1
|
Chen K, Wang H, Ma B, Knapp J, Henchy C, Lu J, Stevens T, Ranganathan S, Prochownik EV. Gas1-Mediated Suppression of Hepatoblastoma Tumorigenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:982-994. [PMID: 39889823 DOI: 10.1016/j.ajpath.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/13/2024] [Accepted: 01/10/2025] [Indexed: 02/03/2025]
Abstract
Hepatoblastoma (HB), the most common pediatric liver cancer, is associated with dysregulated Wnt/β-catenin, Hippo, and/or nuclear factor erythroid 2 ligand 2/nuclear respiratory factor 2 (NFE2L2/NRF2) pathways. In mice, pairwise combinations of oncogenically active forms of the terminal transcription factors of these pathways, namely, β-catenin (B), Yes-associated protein (YAP; Y), and Nrf2 (N), generate HBs, with the triple combination (B + Y + N) being particularly potent. Each tumor group alters the expression of thousands of B-, Y-, and N-driven unique and common target genes. The identification of those most involved in transformation might reveal mechanisms and opportunities for therapy. Herein, transcription profiling of >60 murine HBs revealed a common set of 22 "BYN" genes similarly deregulated in all cases. Most were associated with multiple cancer hallmarks, and their expression often correlated with survival in HBs, hepatocellular carcinomas, and other cancers. Among the most down-regulated of these genes was Gas1, which encodes a glycosylphosphatidylinositol-linked outer membrane protein. The restoration of Gas1 expression impaired B + Y + N-driven HB tumor growth in vivo and in HB-derived immortalized BY and BYN cell lines in vitro in a manner that requires membrane anchoring of the protein via its glycosylphosphatidylinositol moiety, implicating Gas1 as a proximal mediator of HB pathogenesis and validating the BYN gene set as deserving of additional scrutiny in future studies.
Collapse
Affiliation(s)
- Keyao Chen
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; Tsinghua University School of Medicine, Beijing, China
| | - Huabo Wang
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bingwei Ma
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; Tongji University School of Medicine, Shanghai, China
| | - Jessica Knapp
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Colin Henchy
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jie Lu
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Taylor Stevens
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Edward V Prochownik
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
2
|
Li RP, Wu GZ, Fang XD, Yang WW, Zhang HY, Yue HX, Zheng Y, Wang YP, Zhou YN. Single-Cell Transcriptional Analysis Reveals the Mechanism of AZD6738 in HCC Immunotherapy via EZH2 Targeting. Drug Des Devel Ther 2025; 19:2897-2920. [PMID: 40255471 PMCID: PMC12007511 DOI: 10.2147/dddt.s508709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 04/05/2025] [Indexed: 04/22/2025] Open
Abstract
Objective This study aims to identify specific molecular targets sensitive to AZD6738 through the integration of network pharmacology and transcriptomic methods, and to assess their potential role in the treatment of hepatocellular carcinoma (HCC). Additionally, we explore the specific effects of AZD6738 on the tumor microenvironment and its ability to regulate immune responses. Methods We employed a combination of network pharmacology and transcriptomic analysis to identify specific molecules associated with HCC, including EZH2, CCNB1, PRKDC, CTSL, PSEN1, SLC6A3, and FKBP1A. Using these molecules and clinical features, we constructed a robust prognostic model for HCC. We further used single-cell transcriptomic technology to screen for core targets and performed spatial transcriptomic analysis to determine their spatial distribution. To validate the efficacy of AZD6738 in vivo, we established a subcutaneous tumor model, with the experimental group receiving oral administration of AZD6738 (75 mg/kg). Finally, we assessed the changes in the immune cell expression profile in tumor tissues post-AZD6738 treatment using flow cytometry. Results Our study indicates that the high expression of genes such as EZH2, CCNB1, PRKDC, and PSEN1 is associated with poor prognosis in HCC patients. Molecular docking and RT-PCR validation demonstrated that AZD6738 exhibits high affinity for these targets and significantly reduces the mRNA levels of EZH2, PRKDC, and CCNB1 in HCC cell lines, with EZH2 showing the most pronounced decrease. Animal experiments revealed that AZD6738 can enhance the immune microenvironment in liver cancer; specifically, AZD6738 not only promotes the proliferation of CD8+ T cells but also enhances their differentiation into effector memory T cells, indicating that the drug can potentiate anti-tumor immune responses. Conclusion This study reveals that AZD6738 demonstrates significant therapeutic efficacy by targeting the key molecule EZH2, thereby modulating the tumor microenvironment and enhancing anti-tumor immunity.
