. Nat Commun 2024; 15:8872. [PMID: 39402068 PMCID: PMC11473827 DOI: 10.1038/s41467-024-53286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/08/2024] [Indexed: 10/17/2024] Open
Abstract
The high non-radiative energy loss is a bottleneck issue that impedes the improvement of organic solar cells. The formation of triplet exciton is thought to be the main source of the large non-radiative energy loss. Decreasing the rate of back charge transfer is considered as an effective approach to alleviate the relaxation of the charge-transfer state and the triplet exciton generation. Herein, we develops an efficient ternary system based on D18:N3-BO:F-BTA3 by regulating the charge-transfer state disorder and the rate of back charge transfer of the blend. With the addition of F-BTA3, a well-defined morphology with a more condensed molecular packing is obtained. Moreover, a reduced charge-transfer state disorder is demonstrated in the ternary blend, which decreases the rate of back charge transfer as well as the triplet exciton formation, and therefore hinders the non-radiative recombination pathways. Consequently, D18:N3-BO:F-BTA3-based device produces a low non-radiative energy loss of 0.183 eV and a record-high efficiency of 20.25%. This work not only points towards the significant role of the charge-transfer state disorder on the suppression of triplet exciton formation and the non-radiative energy loss, but also provides a valuable insight for enhancing the performance of OSCs.
Collapse
Affiliation(s)
- Congqi Li
- College of Materials Science and Opto-Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Guo Yao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Xiaobin Gu
- College of Materials Science and Opto-Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jikai Lv
- College of Materials Science and Opto-Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuqi Hou
- College of Materials Science and Opto-Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qijie Lin
- College of Materials Science and Opto-Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Na Yu
- Center for Advanced Low-Dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Misbah Sehar Abbasi
- College of Materials Science and Opto-Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xin Zhang
- College of Materials Science and Opto-Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
| | - Zheng Tang
- Center for Advanced Low-Dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yunhao Cai
- College of Materials Science and Opto-Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
6
|
Zhang G, Zhang T, Xia Q, Chen Q, Wang J. Enhanced Carrier Lifetime and Mobility in Monolayer NbOI 2. J Phys Chem Lett 2024; 15:10032-10038. [PMID: 39321330 DOI: 10.1021/acs.jpclett.4c02443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The lifetime and mobility of hot carriers are critical parameters for assessing the performance of optoelectronic materials, as they directly impact the response speed and operational efficiency of devices. Combining first-principles calculations with nonadiabatic molecular dynamics (NAMD) simulations, we systematically investigated the electronic properties and carrier dynamics of monolayer NbOI2. Our findings indicate that, at room temperature, this material demonstrates a carrier lifetime of up to ∼13 ns and an electron mobility reaching as high as ∼9 × 103 cm2 V-1 s-1. The low Young's modulus makes it susceptible to deformation under external stress, and we found that the carrier lifetime extends to ∼40 ns under a 4% tensile strain, along with a significant increase in hole mobility. This study elucidates the carrier dynamics in monolayer NbOI2, facilitating its potential application in future flexible optoelectronic devices.
Collapse
Affiliation(s)
- Guitao Zhang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Tingbo Zhang
- Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Qian Xia
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Qian Chen
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Jinlan Wang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
- Suzhou Laboratory, Suzhou 215125, China
| |
Collapse
|
7
|
Kim HJ, Kim B, Yun S, Yun DJ, Choi T, Lee S, Minami D, Heo CJ, Lim J, Shibuya H, Lim Y, Shin J, Hong H, Park JI, Fang F, Seo H, Yi J, Park S, Lee HH, Park KB. Dual Chalcogen-Bonding Interaction for High-Performance Filterless Narrowband Organic Photodetectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309634. [PMID: 38845070 DOI: 10.1002/smll.202309634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/24/2024] [Indexed: 10/01/2024]
Abstract
A novel green-absorbing organic molecule featuring dual intramolecular chalcogen bonds is synthesized and characterized. This molecule incorporates two such bonds: one between a tellurium atom and the oxygen atom of a carbonyl moiety, and the other between the tellurium atom and the adjacent nitrogen atom within a pyridine moiety. The molecule, featuring dual intramolecular chalcogen bonds exhibits a narrow absorption spectrum and elevated absorption coefficients, closely aligned with a resonance parameter of approximately 0.5. This behavior is due to its cyanine-like characteristics and favorable electrical properties, which are a direct result of its rigid, planar molecular structure. Therefore, this organic molecule forming dual intramolecular chalcogen bonds achieves superior optoelectronic performance in green-selective photodetectors, boasting an external quantum efficiency of over 65% and a full-width at half maximum of less than 95 nm while maintaining the performance after 1000 h of heating aging at 85 °C. Such organic photodetectors are poised to enhance stacked organic photodetector-on-silicon hybrid image sensors, paving the way for the next-generation of high-resolution and high-sensitivity image sensors.
