1
|
Ben WB, Pirjo AM. ATG8 in single membranes: Fresh players of endocytosis and acidic organelle quality control in cancer, neurodegeneration, and inflammation. Biochem Biophys Res Commun 2025; 749:151384. [PMID: 39864381 DOI: 10.1016/j.bbrc.2025.151384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Ubiquitin-like autophagy-related gene ATG8 proteins are typically associated with degradative quality control via canonical double-membrane macro-autophagosomes in the cell. ATG8 proteins have now stepped forward in non-canonical pathways in single membrane organelles. The growing interest in non-canonical ATG8 roles has been stimulated by recent links to human conditions, especially in the regulation of inflammation, neurodegeneration and cancers. Here, we summarize the evidence linking non-canonical ATG8s to human pathologies and the quality control of acidic V-ATPase-regulated organelles in the cell.
Collapse
Affiliation(s)
- Wang B Ben
- Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Apaja M Pirjo
- Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia; College of Public Health and Medicine, Flinders University, Bedford Park, SA, 5042, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia.
| |
Collapse
|
2
|
Barbeau LMO, Beelen NA, Savelkouls KG, Keulers TGH, Wieten L, Rouschop KMA. MAP1LC3C repression reduces CIITA- and HLA class II expression in non-small cell lung cancer. PLoS One 2025; 20:e0316716. [PMID: 39928678 PMCID: PMC11809862 DOI: 10.1371/journal.pone.0316716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/15/2024] [Indexed: 02/12/2025] Open
Abstract
In the last decade, advancements in understanding the genetic landscape of lung squamous cell carcinoma (LUSC) have significantly impacted therapy development. Immune checkpoint inhibitors (ICI) have shown great promise, improving overall and progression-free survival in approximately 25% of the patients. However, challenges remain, such as the lack of predictive biomarkers, difficulties in patient stratification, and identifying mechanisms that cancers use to become immune-resistant ("immune-cold"). Analysis of TCGA datasets reveals reduced MAP1LC3C expression in cancer. Further analysis indicates that low MAP1LC3C is associated with reduced CIITA and HLA expression and with decreased immune cell infiltration. In tumor cells, silencing MAP1LC3C inhibits CIITA expression and suppresses HLA class II production. These findings suggest that cancer cells are selected for low MAP1LC3C expression to evade efficient immune responses.
Collapse
Affiliation(s)
- Lydie M. O. Barbeau
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Nicky A. Beelen
- Department of Internal Medicine, GROW - School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Transplantation Immunology, GROW - School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Kim G. Savelkouls
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Tom G. H. Keulers
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, GROW - School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Kasper M. A. Rouschop
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
3
|
Cui X, Chang M, Wang Y, Liu J, Sun Z, Sun Q, Sun Y, Ren J, Li W. Helicobacter pylori reduces METTL14-mediated VAMP3 m 6A modification and promotes the development of gastric cancer by regulating LC3C-mediated c-Met recycling. Cell Death Discov 2025; 11:13. [PMID: 39827141 PMCID: PMC11742886 DOI: 10.1038/s41420-025-02289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/12/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Helicobacter pylori (H. pylori) plays an important role in the malignant transformation of the gastric mucosa from chronic inflammation to cancer. However, the mechanisms underlying the epigenetic regulation of gastric carcinogenesis mediated by H. pylori remain unclear. Here, we uncover that H. pylori inhibits METTL14 by upregulating ATF3. METTL14 inhibits gastric cancer (GC) cell proliferation and metastasis in vitro and in vivo. Downregulation of METTL14 inhibits Vesicle-associated membrane protein-3 (VAMP3) by reducing the m6A modification level of VAMP3 mRNA and the stability of IGF2BP2-dependent mRNA. H. pylori also accelerates the malignant progression of GC by regulating VAMP3/LC3C-mediated c-Met recycling. Moreover, the expression of METTL14 and VAMP3 in Hp+ chronic gastritis tissues is much lower than that in Hp- chronic gastritis tissues. METTL14 and VAMP3 expression levels are downregulated notably in cancerous tissues of patients with GC. Therefore, our results show a novel METTL14-VAMP3-LC3C-c-Met signalling axis in the GC development mediated by H. pylori infection, which reveals a novel m6A epigenetic modification mechanism for GC and provides potential prognostic biomarkers for GC progression.
