1
|
Duan M, Che L, Wu X, Quek SY, Zhang B, Lin H, He N. Incorporation of probiotics with pressure-sensitive pectin-fructooligosaccharide hydrogel for potential intestinal delivery. Carbohydr Polym 2025; 359:123566. [PMID: 40306774 DOI: 10.1016/j.carbpol.2025.123566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/09/2025] [Accepted: 03/29/2025] [Indexed: 05/02/2025]
Abstract
Probiotics and prebiotics serve as vital tools in managing gut microecology and enhancing immune responses. However, the effectiveness of non-encapsulated probiotics often diminishes during processing, storage, and transport to the gastrointestinal tract, especially at elevated temperatures. To address this challenge, a novel loading strategy for Lactobacillus reuteri DPC16 (L. reuteri) is proposed in this work, using pressure-sensitive high-methoxy pectin (HMP)/fructooligosaccharides (FOS) hydrogel. The HMP/FOS hydrogel melted at 600 MPa to form a sol. The resulting sol was mixed with L. reuteri immediately at ambient conditions, which underwent a sol-to-gel transition subsequently to form a composite hydrogel with a continuous porous structure. The resulting HMP/FOS@L. reuteri hydrogel achieved a loading concentration of viable bacteria at 109 CFU/mL. In vitro assessments reveal that the hydrogel demonstrates good biocompatibility and targeted release of probiotics within the intestine. Furthermore, the hydrogel substantially boosted the short-chain fatty acids levels and increased the amounts of acetic and isovaleric acids, respectively. This work underscores the unique advantages of employing a pressure-sensitive HMP/FOS hydrogel for loading and targeted delivery of probiotics and prebiotics to improve intestinal health.
Collapse
Affiliation(s)
- Mengwen Duan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Liming Che
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| | - Xuee Wu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Bangzhou Zhang
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350000, PR China
| | - Hao Lin
- Xiamen Treatgut Biotechnology Co. Ltd., Xiamen 361005, PR China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| |
Collapse
|
2
|
Enciu VT, Ologeanu PM, Constantinescu A, Fierbinteanu-Braticevici C. Latest Insights in Alcohol-Related Liver Disease and Alcoholic Hepatitis. ROMANIAN JOURNAL OF INTERNAL MEDICINE = REVUE ROUMAINE DE MEDECINE INTERNE 2025:rjim-2025-0007. [PMID: 40245287 DOI: 10.2478/rjim-2025-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Indexed: 04/19/2025]
Abstract
Alcohol-related liver disease (ALD) is still to this date one of the leading causes of chronic liver disease globally. ALD comprises a wide disease spectrum, from the benign liver steatosis, to the life-threatening inflammatory acute phenotype of alcoholic hepatitis (AH) and ultimately, advanced liver fibrosis and cirrhosis. AH represents an acute inflammatory liver condition caused by prolonged high quantities of alcohol intake. Disease outcome varies from mild to severe, with systemic implication and high mortality. Although the pathogenesis has been extensively studied over the years, little progress has been made regarding therapeutic options. In over 50 years, steroid treatment is still the cornerstone therapeutic option, albeit having multiple limitations and a low success rate. On the other hand, important progress has been made regarding disease management and severity stratification with the implementation of different prognostic score. Although highly prevalent, AH still has many unmet needs, with a growing necessity for novel non-invasive diagnosis, prognosis biomarkers and impactful treatment options.
Collapse
Affiliation(s)
- Vlad-Teodor Enciu
- 1Internal Medicine II and Gastroenterology Department, Emergency University Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- 2Emergency University Hospital, 050098 Bucharest, Romania
| | - Priscila Madalina Ologeanu
- 1Internal Medicine II and Gastroenterology Department, Emergency University Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- 2Emergency University Hospital, 050098 Bucharest, Romania
| | - Alexandru Constantinescu
- 2Emergency University Hospital, 050098 Bucharest, Romania
- 3Internal Medicine I and Gastroenterology Department, Emergency University Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 050474, Bucharest, Romania
| | - Carmen Fierbinteanu-Braticevici
- 1Internal Medicine II and Gastroenterology Department, Emergency University Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- 2Emergency University Hospital, 050098 Bucharest, Romania
| |
Collapse
|
3
|
Li C, Cai C, Wang C, Chen X, Zhang B, Huang Z. Gut microbiota-mediated gut-liver axis: a breakthrough point for understanding and treating liver cancer. Clin Mol Hepatol 2025; 31:350-381. [PMID: 39659059 PMCID: PMC12016628 DOI: 10.3350/cmh.2024.0857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024] Open
Abstract
The trillions of commensal microorganisms living in the gut lumen profoundly influence the physiology and pathophysiology of the liver through a unique gut-liver axis. Disruptions in the gut microbial communities, arising from environmental and genetic factors, can lead to altered microbial metabolism, impaired intestinal barrier and translocation of microbial components to the liver. These alterations collaboratively contribute to the pathogenesis of liver disease, and their continuous impact throughout the disease course plays a critical role in hepatocarcinogenesis. Persistent inflammatory responses, metabolic rearrangements and suppressed immunosurveillance induced by microbial products underlie the pro-carcinogenic mechanisms of gut microbiota. Meanwhile, intrahepatic microbiota derived from the gut also emerges as a novel player in the development and progression of liver cancer. In this review, we first discuss the causes of gut dysbiosis in liver disease, and then specify the pivotal role of gut microbiota in the malignant progression from chronic liver diseases to hepatobiliary cancers. We also delve into the cellular and molecular interactions between microbes and liver cancer microenvironment, aiming to decipher the underlying mechanism for the malignant transition processes. At last, we summarize the current progress in the clinical implications of gut microbiota for liver cancer, shedding light on microbiota-based strategies for liver cancer prevention, diagnosis and therapy.
Collapse
Affiliation(s)
- Chenyang Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chujun Cai
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chendong Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Wuhan, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Hou S, Yu J, Li Y, Zhao D, Zhang Z. Advances in Fecal Microbiota Transplantation for Gut Dysbiosis-Related Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413197. [PMID: 40013938 PMCID: PMC11967859 DOI: 10.1002/advs.202413197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/22/2025] [Indexed: 02/28/2025]
Abstract
This article provides an overview of the advancements in the application of fecal microbiota transplantation (FMT) in treating diseases related to intestinal dysbiosis. FMT involves the transfer of healthy donor fecal microbiota into the patient's body, aiming to restore the balance of intestinal microbiota and thereby treat a variety of intestinal diseases such as recurrent Clostridioides difficile infection (rCDI), inflammatory bowel disease (IBD), constipation, short bowel syndrome (SBS), and irritable bowel syndrome (IBS). While FMT has shown high efficacy in the treatment of rCDI, further research is needed for its application in other chronic conditions. This article elaborates on the application of FMT in intestinal diseases and the mechanisms of intestinal dysbiosis, as well as discusses key factors influencing the effectiveness of FMT, including donor selection, recipient characteristics, treatment protocols, and methods for assessing microbiota. Additionally, it emphasizes the key to successful FMT. Future research should focus on optimizing the FMT process to ensure long-term safety and explore the potential application of FMT in a broader range of medical conditions.
Collapse
Affiliation(s)
- Shuna Hou
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
- Department of general surgeryThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Jiachen Yu
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Yongshuang Li
- Department of general surgeryThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Duoyi Zhao
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Zhiyu Zhang
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| |
Collapse
|
5
|
Münte E, Hartmann P. The Role of Short-Chain Fatty Acids in Metabolic Dysfunction-Associated Steatotic Liver Disease and Other Metabolic Diseases. Biomolecules 2025; 15:469. [PMID: 40305160 PMCID: PMC12025087 DOI: 10.3390/biom15040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/10/2025] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
With its increasing prevalence, metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as a major global public health concern over the past few decades. Growing evidence has proposed the microbiota-derived metabolites short-chain fatty acids (SCFAs) as a potential factor in the pathophysiology of MASLD and related metabolic conditions, such as obesity and type 2 diabetes mellitus (T2DM). By influencing key pathways involved in energy homeostasis, insulin sensitivity, and inflammation, SCFAs play an important role in gut microbiota composition, intestinal barrier function, immune modulation, and direct metabolic signaling. Furthermore, recent animal and human studies on therapeutic strategies targeting SCFAs demonstrate their potential for treating these metabolic disorders.
Collapse
Affiliation(s)
- Eliane Münte
- Department of Pediatrics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Phillipp Hartmann
- Department of Pediatrics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
- Division of Gastroenterology, Hepatology & Nutrition, Rady Children’s Hospital San Diego, San Diego, CA 92123, USA
| |
Collapse
|
6
|
Liu T, Zhang F, Feng Y, Han P, Gao Y. Alcohol-Metabolizing Enzymes, Liver Diseases and Cancer. Semin Liver Dis 2025; 45:99-113. [PMID: 40157374 PMCID: PMC12031026 DOI: 10.1055/a-2551-3320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Alcohol is generally believed to be metabolized in the liver by alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and to a much lesser extent cytochrome P450 2E1 (CYP2E1) and other enzymes. Recent studies suggest that gut also play important roles in the promotion of alcohol metabolism. ADH, ALDH, and CYP2E1 have several polymorphisms that markedly impact alcohol metabolism. These alcohol-metabolizing enzymes not only affect alcohol-associated liver disease (ALD), but may also modulate the pathogenesis of other liver diseases and cancer in the absence of alcohol consumption. In this review, we discuss alcohol metabolism and the roles of alcohol-metabolizing enzymes in the pathogenesis of ALD, metabolic dysfunction-associated steatotic liver disease, metabolic dysfunction and alcohol-associated liver disease, viral hepatitis, and liver cancer. We also discuss how alcohol-metabolizing enzymes may affect endogenous ethanol production, and how ethanol metabolism in the gut affects liver disease and cancer. Directions for future research on the roles of alcohol-metabolizing enzymes in liver disease and cancer are also elaborated.
Collapse
Affiliation(s)
- Tao Liu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun, China
- Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun, China
| | - FeiYu Zhang
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun, China
- Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun, China
| | - Yue Feng
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun, China
- Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun, China
| | - PanShiLi Han
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun, China
- Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun, China
| | - YanHang Gao
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun, China
- Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun, China
| |
Collapse
|
7
|
Mehta I, Juneja K, Nimmakayala T, Bansal L, Pulekar S, Duggineni D, Ghori HK, Modi N, Younas S. Gut Microbiota and Mental Health: A Comprehensive Review of Gut-Brain Interactions in Mood Disorders. Cureus 2025; 17:e81447. [PMID: 40303511 PMCID: PMC12038870 DOI: 10.7759/cureus.81447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2025] [Indexed: 05/02/2025] Open
Abstract
The human gut flora of trillions of bacteria is vital for general health and greatly influences digestion, immune system function, and brain development. Through neuronal, hormonal, and immunological channels, the gut-brain axis (GBA), a bidirectional communication network, links the gut microbiota to the central nervous system (CNS). This relationship has been linked to affective diseases, including depression and anxiety, as well as mental health issues. This review explores the intricate relationship between gut bacteria and mood disorders, focusing on how gut microbiota-host interactions, immune system modulation, and neurotransmitter control support mental health. The function of important microbial metabolites, including short-chain fatty acids (SCFAs), in preserving blood-brain barrier integrity and modulating neuroinflammation is covered in this review. It also examines the bidirectional impact between gut health and mental health, including how dysbiosis could aggravate mood disorders and how depressed states might change the composition of gut bacteria. Furthermore, we discuss how psychotropic drugs affect gut flora and consider other elements such as nutrition and lifestyle that affect gut microbiome composition. Potential paths for treating mood disorders through gut microbiota modification are presented as emerging treatment techniques, including probiotics, nutritional therapies, and precision medicine. The development of new therapeutic approaches for mood disorders depends on the awareness of the GBA. Gut bacteria significantly affect mental health through immune modulation, neurotransmitter generation, and other intricate processes. Future studies should concentrate on large, varied populations to better understand these interactions and to create customized treatments that combine gut microbiota modulation with conventional mental health therapies.