Collapse
Affiliation(s)
- Ren-peng Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, People’s Republic of China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Guo-zhi Wu
- The First Clinical Medical College, Lanzhou University, Lanzhou, People’s Republic of China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Xi-dong Fang
- The First Clinical Medical College, Lanzhou University, Lanzhou, People’s Republic of China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Wen-wen Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, People’s Republic of China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Hui-yun Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, People’s Republic of China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Han-xun Yue
- The First Clinical Medical College, Lanzhou University, Lanzhou, People’s Republic of China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Yu-ping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Yong-ning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| |
Collapse
|
3
|
Vilinski-Mazur K, Kirillov B, Rogozin O, Kolomenskiy D. Numerical modeling of oxygen diffusion in tissue spheroids undergoing fusion using function representation and finite volumes. Sci Rep 2025; 15:5054. [PMID: 39934150 PMCID: PMC11814134 DOI: 10.1038/s41598-025-86805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
A three-dimensional cell culture called a spheroid serves as a foundational entity in a wide variety of modern tissue engineering applications, including 3D-bioprinting and preclinical drug testing. Lack of oxygen within tissue spheroids hinders metabolism of cells and eventually leads to cell death. Prevention of necrosis is crucial to success of tissue engineering methods and such prevention requires estimation of cell viability in the spheroid. We propose a novel approach for numerical modeling of diffusion in tissue spheroids during their fusion. The approach is based on numerical solutions of partial differential equations and the application of Function Representation (FRep) framework for geometric modeling. We present modeling of oxygen diffusion based on meshes derived from the geometry of fusing spheroids, a method for selecting optimal spheroid size, and several statistics for estimating cellular viability. Our findings provide insights into oxygen diffusion in three-dimensional cell cultures thus improving the robustness of biotechnological methods that employ tissue spheroids.
Collapse
Affiliation(s)
| | - Bogdan Kirillov
- Center for Materials Technologies, Skolkovo Institute of Science and Technology, Moscow, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Oleg Rogozin
- Center for Materials Technologies, Skolkovo Institute of Science and Technology, Moscow, Russia
- Federal Research Center "Computer Science and Control", Russian Academy of Sciences, Moscow, Russia
| | - Dmitry Kolomenskiy
- Center for Materials Technologies, Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
4
|
Fu T, Zhou J, Yang L, Wang J, Li H, Shan Y, Gao H, Xie C, Jiang D, Zhang L, Ma J, Pan Q, Xu M, Zhang M, Gu S. Neutrophil-induced pyroptosis promotes survival in patients with hepatoblastoma. Cancer Immunol Immunother 2025; 74:106. [PMID: 39932547 PMCID: PMC11813845 DOI: 10.1007/s00262-024-03922-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/11/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND Hepatoblastoma (HB) is the predominant hepatic malignancy among children. Despite therapeutic options for HB were gradually refined in recent years, patients with metastasis suffer from an unsatisfactory prognosis. Pyroptosis is a type of programmed and inflammatory necrosis. Neutrophils are crucial in innate immunity, which were shown to be associated with tumor progression. Our study strived to unravel the relationship between neutrophil-induced pyroptosis (NIP) and HB. METHODS The clinical and bulk RNA sequencing data of 38 patients with HB were obtained from Shanghai Children's Medical Center. We established NIP score based on the LASSO regression. The single-cell RNA sequencing data (GSE186975) were used for for key genes identification, cellular communication, and differentiation trajectories of neutrophils. KEGG, GO, GSVA, and ssGSEA enrichment were used to analyze biological functions, including neutrophil extracellular traps (NETs), NOD-like receptors pathway, neutrophil activation, neutrophil-mediated cytotoxicity, and others. RESULTS We constructed a NIP score based on the expression of three genes related to neutrophil and pyroptosis, namely ELANE, CASP1, and NOD2, which was positively correlated with a favorable prognosis of HB. Moreover, we clarified the function of ELANE in HB microenvironmwnt. Immunohistochemistry and transcriptome analysis unraveled a significant correlation between NETs and pyroptosis in HB, suggesting the key role of NETs-related neutrophils in inducing pyroptosis and prolonging survival. We also found upregulated tumor-promoting and immunosuppression-related pathways in the HB microenvironment. In addition, we clarified the growth trajectories and phenotypic changes of neutrophils in the immune microenvironment of HB, which can serve as potential targets for immunotherapy. CONCLUSIONS The novel NIP score for patients with HB shows high predictive value for survival. Moreover, we identified biological function, cellular communication, and growth trajectories of neutrophils in HB. Our findings broaden insights into the treatment of HB.