Collapse
Affiliation(s)
- Hyeong-Ju Kim
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Bongsu Kim
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Sungyoung Yun
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Dong-Jin Yun
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Taejin Choi
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Sangjun Lee
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Daiki Minami
- Innovation Center, Samsung Electronics, Co. Ltd., 1 Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do, 18448, Republic of Korea
| | - Chul-Joon Heo
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Juhyung Lim
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Hiromasa Shibuya
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Younhee Lim
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Jisoo Shin
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Hyerim Hong
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Jeong-Il Park
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Feifei Fang
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Hwijoung Seo
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Jeoungin Yi
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Sangho Park
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Hyun Hwi Lee
- Pohang Accelerator Laboratory (PAL), POSTECH, Pohang, 37673, Republic of Korea
| | - Kyung-Bae Park
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| |
Collapse
|
8
|
Kim MI, Lee S, Kang J, Kim J, Wu Z, Won JH, Baek S, Chung DS, Kim JY, Jung IH, Woo HY. Vertically Phase Separated Photomultiplication Organic Photodetectors with p-n Heterojunction Type Ultrafast Dynamic Characteristics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404597. [PMID: 38975985 DOI: 10.1002/adma.202404597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/30/2024] [Indexed: 07/09/2024]
Abstract
Photomultiplication (PM)-type organic photodetectors (OPDs), which typically form a homogeneous distribution (HD) of n-type dopants in a p-type polymer host (HD PM-type OPDs), have achieved a breakthrough in device responsivity by surpassing a theoretical limit of external quantum efficiency (EQE). However, they face limitations in higher dark current and slower dynamic characteristics compared to p-n heterojunction (p-n HJ) OPDs due to inherent long lifetime of trapped electrons. To overcome this, a new PM-type OPD is developed that demonstrates ultrafast dynamic properties through a vertical phase separation (VPS) strategy between the p-type polymer and n-type acceptor, referred to as VPS PM-type OPDs. Notably, VPS PM-type OPDs show three orders of magnitude increase in -3 dB cut-off frequency (120 kHz) and over a 200-fold faster response time (rising time = 4.8 µs, falling time = 8.3 µs) compared to HD PM-type OPDs, while maintaining high EQE of 1121% and specific detectivity of 2.53 × 1013 Jones at -10 V. The VPS PM-type OPD represents a groundbreaking advancement by demonstrating the coexistence of p-n HJ and PM modes within a single photoactive layer for the first time. This innovative approach holds the potential to enhance both static and dynamic properties of OPDs.
Collapse
Affiliation(s)
- Myeong In Kim
- Department of Organic and Nano Engineering and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Soonyong Lee
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Jinhyeon Kang
- Light/Display Convergence R&BD Division, Cheorwon Plasma Research Institute, 7194 Geumgang-ro, Seo-myeon, Cheorwon-gun, Gangwon-do, 24062, Republic of Korea
| | - Jaehyeong Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ziang Wu
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Jong Ho Won
- Department of Energy Engineering, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seyeon Baek
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dae Sung Chung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jin Young Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - In Hwan Jung
- Department of Organic and Nano Engineering and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
9
|
Ulusoy M, Koçyiğit S, Tataroğlu A, Altındal Yerişkin S. The Electrical and Photodetector Characteristics of the Graphene:PVA/p-Si Schottky Structures Depending on Illumination Intensities. ACS OMEGA 2024; 9:32243-32255. [PMID: 39072130 PMCID: PMC11270684 DOI: 10.1021/acsomega.4c05219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024]
Abstract
Five samples were fabricated to obtain a diode with a PVA interface, both with and without graphene doping at different rates with high rectification in the dark. The electrospinning method was employed to apply the doped and undoped solutions, creating the interlayers. Since the diode with a 1 wt % graphene-doped PVA interlayer outperformed the other samples, the main electrical and photodetector characteristics of this structure were investigated. The electrical parameters of the diode were probed by the TE, Norde, and Cheung methods, and the parameters (n and ϕB) acquired by both approaches were significantly influenced by illumination and voltages. The interface/surface state intensity values (N ss) were also calculated in the dark and under each illumination as a function of the band/energy gap depth (E ss-E v). The time-dependent steady-state conditions and rise-decay behavior of the photocurrents during illumination were also investigated. Due to the high photocurrent values, the photosensitivity at zero bias is approximately 1.4 × 104 at 100 mW cm-2. The responsivity and detectivity values appear to be altered significantly with changes in the illumination and voltage. Additionally, a double logarithmic plot of I ph vs P reveals good linearity with slope values ranging from 0.5 to 1.