Collapse
Affiliation(s)
- Xixi Cui
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic biology, School of basic medical sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Mingjie Chang
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic biology, School of basic medical sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yuqiong Wang
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic biology, School of basic medical sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Jiayi Liu
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic biology, School of basic medical sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Zenghui Sun
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic biology, School of basic medical sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Qiyu Sun
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic biology, School of basic medical sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yundong Sun
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic biology, School of basic medical sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Juchao Ren
- Department of Urology, Qilu Hospital, Shandong University, Jinan, PR China
| | - Wenjuan Li
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic biology, School of basic medical sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| |
Collapse
|
4
|
Cheng B, Li M, Zheng J, Liang J, Li Y, Liang R, Tian H, Zhou Z, Ding L, Ren J, Shi W, Zhou W, Hu H, Meng L, Liu K, Cai L, Shao X, Fang L, Li H. Chemically engineered antibodies for autophagy-based receptor degradation. Nat Chem Biol 2025:10.1038/s41589-024-01803-1. [PMID: 39789191 DOI: 10.1038/s41589-024-01803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/19/2024] [Indexed: 01/12/2025]
Abstract
Cell surface receptor-targeted protein degraders hold promise for drug discovery. However, their application is restricted because of the complexity of creating bifunctional degraders and the reliance on specific lysosome-shuttling receptors or E3 ubiquitin ligases. To address these limitations, we developed an autophagy-based plasma membrane protein degradation platform, which we term AUTABs (autophagy-inducing antibodies). Through covalent conjugation with polyethylenimine (PEI), the engineered antibodies acquire the capacity to degrade target receptors through autophagy. The degradation activities of AUTABs are self-sufficient, without necessitating the participation of lysosome-shuttling receptors or E3 ubiquitin ligases. The broad applicability of this platform was then illustrated by targeting various clinically important receptors. Notably, combining specific primary antibodies with a PEI-tagged secondary nanobody also demonstrated effective degradation of target receptors. Thus, our study outlines a strategy for directing plasma membrane proteins for autophagic degradation, which possesses desirable attributes such as ease of generation, independence from cell type and broad applicability.
Collapse
Affiliation(s)
- Binghua Cheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Meiqing Li
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China
| | - Jiwei Zheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Jiaming Liang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Yanyan Li
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Ruijing Liang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China
| | - Hui Tian
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zeyu Zhou
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Li Ding
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jian Ren
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenli Shi
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wenjie Zhou
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hailiang Hu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Long Meng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Ke Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China.
| | - Ximing Shao
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China.
| | - Lijing Fang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China.
| | - Hongchang Li
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China.
| |
Collapse
|
5
|
Ahn J, Jang SH, Jang S, Yoon JH, Lee MG, Chi SG. XAF1 is secreted from stressed tumor cells to activate T cell-mediated tumor surveillance via Lck-ERK signaling. Neoplasia 2025; 59:101094. [PMID: 39615106 DOI: 10.1016/j.neo.2024.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024]
Abstract
X-linked inhibitor of apoptosis-associated factor 1 (XAF1) is a stress-inducible tumor suppressor that is commonly inactivated in multiple types of human malignancies. Nevertheless, the molecular basis for the XAF1-mediated tumor suppression remains largely undefined. Here, we report that XAF1 is secreted from cells under various cytotoxic stress conditions and activates T cell-mediated tumor surveillance. In cancer cells exposed to interferon -γ, tumor necrosis factor -α, and etoposide, XAF1 is elevated and actively secreted through the unconventional endo-lysosomal trafficking pathway and the zinc finger 4 domain of XAF1 plays an essential for this secretion. Secreted XAF1 is internalized into nearby T cells through clathrin-mediated endocytosis and stimulates proliferation, migration, and tumor infiltration of T cells. Internalized XAF1 activates RAF-MEK-ERK signaling through the direct interaction with and phosphorylation of lymphocyte-specific protein tyrosine kinase. In response to interferon -γ injection, Xaf1+/+ tumors display significantly higher regression rate and T cell infiltration compared to Xaf1-/- tumors while Xaf1-/- tumors are markedly reduced by injection of recombinant Xaf1. XAF1 expression is associated with overall survival in T cell-enriched cancer patients and also correlates with prognosis in T cell-based immunotherapies. Together, our study identifies XAF1 as a novel secretory immune-modulatory tumor suppressor, illuminating the mechanistic consequence of its inactivation in tumorigenesis.