Collapse
Affiliation(s)
- Tingyi Fu
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Jiquan Zhou
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Liyuan Yang
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Jing Wang
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Hui Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center Affiliated to Shanghai, Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - Yuhua Shan
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Hongxiang Gao
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Chenjie Xie
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Dapeng Jiang
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Lei Zhang
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Ji Ma
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Qiuhui Pan
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Min Xu
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Min Zhang
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center Affiliated to Shanghai, Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.
| | - Song Gu
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
5
|
Dang W, Li Q, Wang X. ACSL4 promotes the formation of the proliferative subtype in hepatoblastoma. BMC Cancer 2025; 25:191. [PMID: 39901207 PMCID: PMC11789379 DOI: 10.1186/s12885-025-13592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
Hepatoblastoma (HB) is the most common pediatric liver malignancy, with its significant heterogeneity complicating the identification of the most aggressive subtypes and the development of targeted therapies. In this study, we performed transcriptomic analysis of HB samples from the GEO database and identified three distinct molecular subtypes with varying prognostic outcomes. Among them, the proliferative subtype, characterized by enhanced proliferative capacity, poor prognosis, and an immunosuppressive tumor microenvironment, was particularly notable. ACSL4 emerged as a critical biomarker of this proliferative subtype, driving HB cell proliferation both in vitro and in vivo. Furthermore, pharmacological inhibition of ACSL4 using abemaciclib significantly suppressed tumor growth in xenograft models. Mechanistically, ACSL4 was found to promote cell proliferation by downregulating the interferon response signaling pathway which may implicate contribution to immunosuppression in the tumor. These findings underscore the pivotal role of ACSL4 in HB progression and highlight its potential as a therapeutic target for aggressive HB subtypes.
Collapse
Affiliation(s)
- Wei Dang
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qin Li
- Department of Pathology, Institute of Pathology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| | - Xiaoying Wang
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Münter D, de Faria FW, Richter M, Aranda-Pardos I, Hotfilder M, Walter C, Paga E, Inserte C, Albert TK, Roy R, Rahman S, Riedel NC, Müller V, Pascher A, Wiebe K, Schmid I, Vokuhl C, Winkler B, Jüttner E, Vieth S, Mücke U, Kluiver TA, Peng WC, Rossig C, Schlué J, Madadi-Sanjani O, Sandmann S, Hartmann W, A-Gonzalez N, Soehnlein O, Kerl K. Multiomic analysis uncovers a continuous spectrum of differentiation and Wnt-MDK-driven immune evasion in hepatoblastoma. J Hepatol 2025:S0168-8278(25)00068-6. [PMID: 39900120 DOI: 10.1016/j.jhep.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 12/04/2024] [Accepted: 01/27/2025] [Indexed: 02/05/2025]
Abstract
BACKGROUND & AIMS Hepatoblastoma is the most common pediatric cancer of the liver, with the majority of cases displaying activating mutations in the Wnt/β-catenin pathway. Understanding the complex milieu of the tumor microenvironment has resulted in promising new therapies for adult cancers, but similar approaches in pediatric cancers are still lacking. We aimed to provide a comprehensive analysis of the tumor microenvironment of hepatoblastoma, unveiling its spatial architecture and key signaling mechanisms. METHODS Single-cell/-nucleus RNA-sequencing (RNA-seq) (n = 15), spatial transcriptomics (n = 22), and multiplex immunofluorescence stainings (n = 7) of treated, untreated, and metastasized pediatric hepatoblastomas were performed. An RNA-seq validation cohort (n = 110) including hepatoblastoma, non-tumor and fetal liver samples and single-cell RNA-seq data of healthy immune cells were used for further analysis. Western blotting and RNA-seq of hepatoblastoma and macrophage cell lines were conducted for experimental validation. RESULTS Of four identified transcriptional tumor programs, "Developmental" and "Metabolic" reflected different hepatic differentiation stages, while "Cycling" was enriched in undifferentiated cells and relapsed samples, and "Intermediate" displayed high activity in samples from patients with poor outcomes. We discovered an increased ratio of anti-to pro-inflammatory immune cells and evidence of immune exclusion from tumor areas. Wnt-responsive upregulation of the immunomodulator midkine in hepatoblastoma cells was associated with a change in macrophage phenotype, which could be partially reversed through midkine inhibition. CONCLUSIONS Hepatoblastoma cells exist along