Collapse
Affiliation(s)
- Murat Ulusoy
- Department
of Physics, Faculty of Science, Gazi University, Teknikokullar, 06500 Ankara, Türkiye
| | - Serhat Koçyiğit
- Central
Laboratory Application and Research Centre, Bingol University, 12000 Bingol, Türkiye
| | - Adem Tataroğlu
- Department
of Physics, Faculty of Science, Gazi University, Teknikokullar, 06500 Ankara, Türkiye
| | - S. Altındal Yerişkin
- Department
of Chemistry and Chemical Processing Technologies, Vocational Highschool
of Technical Sciences, Gazi University, Teknikokullar, 06500 Ankara, Türkiye
| |
Collapse
|
10
|
Zhang Z, Liu J, Wang L, Wei Q, Li M, Bao C, Bian Q. Bias-Switchable Dual-Mode Organic Photodetector with High Operational Stability Using Self-Trapped Cs 3Cu 2I 5 Interfacial Layer. Angew Chem Int Ed Engl 2024; 63:e202404067. [PMID: 38729916 DOI: 10.1002/anie.202404067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/12/2024]
Abstract
Conventional photovoltaic (PV)-photodetectors are hard to detect fainted signals, while photomultiplication (PM)-capable devices indispensable for detecting weak light and are prone to degrade under strong light illumination and large bias, and it is urgent to realize highly efficient integrated detecting system with both PM and PV operation modes. In this work, one lead-free Cs3Cu2I5 nanocrystals with self-trapping exciton nature was introduced as interfacial layer adjacent to bulk and layer-by-layer heterojunction structure, and corresponding organic photodetectors with bias-switchable dual modes are demonstrated. The fabricated device exhibits low operating bias (0 V for PV mode and 0.8 V for PM mode), high specific detectivity (~1013 Jones), fast response speed as low as 1.59 μs, large bandwidth over 0.2 MHz and long-term operational stability last for 4 months in ambient condition. This synergy strategy also validated in different materials and device architectures, providing a convenient and scalable production process to develop highly efficient bias-switchable multi-functional organic optoelectrical applications.
Collapse
Affiliation(s)
- Zitong Zhang
- Laboratory of Advanced Quantum Bio-optoelectronics (LAQB) State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| | - Junchuan Liu
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, China
| | - Lin Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, China
| | - Qi Wei
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Chunxiong Bao
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Qingzhen Bian
- Laboratory of Advanced Quantum Bio-optoelectronics (LAQB) State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| |
Collapse
|
11
|
Huang J, You C, Wu B, Wang Y, Zhang Z, Zhang X, Liu C, Huang N, Zheng Z, Wu T, Kiravittaya S, Mei Y, Huang G. Enhanced photothermoelectric conversion in self-rolled tellurium photodetector with geometry-induced energy localization. LIGHT, SCIENCE & APPLICATIONS 2024; 13:153. [PMID: 38965220 PMCID: PMC11224300 DOI: 10.1038/s41377-024-01496-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 07/06/2024]
Abstract
Photodetection has attracted significant attention for information transmission. While the implementation relies primarily on the photonic detectors, they are predominantly constrained by the intrinsic bandgap of active materials. On the other hand, photothermoelectric (PTE) detectors have garnered substantial research interest for their promising capabilities in broadband detection, owing to the self-driven photovoltages induced by the temperature differences. To get higher performances, it is crucial to localize light and heat energies for efficient conversion. However, there is limited research on the energy conversion in PTE detectors at micro/nano scale. In this study, we have achieved a two-order-of-magnitude enhancement in photovoltage responsivity in the self-rolled tubular tellurium (Te) photodetector with PTE effect. Under illumination, the tubular device demonstrates a maximum photovoltage responsivity of 252.13 V W-1 and a large detectivity of 1.48 × 1011 Jones. We disclose the mechanism of the PTE conversion in the tubular structure with the assistance of theoretical simulation. In addition, the device exhibits excellent performances in wide-angle and polarization-dependent detection. This work presents an approach to remarkably improve the performance of photodetector by concentrating light and corresponding heat generated, and the proposed self-rolled devices thus hold remarkable promises for next-generation on-chip photodetection.