Collapse
Affiliation(s)
- Jieun Ahn
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Seung-Hun Jang
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sungchan Jang
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Ji-Hye Yoon
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Min-Goo Lee
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
6
|
Huang XR, Ye L, An N, Wu CY, Wu HL, Li HY, Huang YH, Ye QR, Liu MD, Yang LW, Liu JX, Tang JX, Pan QJ, Wang P, Sun L, Xia Y, Lan HY, Yang C, Liu HF. Macrophage autophagy protects against acute kidney injury by inhibiting renal inflammation through the degradation of TARM1. Autophagy 2025; 21:120-140. [PMID: 39193910 DOI: 10.1080/15548627.2024.2393926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Macroautophagy/autophagy activation in renal tubular epithelial cells protects against acute kidney injury (AKI). However, the role of immune cell autophagy, such as that involving macrophages, in AKI remains unclear. In this study, we discovered that macrophage autophagy was an adaptive response during AKI as mice with macrophage-specific autophagy deficiency (atg5-/-) exhibited higher serum creatinine, more severe renal tubule injury, increased infiltration of ADGRE1/F4/80+ macrophages, and elevated expression of inflammatory factors compared to WT mice during AKI induced by either LPS or unilateral ischemia-reperfusion. This was further supported by adoptive transfer of atg5-/- macrophages, but not WT macrophages, to cause more severe AKI in clodronate liposomes-induced macrophage depletion mice. Similar results were also obtained in vitro that bone marrow-derived macrophages (BMDMs) lacking Atg5 largely increased pro-inflammatory cytokine expression in response to LPS and IFNG. Mechanistically, we uncovered that atg5 deletion significantly upregulated the protein expression of TARM1 (T cell-interacting, activating receptor on myeloid cells 1), whereas inhibition of TARM1 suppressed LPS- and IFNG-induced inflammatory responses in atg5-/- RAW 264.7 macrophages. The E3 ubiquitin ligases MARCHF1 and MARCHF8 ubiquitinated TARM1 and promoted its degradation in an autophagy-dependent manner, whereas silencing or mutation of the functional domains of MARCHF1 and MARCHF8 abolished TARM1 degradation. Furthermore, we found that ubiquitinated TARM1 was internalized from plasma membrane into endosomes, and then recruited by the ubiquitin-binding autophagy receptors TAX1BP1 and SQSTM1 into the autophagy-lysosome pathway for degradation. In conclusion, macrophage autophagy protects against AKI by inhibiting renal inflammation through the MARCHF1- and MARCHF8-mediated degradation of TARM1.Abbreviations: AKI, acute kidney injury; ATG, autophagy related; Baf, bafilomycin A1; BMDMs, bone marrow-derived macrophages; CCL2/MCP-1, C-C motif chemokine ligand 2; CHX, cycloheximide; CQ, chloroquine; IFNG, interferon gamma; IL, interleukin; IR, ischemia-reperfusion; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; LPS, lipopolysaccharide; MARCHF, membrane associated ring-CH-type finger; NC, negative control; NFKB, nuclear factor of kappa light polypeptide gene enhancer in B cells; NLRP3, NLR family, pyrin domain containing 3; NOS2, nitric oxide synthase 2, inducible; Rap, rapamycin; Wort, wortmannin; RT-qPCR, real-time quantitative polymerase chain reaction; Scr, serum creatinine; SEM, standard error of mean; siRNA, small interfering RNA; SYK, spleen tyrosine kinase; TARM1, T cell-interacting, activating receptor on myeloid cells 1; TAX1BP1, Tax1 (human T cell leukemia virus type I) binding protein 1; TECs, tubule epithelial cells; TNF, tumor necrosis factor; WT, wild type.
Collapse
Affiliation(s)
- Xiao-Rong Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lin Ye
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Ning An
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Chun-Yu Wu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Hong-Luan Wu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Hui-Yuan Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yan-Heng Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qiao-Ru Ye
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Ming-Dong Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - La-Wei Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jian-Xing Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qing-Jun Pan
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Peng Wang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lin Sun
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yin Xia
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui-Yao Lan
- Departments of Medicine and Therapeutics, and Anatomic and cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Chen Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
7
|
Üffing A, Weiergräber OH, Schwarten M, Hoffmann S, Willbold D. GABARAP interacts with EGFR - supporting the unique role of this hAtg8 protein during receptor trafficking. FEBS Lett 2024; 598:2656-2669. [PMID: 39160442 DOI: 10.1002/1873-3468.14997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
The human Atg8 family member GABARAP is involved in numerous autophagy-related and -unrelated processes. We recently observed that specifically the deficiency of GABARAP enhances epidermal growth factor receptor (EGFR) degradation upon ligand stimulation. Here, we report on two putative LC3-interacting regions (LIRs) within EGFR, the first of which (LIR1) is selected as a GABARAP binding site in silico. Indeed, in vitro interaction studies reveal preferential binding of LIR1 to GABARAP and GABARAPL1. Our X-ray data demonstrate interaction of core LIR1 residues FLPV with both hydrophobic pockets of GABARAP suggesting canonical binding. Although LIR1 occupies the LIR docking site, GABARAP Y49 and L50 appear dispensable in this case. Our data support the hypothesis that GABARAP affects the fate of EGFR at least in part through direct binding.