Collapse
Affiliation(s)
- Ishani Mehta
- Psychiatry and Behavioral Sciences, Maharaja Agrasen Institute of Medical Research and Education, Hisar, IND
| | | | - Tharun Nimmakayala
- Medicine and Surgery, Apollo Institute of Medical Sciences and Research, Chittoor, IND
| | - Lajpat Bansal
- Psychiatry and Behavioral Sciences, Maharaja Agrasen Institute of Medical Research and Education, Hisar, IND
| | - Shivani Pulekar
- General Practice, Davao Medical School Foundation, Davao, PHL
| | | | | | - Nishi Modi
- Medicine, Government Medical College, Surat, Surat, IND
| | - Salma Younas
- Pharmacy, Punjab University College of Pharmacy, Lahore, PAK
| |
Collapse
|
8
|
Brigagão Pacheco da Silva C, Nascimento-Silva EA, Zaramela LS, da Costa BRB, Rodrigues VF, De Martinis BS, Carlos D, Tostes RC. Drinking pattern and sex modulate the impact of ethanol consumption on the mouse gut microbiome. Physiol Genomics 2025; 57:179-194. [PMID: 39918827 DOI: 10.1152/physiolgenomics.00031.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 01/28/2025] [Indexed: 03/04/2025] Open
Abstract
Gut microbiota impacts host homeostasis and diseases. Chronic plus binge ethanol consumption has been linked to increased injuries than chronic or binge ethanol intake alone. We hypothesized that distinct shapes in gut microbiota composition are induced by chronic, binge, and the association of these treatments, thereby affecting host functions and contributing to sex-based differences in alcohol use disorders. Male and female C57BL/6J mice were submitted to chronic, binge, or chronic plus binge ethanol feeding. DNA was extracted from fecal microbiota, followed by analysis of the V3-V4 region of the 16S rRNA gene and sequencing on an Illumina platform. Gut microbiome analysis was performed using QIIME v2022.2.0. Functional profiling of the gut microbiome was performed using PICRUSt2. Ethanol differentially affected the gut microbiota of female and male mice. Decreased α diversity was observed in male and female mice from the chronic plus binge and chronic groups, respectively. The genera Faecalibaculum, Lachnospiraceae, and Alistipes were identified as major potential biomarkers for gut dysbiosis induced by ethanol consumption. In addition, ethanol-induced gut dysbiosis altered several metabolic pathways. Ethanol consumption modifies the mouse gut microbiome in a drinking pattern- and sex-dependent manner, potentially leading to different susceptibility to ethanol-related diseases. Chronic plus binge ethanol intake induces a more pronounced gut dysbiosis in male mice. Conversely, chronic ethanol is linked to a greater degree of gut dysbiosis in female mice. The changed gut microbiome may be potentially targeted to prevent, mitigate, or treat alcohol use disorders.NEW & NOTEWORTHY Ethanol alters the mouse gut microbiome in a drinking pattern- and sex-dependent manner. Chronic plus binge ethanol intake induces a more severe gut dysbiosis in male mice, whereas chronic ethanol consumption appears to be a more potent inductor of gut dysbiosis in female mice. Ethanol-induced gut dysbiosis alters several pathways linked to metabolism, genetic and environmental information processing, cellular processes, organism systems, and neurological human diseases.
Collapse
Affiliation(s)
| | | | - Lívia Soares Zaramela
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruno Ruiz Brandão da Costa
- Department of Clinical, Toxicological and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Vanessa Fernandes Rodrigues
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruno Spinosa De Martinis
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniela Carlos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
9
|
Berg SZ, Berg J. Microbes, macrophages, and melanin: a unifying theory of disease as exemplified by cancer. Front Immunol 2025; 15:1493978. [PMID: 39981299 PMCID: PMC11840190 DOI: 10.3389/fimmu.2024.1493978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/03/2024] [Indexed: 02/22/2025] Open
Abstract
It is widely accepted that cancer mostly arises from random spontaneous mutations triggered by environmental factors. Our theory challenges the idea of the random somatic mutation theory (SMT). The SMT does not fit well with Charles Darwin's theory of evolution in that the same relatively few mutations would occur so frequently and that these mutations would lead to death rather than survival of the fittest. However, it would fit well under the theory of evolution, if we were to look at it from the vantage point of pathogens and their supporting microbial communities colonizing humans and mutating host cells for their own benefit, as it does give them an evolutionary advantage and they are capable of selecting genes to mutate and of inserting their own DNA or RNA into hosts. In this article, we provide evidence that tumors are actually complex microbial communities composed of various microorganisms living within biofilms encapsulated by a hard matrix; that these microorganisms are what cause the genetic mutations seen in cancer and control angiogenesis; that these pathogens spread by hiding in tumor cells and M2 or M2-like macrophages and other phagocytic immune cells and traveling inside them to distant sites camouflaged by platelets, which they also reprogram, and prepare the distant site for metastasis; that risk factors for cancer are sources of energy that pathogens are able to utilize; and that, in accordance with our previous unifying theory of disease, pathogens utilize melanin for energy for building and sustaining tumors and metastasis. We propose a paradigm shift in our understanding of what cancer is, and, thereby, a different trajectory for avenues of treatment and prevention.
Collapse
Affiliation(s)
- Stacie Z. Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| | - Jonathan Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| |
Collapse
|
10
|
Gwak JH, Choi YJ, Ayub H, Seol MK, Kim H, Jung MY. Comprehensive genomic and functional analysis of Leuconostoc lactic acid bacteria in alcohol and acetaldehyde metabolism. J Microbiol 2025; 63:e2410026. [PMID: 40044133 DOI: 10.71150/jm.2410026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/14/2025] [Indexed: 05/13/2025]
Abstract
Alcohol consumption can lead to the accumulation of harmful metabolites, such as acetaldehyde, contributing to various adverse health effects, including hangovers and liver damage. This study presents a comprehensive genomic and functional analysis of Leuconostoc suionicum VITA-PB2, a lactic acid bacterial strain isolated from kimchi, to elucidate its role in enhancing alcohol and acetaldehyde metabolism. Genomic characterization revealed key genes encoding alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), providing insights into the metabolic capabilities of strain VITA-PB2. Phylogenomic analyses confirmed its taxonomic classification and genetic similarity to other Leuconostoc species. Functional validation through in vitro and in vivo experiments demonstrated superior ethanol and acetaldehyde decomposition abilities of strain VITA-PB2, with significant reductions in blood ethanol and acetaldehyde levels observed in rats administered with the strain. Further analysis indicated that while hepatic ADH activity did not significantly increase; however, ALDH expression was elevated. This suggests that the microbial ADH of strain VITA-PB2 contributed to ethanol breakdown, while both microbial and host ALDH facilitated acetaldehyde detoxification. These findings highlight the potential of strain VITA-PB2 as a functional probiotic for mitigating the toxic effects of alcohol consumption.
Collapse
Affiliation(s)
- Joo-Han Gwak
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yun Ji Choi
- Interdisciplinary Graduate Program in Advance Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Hina Ayub
- Interdisciplinary Graduate Program in Advance Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | | | - Hongik Kim
- Vitabio Inc., Sejong 30141, Republic of Korea
| | - Man-Young Jung
- Interdisciplinary Graduate Program in Advance Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
- Department of Biology Education, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
11
|
He L, Zhou JH, Li H, Zhang WL, Liu TQ, Jiang HF, Zhai RW, Zhang XJ. Characterization of Gut Microbiota in Rats and Rhesus Monkeys After Methamphetamine Self-administration. Mol Neurobiol 2025; 62:861-870. [PMID: 38922485 DOI: 10.1007/s12035-024-04318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Methamphetamine (MA) is one of the most abused drugs globally, but the mechanism of its addiction remains unclear. Several animal studies have shown that the gut microbiota (GM) influences addictive behaviors, but the pattern of GM changes during addiction in animals of different species remains unclear. The aim of this study was to explore the association between dynamic changes in GM and MA self-administration acquisition among two classical mammals, rhesus monkeys (Macaca mulatta) and rats, MA self-administration models. Male Sprague-Dawley rats and male rhesus monkeys were subjected to classical MA self-administration training, and fecal samples were collected before and after MA self-administration training, respectively. 16S rRNA sequencing was used for GM analyses. We found that GM changes were more pronounced in rats than in rhesus monkeys, as evidenced by more GM taxa producing significant differences before and after MA self-administration training in rats than in monkeys. We also found that the expression of the genus Clostridia_vadinBB60_group significantly decreased after MA self-administration training in both rats and rhesus monkeys. Lactobacillus changes were significantly negatively correlated with total MA uptake in rats (Pearson R = - 0.666, p = 0.035; Spearman R = - 0.721, p = 0.023), whereas its change was also highly negatively correlated with total MA uptake in rhesus monkeys (Pearson R = - 0.882, p = 0.118; Spearman R = - 1.000, p = 0.083), although this was not significant. These findings suggest that MA causes significant alterations in GM in both rhesus monkeys and rats and that the genus Lactobacillus might be a common therapeutic target for MA uptake prevention across the species.
Collapse
Affiliation(s)
- Li He
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jia-Hui Zhou
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Li
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Wen-Lei Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tie-Qiao Liu
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Hai-Feng Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Xiao-Jie Zhang
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
12
|
Xu K, Nnyamah C, Pandya N, Sweis N, Corona-Avila I, Priyadarshini M, Wicksteed B, Layden BT. β cell acetate production and release are negligible. Islets 2024; 16:2339558. [PMID: 38607959 PMCID: PMC11018053 DOI: 10.1080/19382014.2024.2339558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/10/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Studies suggest that short chain fatty acids (SCFAs), which are primarily produced from fermentation of fiber, regulate insulin secretion through free fatty acid receptors 2 and 3 (FFA2 and FFA3). As these are G-protein coupled receptors (GPCRs), they have potential therapeutic value as targets for treating type 2 diabetes (T2D). The exact mechanism by which these receptors regulate insulin secretion and other aspects of pancreatic β cell function is unclear. It has been reported that glucose-dependent release of acetate from pancreatic β cells negatively regulates glucose stimulated insulin secretion. While these data raise the possibility of acetate's potential autocrine action on these receptors, these findings have not been independently confirmed, and multiple concerns exist with this observation, particularly the lack of specificity and precision of the acetate detection methodology used. METHODS Using Min6 cells and mouse islets, we assessed acetate and pyruvate production and secretion in response to different glucose concentrations, via liquid chromatography mass spectrometry. RESULTS Using Min6 cells and mouse islets, we showed that both intracellular pyruvate and acetate increased with high glucose conditions; however, intracellular acetate level increased only slightly and exclusively in Min6 cells but not in the islets. Further, extracellular acetate levels were not affected by the concentration of glucose in the incubation medium of either Min6 cells or islets. CONCLUSIONS Our findings do not substantiate the glucose-dependent release of acetate from pancreatic β cells, and therefore, invalidate the possibility of an autocrine inhibitory effect on glucose stimulated insulin secretion.
Collapse
Affiliation(s)
- Kai Xu
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Chioma Nnyamah
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Nupur Pandya
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Nadia Sweis
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Irene Corona-Avila
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Medha Priyadarshini
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Barton Wicksteed
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Brian T. Layden
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
13
|
Raya Tonetti F, Eguileor A, Mrdjen M, Pathak V, Travers J, Nagy LE, Llorente C. Gut-liver axis: Recent concepts in pathophysiology in alcohol-associated liver disease. Hepatology 2024; 80:1342-1371. [PMID: 38691396 PMCID: PMC11801230 DOI: 10.1097/hep.0000000000000924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
The growing recognition of the role of the gut microbiome's impact on alcohol-associated diseases, especially in alcohol-associated liver disease, emphasizes the need to understand molecular mechanisms involved in governing organ-organ communication to identify novel avenues to combat alcohol-associated diseases. The gut-liver axis refers to the bidirectional communication and interaction between the gut and the liver. Intestinal microbiota plays a pivotal role in maintaining homeostasis within the gut-liver axis, and this axis plays a significant role in alcohol-associated liver disease. The intricate communication between intestine and liver involves communication between multiple cellular components in each organ that enable them to carry out their physiological functions. In this review, we focus on novel approaches to understanding how chronic alcohol exposure impacts the microbiome and individual cells within the liver and intestine, as well as the impact of ethanol on the molecular machinery required for intraorgan and interorgan communication.
Collapse
Affiliation(s)
| | - Alvaro Eguileor
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Marko Mrdjen
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Vai Pathak
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jared Travers
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- Department of Gastroenterology and Hepatology, University Hospital, Cleveland OH
| | - Laura E Nagy
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland OH
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
14
|
Thomas LA, Hopkinson RJ. The biochemistry of the carcinogenic alcohol metabolite acetaldehyde. DNA Repair (Amst) 2024; 144:103782. [PMID: 39566398 DOI: 10.1016/j.dnarep.2024.103782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/14/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
Acetaldehyde (AcH) is the first metabolite of ethanol and is proposed to be responsible for the genotoxic effects of alcohol consumption. As an electrophilic aldehyde, AcH can form multiple adducts with DNA and other biomolecules, leading to function-altering and potentially toxic and carcinogenic effects. In this review, we describe sources of AcH in humans, including AcH biosynthesis mechanisms, and outline the structures, properties and functions of AcH-derived adducts with biomolecules. We also describe human AcH detoxification mechanisms and discuss ongoing challenges in the field.