Collapse
Affiliation(s)
- Jiayuan Huang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, China
| | - Chunyu You
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, China
| | - Binmin Wu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, China
| | - Yunqi Wang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, China
| | - Ziyu Zhang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, China
| | - Xinyu Zhang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
| | - Chang Liu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, China
| | - Ningge Huang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, China
| | - Zhi Zheng
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, China
| | - Tingqi Wu
- ShanghaiTech Quantum Device Lab, ShanghaiTech University, Shanghai, 200120, China
| | - Suwit Kiravittaya
- Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Yongfeng Mei
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200438, China
| | - Gaoshan Huang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China.
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, China.
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
12
|
Pyo WJ, Kim G, Kim S, Oh H, Keum D, Kim B, Kim D, So C, Lee S, Jee DW, Jung IH, Chung DS. Advancing Fab-Compatible Color-Selective Organic Photodiodes: Tailored Molecular Design and Nanointerlayers. ACS NANO 2024; 18:17075-17085. [PMID: 38912604 DOI: 10.1021/acsnano.4c03659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
High-performance organic photodiodes (OPDs) and OPD-based image sensors are primarily realized using solution processes based on various additives and coating methods. However, vacuum-processed OPDs, which are more compatible with large-scale production, have received little attention, thereby hindering their integration into advanced systems. This study introduces innovations in the material and device structures to prepare superior vacuum-processed OPDs for commercial applications. A series of vacuum-processable, low-cost p-type semiconductors is developed by introducing an electron-rich cyclopentadithiophene core containing various electron-accepting moieties to fine-tune the energy levels without any significant structural or molecular weight changes. An additional nanointerlayer strategy is used to control the crystalline orientation of the upper-deposited photoactive layer, compensating for device performance reduction in inverted, top-illuminated OPDs. These approaches yielded an external quantum efficiency of 70% and a specific detectivity of 2.0 × 1012 Jones in the inverted structures, which are vital for commercial applications. These OPDs enabled visible-light communications with extremely low bit error rates and successful X-ray image capture.
Collapse
Affiliation(s)
- Won Jun Pyo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gyuri Kim
- Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea
| | - Sinwon Kim
- Department of Intelligence Semiconductor Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Haechan Oh
- Department of Intelligence Semiconductor Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Dongki Keum
- DONGWOO FINE-CHEM Co., Pyeongtaek 17956, Republic of Korea
| | - Byoungin Kim
- DONGWOO FINE-CHEM Co., Pyeongtaek 17956, Republic of Korea
| | - Dowan Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Chan So
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sangjun Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dong-Woo Jee
- Department of Intelligence Semiconductor Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - In Hwan Jung
- Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea
| | - Dae Sung Chung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
13
|
Rana A, Park SY, Labanti C, Fang F, Yun S, Dong Y, Yang EJ, Nodari D, Gasparini N, Park JI, Shin J, Minami D, Park KB, Kim JS, Durrant JR. Octupole moment driven free charge generation in partially chlorinated subphthalocyanine for planar heterojunction organic photodetectors. Nat Commun 2024; 15:5058. [PMID: 38871682 DOI: 10.1038/s41467-024-49169-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 05/27/2024] [Indexed: 06/15/2024] Open
Abstract
In this study, high-performance organic photodetectors are presented which utilize a pristine chlorinated subphthalocyanine photoactive layer. Optical and optoelectronic analyses indicate that the device photocurrent is primarily generated through direct charge generation within the chlorinated subphthalocyanine layer, rather than exciton separation at layer interfaces. Molecular modelling suggests that this direct charge generation is facilitated by chlorinated subphthalocyanine high octupole moment (-80 DÅ2), which generates a 200 meV shift in molecular energetics. Increasing the thickness of chlorinated subphthalocyanine leads to faster response time, correlated with a decrease in trap density. Notably, photodetectors with a 50 nm thick chlorinated subphthalocyanine photoactive layer exhibit detectivities approaching 1013 Jones, with a dark current below 10-7 A cm-2 up to -5 V. Based on these findings, we conclude that high octupole moment molecular semiconductors are promising materials for high-performance organic photodetectors employing single-component photoactive layer.
Collapse
Affiliation(s)
- Aniket Rana
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Song Yi Park
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
- Department of Physics, Pukyong National University, Busan, 48513, Republic of Korea
| | - Chiara Labanti
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Feifei Fang
- Organic Materials Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Sungyoung Yun
- Organic Materials Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Yifan Dong
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
- National Renewable Energy Laboratory, 15013 Denver W Pkwy, Golden, CO, 80401, USA
| | - Emily J Yang
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Davide Nodari
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Nicola Gasparini
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Jeong-Il Park
- Organic Materials Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Jisoo Shin
- Organic Materials Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Daiki Minami
- Innovation Center, Samsung Electronics Co. Ltd., 1 Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do, 18448, Republic of Korea
| | - Kyung-Bae Park
- Organic Materials Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea.
| | - Ji-Seon Kim
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK.