Collapse
Affiliation(s)
- Alina Üffing
- Heinrich-Heine-Universität Düsseldorf, Mathematisch-Naturwissenschaftliche Fakultät, Institut für Physikalische Biologie, Düsseldorf, Germany
- Forschungszentrum Jülich, Institut für Biologische Informationsprozesse: Strukturbiochemie (IBI-7), Jülich, Germany
| | - Oliver H Weiergräber
- Heinrich-Heine-Universität Düsseldorf, Mathematisch-Naturwissenschaftliche Fakultät, Institut für Physikalische Biologie, Düsseldorf, Germany
- Forschungszentrum Jülich, Institut für Biologische Informationsprozesse: Strukturbiochemie (IBI-7), Jülich, Germany
| | - Melanie Schwarten
- Forschungszentrum Jülich, Institut für Biologische Informationsprozesse: Strukturbiochemie (IBI-7), Jülich, Germany
| | - Silke Hoffmann
- Forschungszentrum Jülich, Institut für Biologische Informationsprozesse: Strukturbiochemie (IBI-7), Jülich, Germany
| | - Dieter Willbold
- Heinrich-Heine-Universität Düsseldorf, Mathematisch-Naturwissenschaftliche Fakultät, Institut für Physikalische Biologie, Düsseldorf, Germany
- Forschungszentrum Jülich, Institut für Biologische Informationsprozesse: Strukturbiochemie (IBI-7), Jülich, Germany
| |
Collapse
|
8
|
Sharma S, Tiwari V. Polyvinylpyrrolidone capped silver nanoparticles enhance the autophagic clearance of Acinetobacter baumannii from human pulmonary cells. DISCOVER NANO 2024; 19:154. [PMID: 39313578 PMCID: PMC11420407 DOI: 10.1186/s11671-024-04107-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Acinetobacter baumannii, an opportunistic pathogen has shown an upsurge in its multi-drug resistant isolates. OmpA of A. baumannii induces incomplete autophagy and apoptosis in host cells. Various therapeutic alternatives are under investigation against A. baumannii. Here, the major emphasis has been laid on comparing the efficacy of AgNP with different capping agents. OmpA targeted lead, Ivermectin capped AgNP (IVM-AgNP) has been compared with the antibacterial polyvinylpyrrolidone capped AgNP (PVP-AgNP) for their role in the modulations of host autophagy. Upregulation of p62 and LC3B confirmed by real-time PCR analysis indicated an increased autophagic flux upon the treatment with AgNPs. The elongation and closure of autophagic vacuoles was also supported by upregulated Atg genes (Atg4, Atg3, Atg5) in A. baumannii infected cells after treatment with AgNP. Autophagic flux increased on treatment with PVP-AgNP as suggested by the rise in mcherryLC3B fluorescence in A549 cells treated with PVP-AgNP as compared to the GFP-LC3B of IVM-AgNP. This suggests that PVP-AgNP treatment more effectively promotes the elongation and maturation stages of autophagy by increasing autophagic flux. These results indicate that capped AgNPs have the efficiency to revert the incomplete autophagy induced by A. baumannii back to normal autophagic levels.
Collapse
Affiliation(s)
- Saroj Sharma
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India.
| |
Collapse
|
9
|
Zhuang X, Li B, Jiang L. Autophagosome biogenesis and organelle homeostasis in plant cells. THE PLANT CELL 2024; 36:3009-3024. [PMID: 38536783 PMCID: PMC11371174 DOI: 10.1093/plcell/koae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/23/2024] [Indexed: 09/05/2024]
Abstract
Autophagy is one of the major highly inducible degradation processes in response to plant developmental and environmental signals. In response to different stimuli, cellular materials, including proteins and organelles, can be sequestered into a double membrane autophagosome structure either selectively or nonselectively. The formation of an autophagosome as well as its delivery into the vacuole involves complex and dynamic membrane processes. The identification and characterization of the conserved autophagy-related (ATG) proteins and their related regulators have greatly advanced our understanding of the molecular mechanism underlying autophagosome biogenesis and function in plant cells. Autophagosome biogenesis is tightly regulated by the coordination of multiple ATG and non-ATG proteins and by selective cargo recruitment. This review updates our current knowledge of autophagosome biogenesis, with special emphasis on the core molecular machinery that drives autophagosome formation and autophagosome-organelle interactions under abiotic stress conditions.
Collapse
Affiliation(s)
- Xiaohong Zhuang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Baiying Li
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
10
|
Liu H, Dang R, Zhang W, Hong J, Li X. SNARE proteins: Core engines of membrane fusion in cancer. Biochim Biophys Acta Rev Cancer 2024:189148. [PMID: 38960006 DOI: 10.1016/j.bbcan.2024.189148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Vesicles are loaded with a variety of cargoes, including membrane proteins, secreted proteins, signaling molecules, and various enzymes, etc. Not surprisingly, vesicle transport is essential for proper cellular life activities including growth, division, movement and cellular communication. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate membrane fusion of vesicles with their target compartments that is fundamental for cargo delivery. Recent studies have shown that multiple SNARE family members are aberrantly expressed in human cancers and actively contribute to malignant proliferation, invasion, metastasis, immune evasion and treatment resistance. Here, the localization and function of SNARE proteins in eukaryotic cells are firstly mapped. Then we summarize the expression and regulation of SNAREs in cancer, and describe their contribution to cancer progression and mechanisms, and finally we propose engineering botulinum toxin as a strategy to target SNAREs for cancer treatment.