Collapse
Affiliation(s)
- Liam A Thomas
- Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, Leicester LE1 7RH, UK
| | - Richard J Hopkinson
- Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
15
|
Tian Y, He Y, Xiong H, Sun Y. Rice Protein Peptides Alleviate Alcoholic Liver Disease via the PPARγ Signaling Pathway: Through Liver Metabolomics and Gut Microbiota Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23790-23803. [PMID: 39406388 DOI: 10.1021/acs.jafc.4c02671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alcoholic liver disease (ALD) is the predominant type of liver disease worldwide, resulting in significant mortality and a high disease burden. ALD damages multiple organs, including the liver, gut, and brain, causing inflammation, oxidative stress, and fat deposition. In this study, we investigated the effects of rice protein peptides (RPP) on ALD in mice with a primary focus on the gut microbiota and liver metabolites. The results showed that administration of RPP significantly alleviated the symptoms of ALD in mice including adiposity, oxidative stress, and inflammation. The KEGG pathway shows that RPP downregulates the liver metabolite of capric acid and the metabolism of fatty acid biosynthesis compared with the MOD group. Mechanistically, RPP downregulated the PPARγ signaling pathway and suppressed the expression of fatty acid biosynthesis genes (FASN, ACC1, ACSL1, and ACSL3). Furthermore, two active peptides (YLPTKQ and PKLPR) with potential therapeutic functions for ALD were screened by Caco-2 cell modeling and molecular docking techniques. In addition, RPP treatment alleviates gut microbiota dysbiosis by reversing the F/B ratio, increasing the relative abundance of Alloprevotella and Alistipes, and upregulating the level of short-chain fatty acids. In conclusion, RPP alleviates ALD steatosis through the PPARγ signaling pathway by YLPTKQ and PKLPR and regulates gut microbiota.
Collapse
Affiliation(s)
- Yue Tian
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yangzheng He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
- Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, Jiangxi 330052, China
| |
Collapse
|
16
|
Pan L, Yin N, Duan M, Mei Q, Zeng Y. The role of gut microbiome and its metabolites in pancreatitis. mSystems 2024; 9:e0066524. [PMID: 39212377 PMCID: PMC11494936 DOI: 10.1128/msystems.00665-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Gut microbiome plays a vital role in the intestinal ecosystem and has close association with metabolites. Due to the development of metabolomics and microbiomics, recent studies have observed that alteration of either the gut microbiome or metabolites may have effects on the progression of pancreatitis. Several new treatments based on the gut microbiome or metabolites have been studied extensively in recent years. Gut microbes, such as Bifidobacterium, Akkermansia, and Lactobacillus, and metabolites, such as short-chain fatty acids, bile acids, vitamin, hydrogen sulfide, and alcohol, have different effects on pancreatitis. Some preliminary studies about new intervention measures were based on the gut microbiome and metabolites such as diet, prebiotic, herbal medicine, and fecal microbiota transplantation. This review aims to summarize the recent advances about the gut microbiome, metabolites, and pancreatitis in order to determine the potential beneficial role of the gut microbiome and metabolites in pancreatitis.
Collapse
Affiliation(s)
- Letian Pan
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Nuoming Yin
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Mingyu Duan
- Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qixiang Mei
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yue Zeng
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Zhang C, Sánchez BJ, Li F, Eiden CWQ, Scott WT, Liebal UW, Blank LM, Mengers HG, Anton M, Rangel AT, Mendoza SN, Zhang L, Nielsen J, Lu H, Kerkhoven EJ. Yeast9: a consensus genome-scale metabolic model for S. cerevisiae curated by the community. Mol Syst Biol 2024; 20:1134-1150. [PMID: 39134886 PMCID: PMC11450192 DOI: 10.1038/s44320-024-00060-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 10/05/2024] Open
Abstract
Genome-scale metabolic models (GEMs) can facilitate metabolism-focused multi-omics integrative analysis. Since Yeast8, the yeast-GEM of Saccharomyces cerevisiae, published in 2019, has been continuously updated by the community. This has increased the quality and scope of the model, culminating now in Yeast9. To evaluate its predictive performance, we generated 163 condition-specific GEMs constrained by single-cell transcriptomics from osmotic pressure or reference conditions. Comparative flux analysis showed that yeast adapting to high osmotic pressure benefits from upregulating fluxes through central carbon metabolism. Furthermore, combining Yeast9 with proteomics revealed metabolic rewiring underlying its preference for nitrogen sources. Lastly, we created strain-specific GEMs (ssGEMs) constrained by transcriptomics for 1229 mutant strains. Well able to predict the strains' growth rates, fluxomics from those large-scale ssGEMs outperformed transcriptomics in predicting functional categories for all studied genes in machine learning models. Based on those findings we anticipate that Yeast9 will continue to empower systems biology studies of yeast metabolism.
Collapse
Affiliation(s)
- Chengyu Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), 200237, Shanghai, China
| | - Benjamín J Sánchez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Feiran Li
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Cheng Wei Quan Eiden
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - William T Scott
- UNLOCK, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Ulf W Liebal
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, 52074, Aachen, Germany
| | - Lars M Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, 52074, Aachen, Germany
| | - Hendrik G Mengers
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, 52074, Aachen, Germany
| | - Mihail Anton
- Department of Life Sciences, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, SE412 58, Sweden
| | - Albert Tafur Rangel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE412 96, Sweden
| | - Sebastián N Mendoza
- Center for Mathematical Modeling, University of Chile, Santiago, Chile
- Systems Biology Lab, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), 200237, Shanghai, China
| | - Jens Nielsen
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE412 96, Sweden
- BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen N, Denmark
| | - Hongzhong Lu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Eduard J Kerkhoven
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark.
- Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, SE412 96, Sweden.
| |
Collapse
|
18
|
Su J, Wang P, Zhou W, Peydayesh M, Zhou J, Jin T, Donat F, Jin C, Xia L, Wang K, Ren F, Van der Meeren P, García de Arquer FP, Mezzenga R. Single-site iron-anchored amyloid hydrogels as catalytic platforms for alcohol detoxification. NATURE NANOTECHNOLOGY 2024; 19:1168-1177. [PMID: 38740933 PMCID: PMC11329373 DOI: 10.1038/s41565-024-01657-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/21/2024] [Indexed: 05/16/2024]
Abstract
Constructing effective antidotes to reduce global health impacts induced by alcohol prevalence is a challenging topic. Despite the positive effects observed with intravenous applications of natural enzyme complexes, their insufficient activities and complicated usage often result in the accumulation of toxic acetaldehyde, which raises important clinical concerns, highlighting the pressing need for stable oral strategies. Here we present an effective solution for alcohol detoxification by employing a biomimetic-nanozyme amyloid hydrogel as an orally administered catalytic platform. We exploit amyloid fibrils derived from β-lactoglobulin, a readily accessible milk protein that is rich in coordinable nitrogen atoms, as a nanocarrier to stabilize atomically dispersed iron (ferrous-dominated). By emulating the coordination structure of the horseradish peroxidase enzyme, the single-site iron nanozyme demonstrates the capability to selectively catalyse alcohol oxidation into acetic acid, as opposed to the more toxic acetaldehyde. Administering the gelatinous nanozyme to mice suffering from alcohol intoxication significantly reduced their blood-alcohol levels (decreased by 55.8% 300 min post-alcohol intake) without causing additional acetaldehyde build-up. Our hydrogel further demonstrates a protective effect on the liver, while simultaneously mitigating intestinal damage and dysbiosis associated with chronic alcohol consumption, introducing a promising strategy in effective alcohol detoxification.
Collapse
Affiliation(s)
- Jiaqi Su
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Pengjie Wang
- Department of Nutrition and Health, Beijing Higher Institution Engineering Research Center of Animal Products, China Agricultural University, Beijing, China
| | - Wei Zhou
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Mohammad Peydayesh
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Jiangtao Zhou
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Tonghui Jin
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Felix Donat
- Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Cuiyuan Jin
- Institute of Translational Medicine, Zhejiang Shuren University, Zhejiang, China
| | - Lu Xia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Kaiwen Wang
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fazheng Ren
- Department of Nutrition and Health, Beijing Higher Institution Engineering Research Center of Animal Products, China Agricultural University, Beijing, China
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - F Pelayo García de Arquer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Department of Materials, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
19
|
Du HX, Yue SY, Niu D, Liu XH, Li WY, Wang X, Chen J, Hu DK, Zhang LG, Guan Y, Ji DX, Chen XG, Zhang L, Liang CZ. Alcohol intake exacerbates experimental autoimmune prostatitis through gut microbiota driving cholesterol biosynthesis-mediated Th17 differentiation. Int Immunopharmacol 2024; 139:112669. [PMID: 39029231 DOI: 10.1016/j.intimp.2024.112669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is very common worldwide, and alcohol consumption is a notable contributing factor. Researches have shown that gut microbiota can be influenced by alcohol consumption and is an important mediator in regulating Th17 cell immunity. However, it is still unclear the exact mechanism by which alcohol exacerbates the CP/CPPS and the role of gut microbiota in this process. METHOD We first constructed the most-commonly used animal model for CP/CPPS, the experimental autoimmune prostatitis (EAP) model, through immunoassay. Based on this, mice were divided into EAP group and alcohol-consuming EAP group. By 16S rRNA sequencing and non-targeted metabolomics analysis, differential gut microbiota and their metabolites between the two groups were identified. Subsequently, metabolomics detection targeting cholesterols was carried out to identify the exact difference in cholesterol. Furthermore, multiple methods such as flow cytometry and immunohistochemistry were used to detect the differentiation status of Th17 cells and severity of prostatitis treated with 27-hydroxycholesterol (the differential cholesterol) and its upstream regulatory factor-sterol regulatory element-binding protein 2 (SREBP2). Lastly, fecal transplantation was conducted to preliminary study on whether alcohol intake exacerbates EAP in immune receptor mice. RESULTS Alcohol intake increased the proportion of Th17 cells and levels of related inflammatory factors. It also led to an altered gut bacterial richness and increased gut permeability. Further metabolomic analysis showed that there were significant differences in a variety of metabolites between EAP and alcohol-fed EAP mice. Metabolic pathway enrichment analysis showed that the pathways related to cholesterol synthesis and metabolism were significantly enriched, which was subsequently confirmed by detecting the expression of metabolic enzymes. By targeting cholesterol synthesis, 27-hydroxycholesterol was significantly increased in alcohol-fed EAP mice. Subsequent mechanistic research showed that supplementation with 27-hydroxycholesterol could aggravate EAP and promote Th17 cell differentiation both in vivo and in vitro, which is regulated by SREBP2. In addition, we observed that fecal transplantation from mice with alcohol intake aggravated EAP in immunized recipient mice fed a normal diet. CONCLUSION Our study is the first to show that alcohol intake promotes Th17 cell differentiation and exacerbates EAP through microbiota-derived cholesterol biosynthesis.
Collapse
Affiliation(s)
- He-Xi Du
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Shao-Yu Yue
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Di Niu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Xian-Hong Liu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Wei-Yi Li
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Xu Wang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Jia Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - De-Kai Hu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Li-Gang Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Yu Guan
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Duo-Xu Ji
- Clinical Medical College, Anhui Medical University, Hefei, Anhui, PR China
| | - Xian-Guo Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China.
| | - Li Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China.
| | - Chao-Zhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China.
| |
Collapse
|
20
|
Fu Y, Mackowiak B, Lin YH, Maccioni L, Lehner T, Pan H, Guan Y, Godlewski G, Lu H, Chen C, Wei S, Feng D, Paloczi J, Zhou H, Pacher P, Zhang L, Kunos G, Gao B. Coordinated action of a gut-liver pathway drives alcohol detoxification and consumption. Nat Metab 2024; 6:1380-1396. [PMID: 38902331 DOI: 10.1038/s42255-024-01063-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/07/2024] [Indexed: 06/22/2024]
Abstract
Alcohol use disorder (AUD) affects millions of people worldwide, causing extensive morbidity and mortality with limited pharmacological treatments. The liver is considered as the principal site for the detoxification of ethanol metabolite, acetaldehyde (AcH), by aldehyde dehydrogenase 2 (ALDH2) and as a target for AUD treatment, however, our recent data indicate that the liver only plays a partial role in clearing systemic AcH. Here we show that a liver-gut axis, rather than liver alone, synergistically drives systemic AcH clearance and voluntary alcohol drinking. Mechanistically, we find that after ethanol intake, a substantial proportion of AcH generated in the liver is excreted via the bile into the gastrointestinal tract where AcH is further metabolized by gut ALDH2. Modulating bile flow significantly affects serum AcH level and drinking behaviour. Thus, combined targeting of liver and gut ALDH2, and manipulation of bile flow and secretion are potential therapeutic strategies to treat AUD.