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
- SPECIFIC, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, UK.
| |
Collapse
|
14
|
Huang YC, Wang TY, Huang ZH, Santiago SRMS. Advancing Detectivity and Stability of Near-Infrared Organic Photodetectors via a Facile and Efficient Cathode Interlayer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27576-27586. [PMID: 38722948 DOI: 10.1021/acsami.4c01466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Near-infrared (NIR) organic photodetectors (OPDs) are pivotal in numerous technological applications due to their excellent responsivity within the NIR region. Polyethylenimine ethoxylated (PEIE) has conventionally been employed as an electron transport layer (hole-blocking layer) to suppress dark current (JD) and enhance charge transport. However, the limitations of PEIE in chemical stability, processing conditions, environmental impact, and absorption range have spurred the development of alternative materials. In this study, we introduced a novel solution: a hybrid of sol-gel zinc oxide (ZnO) and N,N'-bis(N,N-dimethylpropan-1-amine oxide)perylene-3,4,9,10-tetracarboxylic diimide (PDINO) as the electron transport layer for NIR-OPDs. Our fabricated OPD exhibited significantly improved responsivity, reduced internal traps, and enhanced charge transfer efficiency. The detectivity, spanning from 400 to 1100 nm, surpassed ∼5 × 1012 Jones, reaching ∼1.1 × 1012 Jones at 1000 nm, accompanied by an increased responsivity of 0.47 A/W. Also, the unpackaged OPD remarkedly demonstrated stable JD and external quantum efficiency (EQE) over 1000 h under dark storage conditions. This innovative approach not only addresses the drawbacks of conventional PEIE-based OPDs but also offers promising avenues for the development of high-performance OPDs in the future.
Collapse
Affiliation(s)
- Yu-Ching Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tai-Yuan Wang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Zhi-Hao Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | | |
Collapse
|
15
|
Zhu Y, Chen H, Han R, Qin H, Yao Z, Liu H, Ma Y, Wan X, Li G, Chen Y. High-speed flexible near-infrared organic photodiode for optical communication. Natl Sci Rev 2024; 11:nwad311. [PMID: 38312386 PMCID: PMC10833469 DOI: 10.1093/nsr/nwad311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/11/2023] [Accepted: 12/05/2023] [Indexed: 02/06/2024] Open
Abstract
Optical communication is a particularly compelling technology for tackling the speed and capacity bottlenecks in data communication in modern society. Currently, the silicon photodetector plays a dominant role in high-speed optical communication across the visible-near-infrared spectrum. However, its intrinsic rigid structure, high working bias and low responsivity essentially limit its application in next-generation flexible optoelectronic devices. Herein, we report a narrow-bandgap non-fullerene acceptor (NFA) with a remarkable π-extension in the direction of both central and end units (CH17) with respect to the Y6 series, which demonstrates a more effective and compact 3D molecular packing, leading to lower trap states and energetic disorders in the photoactive film. Consequently, the optimized solution-processed organic photodetector (OPD) with CH17 exhibits a remarkable response time of 91 ns (λ = 880 nm) due to the high charge mobility and low parasitic capacitance, exceeding the values of most commercial Si photodiodes and all NFA-based OPDs operating in self-powered mode. More significantly, the flexible OPD exhibits negligible performance attenuation (<1%) after bending for 500 cycles, and maintains 96% of its initial performance even after 550 h of indoor exposure. Furthermore, the high-speed OPD demonstrates a high data transmission rate of 80 MHz with a bit error rate of 3.5 [Formula: see text] 10-4, meaning it has great potential in next-generation high-speed flexible optical communication systems.