Collapse
Affiliation(s)
- Hongyi Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Ruiyue Dang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Jidong Hong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
11
|
Kuzmin E, Baker TM, Lesluyes T, Monlong J, Abe KT, Coelho PP, Schwartz M, Del Corpo J, Zou D, Morin G, Pacis A, Yang Y, Martinez C, Barber J, Kuasne H, Li R, Bourgey M, Fortier AM, Davison PG, Omeroglu A, Guiot MC, Morris Q, Kleinman CL, Huang S, Gingras AC, Ragoussis J, Bourque G, Van Loo P, Park M. Evolution of chromosome-arm aberrations in breast cancer through genetic network rewiring. Cell Rep 2024; 43:113988. [PMID: 38517886 PMCID: PMC11063629 DOI: 10.1016/j.celrep.2024.113988] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/02/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024] Open
Abstract
The basal breast cancer subtype is enriched for triple-negative breast cancer (TNBC) and displays consistent large chromosomal deletions. Here, we characterize evolution and maintenance of chromosome 4p (chr4p) loss in basal breast cancer. Analysis of The Cancer Genome Atlas data shows recurrent deletion of chr4p in basal breast cancer. Phylogenetic analysis of a panel of 23 primary tumor/patient-derived xenograft basal breast cancers reveals early evolution of chr4p deletion. Mechanistically we show that chr4p loss is associated with enhanced proliferation. Gene function studies identify an unknown gene, C4orf19, within chr4p, which suppresses proliferation when overexpressed-a member of the PDCD10-GCKIII kinase module we name PGCKA1. Genome-wide pooled overexpression screens using a barcoded library of human open reading frames identify chromosomal regions, including chr4p, that suppress proliferation when overexpressed in a context-dependent manner, implicating network interactions. Together, these results shed light on the early emergence of complex aneuploid karyotypes involving chr4p and adaptive landscapes shaping breast cancer genomes.
Collapse
Affiliation(s)
- Elena Kuzmin
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada.
| | | | | | - Jean Monlong
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; McGill Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Kento T Abe
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Paula P Coelho
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Michael Schwartz
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Joseph Del Corpo
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Dongmei Zou
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada
| | - Genevieve Morin
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Alain Pacis
- McGill Genome Centre, Montreal, QC H3A 0G1, Canada; Canadian Centre for Computational Genomics (C3G), McGill University, Montreal, QC H3A 0G1, Canada
| | - Yang Yang
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Constanza Martinez
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada
| | - Jarrett Barber
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Vector Institute, Toronto, ON M5G 1M1, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Computational and Systems Biology, Sloan Kettering Institute, New York City, NY 10065, USA
| | - Hellen Kuasne
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada
| | - Rui Li
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; McGill Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Mathieu Bourgey
- McGill Genome Centre, Montreal, QC H3A 0G1, Canada; Canadian Centre for Computational Genomics (C3G), McGill University, Montreal, QC H3A 0G1, Canada
| | - Anne-Marie Fortier
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada
| | - Peter G Davison
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada; McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Atilla Omeroglu
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | | | - Quaid Morris
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Vector Institute, Toronto, ON M5G 1M1, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Computational and Systems Biology, Sloan Kettering Institute, New York City, NY 10065, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada
| | - Sidong Huang
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; McGill Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; McGill Genome Centre, Montreal, QC H3A 0G1, Canada; Canadian Centre for Computational Genomics (C3G), McGill University, Montreal, QC H3A 0G1, Canada
| | - Peter Van Loo
- The Francis Crick Institute, NW1 1AT London, UK; Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Morag Park
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada.
| |
Collapse
|
12
|
Ballesteros U, Iriondo MN, Varela YR, Goñi FM, Alonso A, Montes LR, Etxaniz A. The N-terminal region of the ATG8 autophagy protein LC3C is essential for its membrane fusion properties. Int J Biol Macromol 2024; 262:129835. [PMID: 38302024 DOI: 10.1016/j.ijbiomac.2024.129835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
Autophagy is a catabolic process in which a double-membrane organelle, the autophagosome (AP), engulfs cellular components that will be degraded in the lysosomes. ATG8 protein family members participate at various stages of AP formation. The present study compares the capacity to induce lipid-vesicle tethering and fusion of two ATG8 family members, LC3B and LC3C, with model membranes. LC3B is the most thoroughly studied ATG8 protein. It is generally considered as an autophagosomal marker and a canonical representative of the LC3 subfamily. LC3C is less studied, but recent data have reported its implication in various processes, crucial to cellular homeostasis. The results in this paper show that LC3C induces higher levels of tethering and of intervesicular lipid mixing than LC3B. As the N-terminus of LC3C is different from that of the other family members, various mutants of the N-terminal region of both LC3B and LC3C were designed, and their activities compared. It was concluded that the N-terminal region of LC3C was responsible for the enhanced vesicle tethering, membrane perturbation and vesicle-vesicle fusion activities of LC3C as compared to LC3B. The results suggest a specialized function of LC3C in the AP expansion process.