Collapse
Affiliation(s)
- Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Bryan Mackowiak
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Yu-Hong Lin
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Luca Maccioni
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Taylor Lehner
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Hongna Pan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Yukun Guan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Hongkun Lu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Cheng Chen
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Shoupeng Wei
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, Richmond, VA, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Li Zhang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
21
|
Bunyavanich S, Becker PM, Altman MC, Lasky-Su J, Ober C, Zengler K, Berdyshev E, Bonneau R, Chatila T, Chatterjee N, Chung KF, Cutcliffe C, Davidson W, Dong G, Fang G, Fulkerson P, Himes BE, Liang L, Mathias RA, Ogino S, Petrosino J, Price ND, Schadt E, Schofield J, Seibold MA, Steen H, Wheatley L, Zhang H, Togias A, Hasegawa K. Analytical challenges in omics research on asthma and allergy: A National Institute of Allergy and Infectious Diseases workshop. J Allergy Clin Immunol 2024; 153:954-968. [PMID: 38295882 PMCID: PMC10999353 DOI: 10.1016/j.jaci.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
Studies of asthma and allergy are generating increasing volumes of omics data for analysis and interpretation. The National Institute of Allergy and Infectious Diseases (NIAID) assembled a workshop comprising investigators studying asthma and allergic diseases using omics approaches, omics investigators from outside the field, and NIAID medical and scientific officers to discuss the following areas in asthma and allergy research: genomics, epigenomics, transcriptomics, microbiomics, metabolomics, proteomics, lipidomics, integrative omics, systems biology, and causal inference. Current states of the art, present challenges, novel and emerging strategies, and priorities for progress were presented and discussed for each area. This workshop report summarizes the major points and conclusions from this NIAID workshop. As a group, the investigators underscored the imperatives for rigorous analytic frameworks, integration of different omics data types, cross-disciplinary interaction, strategies for overcoming current limitations, and the overarching goal to improve scientific understanding and care of asthma and allergic diseases.
Collapse
Affiliation(s)
| | - Patrice M Becker
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | | | - Jessica Lasky-Su
- Brigham & Women's Hospital and Harvard Medical School, Boston, Mass
| | | | | | | | | | - Talal Chatila
- Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | | | | | | | - Wendy Davidson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Gang Dong
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Gang Fang
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Patricia Fulkerson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | | | - Liming Liang
- Harvard T. H. Chan School of Public Health, Boston, Mass
| | | | - Shuji Ogino
- Brigham & Women's Hospital and Harvard Medical School, Boston, Mass; Harvard T. H. Chan School of Public Health, Boston, Mass; Broad Institute of MIT and Harvard, Boston, Mass
| | | | | | - Eric Schadt
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Max A Seibold
- National Jewish Health, Denver, Colo; University of Colorado School of Medicine, Aurora, Colo
| | - Hanno Steen
- Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | - Lisa Wheatley
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Hongmei Zhang
- School of Public Health, University of Memphis, Memphis, Tenn
| | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Kohei Hasegawa
- Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| |
Collapse
|
22
|
Nakashima M, Suga N, Yoshikawa S, Ikeda Y, Matsuda S. Potential Molecular Mechanisms of Alcohol Use Disorder with Non-Coding RNAs and Gut Microbiota for the Development of Superior Therapeutic Application. Genes (Basel) 2024; 15:431. [PMID: 38674366 PMCID: PMC11049149 DOI: 10.3390/genes15040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Many investigations have evaluated the expression of noncoding RNAs (ncRNAs) as well as their related molecular functions and biological machineries in individuals with alcohol dependence. Alcohol dependence may be one of the most prevailing psychological disorders globally, and its pathogenesis is intricate and inadequately comprehended. There is substantial evidence indicating significant links between multiple genetic factors and the development of alcohol dependence. In particular, the critical roles of ncRNAs have been emphasized in the pathology of mental illnesses, probably including alcohol dependence. In the comprehension of the action of ncRNAs and their machineries of modification, furthermore, they have emerged as therapeutic targets for a variety of psychiatric illnesses, including alcohol dependence. It is worth mentioning that the dysregulated expression of ncRNAs has been regularly detected in individuals with alcohol dependence. An in-depth knowledge of the roles of ncRNAs and m6A modification may be valuable for the development of a novel treatment against alcohol dependence. In general, a more profound understanding of the practical roles of ncRNAs might make important contributions to the precise diagnosis and/or actual management of alcohol dependence. Here, in this review, we mostly focused on up-to-date knowledge regarding alterations and/or modifications in the expression of ncRNAs in individuals with alcohol dependence. Then, we present prospects for future research and therapeutic applications with a novel concept of the engram system.
Collapse
Affiliation(s)
| | | | | | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
23
|
Hofford RS, Kiraly DD. Clinical and Preclinical Evidence for Gut Microbiome Mechanisms in Substance Use Disorders. Biol Psychiatry 2024; 95:329-338. [PMID: 37573004 PMCID: PMC10884738 DOI: 10.1016/j.biopsych.2023.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
Substance use disorders are a set of recalcitrant neuropsychiatric conditions that cause tremendous morbidity and mortality and are among the leading causes of loss of disability-adjusted life years worldwide. While each specific substance use disorder is driven by problematic use of a different substance, they all share a similar pattern of escalating and out-of-control substance use, continued use despite negative consequences, and a remitting/relapsing pattern over time. Despite significant advances in our understanding of the neurobiology of these conditions, current treatment options remain few and are ineffective for too many individuals. In recent years, there has been a rapidly growing body of literature demonstrating that the resident population of microbes in the gastrointestinal tract, collectively called the gut microbiome, plays an important role in modulating brain and behavior in preclinical and clinical studies of psychiatric disease. While these findings have not yet been translated into clinical practice, this remains an important and exciting avenue for translational research. In this review, we highlight the current state of microbiome-brain research within the substance use field with a focus on both clinical and preclinical studies. We also discuss potential neurobiological mechanisms underlying microbiome effects on models of substance use disorder and propose future directions to bring these findings from bench to bedside.
Collapse
Affiliation(s)
- Rebecca S Hofford
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, North Carolina
| | - Drew D Kiraly
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, North Carolina; Department of Psychiatry, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, North Carolina.
| |
Collapse
|
24
|
Qiu J, Dong F, Zhuge H, Han Q, Li J, Guo R, Dou X, Li J, Li S. Preventive effect of low-carbohydrate high-fat dietary pattern on liver disease caused by alcohol consumption via a 6pgd-involved mechanism in mice. Food Funct 2024; 15:732-746. [PMID: 38117162 DOI: 10.1039/d3fo04335e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
A low-carbohydrate high-fat (LCHF) dietary pattern has been reported to improve chronic metabolic diseases. However, whether and how the LCHF diet affects the pathological progression in patients with alcohol-related liver diseases (ALD) is largely unknown. This study was conducted to evaluate the effect of the LCHF diet on ALD and clarify its potential mechanism(s). The ALD model was established by feeding C57BL/6N mice with a Lieber-DeCarli liquid alcohol diet with a modified carbohydrate/fat ratio under an isoenergetic pattern. After an eight-week intervention, we observed that the LCHF diet significantly reduced alcohol-induced hepatic steatosis and liver injury, along with improved lipid metabolic-related gene disorders and redox imbalance. The alcohol-stimulated increase in pro-inflammatory cytokine cytokines expression, including TNF-α, IL-1β, and IL-6, was markedly reversed by the LCHF diet. Liver transcriptome sequencing and qPCR validation showed that twenty-four alcohol-disturbed genes were significantly reversed by LCHF-diet intervention. The top differentially expressed genes were selected for further investigation. Among them, 6-phosphogluconate dehydrogenase (6PGD) was significantly up-regulated by alcohol treatment in both the liver and cultured hepatocytes. Spearman correlation analysis revealed that 6PGD was positively associated with hepatic steatosis, liver injury, and oxidative stress indexes. In vitro, the 6PGD knockdown ameliorated alcohol-induced hepatotoxicity and intracellular lipid accumulation, as well as lipid metabolic-related gene disorders, implying the involvement of 6PGD in LCHF-protected ALD. In conclusion, LCHF diet intervention alleviated chronic alcohol consumption-induced liver dysfunction in mice. 6PGD is a potential novel target for ALD prevention that contributes to LCHF-improved ALD. A LCHF diet might be a promising choice for ALD management.
Collapse
Affiliation(s)
- Jiannan Qiu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China.
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China
| | - Fan Dong
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China.
| | - Hui Zhuge
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China
| | - Qiang Han
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China.
| | - Jiaomei Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China.
| | - Rui Guo
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China.
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China
| | - Jiayu Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China.
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China.
- Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR. China
| |
Collapse
|
25
|
Ge J, Li G, Chen Z, Xu W, Lei X, Zhu S. Kaempferol and nicotiflorin ameliorated alcohol-induced liver injury in mice by miR-138-5p/SIRT1/FXR and gut microbiota. Heliyon 2024; 10:e23336. [PMID: 38205320 PMCID: PMC10777378 DOI: 10.1016/j.heliyon.2023.e23336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024] Open
Abstract
Aims Excessive alcohol consumption can lead to alcoholic liver diseases (ALDs). Tetrastigma hemsleyanum Diels et Gilg is a rare Chinese medicinal herb. Tetrastigma hemsleyanum Diels et Gilg has been validated to be highly effective for treating hepatitis. Kaempferol and nicotiflorin are two highly representative flavonoids, which have exhibit therapeutic effects on liver disease. Therefore, the protective mechanism of kaempferol and nicotiflorin on alcohol-induced liver injury were investigated. Main methods Forty mice were used in this study. After treatment of Kaempferol and nicotiflorin, serum and liver were collected and used for determination of biochemical indicators, H&E staining, and molecular detection. The interaction of miRNAs from serum extracellular vehicles (EVs) with mRNAs and 16S rRNA sequencing of gut microbiota were also investigated. Key findings The results showed that kaempferol and nicotiflorins significantly ameliorated alcohol-induced liver damage and observably regulated gut microbiota. Specifically, the levels of malondialdehyde (MDA) and CYP2E1 in the liver significantly reduced, and the activity of superoxide dismutase (SOD) and glutathione (GSH) in the liver evidently increased. They also significantly relieved liver oxidative stress and lipid accumulation by suppressing miR-138-5p expression, inversely enhancing deacetylase silencing information regulator 2 related enzyme-1 (SIRT1) levels and then decreasing farnesoid X receptor (FXR) acetylation, which then modulated Nrf2 and SREBP-1c signaling pathways to regulate oxidative stress and lipid metabolism induced by alcohol. Significance Kaempferol and nicotiflorin reduced alcohol-induced liver damage by enhancing alcohol metabolism and reducing oxidative stress and lipid metabolism. The intestinal microorganism disorder was also ameliorated after oral kaempferol and nicotiflorin.
Collapse
Affiliation(s)
| | | | | | - Weijia Xu
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone. Hangzhou, 310018, Zhejiang Province, People's Republic of China
| | - Xuanhao Lei
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone. Hangzhou, 310018, Zhejiang Province, People's Republic of China
| | - Shengnan Zhu
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone. Hangzhou, 310018, Zhejiang Province, People's Republic of China
| |
Collapse
|
26
|
Fonseca-Pereira D, Bae S, Michaud M, Glickman JN, Garrett WS. Chronic binge drinking-induced susceptibility to colonic inflammation is microbiome-dependent. Gut Microbes 2024; 16:2392874. [PMID: 39163515 PMCID: PMC11340762 DOI: 10.1080/19490976.2024.2392874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
Alterations in intestinal permeability and the gut microbiome caused by alcohol abuse are associated with alcoholic liver disease and with worsening of inflammatory bowel diseases (IBD) symptoms. To resolve the direct effects of chronic ethanol consumption on the colon and its microbiome in the absence of acute or chronic alcohol-induced liver disease, we developed a mouse model of chronic binge drinking that uncovers how alcohol may enhance susceptibility to colitis via the microbiota. Employing daily ethanol gavage, we recapitulate key features of binge ethanol consumption. We found that binge ethanol drinking worsens intestinal infection, colonic injury and inflammation, and this effect persists beyond the drinking period. Using gnotobiotics, we showed that alcohol-driven susceptibility to colitis is microbiota-dependent and transferable to ethanol-naïve mice by microbiome transplantation. Allobaculum spp. expanded in binge drinking mice, and administration of Allobaculum fili was sufficient to enhance colitis in non-drinking mice. Our study provides a model to study binge drinking-microbiota interactions and their effects on host disease and reinforces the pathogenic function of Allobaculum spp. as colitogenic bacteria. Our findings illustrate how chronic binge drinking-induced alterations of the microbiome may affect susceptibility to IBD onset or flares.