Collapse
Affiliation(s)
- Yu Zhu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Hongbin Chen
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Ruiman Han
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Hao Qin
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Zhaoyang Yao
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Hang Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Yanfeng Ma
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Xiangjian Wan
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Guanghui Li
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Yongsheng Chen
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
16
|
Demirezen S, Ulusoy M, Durmuş H, Cavusoglu H, Yılmaz K, Altındal Ş. Electrical and Photodetector Characteristics of Schottky Structures Interlaid with P(EHA) and P(EHA- co-AA) Functional Polymers by the iCVD Method. ACS OMEGA 2023; 8:46499-46512. [PMID: 38107908 PMCID: PMC10720022 DOI: 10.1021/acsomega.3c04935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
In this study, poly(2-ethylhexyl acrylate) (PEHA) homopolymer and its copolymer combined with acrylic acid P(EHA-co-AA) were employed as interfaces in two separate Schottky structures. First, both interfaces were grown by initiated chemical vapor deposition (iCVD), which provides much better deposition control and homogeneous coating compared to solution-phase methods. In addition to this advantageous method, the effects of two different polymers, one of which is better able to adhere to the crystal surface on which it is formed than the other, on the optoelectronic properties have been studied. Then, their current-voltage (I-V) and capacitance/conductance-voltage (C/(G/ω)-V) characteristics were investigated both in the dark and under illumination. The basic electrical parameters and the illumination-induced profile of the surface state (Nss) were probed by I-V and C-V measurements for two samples. A decrease in the barrier height (BH) and, consequently, a significant increase in the photocurrent were observed under illumination. Striking changes in series resistance (Rs) values are also highlighted. The photocapacitance and conductance characteristics indicated that the structures could be considered not only as photodiodes but also as photocapacitors. Moreover, the voltage-dependent changes of some photodetector parameters, such as responsivity (R), sensitivity (S), and specific detectivity (D*), along with the transient photocurrent characteristics, are discussed for both structures. Therefore, we can say that the strong changes in these parameters, which figure the merit of photodiode and photodetector applications, depending on the voltage and under illumination, prove that it is a study carried out in accordance with the purpose and so they can be used in electronic and optoelectronic applications.
Collapse
Affiliation(s)
- Selçuk Demirezen
- Sabuncuoğlu
Şerefeddin Vocational School of Health Services, Amasya University, 05100 Amasya, Turkey
| | - Murat Ulusoy
- Department
of Physics, Gazi University, 06500 Ankara, Turkey
| | - Haziret Durmuş
- Department
of Physics, Faculty of Science, Selçuk
University, Selçuklu, 42130 Konya, Turkey
| | - Halit Cavusoglu
- Department
of Physics, Faculty of Science, Selçuk
University, Selçuklu, 42130 Konya, Turkey
| | - Kurtuluş Yılmaz
- Chemical
Engineering Department, Konya Technical
University, 42030 Konya, Turkey
| | | |
Collapse
|
17
|
Xiao J, Wang Y, Yuan L, Long Y, Jiang Z, Liu Q, Gu D, Li W, Tai H, Jiang Y. Stabilizing Non-Fullerene Organic Photodiodes through Interface Engineering Enabled by a Tin Ion-Chelated Polymer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302976. [PMID: 37541299 PMCID: PMC10558641 DOI: 10.1002/advs.202302976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/02/2023] [Indexed: 08/06/2023]
Abstract
The recent emergence of non-fullerene acceptors (NFAs) has energized the field of organic photodiodes (OPDs) and made major breakthroughs in their critical photoelectric characteristics. Yet, stabilizing inverted NF-OPDs remains challenging because of the intrinsic degradation induced by improper interfaces. Herein, a tin ion-chelated polyethyleneimine ethoxylated (denoted as PEIE-Sn) is proposed as a generic cathode interfacial layer (CIL) of NF-OPDs. The chelation between tin ions and nitrogen/oxygen atoms in PEIE-Sn contributes to the interface compatibility with efficient NFAs. The PEIE-Sn can effectively endow the devices with optimized cascade alignment and reduced interface defects. Consequently, the PEIE-Sn-OPD exhibits properties of anti-environmental interference, suppressed dark current, and accelerated interfacial electron extraction and transmission. As a result, the unencapsulated PEIE-Sn-OPD delivers high specific detection and fast response speed and shows only slight attenuation in photoelectric performance after exposure to air, light, and heat. Its superior performance outperforms the incumbent typical counterparts (ZnO, SnO2 , and PEIE as the CILs) from metrics of both stability and photoelectric characteristics. This finding suggests a promising strategy for stabilizing NF-OPDs by designing appropriate interface layers.