Collapse
Affiliation(s)
- Uxue Ballesteros
- Department of Biochemistry and Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain
| | - Marina N Iriondo
- Department of Biochemistry and Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain
| | - Yaiza R Varela
- Department of Biochemistry and Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain
| | - Félix M Goñi
- Department of Biochemistry and Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain
| | - Alicia Alonso
- Department of Biochemistry and Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain
| | - L Ruth Montes
- Department of Biochemistry and Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| | - Asier Etxaniz
- Department of Biochemistry and Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| |
Collapse
|
13
|
Gawaz A, Schindler M, Hagelauer E, Blanchard G, Riel S, Vollert A, Gilliet M, Unterluggauer L, Stary G, Pospischil I, Hoetzenecker W, Fehrenbacher B, Schaller M, Guenova E, Forchhammer S. SARS-CoV-2-Induced Vasculitic Skin Lesions Are Associated with Massive Spike Protein Depositions in Autophagosomes. J Invest Dermatol 2024; 144:369-377.e4. [PMID: 37580012 DOI: 10.1016/j.jid.2023.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/16/2023]
Abstract
In patients infected with severe acute respiratory syndrome coronavirus 2, vasculopathic changes of the skin are associated with a severe prognosis. However, the pathogenesis of this vasculopathy is not conclusively clarified. In this study, 25 prospectively collected skin samples from patients with COVID-19-related skin lesions were examined for vasculopathic changes and, in case of vasculitis, were further analyzed with electron microscopy and immunohistochemistry. Vasculopathy was observed in 76% of all COVID-19-related inflammatory skin lesions. Visual endothelial changes without manifest leukocytoclastic vasculitis were found in 60% of the COVID-19-related skin lesions, whereas leukocytoclastic vasculitis was diagnosed in 16%. In the cases of vasculitis, there were extensive spike protein depositions in microvascular endothelial cells that colocalized with the autophagosome proteins LC3B and LC3C. The autophagy protein complex LC3-associated endocytosis in microvascular endothelial cells seems to be an important pathogenic factor for severe acute respiratory syndrome coronavirus 2-related vasculitis in the skin. On ultrastructural morphology, the vasculitic process was dominated by intracellular vesicle formation and endothelial cell disruption. Direct presence of severe acute respiratory syndrome coronavirus 2 particles in the skin was not observed. Therefore, our results suggest that instead of direct viral infection, dermal vasculitic lesions in COVID-19 are caused by severe acute respiratory syndrome coronavirus 2 spike protein deposition followed by endothelial damage with activation of autophagy.
Collapse
Affiliation(s)
- Andrea Gawaz
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Elena Hagelauer
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Gabriela Blanchard
- Department of Dermatology, Lausanne University Hospital (CHUV), Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Simon Riel
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Anneli Vollert
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Michel Gilliet
- Department of Dermatology, Lausanne University Hospital (CHUV), Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Isabella Pospischil
- Department of Dermatology, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Wolfram Hoetzenecker
- Department of Dermatology, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | | | - Martin Schaller
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Emmanuella Guenova
- Department of Dermatology, Lausanne University Hospital (CHUV), Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Department of Dermatology, Hospital 12 de Octubre, Medical school, University Complutense, Madrid, Spain.
| | | |
Collapse
|
14
|
Simpson JE, Muir MT, Lee M, Naughton C, Gilbert N, Pollard SM, Gammoh N. Autophagy supports PDGFRA-dependent brain tumor development by enhancing oncogenic signaling. Dev Cell 2024; 59:228-243.e7. [PMID: 38113891 DOI: 10.1016/j.devcel.2023.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/29/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Autophagy is a conserved cellular degradation process. While autophagy-related proteins were shown to influence the signaling and trafficking of some receptor tyrosine kinases, the relevance of this during cancer development is unclear. Here, we identify a role for autophagy in regulating platelet-derived growth factor receptor alpha (PDGFRA) signaling and levels. We find that PDGFRA can be targeted for autophagic degradation through the activity of the autophagy cargo receptor p62. As a result, short-term autophagy inhibition leads to elevated levels of PDGFRA but an unexpected defect in PDGFA-mediated signaling due to perturbed receptor trafficking. Defective PDGFRA signaling led to its reduced levels during prolonged autophagy inhibition, suggesting a mechanism of adaptation. Importantly, PDGFA-driven gliomagenesis in mice was disrupted when autophagy was inhibited in a manner dependent on Pten status, thus highlighting a genotype-specific role for autophagy during tumorigenesis. In summary, our data provide a mechanism by which cells require autophagy to drive tumor formation.