a continuous spectrum of hepatic differentiation and inhabit an altered immune environment. Wnt signaling augments midkine expression, which appears to be involved in shaping the immune environment by modifying macrophages to enable immune evasion, thereby providing a potential therapeutic target. IMPACT AND IMPLICATIONS Despite hepatoblastoma being the most common pediatric liver cancer, there has been a critical knowledge gap in understanding how the tumor microenvironment and immune landscape contribute to disease progression. Our novel findings, revealing a continuous spectrum of tumor differentiation states and Wnt-MDK-driven immune evasion, are significant for pediatric oncology clinicians and researchers, improving our functional understanding of the immune environment of hepatoblastoma. The identification of midkine as a tumor-specific immunomodulator suggests a potential for developing new targeted therapies, though further mechanistic and practical validation would be needed to realize clinical translation of these findings.
Collapse
Affiliation(s)
- Daniel Münter
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Flavia W de Faria
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Mathis Richter
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | | | - Marc Hotfilder
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Carolin Walter
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Enya Paga
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Clara Inserte
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany; Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Thomas K Albert
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Rajanya Roy
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Shariyah Rahman
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Nicole C Riedel
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Volker Müller
- Department of Pediatric Surgery, University Hospital Münster, Münster, Germany
| | - Andreas Pascher
- Department of General, Visceral and Transplantation Surgery, University Hospital Münster, Münster, Germany
| | - Karsten Wiebe
- Department of Cardiothoracic Surgery, University Hospital Münster, Münster, Germany
| | - Irene Schmid
- Department of Pediatric Oncology and Hematology, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Beate Winkler
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Jüttner
- Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Simon Vieth
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Urs Mücke
- Pediatric Oncology and Hematology, Medical School of Hanover, Hanover, Germany
| | - Thomas A Kluiver
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Weng Chuan Peng
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jerome Schlué
- Institute for Pathology, Medical School of Hanover, Hanover, Germany
| | - Omid Madadi-Sanjani
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Sandmann
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | | | - Oliver Soehnlein
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany.
| |
Collapse
|
7
|
Crouchet E, Almeida N, Durand SC, Parnot M, Oudot MA, Giannone F, Gadenne C, Roehlen N, Saviano A, Felli E, Pessaux P, Duong HT, Ohdan H, Aikata H, Chayama K, Baumert TF, Schuster C. A patient-derived HCC spheroid system to model the tumor microenvironment and treatment response. JHEP Rep 2025; 7:101252. [PMID: 39897611 PMCID: PMC11782825 DOI: 10.1016/j.jhepr.2024.101252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 02/04/2025] Open
Abstract
Background & Aims Hepatocellular carcinoma (HCC) is the third-leading and fastest rising cause of cancer-related death worldwide. The discovery and preclinical development of compounds targeting HCC are hampered by the absence of authentic tractable systems recapitulating the heterogeneity of HCC tumors in patients and the tumor microenvironment (TME). Methods We established a novel and simple patient-derived multicellular tumor spheroid model based on clinical HCC tumor tissues, processed using enzymatic and mechanical dissociation. After quality controls, 22 HCC tissues and 17 HCC sera were selected for tumor spheroid generation and perturbation studies. Cells were grown in 3D in optimized medium in the presence of patient serum. Characterization of the tumor spheroid cell populations was performed by flow cytometry, immunohistochemistry (IHC), and functional assays. As a proof of concept, we treated patient-derived spheroids with FDA-approved anti-HCC compounds. Results The model was successfully established independently from cancer etiology and grade from 22 HCC tissues. The use of serum from patients with HCC was essential for tumor spheroid generation, TME function, and maintenance of cell viability. The tumor spheroids comprised the main cell compartments, including epithelial cancer cells, as well as all major cell populations of the TME [i.e. cancer-associated fibroblasts (CAFs), macrophages, T cells, and endothelial cells]. Tumor spheroids reflected HCC heterogeneity, including variability in cell type proportions and TME, and mimicked the original tumor features. Moreover, differential responses to