Collapse
Affiliation(s)
- Jianhua Xiao
- State Key Laboratory of Electronic Thin Films and Integrated DevicesSchool of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Yang Wang
- State Key Laboratory of Electronic Thin Films and Integrated DevicesSchool of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Liu Yuan
- State Key Laboratory of Electronic Thin Films and Integrated DevicesSchool of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Yin Long
- State Key Laboratory of Electronic Thin Films and Integrated DevicesSchool of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Zhi Jiang
- Innovative Center for Flexible Devices (iFLEX)School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Qingxia Liu
- State Key Laboratory of Electronic Thin Films and Integrated DevicesSchool of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Deen Gu
- State Key Laboratory of Electronic Thin Films and Integrated DevicesSchool of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Weizhi Li
- State Key Laboratory of Electronic Thin Films and Integrated DevicesSchool of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Huiling Tai
- State Key Laboratory of Electronic Thin Films and Integrated DevicesSchool of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Yadong Jiang
- State Key Laboratory of Electronic Thin Films and Integrated DevicesSchool of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu610054China
| |
Collapse
|
18
|
Park SY, Labanti C, Pacalaj RA, Lee TH, Dong Y, Chin YC, Luke J, Ryu G, Minami D, Yun S, Park JI, Fang F, Park KB, Durrant JR, Kim JS. The State-of-the-Art Solution-Processed Single Component Organic Photodetectors Achieved by Strong Quenching of Intermolecular Emissive State and High Quadrupole Moment in Non-Fullerene Acceptors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306655. [PMID: 37670609 DOI: 10.1002/adma.202306655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/21/2023] [Indexed: 09/07/2023]
Abstract
A bulk-heterojunction (BHJ) blend is commonly used as the photoactive layer in organic photodetectors (OPDs) to utilize the donor (D)/acceptor (A) interfacial energetic offset for exciton dissociation. However, this strategy often complicates optimization procedures, raising serious concerns over device processability, reproducibility, and stability. Herein, highly efficient OPDs fabricated with single-component organic semiconductors are demonstrated via solution-processing. The non-fullerene acceptors (NFAs) with strong intrinsic D/A character are used as the photoactive layer, where the emissive intermolecular charge transfer excitonic (CTE) states are formed within <1 ps, and efficient photocurrent generation is achieved via strong quenching of these CTE states by reverse bias. Y6 and IT-4F-based OPDs show excellent OPD performances, low dark current density (≈10-9 A cm-2 ), high responsivity (≥0.15 A W-1 ), high specific detectivity (>1012 Jones), and fast photo-response time (<10 µs), comparable to the state-of-the-art BHJ OPDs. Together with strong CTE state quenching by electric field, these excellent OPD performances are also attributed to the high quadrupole moments of NFA molecules, which can lead to large interfacial energetic offset for efficient CTE dissociation. This work opens a new way to realize efficient OPDs using single-component systems via solution-processing and provides important molecular design rules.
Collapse
Affiliation(s)
- Song Yi Park
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Chiara Labanti
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Richard A Pacalaj
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Tack Ho Lee
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London, W12 0BZ, UK
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center, Pusan National University, 46241, Busan, Republic of Korea
| | - Yifan Dong
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Yi-Chun Chin
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Joel Luke
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Gihan Ryu
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Daiki Minami
- CSE team, Innovation Center, Samsung Electronics, Co. Ltd., 1 Samsungjeonja-ro, Hwasung-si, Gyeonggi-do, 18448, Republic of Korea
| | - Sungyoung Yun
- Organic Materials Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Jeong-Il Park
- Organic Materials Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Feifei Fang
- Organic Materials Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Kyung-Bae Park
- Organic Materials Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London, W12 0BZ, UK
- SPECIFIC IKC, Faculty of Science and Engineering, Swansea University, Swansea, SA2 7AX, UK
| | - Ji-Seon Kim
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
19
|
Fu Y, Lee TH, Chin YC, Pacalaj RA, Labanti C, Park SY, Dong Y, Cho HW, Kim JY, Minami D, Durrant JR, Kim JS. Molecular orientation-dependent energetic shifts in solution-processed non-fullerene acceptors and their impact on organic photovoltaic performance. Nat Commun 2023; 14:1870. [PMID: 37015916 PMCID: PMC10073232 DOI: 10.1038/s41467-023-37234-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/08/2023] [Indexed: 04/06/2023] Open
Abstract
The non-fullerene acceptors (NFAs) employed in state-of-art organic photovoltaics (OPVs) often exhibit strong quadrupole moments which can strongly impact on material energetics. Herein, we show that changing the orientation of Y6, a prototypical NFA, from face-on to more edge-on by using different processing solvents causes a significant energetic shift of up to 210 meV. The impact of this energetic shift on OPV performance is investigated in both bilayer and bulk-heterojunction (BHJ) devices with PM6 polymer donor. The device electronic bandgap and the rate of non-geminate recombination are found to depend on the Y6 orientation in both bilayer and BHJ devices, attributed to the quadrupole moment-induced band bending. Analogous energetic shifts are also observed in other common polymer/NFA blends, which correlates well with NFA quadrupole moments. This work demonstrates the key impact of NFA quadruple moments and molecular orientation on material energetics and thereby on the efficiency of high-performance OPVs.