Collapse
Affiliation(s)
- Joanne E Simpson
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Morwenna T Muir
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Martin Lee
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Catherine Naughton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Steven M Pollard
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK; Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Noor Gammoh
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK.
| |
Collapse
|
15
|
Tsopela V, Korakidis E, Lagou D, Kalliampakou KI, Milona RS, Kyriakopoulou E, Mpekoulis G, Gemenetzi I, Stylianaki EA, Sideris CD, Sioli A, Kefallinos D, Sideris DC, Aidinis V, Eliopoulos AG, Kambas K, Vassilacopoulou D, Vassilaki N. L-Dopa decarboxylase modulates autophagy in hepatocytes and is implicated in dengue virus-caused inhibition of autophagy completion. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119602. [PMID: 37778471 DOI: 10.1016/j.bbamcr.2023.119602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
The enzyme L-Dopa Decarboxylase (DDC) synthesizes the catecholamine dopamine and the indolamine serotonin. Apart from its role in the brain as a neurotransmitter biosynthetic enzyme, DDC has been detected also in the liver and other peripheral organs, where it is implicated in cell proliferation, apoptosis, and host-virus interactions. Dengue virus (DENV) suppresses DDC expression at the later stages of infection, during which DENV also inhibits autophagosome-lysosome fusion. As dopamine affects autophagy in neuronal cells, we investigated the possible association of DDC with autophagy in human hepatocytes and examined whether DDC mediates the relationship between DENV infection and autophagy. We performed DDC silencing/overexpression and evaluated autophagic markers upon induction of autophagy, or suppression of autophagosome-lysosome fusion. Our results showed that DDC favored the autophagic process, at least in part, through its biosynthetic function, while knockdown of DDC or inhibition of DDC enzymatic activity prevented autophagy completion. In turn, autophagy induction upregulated DDC, while autophagy reduction by chemical or genetic (ATG14L knockout) ways caused the opposite effect. This study also implicated DDC with the cellular energetic status, as DDC silencing reduced the oxidative phosphorylation activity of the cell. We also report that upon DDC silencing, the repressive effect of DENV on the completion of autophagy was enhanced, and the inhibition of autolysosome formation did not exert an additive effect on viral proliferation. These data unravel a novel role of DDC in the autophagic process and suggest that DENV downregulates DDC expression to inhibit the completion of autophagy, reinforcing the importance of this protein in viral infections.
Collapse
Affiliation(s)
- Vassilina Tsopela
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Evangelos Korakidis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Despoina Lagou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | | | - Raphaela S Milona
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Eirini Kyriakopoulou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - George Mpekoulis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Ioanna Gemenetzi
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Elli-Anna Stylianaki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | | | - Aggelina Sioli
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Dionysis Kefallinos
- School of Electrical Engineering and Computer Science, National Technical University of Athens, 157 73 Athens, Greece
| | - Diamantis C Sideris
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 157 01 Athens, Greece
| | - Vassilis Aidinis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | - Aristides G Eliopoulos
- Department of Biology, School of Medicine, NKUA, 115 27 Athens, Greece; Center of Basic Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
| | - Konstantinos Kambas
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Dido Vassilacopoulou
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 157 01 Athens, Greece
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece.
| |
Collapse
|
16
|
Puri C, Gratian MJ, Rubinsztein DC. Mammalian autophagosomes form from finger-like phagophores. Dev Cell 2023; 58:2746-2760.e5. [PMID: 37683632 DOI: 10.1016/j.devcel.2023.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/12/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
The sequence of morphological intermediates that leads to mammalian autophagosome formation and closure is a crucial yet poorly understood issue. Previous studies have shown that yeast autophagosomes evolve from cup-shaped phagophores with only one closure point, and mammalian studies have inferred that mammalian phagophores also have single openings. Our superresolution microscopy studies in different human cell lines in conditions of basal and nutrient-deprivation-induced autophagy identified autophagosome precursors with multifocal origins that evolved into unexpected finger-like phagophores with multiple openings before becoming more spherical structures. Compatible phagophore structures were observed with whole-mount and conventional electron microscopy. This sequence of events was visualized using advanced SIM2 superresolution live microscopy. The finger-shaped phagophore apertures remained open when ESCRT function was compromised. The efficient closure of autophagic structures is important for their release from the recycling endosome. This has important implications for understanding how autophagosomes form and capture various cargoes.