FDA-approved anti-HCC drugs were observed between the donors, as observed in patients. Conclusions This patient HCC serum-tumor spheroid model provides novel opportunities for drug discovery and development as well as mechanism-of-action studies including compounds targeting the TME. This model will likely contribute to improve the therapeutic outcomes for patients with HCC. Impact and implications HCC is a leading and fast-rising cause of cancer-related death worldwide. Despite approval of novel therapies, the outcome of advanced HCC remains unsatisfactory. By developing a novel patient-derived tumor spheroid model recapitulating tumor heterogeneity and microenvironment, we provide new opportunities for HCC drug development and analysis of mechanism of action in authentic patient tissues. The application of the patient-derived tumor spheroids combined with other HCC models will likely contribute to drug development and to improve the outcome of patients with HCC.
Collapse
Affiliation(s)
- Emilie Crouchet
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease UMR S1110, Strasbourg, France
| | - Nuno Almeida
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease UMR S1110, Strasbourg, France
| | - Sarah C. Durand
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease UMR S1110, Strasbourg, France
| | - Marie Parnot
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease UMR S1110, Strasbourg, France
| | - Marine A. Oudot
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease UMR S1110, Strasbourg, France
| | - Fabio Giannone
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease UMR S1110, Strasbourg, France
- Hepato-Pancreato-Biliary, Oncologic and Robotic Unit, Azienda Ospedaliero-Universitaria SS, Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Cloé Gadenne
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease UMR S1110, Strasbourg, France
| | - Natascha Roehlen
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease UMR S1110, Strasbourg, France
| | - Antonio Saviano
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease UMR S1110, Strasbourg, France
- Gastroenterology and Hepatology Service, Strasbourg University Hospitals, Strasbourg, France
| | - Emanuele Felli
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease UMR S1110, Strasbourg, France
- Hospital Group Saint Vincent, Strasbourg, France
| | - Patrick Pessaux
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease UMR S1110, Strasbourg, France
- Department of Visceral and Digestive Surgery, University Hospital of Strasbourg, Strasbourg, France
| | - Hong Tuan Duong
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease UMR S1110, Strasbourg, France
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Aikata
- Department of Gastroenterology and Hepatology, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Kazuaki Chayama
- Hiroshima Institute of Life Sciences, Hiroshima, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Thomas F. Baumert
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease UMR S1110, Strasbourg, France
- Gastroenterology and Hepatology Service, Strasbourg University Hospitals, Strasbourg, France
- Department of Visceral and Digestive Surgery, University Hospital of Strasbourg, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | - Catherine Schuster
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease UMR S1110, Strasbourg, France
| |
Collapse
|
8
|
Kim JJ, Kurial SNT, Choksi PK, Nunez M, Lunow-Luke T, Bartel J, Driscoll J, Her CL, Dhillon S, Yue W, Murti A, Mao T, Ramos JN, Tiyaboonchai A, Grompe M, Mattis AN, Syed SM, Wang BM, Maher JJ, Roll GR, Willenbring H. AAV capsid prioritization in normal and steatotic human livers maintained by machine perfusion. Nat Biotechnol 2025:10.1038/s41587-024-02523-6. [PMID: 39881029 DOI: 10.1038/s41587-024-02523-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 12/02/2024] [Indexed: 01/31/2025]
Abstract
Therapeutic efficacy and safety of adeno-associated virus (AAV) liver gene therapy depend on capsid choice. To predict AAV capsid performance under near-clinical conditions, we established side-by-side comparison at single-cell resolution in human livers maintained by normothermic machine perfusion. AAV-LK03 transduced hepatocytes much more efficiently and specifically than AAV5, AAV8 and AAV6, which are most commonly used clinically, and AAV-NP59, which is better at transducing human hepatocytes engrafted in immune-deficient mice. AAV-LK03 preferentially transduced periportal hepatocytes in normal liver, whereas AAV5 targeted pericentral hepatocytes in steatotic liver. AAV5 and AAV8 transduced liver sinusoidal endothelial cells as efficiently as hepatocytes. AAV capsid and steatosis influenced vector episome formation, which determines gene therapy durability, with AAV5 delaying concatemerization. Our findings inform capsid choice in clinical AAV liver gene therapy, including consideration of disease-relevant hepatocyte zonation and effects of steatosis, and facilitate the development of AAV capsids that transduce hepatocytes or other therapeutically relevant cell types in the human liver with maximum efficiency and specificity.