Collapse
Affiliation(s)
- Diogo Fonseca-Pereira
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Sena Bae
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Monia Michaud
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Jonathan N. Glickman
- Gastrointestinal Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Wendy S. Garrett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
27
|
Yang M, Massad K, Kimchi ET, Staveley-O’Carroll KF, Li G. Gut microbiota and metabolite interface-mediated hepatic inflammation. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00037. [PMID: 38283696 PMCID: PMC10810350 DOI: 10.1097/in9.0000000000000037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024]
Abstract
Immunologic and metabolic signals regulated by gut microbiota and relevant metabolites mediate bidirectional interaction between the gut and liver. Gut microbiota dysbiosis, due to diet, lifestyle, bile acids, and genetic and environmental factors, can advance the progression of chronic liver disease. Commensal gut bacteria have both pro- and anti-inflammatory effects depending on their species and relative abundance in the intestine. Components and metabolites derived from gut microbiota-diet interaction can regulate hepatic innate and adaptive immune cells, as well as liver parenchymal cells, significantly impacting liver inflammation. In this mini review, recent findings of specific bacterial species and metabolites with functions in regulating liver inflammation are first reviewed. In addition, socioeconomic and environmental factors, hormones, and genetics that shape the profile of gut microbiota and microbial metabolites and components with the function of priming or dampening liver inflammation are discussed. Finally, current clinical trials evaluating the factors that manipulate gut microbiota to treat liver inflammation and chronic liver disease are reviewed. Overall, the discussion of microbial and metabolic mediators contributing to liver inflammation will help direct our future studies on liver disease.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
| | - Katina Massad
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Eric T. Kimchi
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
| | - Guangfu Li
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
28
|
Hübner M, Zaiss MM, Azizov V. Double-edged sword: Alcohol's effect on rheumatoid arthritis and beyond. Joint Bone Spine 2024; 91:105626. [PMID: 37543136 DOI: 10.1016/j.jbspin.2023.105626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/21/2023] [Indexed: 08/07/2023]
Affiliation(s)
- Michel Hübner
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander- University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mario M Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander- University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
| | - Vugar Azizov
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander- University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| |
Collapse
|
29
|
Liu TT, Wang J, Liang Y, Wu XY, Li WQ, Wang YH, Jing AR, Liang MM, Sun L, Dou J, Liu JY, Liu Y, Cui Z, Gao J. The level of serum total bile acid is related to atherosclerotic lesions, prognosis and gut Lactobacillus in acute coronary syndrome patients. Ann Med 2023; 55:2232369. [PMID: 37453928 PMCID: PMC10351454 DOI: 10.1080/07853890.2023.2232369] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Bile acids play crucial roles in various metabolisms, as well as Lactobacillus in the intestine. But studies on their roles in acute coronary syndrome (ACS) are still insufficient. The aim of this study was to investigate their role and potential association with the severity of coronary lesions and the prognosis of ACS. METHODS Three hundred and sixty ACS patients were selected. Detection of gut Lactobacillus levels was done through 16S rDNA sequence analysis. Evaluation of the extent of lesions was done using the SYNTAX (SS) score. Mediation analysis was used to assess the relationship between serum total bile acid (TBA), Lactobacillus, atherosclerotic lesions and prognosis of ACS. RESULTS Logistic regressive analysis disclosed that serum TBA and Lactobacillus were independent predictors of coronary lesions (high vs. low SS: serum TBA adjusted odds ratio (aOR) = 0.8, 95% confidence interval (CI): 0.6-0.9, p < .01; Lactobacillus: aOR = 0.9, 95% CI: 0.9-1.0, p = .03). According to multivariate Cox regression analysis, they were negatively correlated with the overall risk of all-cause death (serum TBA: adjusted hazard ratio (aHR) = 0.1, 95% CI: 0.0-0.6, p = .02; Lactobacillus: aHR = 0.6, 95% CI: 0.4-0.9, p = .01), especially in acute myocardial infarction (AMI) but not in unstable angina pectoris (UAP). Ulteriorly, mediation analysis showed that serum TBA played an important role as a mediation effect in the following aspects: Lactobacillus (17.0%, p < .05) → SS association (per 1 standard deviation (SD) increase), Lactobacillus (43.0%, p < .05) → all-cause death (per 1 SD increase) and Lactobacillus (45.4%, p < .05) → cardiac death (per 1 SD increase). CONCLUSIONS The lower serum TBA and Lactobacillus level in ACS patients, especially in AMI, was independently linked to the risk of coronary lesions, all-cause death and cardiac death. In addition, according to our mediation model, serum TBA served as a partial intermediate in predicting coronary lesions and the risk of death by Lactobacillus, which is paramount to further exploring the mechanism of Lactobacillus and bile acids in ACS.KEY MESSAGESLower level of serum total bile acid (TBA) was highly associated with the severity of coronary lesions, myocardial damage, inflammation and gut Lactobacillus in acute coronary syndrome (ACS) patients, especially in acute myocardial infarction (AMI).Lower level of serum TBA was highly associated with mortality (including all-cause death and cardiac death) in patients with ACS, especially with AMI.Serum TBA had a partial mediating effect rather than regulating effect between gut Lactobacillus and coronary lesions and prognosis of ACS.
Collapse
Affiliation(s)
- Ting-Ting Liu
- Graduate School, Tianjin Medical University, Tianjin, PR China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Jie Wang
- Tianjin Children’s Hospital, Tianjin, PR China
| | - Yan Liang
- Graduate School, Tianjin Medical University, Tianjin, PR China
| | - Xiao-Yuan Wu
- Graduate School, Tianjin Medical University, Tianjin, PR China
| | - Wen-Qing Li
- Graduate School, Tianjin Medical University, Tianjin, PR China
| | - Yu-Hang Wang
- Graduate School, Tianjin Medical University, Tianjin, PR China
| | - An-Ran Jing
- Graduate School, Tianjin Medical University, Tianjin, PR China
| | - Miao-Miao Liang
- Graduate School, Tianjin Medical University, Tianjin, PR China
| | - Li Sun
- Graduate School, Tianjin Medical University, Tianjin, PR China
| | - Jing Dou
- Thoracic Clinical College, Tianjin Medical University, Tianjin, PR China
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, PR China
| | - Jing-Yu Liu
- Thoracic Clinical College, Tianjin Medical University, Tianjin, PR China
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, PR China
| | - Yin Liu
- Thoracic Clinical College, Tianjin Medical University, Tianjin, PR China
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, PR China
| | - Zhuang Cui
- School of Public Health, Tianjin Medical University, Tianjin, PR China
| | - Jing Gao
- Thoracic Clinical College, Tianjin Medical University, Tianjin, PR China
- Chest Hospital, Tianjin University, Tianjin, PR China
- Cardiovascular Institute, Tianjin Chest Hospital, Tianjin, PR China
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin, PR China
| |
Collapse
|
30
|
Mohr AE, Ahern MM, Sears DD, Bruening M, Whisner CM. Gut microbiome diversity, variability, and latent community types compared with shifts in body weight during the freshman year of college in dormitory-housed adolescents. Gut Microbes 2023; 15:2250482. [PMID: 37642346 PMCID: PMC10467528 DOI: 10.1080/19490976.2023.2250482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/26/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Significant human gut microbiome changes during adolescence suggest that microbial community evolution occurs throughout important developmental periods including the transition to college, a typical life phase of weight gain. In this observational longitudinal study of 139 college freshmen living in on-campus dormitories, we tracked changes in the gut microbiome via 16S amplicon sequencing and body weight across a single academic year. Participants were grouped by weight change categories of gain (WG), loss (WL), and maintenance (WM). Upon assessment of the community structure, unweighted and weighted UniFrac metrics revealed significant shifts with substantial variation explained by individual effects within weight change categories. Genera that positively contributed to these associations with weight change included Bacteroides, Blautia, and Bifidobacterium in WG participants and Prevotella and Faecalibacterium in WL and WM participants. Moreover, the Prevotella/Bacteroides ratio was significantly different by weight change category, with WL participants displaying an increased ratio. Importantly, these genera did not display co-dominance nor ease of transition between Prevotella- and Bacteroides-dominated states. We further assessed the overall taxonomic variation, noting the increased stability of the WL compared to the WG microbiome. Finally, we found 30 latent community structures within the microbiome with significant associations with waist circumference, sleep, and dietary factors, with alcohol consumption chief among them. Our findings highlight the high level of individual variation and the importance of initial gut microbiome community structure in college students during a period of major lifestyle changes. Further work is needed to confirm these findings and explore mechanistic relationships between gut microbes and weight change in free-living individuals.
Collapse
Affiliation(s)
- Alex E. Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Center for Health Through Microbiomes, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Mary M. Ahern
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Dorothy D. Sears
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Meg Bruening
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Department of Nutritional Sciences, College of Health and Human Development, Pennsylvania State University, University Park, PA, USA
| | - Corrie M. Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Center for Health Through Microbiomes, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
31
|
Ruiz-Saavedra S, Zapico A, González S, Salazar N, de los Reyes-Gavilán CG. Role of the intestinal microbiota and diet in the onset and progression of colorectal and breast cancers and the interconnection between both types of tumours. MICROBIOME RESEARCH REPORTS 2023; 3:6. [PMID: 38455079 PMCID: PMC10917624 DOI: 10.20517/mrr.2023.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 03/09/2024]
Abstract
Colorectal cancer (CRC) is among the leading causes of mortality in adults of both sexes worldwide, while breast cancer (BC) is among the leading causes of death in women. In addition to age, gender, and genetic predisposition, environmental and lifestyle factors exert a strong influence. Global diet, including alcohol consumption, is one of the most important modifiable factors affecting the risk of CRC and BC. Western dietary patterns promoting high intakes of xenobiotics from food processing and ethanol have been associated with increased cancer risk, whereas the Mediterranean diet, generally leading to a higher intake of polyphenols and fibre, has been associated with a protective effect. Gut dysbiosis is a common feature in CRC, where the usual microbiota is progressively replaced by opportunistic pathogens and the gut metabolome is altered. The relationship between microbiota and BC has been less studied. The estrobolome is the collection of genes from intestinal bacteria that can metabolize oestrogens. In a dysbiosis condition, microbial deconjugating enzymes can reactivate conjugated-deactivated oestrogens, increasing the risk of BC. In contrast, intestinal microorganisms can increase the biological activity and bioavailability of dietary phytochemicals through diverse microbial metabolic transformations, potentiating their anticancer activity. Members of the intestinal microbiota can increase the toxicity of xenobiotics through metabolic transformations. However, most of the microorganisms involved in diet-microbiota interactions remain poorly characterized. Here, we provide an overview of the associations between microbiota and diet in BC and CRC, considering the diverse types and heterogeneity of these cancers and their relationship between them and with gut microbiota.