Collapse
Affiliation(s)
- Claudia Puri
- Department of Medical Genetics, University of Cambridge, Cambridge, UK; Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Biomedical Campus, University of Cambridge, The Keith Peters Building Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Matthew J Gratian
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - David C Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge, UK; Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Biomedical Campus, University of Cambridge, The Keith Peters Building Cambridge, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
17
|
Judith D, Versapuech M, Bejjani F, Palaric M, Verlhac P, Kuster A, Lepont L, Gallois-Montbrun S, Janvier K, Berlioz-Torrent C. ATG5 selectively engages virus-tethered BST2/tetherin in an LC3C-associated pathway. Proc Natl Acad Sci U S A 2023; 120:e2217451120. [PMID: 37155854 PMCID: PMC10193943 DOI: 10.1073/pnas.2217451120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/15/2023] [Indexed: 05/10/2023] Open
Abstract
Bone marrow stromal antigen 2 (BST2)/tetherin is a restriction factor that reduces HIV-1 dissemination by tethering virus at the cell surface. BST2 also acts as a sensor of HIV-1 budding, establishing a cellular antiviral state. The HIV-1 Vpu protein antagonizes BST2 antiviral functions via multiple mechanisms, including the subversion of an LC3C-associated pathway, a key cell intrinsic antimicrobial mechanism. Here, we describe the first step of this viral-induced LC3C-associated process. This process is initiated at the plasma membrane through the recognition and internalization of virus-tethered BST2 by ATG5, an autophagy protein. ATG5 and BST2 assemble as a complex, independently of the viral protein Vpu and ahead of the recruitment of the ATG protein LC3C. The conjugation of ATG5 with ATG12 is dispensable for this interaction. ATG5 recognizes cysteine-linked homodimerized BST2 and specifically engages phosphorylated BST2 tethering viruses at the plasma membrane, in an LC3C-associated pathway. We also found that this LC3C-associated pathway is used by Vpu to attenuate the inflammatory responses mediated by virion retention. Overall, we highlight that by targeting BST2 tethering viruses, ATG5 acts as a signaling scaffold to trigger an LC3C-associated pathway induced by HIV-1 infection.
Collapse
Affiliation(s)
- Delphine Judith
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014Paris, France
| | - Margaux Versapuech
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014Paris, France
| | - Fabienne Bejjani
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014Paris, France
| | - Marjory Palaric
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014Paris, France
| | - Pauline Verlhac
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014Paris, France
| | - Aurelia Kuster
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014Paris, France
| | - Leslie Lepont
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014Paris, France
| | | | - Katy Janvier
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014Paris, France
| | | |
Collapse
|
18
|
Coelho PP, Park M. LEAP: a novel LC3C-dependent pathway connects autophagy, endocytic trafficking and signaling. Autophagy 2023; 19:1354-1356. [PMID: 36026467 PMCID: PMC10012885 DOI: 10.1080/15548627.2022.2117973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022] Open
Abstract
Macroautophagy/autophagy acts to promote homeostasis and is increasingly understood to selectively target cargo for degradation. The LC3-family of proteins mediate diverse yet distinct cargo recruitment to phagophores. However, what underlies specificity for cargo engagement among LC3 proteins is poorly understood. Using an unbiased protein interaction screen of LC3B and LC3C, we uncover a novel LC3C-endocytic-associated-pathway (LEAP) that recruits selective plasma membrane (PM) cargo to phagophores. We show LC3C but not LC3B localizes to peripheral endosomes and engages proteins that traffic between the PM, endosomes and autophagosomes. We establish that endocytic LC3C binds cargo internalized from the PM, including MET receptor tyrosine kinase and TFRC (transferrin receptor), and targets them toward autophagic degradation. These findings identify LEAP as an unexpected LC3C-dependent pathway, providing new understanding of selective coupling of PM signaling and autophagic degradation with important implications in cancer and other disease states.
Collapse
Affiliation(s)
- Paula P. Coelho
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Oncology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Nan Y, Luo Q, Wu X, Chang W, Zhao P, Liu S, Liu Z. HCP5 prevents ubiquitination-mediated UTP3 degradation to inhibit apoptosis by activating c-Myc transcriptional activity. Mol Ther 2023; 31:552-568. [PMID: 36245126 PMCID: PMC9931552 DOI: 10.1016/j.ymthe.2022.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/06/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Inducing cancer cell apoptosis through cytotoxic reagents is the main therapeutic strategy for diverse cancer types. However, several antiapoptotic factors impede curative cancer therapy by driving cancer cells to resist cytotoxic agent-induced apoptosis, thus leading to refractoriness and relapse. To define critical antiapoptotic factors that contribute to chemoresistance in esophageal squamous cell carcinoma (ESCC), we generated two pairs of parental and apoptosis-resistant cell models through cisplatin (DDP) induction and then performed whole-transcriptome sequencing. We identified the long noncoding RNA (lncRNA) histocompatibility leukocyte antigen complex P5 (HCP5) as the chief culprit for chemoresistance. Mechanistically, HCP5 interacts with UTP3 small subunit processome component (UTP3) and prevents UTP3 degradation from E3 ligase tripartite motif containing 29 (TRIM29)-mediated ubiquitination. UTP3 then recruits c-Myc to activate vesicle-associated membrane protein 3 (VAMP3) expression. Activated VAMP3 suppresses caspase-dependent apoptosis and eventually leads to chemoresistance. Accordingly, the expression level of the HCP5/UTP3/c-Myc/VAMP3 axis in chemoresistant patients is significantly higher than that in chemosensitive patients. Thus, our study demonstrated that the HCP5/UTP3/c-Myc/VAMP3 axis plays an important role in the inhibition of cancer cell apoptosis and that HCP5 may be a promising chemosensitivity target for cancer treatment.
Collapse
Affiliation(s)
- Yabing Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qingyu Luo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaowei Wu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wan Chang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Pengfei Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shi Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|