Collapse
Affiliation(s)
- Yuang Fu
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Tack Ho Lee
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center/Engineering Research Center, Pusan National University, Busan, 46241, Republic of Korea
| | - Yi-Chun Chin
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Richard A Pacalaj
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Chiara Labanti
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Song Yi Park
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Yifan Dong
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Hye Won Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jin Young Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Daiki Minami
- CSE team, Innovation Center, Samsung Electronics, Co. Ltd., 1 Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do, 18448, Republic of Korea.
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
- SPECIFIC IKC, Department of Materials, University of Swansea, Bay Campus, Swansea, SA1 8EN, UK.
| | - Ji-Seon Kim
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
20
|
Liu L, Wei Z, Meskers SCJ. Semi-Transparent, Chiral Organic Photodiodes with Incident Direction-Dependent Selectivity for Circularly Polarized Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209730. [PMID: 36577393 DOI: 10.1002/adma.202209730] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Detection of the circular polarization of light is possible using chiral semiconductors, yet the mechanisms remain poorly understood. Semi-transparent chiral photodiodes allow for a simple experiment to investigate the basis of their selectivity: changing the side from which the diode is illuminated. A reversal of circular selectivity is observed in photocurrent generation when changing the direction of illumination on organic, bulk-heterojunction cells. The change in selectivity can be explained by a space-charge limitation on the collection of photocarriers in combination with preferential absorption of one of the circular polarizations of near-infrared light by the chiral non-fullerene acceptor. The space-charge limitation is supported by detailed measurements of frequency and intensity dependence of dc and ac photocurrents.
Collapse
Affiliation(s)
- Lixuan Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
- Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. box 513, Eindhoven, NL, 5600MB, The Netherlands
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Stefan C J Meskers
- Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. box 513, Eindhoven, NL, 5600MB, The Netherlands
| |
Collapse
|
21
|
Cho S, Heo C, Lim Y, Oh S, Minami D, Yu M, Chun H, Yun S, Seo H, Fang F, Park J, Ham C, Shin J, Choi T, Lim J, Kim H, Hong HR, Shibuya H, Yi J, Choi B, Park K. Small Molecule Based Organic Photo Signal Receiver for High-Speed Optical Wireless Communications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203715. [PMID: 36192160 PMCID: PMC9661864 DOI: 10.1002/advs.202203715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/07/2022] [Indexed: 06/16/2023]
Abstract
The present work describes the development of an organic photodiode (OPD) receiver for high-speed optical wireless communication. To determine the optimal communication design, two different types of photoelectric conversion layers, bulk heterojunction (BHJ) and planar heterojunction (PHJ), are compared. The BHJ-OPD device has a -3 dB bandwidth of 0.65 MHz (at zero bias) and a maximum of 1.4 MHz (at -4 V bias). A 150 Mbps single-channel visible light communication (VLC) data rate using this device by combining preequalization and machine learning (ML)-based digital signal processing (DSP) is demonstrated. To the best of the authors' knowledge, this is the highest data rate ever achieved on an OPD-based VLC system by a factor of 40 over the previous fastest reported. Additionally, the proposed OPD receiver achieves orders of magnitude higher spectral efficiency than the previously reported organic photovoltaic (OPV)-based receivers.
Collapse
Affiliation(s)
- Seonghyeon Cho
- Dept. of Information and Telecommunication EngineeringIncheon National UniversityIncheon‐si22012Republic of Korea
| | - Chul‐Joon Heo
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Younhee Lim
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Seoyeon Oh
- Dept. of Information and Telecommunication EngineeringIncheon National UniversityIncheon‐si22012Republic of Korea
| | - Daiki Minami
- CSE teamInnovation CenterSamsung Electronics Co. Ltd.1 Samsungjeonja‐roHwasung‐siGyeonggi‐do18448Republic of Korea
| | - Minseok Yu
- Dept. of Information and Telecommunication EngineeringIncheon National UniversityIncheon‐si22012Republic of Korea
| | - Hyunchae Chun
- Dept. of Information and Telecommunication EngineeringIncheon National UniversityIncheon‐si22012Republic of Korea
- Energy Excellence & Smart City Lab., Incheon National UniversityIncheon‐si22012Republic of Korea
| | - Sungyoung Yun
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Hwijoung Seo
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Feifei Fang
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Jeong‐Il Park
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Cheol Ham
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Jisoo Shin
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Taejin Choi
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Juhyung Lim
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Hyeong‐Ju Kim
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Hye Rim Hong
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Hiromasa Shibuya
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Jeoungin Yi
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Byoungki Choi
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Kyung‐Bae Park
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| |
Collapse
|