Collapse
Affiliation(s)
- Sergio Ruiz-Saavedra
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa 33300, Spain
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Aida Zapico
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
- Department of Functional Biology, University of Oviedo, Oviedo 33006, Spain
| | - Sonia González
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
- Department of Functional Biology, University of Oviedo, Oviedo 33006, Spain
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa 33300, Spain
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Clara G. de los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa 33300, Spain
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| |
Collapse
|
32
|
Odenwald MA, Lin H, Lehmann C, Dylla NP, Cole CG, Mostad JD, Pappas TE, Ramaswamy R, Moran A, Hutchison AL, Stutz MR, Dela Cruz M, Adler E, Boissiere J, Khalid M, Cantoral J, Haro F, Oliveira RA, Waligurski E, Cotter TG, Light SH, Beavis KG, Sundararajan A, Sidebottom AM, Reddy KG, Paul S, Pillai A, Te HS, Rinella ME, Charlton MR, Pamer EG, Aronsohn AI. Bifidobacteria metabolize lactulose to optimize gut metabolites and prevent systemic infection in patients with liver disease. Nat Microbiol 2023; 8:2033-2049. [PMID: 37845315 PMCID: PMC11059310 DOI: 10.1038/s41564-023-01493-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/08/2023] [Indexed: 10/18/2023]
Abstract
Progression of chronic liver disease is precipitated by hepatocyte loss, inflammation and fibrosis. This process results in the loss of critical hepatic functions, increasing morbidity and the risk of infection. Medical interventions that treat complications of hepatic failure, including antibiotic administration for systemic infections and lactulose treatment for hepatic encephalopathy, can impact gut microbiome composition and metabolite production. Here, using shotgun metagenomic sequencing and targeted metabolomic analyses on 847 faecal samples from 262 patients with acute or chronic liver disease, we demonstrate that patients hospitalized for liver disease have reduced microbiome diversity and a paucity of bioactive metabolites, including short-chain fatty acids and bile acid derivatives, that impact immune defences and epithelial barrier integrity. We find that patients treated with the orally administered but non-absorbable disaccharide lactulose have increased densities of intestinal bifidobacteria and reduced incidence of systemic infections and mortality. Bifidobacteria metabolize lactulose, produce high concentrations of acetate and acidify the gut lumen in humans and mice, which, in combination, can reduce the growth of antibiotic-resistant bacteria such as vancomycin-resistant Enterococcus faecium in vitro. Our studies suggest that lactulose and bifidobacteria serve as a synbiotic to reduce rates of infection in patients with severe liver disease.
Collapse
Affiliation(s)
- Matthew A Odenwald
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL, USA.
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Christopher Lehmann
- Department of Medicine, Section of Infectious Diseases and Global Health, University of Chicago, Chicago, IL, USA
| | - Nicholas P Dylla
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Cody G Cole
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Jake D Mostad
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Téa E Pappas
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | | | - Angelica Moran
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Alan L Hutchison
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL, USA
| | - Matthew R Stutz
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cook County Health, Chicago, IL, USA
| | - Mark Dela Cruz
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Emerald Adler
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Jaye Boissiere
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Maryam Khalid
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Jackelyn Cantoral
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Fidel Haro
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Rita A Oliveira
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Emily Waligurski
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Thomas G Cotter
- Division of Digestive and Liver Diseases, UT Southwestern Medical Center, Dallas, TX, USA
| | - Samuel H Light
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | | | | | | | - K Gautham Reddy
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL, USA
| | - Sonali Paul
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL, USA
| | - Anjana Pillai
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL, USA
| | - Helen S Te
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL, USA
| | - Mary E Rinella
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL, USA
| | - Michael R Charlton
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL, USA
| | - Eric G Pamer
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA.
- Department of Medicine, Section of Infectious Diseases and Global Health, University of Chicago, Chicago, IL, USA.
- Department of Microbiology, University of Chicago, Chicago, IL, USA.
| | - Andrew I Aronsohn
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL, USA
| |
Collapse
|
33
|
Guo X, Li C, Zhang J, Sun M, Xu J, Xu C, Kuang H, Xu L. Chiral nanoparticle-remodeled gut microbiota alleviates neurodegeneration via the gut-brain axis. NATURE AGING 2023; 3:1415-1429. [PMID: 37946041 DOI: 10.1038/s43587-023-00516-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Alzheimer's disease (AD) is characterized by amyloid-β accumulation in the brain and hyperphosphorylated tau aggregation, as well as neuroinflammation. The gut-brain axis has emerged as a therapeutic target in neurodegenerative diseases by modulating metabolic activity, neuroimmune functions and sensory neuronal signaling. Here we investigate interactions between orally ingested chiral Au nanoparticles and the gut microbiota in AD mice. Oral administration of chiral Au nanoparticles restored cognitive abilities and ameliorated amyloid-β and hyperphosphorylated tau pathologies in AD mice via alterations in the gut microbiome composition and an increase in the gut metabolite, indole-3-acetic acid, which was lower in serum and cerebrospinal fluid of patients with AD compared with age-matched controls. Oral administration of indole-3-acetic acid was able to penetrate the blood-brain barrier and alleviated cognitive decline and pathology including neuroinflammation in AD mice. These findings provide a promising therapeutic target for the amelioration of neuroinflammation and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiao Guo
- State Key Laboratory of Food Science and Resources, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, People's Republic of China
| | - Chen Li
- State Key Laboratory of Food Science and Resources, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, People's Republic of China
| | - Jia Zhang
- State Key Laboratory of Food Science and Resources, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, People's Republic of China
| | - Maozhong Sun
- State Key Laboratory of Food Science and Resources, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, People's Republic of China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Resources, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, People's Republic of China.
| | - Hua Kuang
- State Key Laboratory of Food Science and Resources, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, People's Republic of China.
| | - Liguang Xu
- State Key Laboratory of Food Science and Resources, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, People's Republic of China.
| |
Collapse
|
34
|
Jin L, Zhang Z, Pan P, Zhao Y, Zhou M, Liu L, Zhai Y, Wang H, Xu L, Mei D, Zhang H, Yang Y, Hua J, Zhang X, Zhang L. Low-dose ethanol consumption inhibits neutrophil extracellular traps formation to alleviate rheumatoid arthritis. Commun Biol 2023; 6:1088. [PMID: 37884797 PMCID: PMC10603044 DOI: 10.1038/s42003-023-05473-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Ethanol consumption has been reported to reduce morbidity in RA patients, but the mechanism behind it remains unclear. Our results showed that Muribaculaceae was predominant in the gut microbiota of mice after ethanol treatment, and the levels of microbiota metabolite acetate were increased. Acetate reduced arthritis severity in collagen-induced arthritis (CIA) mice, which was associated with a decrease in the articular neutrophils and the myeloperoxidase-deoxyribonucleic acid complex in serum. Meanwhile, in vitro experiments confirmed that acetate affected neutrophil activity by acting on G-protein-coupled receptor 43, which reduced endoplasmic reticulum stress in neutrophils and inhibited neutrophil extracellular traps formation. Furthermore, exogenous acetate reversed CIA mice with exacerbated gut microbial disruption, further confirming that the effect of gut microbial metabolite acetate on neutrophils in vivo is crucial for the immune regulation. Our findings illuminate the metabolic and cellular mechanisms of the gut-joint axis in the regulation of autoimmune arthritis, and may offer alternative avenues to replicate or induce the joint-protective benefits of ethanol without associated detrimental effects.
Collapse
Affiliation(s)
- Lin Jin
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Ziwei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Pin Pan
- Department of orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China
| | - Yuchen Zhao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Mengqi Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Lianghu Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Yuanfang Zhai
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Han Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Li Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Dan Mei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Han Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Yining Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Jinghan Hua
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China.
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China.
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China.
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China.
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China.
| |
Collapse
|
35
|
Tan J, Taitz J, Nanan R, Grau G, Macia L. Dysbiotic Gut Microbiota-Derived Metabolites and Their Role in Non-Communicable Diseases. Int J Mol Sci 2023; 24:15256. [PMID: 37894934 PMCID: PMC10607102 DOI: 10.3390/ijms242015256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Dysbiosis, generally defined as the disruption to gut microbiota composition or function, is observed in most diseases, including allergies, cancer, metabolic diseases, neurological disorders and diseases associated with autoimmunity. Dysbiosis is commonly associated with reduced levels of beneficial gut microbiota-derived metabolites such as short-chain fatty acids (SCFA) and indoles. Supplementation with these beneficial metabolites, or interventions to increase their microbial production, has been shown to ameliorate a variety of inflammatory diseases. Conversely, the production of gut 'dysbiotic' metabolites or by-products by the gut microbiota may contribute to disease development. This review summarizes the various 'dysbiotic' gut-derived products observed in cardiovascular diseases, cancer, inflammatory bowel disease, metabolic diseases including non-alcoholic steatohepatitis and autoimmune disorders such as multiple sclerosis. The increased production of dysbiotic gut microbial products, including trimethylamine, hydrogen sulphide, products of amino acid metabolism such as p-Cresyl sulphate and phenylacetic acid, and secondary bile acids such as deoxycholic acid, is commonly observed across multiple diseases. The simultaneous increased production of dysbiotic metabolites with the impaired production of beneficial metabolites, commonly associated with a modern lifestyle, may partially explain the high prevalence of inflammatory diseases in western countries.
Collapse
Affiliation(s)
- Jian Tan
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (J.T.); (R.N.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Jemma Taitz
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (J.T.); (R.N.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Ralph Nanan
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (J.T.); (R.N.)
- Sydney Medical School and Charles Perkins Centre Nepean, The University of Sydney, Sydney, NSW 2006, Australia
| | - Georges Grau
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Laurence Macia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (J.T.); (R.N.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
- Sydney Cytometry, The Centenary Institute and The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
36
|
Pedroza Matute S, Iyavoo S. Exploring the gut microbiota: lifestyle choices, disease associations, and personal genomics. Front Nutr 2023; 10:1225120. [PMID: 37867494 PMCID: PMC10585655 DOI: 10.3389/fnut.2023.1225120] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
The gut microbiota is a rich and dynamic ecosystem that actively interacts with the human body, playing a significant role in the state of health and disease of the host. Diet, exercise, mental health, and other factors have exhibited the ability to influence the gut bacterial composition, leading to changes that can prevent and improve, or favor and worsen, both intestinal and extra-intestinal conditions. Altered gut microbial states, or 'dysbiosis', associated with conditions and diseases are often characterized by shifts in bacterial abundance and diversity, including an impaired Firmicutes to Bacteroidetes ratio. By understanding the effect of lifestyle on the gut microbiota, personalized advice can be generated to suit each individual profile and foster the adoption of lifestyle changes that can both prevent and ameliorate dysbiosis. The delivery of effective and reliable advice, however, depends not only on the available research and current understanding of the topic, but also on the methods used to assess individuals and to discover the associations, which can introduce bias at multiple stages. The aim of this review is to summarize how human gut microbial variability is defined and what lifestyle choices and diseases have shown association with gut bacterial composition. Furthermore, popular methods to investigate the human gut microbiota are outlined, with a focus on the possible bias caused by the lack of use of standardized methods. Finally, an overview of the current state of personalized advice based on gut microbiota testing is presented, underlining its power and limitations.
Collapse
Affiliation(s)
| | - Sasitaran Iyavoo
- Nkaarco Diagnostics Limited, Norwich, United Kingdom
- School of Chemistry, College of Health and Science, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
37
|
Neal M, Thiruppathy D, Zengler K. Genome-scale metabolic modeling of the human gut bacterium Bacteroides fragilis strain 638R. PLoS Comput Biol 2023; 19:e1011594. [PMID: 37903176 PMCID: PMC10635569 DOI: 10.1371/journal.pcbi.1011594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 11/09/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023] Open
Abstract
Bacteroides fragilis is a universal member of the dominant commensal gut phylum Bacteroidetes. Its fermentation products and abundance have been linked to obesity, inflammatory bowel disease, and other disorders through its effects on host metabolic regulation and the immune system. As of yet, there has been no curated systems-level characterization of B. fragilis' metabolism that provides a comprehensive analysis of the link between human diet and B. fragilis' metabolic products. To address this, we developed a genome-scale metabolic model of B. fragilis strain 638R. The model iMN674 contains 1,634 reactions, 1,362 metabolites, three compartments, and reflects the strain's ability to utilize 142 metabolites. Predictions made with this model include its growth rate and efficiency on these substrates, the amounts of each fermentation product it produces under different conditions, and gene essentiality for each biomass component. The model highlights and resolves gaps in knowledge of B. fragilis' carbohydrate metabolism and its corresponding transport proteins. This high quality model provides the basis for rational prediction of B. fragilis' metabolic interactions with its environment and its host.
Collapse
Affiliation(s)
- Maxwell Neal
- Department of Bioengineering, University of California, San Diego, California, United States of America
| | - Deepan Thiruppathy
- Department of Bioengineering, University of California, San Diego, California, United States of America
| | - Karsten Zengler
- Department of Bioengineering, University of California, San Diego, California, United States of America
- Department of Pediatrics, University of California, San Diego, California, United States of America
- Center for Microbiome Innovation, University of California, San Diego, California, United States of America
| |
Collapse
|
38
|
Zheng J, Li Z, Xu H. Intestinal Microbiotas and Alcoholic Hepatitis: Pathogenesis and Therapeutic Value. Int J Mol Sci 2023; 24:14809. [PMID: 37834256 PMCID: PMC10573193 DOI: 10.3390/ijms241914809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Alcoholic hepatitis (AH) is a rapidly progressing and severe stage of alcoholic liver disease, presenting a grim prognosis. Extensive research has elucidated several underlying mechanisms that contribute to the development of AH, including metabolic alterations, immune stimulation, and intestinal dysbiosis. These pathological changes intricately intertwine during the progression of AH. Notably, recent studies have increasingly highlighted the pivotal role of alterations in the intestinal microbiota in the pathogenesis of AH. Consequently, future investigations should place significant emphasis on exploring the dynamics of intestinal microbiota. In this comprehensive review, we consolidate the primary causes of AH while underscoring the influence of gut microbes. Furthermore, by examining AH treatment strategies, we delineate the potential therapeutic value of interventions targeting the gut microbiota. Given the existing limitations in AH treatment options, we anticipate that this review will contribute to forthcoming research endeavors aimed at advancing AH treatment modalities.
Collapse
Affiliation(s)
- Jiazhen Zheng
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (J.Z.); (Z.L.)
| | - Ziyi Li
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (J.Z.); (Z.L.)
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
39
|
Shalaby N, Samocha-Bonet D, Kaakoush NO, Danta M. The Role of the Gastrointestinal Microbiome in Liver Disease. Pathogens 2023; 12:1087. [PMID: 37764895 PMCID: PMC10536540 DOI: 10.3390/pathogens12091087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Liver disease is a major global health problem leading to approximately two million deaths a year. This is the consequence of a number of aetiologies, including alcohol-related, metabolic-related, viral infection, cholestatic and immune disease, leading to fibrosis and, eventually, cirrhosis. No specific registered antifibrotic therapies exist to reverse liver injury, so current treatment aims at managing the underlying factors to mitigate the development of liver disease. There are bidirectional feedback loops between the liver and the rest of the gastrointestinal tract via the portal venous and biliary systems, which are mediated by microbial metabolites, specifically short-chain fatty acids (SCFAs) and secondary bile acids. The interaction between the liver and the gastrointestinal microbiome has the potential to provide a novel therapeutic modality to mitigate the progression of liver disease and its complications. This review will outline our understanding of hepatic fibrosis, liver disease, and its connection to the microbiome, which may identify potential therapeutic targets or strategies to mitigate liver disease.
Collapse
Affiliation(s)
- Nicholas Shalaby
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, St Vincent’s Healthcare Campus, Darlinghurst, NSW 2010, Australia
| | - Dorit Samocha-Bonet
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, St Vincent’s Healthcare Campus, Darlinghurst, NSW 2010, Australia
- Clinical Insulin Resistance Group, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Nadeem O. Kaakoush
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Kensington, NSW 2033, Australia
| | - Mark Danta
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, St Vincent’s Healthcare Campus, Darlinghurst, NSW 2010, Australia
- Department of Gastroenterology and Hepatology, St Vincent’s Hospital, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
40
|
Zhang D, Liu Z, Bai F. Roles of Gut Microbiota in Alcoholic Liver Disease. Int J Gen Med 2023; 16:3735-3746. [PMID: 37641627 PMCID: PMC10460590 DOI: 10.2147/ijgm.s420195] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023] Open
Abstract
Alcoholic liver disease (ALD)-one of the most common liver diseases - involves a wide range of disorders, including asymptomatic hepatic steatosis, alcoholic hepatitis (AH), liver fibrosis, and cirrhosis. Alcohol consumption induces a weakened gut barrier and changes in the composition of the gut microbiota. The presence of CYP2E1 and its elevated levels in the gastrointestinal tract after alcohol exposure lead to elevated levels of ROS and acetaldehyde, inducing inflammation and oxidative damage in the gut. At the same time, the influx of harmful molecules such as the bacterial endotoxin LPS and peptidogly from gut dysbiosis can induce intestinal inflammation and oxidative damage, further compromising the intestinal mucosal barrier. In this process, various oxidative stress-mediated post-translational modifications (PTMs) play an important role in the integrity of the barrier, eg, the presence of acetaldehyde will result in the sustained phosphorylation of several paracellular proteins (occludin and zona occludens-1), which can lead to intestinal leakage. Eventually, persistent oxidative stress, LPS infiltration and hepatocyte damage through the enterohepatic circulation will lead to hepatic stellate cell activation and hepatic fibrosis. In addition, probiotics, prebiotics, synbiotics, fecal microbial transplantation (FMT), bioengineered bacteria, gut-restricted FXR agonists and others are promising therapeutic approaches that can alter gut microbiota composition to improve ALD. In the future, there will be new challenges to study the interactions between the genetics of individuals with ALD and their gut microbiome, to provide personalized interventions targeting the gut-liver axis, and to develop better techniques to measure microbial communities and metabolites in the body.
Collapse
Affiliation(s)
- Daya Zhang
- Graduate School, Hainan Medical University, Haikou, People’s Republic of China
| | - ZhengJin Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, People’s Republic of China
| | - Feihu Bai
- Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, People’s Republic of China
- The Gastroenterology Clinical Medical Center of Hainan Province, Haikou, People’s Republic of China
| |
Collapse
|
41
|
Lewin-Epstein O, Jaques Y, Feldman MW, Kaufer D, Hadany L. Evolutionary modeling suggests that addictions may be driven by competition-induced microbiome dysbiosis. Commun Biol 2023; 6:782. [PMID: 37495841 PMCID: PMC10372008 DOI: 10.1038/s42003-023-05099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
Recent studies revealed mechanisms by which the microbiome affects its host's brain, behavior and wellbeing, and that dysbiosis - persistent microbiome-imbalance - is associated with the onset and progress of various chronic diseases, including addictive behaviors. Yet, understanding of the ecological and evolutionary processes that shape the host-microbiome ecosystem and affect the host state, is still limited. Here we propose that competition dynamics within the microbiome, associated with host-microbiome mutual regulation, may promote dysbiosis and aggravate addictive behaviors. We construct a mathematical framework, modeling the dynamics of the host-microbiome ecosystem in response to alterations. We find that when this ecosystem is exposed to substantial perturbations, the microbiome may shift towards a composition that reinforces the new host state. Such a positive feedback loop augments post-perturbation imbalances, hindering attempts to return to the initial equilibrium, promoting relapse episodes and prolonging addictions. We show that the initial microbiome composition is a key factor: a diverse microbiome enhances the ecosystem's resilience, whereas lower microbiome diversity is more prone to lead to dysbiosis, exacerbating addictions. This framework provides evolutionary and ecological perspectives on host-microbiome interactions and their implications for host behavior and health, while offering verifiable predictions with potential relevance to clinical treatments.
Collapse
Affiliation(s)
- Ohad Lewin-Epstein
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel.
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Yanabah Jaques
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| | - Marcus W Feldman
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Lilach Hadany
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel.
- Sagol school of neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
42
|
Maccioni L, Fu Y, Horsmans Y, Leclercq I, Stärkel P, Kunos G, Gao B. Alcohol-associated bowel disease: new insights into pathogenesis. EGASTROENTEROLOGY 2023; 1:e100013. [PMID: 37662449 PMCID: PMC10472976 DOI: 10.1136/egastro-2023-100013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/01/2023] [Indexed: 09/05/2023]
Abstract
Excessive alcohol drinking can cause pathological changes including carcinogenesis in the digestive tract from mouth to large intestine, but the underlying mechanisms are not fully understood. In this review, we discuss the effects of alcohol on small and large intestinal functions, such as leaky gut, dysbiosis and alterations of intestinal epithelium and gut immune dysfunctions, commonly referred to as alcohol-associated bowel disease (ABD). To date, detailed mechanistic insights into ABD are lacking. Accumulating evidence suggests a pathogenic role of ethanol metabolism in dysfunctions of the intestinal tract. Ethanol metabolism generates acetaldehyde and acetate, which could potentially promote functional disruptions of microbial and host components of the intestinal barrier along the gastrointestinal tract. The potential involvement of acetaldehyde and acetate in the pathogenesis of the underlying ABD, including cancer, is discussed. We also highlight some gaps in knowledge existing in the field of ABD. Finally, we discuss future directions in exploring the role of acetaldehyde and acetate generated during chronic alcohol intake in various pathologies affecting different sites of the intestinal tract.
Collapse
Affiliation(s)
- Luca Maccioni
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Yves Horsmans
- Department of Hepato-Gastroenterology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Isabelle Leclercq
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Peter Stärkel
- Department of Hepato-Gastroenterology, Cliniques universitaires Saint-Luc, Brussels, Belgium
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
43
|
Zhang J, Fan J, Luo H, Liang Z, Guan Y, Lei X, Bo N, Zhao M. Alleviation of Alcoholic Fatty Liver by Dendrobium officinale Flower Extracts due to Regulation of Gut Microbiota and Short-Chain Fatty Acids in Mice Exposed to Chronic Alcohol. Foods 2023; 12:foods12071428. [PMID: 37048249 PMCID: PMC10093958 DOI: 10.3390/foods12071428] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Alcoholic fatty liver disease (AFLD) is caused by long-term heavy alcohol consumption; therefore, useful and practical methods for the prevention of AFLD are urgently needed. The edible flower of Dendrobium officinale contains diverse flavonoids, and has shown antioxidant activity as well as antihypertensive and anti-inflammatory effects. In this study, an AFLD model was established, the protective effect of D. officinale flower (DOF) ethanol extract on AFLD was evaluated, and its mechanisms were investigated by analyzing gut microbiota and short-chain fatty acids (SCFAs). DOF extract (DOFE) supplementation promoted alcohol metabolism, restored hepatic antioxidant capacity, alleviated oxidative stress, reduced inflammatory factor levels, and inhibited dyslipidemia induced by alcohol intake in chronic alcohol-exposed mice, especially in the high DOFE group. Moreover, DOFE supplementation increased the diversity, structure, and composition of the gut microbiota in mice, restored some of the abnormal SCFA levels caused by AFLD, and helped restore intestinal function. DOFE supplementation significantly increased the relative abundance of Akkermansia, suggesting that Akkermansia may be a potential target of the protective effect of DOFE. Therefore, DOFE supplementation to improve the composition of the gut microbiota may be an effective therapeutic strategy for the prevention of AFLD.
Collapse
Affiliation(s)
- Jingchi Zhang
- National-Local Joint Engineering Research Center on Gemplasm lnnovation & Uilization of Chinese Medicinal Materials in Southwest China, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Jiakun Fan
- National-Local Joint Engineering Research Center on Gemplasm lnnovation & Uilization of Chinese Medicinal Materials in Southwest China, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Hui Luo
- National-Local Joint Engineering Research Center on Gemplasm lnnovation & Uilization of Chinese Medicinal Materials in Southwest China, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Zhengwei Liang
- National-Local Joint Engineering Research Center on Gemplasm lnnovation & Uilization of Chinese Medicinal Materials in Southwest China, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yanhui Guan
- National-Local Joint Engineering Research Center on Gemplasm lnnovation & Uilization of Chinese Medicinal Materials in Southwest China, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Xin Lei
- National-Local Joint Engineering Research Center on Gemplasm lnnovation & Uilization of Chinese Medicinal Materials in Southwest China, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Nianguo Bo
- National-Local Joint Engineering Research Center on Gemplasm lnnovation & Uilization of Chinese Medicinal Materials in Southwest China, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Ming Zhao
- National-Local Joint Engineering Research Center on Gemplasm lnnovation & Uilization of Chinese Medicinal Materials in Southwest China, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: ; Tel.: +86-0871-65810810
| |
Collapse
|
44
|
Teng S, Zhang Y, Jin X, Zhu Y, Li L, Huang X, Wang D, Lin Z. Structure and hepatoprotective activity of Usp10/NF-κB/Nrf2 pathway-related Morchella esculenta polysaccharide. Carbohydr Polym 2023; 303:120453. [PMID: 36657860 DOI: 10.1016/j.carbpol.2022.120453] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/19/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
The water-soluble Morchella esculenta polysaccharide 2 (MEP2) was purified and isolated from an aqueous extract of the Morchella esculenta fruiting bodies. MEP2, having a molecular weight of 959 kDa, has a →4)-α-D-Glcp-(1→ glucan backbone, and this branch was substituted at the H-6 position by an α-D-Glcp-(1 → 4)-α-D-Glcp-(1→ residue and an α-D-Glcp-(1→ residue. The hepatoprotective activity and potential mechanism of action of MEP2 were also investigated. MEP2 ameliorated severe liver damage and regulated the liver function indicators and the alcohol-related enzyme levels in chronic alcohol-induced mice. Combined with biochemical detection, the gut microbiota, metabolites, and proteomics results revealed that MEP2 regulates the levels of hepatic cytokines related to inflammatory response and oxidative stress, as well as those of intestinal Bacteroides, Oscillospira, Parabacteroides, Alistipes, and Prevotella, through the ubiquitin-specific peptidase 10 (Usp10)/nuclear factor κB (NF-κB)/nuclear factor erythroid-2 related factor 2 (Nrf2) signaling pathway in the liver of mice induced by long-term alcohol intake. These data provide experimental evidence for the application of MEP2 in chronic alcohol-induced liver injury.
Collapse
Affiliation(s)
- Shanshan Teng
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Xinghui Jin
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yanfeng Zhu
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Xiaowei Huang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Zhe Lin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
45
|
Carbia C, Bastiaanssen TFS, Iannone LF, García-Cabrerizo R, Boscaini S, Berding K, Strain CR, Clarke G, Stanton C, Dinan TG, Cryan JF. The Microbiome-Gut-Brain axis regulates social cognition & craving in young binge drinkers. EBioMedicine 2023; 89:104442. [PMID: 36739238 PMCID: PMC10025767 DOI: 10.1016/j.ebiom.2023.104442] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Binge drinking is the consumption of an excessive amount of alcohol in a short period of time. This pattern of consumption is highly prevalent during the crucial developmental period of adolescence. Recently, the severity of alcohol use disorders (AUDs) has been linked with microbiome alterations suggesting a role for the gut microbiome in its development. Furthermore, a strong link has emerged too between microbiome composition and socio-emotional functioning across different disorders including AUD. The aim of this study was to investigate the potential link (and its predictive value) between alcohol-related altered microbial profile, social cognition, impulsivity and craving. METHODS Young people (N = 71) aged 18-25 reported their alcohol use and underwent a neuropsychological evaluation. Craving was measured at baseline and three months later. Diet was controlled for. Blood, saliva and hair samples were taken for inflammatory, kynurenine and cortisol analysis. Stool samples were provided for shotgun metagenomic sequencing and short-chain fatty acids (SCFAs) were measured. FINDINGS Binge drinking was associated with distinct microbiome alterations and emotional recognition difficulties. Associations were found for several microbiome species with emotional processing and impulsivity. Craving showed a strong link with alterations in microbiome composition and neuroactive potential over time. INTERPRETATION In conclusion, this research demonstrates alterations in the gut microbiome of young binge drinkers (BDs) and identifies early biomarkers of craving. Associations between emotional processing and microbiome composition further support the growing literature on the gut microbiome as a regulator of social cognition. These findings are of relevance for new gut-derived interventions directed at improving early alcohol-related alterations during the vulnerability period of adolescence. FUNDING C.C. and R.G-C. received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 754535. APC Microbiome Ireland is a research centre funded by Science Foundation Ireland (SFI), through the Irish Government's National Development Plan [grant no. SFI/12/RC/2273_P2]. J.F.C has research support from Cremo, Pharmavite, DuPont and Nutricia. He has spoken at meetings sponsored by food and pharmaceutical companies. G.C. has received honoraria from Janssen, Probi, and Apsen as an invited speaker; is in receipt of research funding from Pharmavite, Fonterra, Nestle and Reckitt; and is a paid consultant for Yakult, Zentiva and Heel pharmaceuticals. All the authors declare no competing interests.
Collapse
Affiliation(s)
- Carina Carbia
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | | | | | | | - Serena Boscaini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Kirsten Berding
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | | | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
46
|
Capacity of a Microbial Synbiotic To Rescue the In Vitro Metabolic Activity of the Gut Microbiome following Perturbation with Alcohol or Antibiotics. Appl Environ Microbiol 2023; 89:e0188022. [PMID: 36840551 PMCID: PMC10056957 DOI: 10.1128/aem.01880-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The human gut microbiome contributes crucial bioactive metabolites that support human health and is sensitive to perturbations from the ingestion of alcohol and antibiotics. We interrogated the response and recovery of human gut microbes after acute alcohol or broad-spectrum antibiotic administration in a gut model simulating the luminal and mucosal colonic environment with an inoculated human microbiome. Both alcohol and antibiotic treatments reduced the production of major short-chain fatty acids (SCFAs) (acetate, propionate, and butyrate), which are established modulators of human health. Treatment with a microbial synbiotic restored and enhanced gut function. Butyrate and acetate production increased by up to 29.7% and 18.6%, respectively, relative to untreated, dysbiotic samples. In parallel, treatment led to increases in the relative abundances of beneficial commensal organisms not found in the synbiotic (e.g., Faecalibacterium prausnitzii and the urolithin-producing organism Gordonibacter pamelaeae) as well as species present in the synbiotic (e.g., Bifidobacterium infantis), suggesting synergistic interactions between supplemented and native microorganisms. These results lead us to conclude that functional shifts in the microbiome, evaluated by both metabolite production and specific taxonomic compositional changes, are an appropriate metric to assess microbiome "recovery" following a dysbiosis-inducing disruption. Overall, these findings support the execution of randomized clinical studies to determine whether a microbial synbiotic can help restore microbiome function after a disruption. IMPORTANCE The human gut microbiome is sensitive to disruptions by common stressors such as alcohol consumption and antibiotic treatment. In this study, we used an in vitro system modeling the gut microbiome to investigate whether treatment with a microbial synbiotic can help restore microbiome function after stress. We find that a complex gut community treated with alcohol or antibiotics showed reduced levels of production of short-chain fatty acids, which are critical beneficial molecules produced by a healthy gut microbiota. Treatment of stressed communities with a microbial synbiotic resulted in the recovery of SCFA production as well as an increase in the abundance of beneficial commensal organisms. Our results suggest that treatment with a microbial synbiotic has the potential to restore healthy gut microbiome function after stress and merits further investigation in clinical studies.
Collapse
|
47
|
Huang X, Yang Y, Li X, Zhu X, Lin D, Ma Y, Zhou M, Cui X, Zhang B, Dang D, Lü Y, Yue C. The gut microbiota: A new perspective for tertiary prevention of hepatobiliary and gallbladder diseases. Front Nutr 2023; 10:1089909. [PMID: 36814514 PMCID: PMC9940272 DOI: 10.3389/fnut.2023.1089909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/11/2023] [Indexed: 02/10/2023] Open
Abstract
The gut microbiota is a complex ecosystem that has coevolved with the human body for hundreds of millions of years. In the past 30 years, with the progress of gene sequencing and omics technology, the research related to gut microbiota has developed rapidly especially in the field of digestive system diseases and systemic metabolic diseases. Mechanical, biological, immune, and other factors make the intestinal flora form a close bidirectional connection with the liver and gallbladder, which can be called the "gut-liver-biliary axis." Liver and gallbladder, as internal organs of the peritoneum, suffer from insidious onset, which are not easy to detect. The diagnosis is often made through laboratory chemical tests and imaging methods, and intervention measures are usually taken only when organic lesions have occurred. At this time, some people may have entered the irreversible stage of disease development. We reviewed the literature describing the role of intestinal flora in the pathogenesis and biotherapy of hepatobiliary diseases in the past 3-5 years, including the dynamic changes of intestinal flora at different stages of the disease, as well as the signaling pathways involved in intestinal flora and its metabolites, etc. After summarizing the above contents, we hope to highlight the potential of intestinal flora as a new clinical target for early prevention, early diagnosis, timely treatment and prognosis of hepatobiliary diseases. GRAPHICAL ABSTRACT.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Yi Yang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Xueli Li
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an, Shaanxi, China
| | - Xiaoya Zhu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Dan Lin
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Yueran Ma
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Min Zhou
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Xiangyi Cui
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Bingyu Zhang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Dongmei Dang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Yuhong Lü
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Changwu Yue
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
48
|
Di Tommaso N, Santopaolo F, Gasbarrini A, Ponziani FR. The Gut-Vascular Barrier as a New Protagonist in Intestinal and Extraintestinal Diseases. Int J Mol Sci 2023; 24:ijms24021470. [PMID: 36674986 PMCID: PMC9864173 DOI: 10.3390/ijms24021470] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The intestinal barrier, with its multiple layers, is the first line of defense between the outside world and the intestine. Its disruption, resulting in increased intestinal permeability, is a recognized pathogenic factor of intestinal and extra-intestinal diseases. The identification of a gut-vascular barrier (GVB), consisting of a structured endothelium below the epithelial layer, has led to new evidence on the etiology and management of diseases of the gut-liver axis and the gut-brain axis, with recent implications in oncology as well. The gut-brain axis is involved in several neuroinflammatory processes. In particular, the recent description of a choroid plexus vascular barrier regulating brain permeability under conditions of gut inflammation identifies the endothelium as a key regulator in maintaining tissue homeostasis and health.
Collapse
Affiliation(s)
- Natalia Di Tommaso
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence:
| |
Collapse
|
49
|
Liu X, Yu S, Zhang Y, Zhang W, Zhong H, Lu X, Guan R. A review on the protective effect of active components in Antrodia camphorata against alcoholic liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115740. [PMID: 36162549 DOI: 10.1016/j.jep.2022.115740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/02/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Antrodia camphorata is a genus of wood-rot basidiomycete in the family Fomitopsidaceae. It is a valuable medicinal fungus in China that contains more than 78 kinds of active compounds. A. camphorata has good protection effects on the liver, especially on alcoholic liver injury (ALI). AIM This paper summarizes the complex occurrence and development of alcoholic liver disease (ALD). In addition, the effect of ALD on the intestine through the gut-liver axis is summarized. The protective mechanism of A. camphorata on ALI is reviewed to reveal its therapeutic potential, offering insights into future research. MATERIALS AND METHODS A comprehensive search in the literature was obtained from books and online databases such as Web of Science, Google Scholar, PubMed, Scopus, Science direct, ACS Publications and Baidu Scholar. RESULTS The pathogenesis of ALD mainly includes oxidative stress injury, intestinal microflora imbalance, inflammatory mediator injury and nutritional imbalance. A. camphorata contains rich active components (e.g. polysaccharides, triterpenoids, maleic and succinic acid derivatives, amino acids, superoxide dismutase, vitamins, lignin and sterols). These components have good antioxidant, anti-inflammatory and intestinal protection activities. Therefore, A. camphorata has a wide application in the prevention and treatment of ALI. CONCLUSIONS ALD develops from a mild disease to alcoholic hepatitis and cirrhosis, which is the main reason of global morbidity and mortality. At present, there is no effective drug for the treatment of ALD. A. camphorata, as a valuable medicinal fungus unique to Taiwan, has a great protective effect on the liver. It is expected to be an effective drug for ALI treatment. Although many studies have performed the protective effects of A. camphorata on ALI, its regulatory effects on the gut-liver axis of ALD patients need to be further explored.
Collapse
Affiliation(s)
- Xiaofeng Liu
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, China.
| | - Shuzhen Yu
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, China.
| | - Yao Zhang
- Zhejiang Provincial Key Lab for Chem and Bio Processing Technology of Farm Produces, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, 310023, China.
| | - Wei Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, China.
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, China.
| | - Xiaoqin Lu
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, China.
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, China.
| |
Collapse
|
50
|
Gervasi T, Mandalari G. The Interplay Between Gut Microbiota and Central Nervous System. Curr Pharm Des 2023; 29:3274-3281. [PMID: 38062662 DOI: 10.2174/0113816128264312231101110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/14/2023] [Indexed: 01/26/2024]
Abstract
This review highlights the relationships between gastrointestinal microorganisms and the brain. The gut microbiota communicates with the central nervous system through nervous, endocrine, and immune signalling mechanisms. Our brain can modulate the gut microbiota structure and function through the autonomic nervous system, and possibly through neurotransmitters which directly act on bacterial gene expression. In this context, oxidative stress is one the main factors involved in the dysregulation of the gut-brain axis and consequently in neurodegenerative disorders. Several factors influence the susceptibility to oxidative stress by altering the antioxidant status or free oxygen radical generation. Amongst these, of interest is alcohol, a commonly used substance which can negatively influence the central nervous system and gut microbiota, with a key role in the development of neurodegenerative disorder. The role of "psychobiotics" as a novel contrast strategy for preventing and treating disorders caused due to alcohol use and abuse has been investigated.
Collapse
Affiliation(s)
- Teresa Gervasi
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina 98166, Italy
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina 98166, Italy
| |
Collapse
|