Collapse
Affiliation(s)
- Jae-Jun Kim
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Simone N T Kurial
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Pervinder K Choksi
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Miguel Nunez
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Tyler Lunow-Luke
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Jan Bartel
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Julia Driscoll
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Chris L Her
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Liver Center, University of California, San Francisco, San Francisco, CA, USA
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Simaron Dhillon
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Liver Center, University of California, San Francisco, San Francisco, CA, USA
- Stone Research Foundation, San Francisco, CA, USA
| | - William Yue
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Abhishek Murti
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Tin Mao
- Ambys Medicines, South San Francisco, CA, USA
- Genentech, South San Francisco, CA, USA
| | - Julian N Ramos
- Ambys Medicines, South San Francisco, CA, USA
- Adverum Biotechnologies, Redwood City, CA, USA
| | - Amita Tiyaboonchai
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR, USA
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Markus Grompe
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR, USA
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Aras N Mattis
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Liver Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Shareef M Syed
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce M Wang
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jacquelyn J Maher
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Garrett R Roll
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Holger Willenbring
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Liver Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Yu X, Sarabia S, Urbicain M, Somvanshi S, Patel R, Tran TM, Yeh YP, Chang KS, Lo YT, Epps J, Scorsone KA, Chiu HS, Hollingsworth EF, Perez CR, Najaf Panah MJ, Zorman B, Finegold M, Goss JA, Alaggio R, Roy A, Fisher KE, Heczey A, Woodfield S, Vasudevan S, Patel K, Chen TW, Lopez-Terrada D, Sumazin P. Asynchronous Transitions from Hepatoblastoma to Carcinoma in High-Risk Pediatric Tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.24.630261. [PMID: 39763896 PMCID: PMC11703271 DOI: 10.1101/2024.12.24.630261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Most malignant hepatocellular tumors in children are classified as either hepatoblastoma (HB) or hepatocellular carcinoma (HCC), but some tumors demonstrate features of both HB and HCC1-3. These tumors have been recognized under a provisional diagnostic category by the World Health Organization and are distinguished from HB and HCC by a combination of histological, immunohistochemical, and molecular features4-6. Their outcomes and cellular composition remain an open question7-9. The heterogeneous histological and molecular profiles of hepatoblastomas with carcinoma features (HBCs)4 may result from cells with combined HB and HCC characteristics (HBC cells) or from mixtures of cells displaying either HB or HCC signatures. We used multiomics profiling to show that HBCs are mixtures of HB, HBC, and HCC cell types. HBC cells are more chemoresistant than HB cells, and their chemoresistance-a driver of poor outcomes10-12-is determined by their cell types, genetic alterations, and embryonic differentiation stages. We showed that the prognosis of HBCs is significantly worse than that of HBs. We also showed that HBC cells are derived from HB cells at early hepatoblast differentiation stages, that aberrant activation of WNT-signaling initiates HBC transformation, and that WNT inhibition promotes differentiation and increases sensitivity to chemotherapy. Furthermore, our analysis revealed that each HBC is the product of multiple HB-to-HBC and HBC-to-HCC transitions. Thus, multiomics profiling of HBCs provided key insights into their biology and resolved major questions regarding the etiology of these childhood liver tumors.
Collapse
Affiliation(s)
- Xinjian Yu
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Stephen Sarabia
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Martin Urbicain
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Sonal Somvanshi
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Roma Patel
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Tuan M Tran
- Department of Systems Biology, Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yen-Ping Yeh
- Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-Devices, and Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Keng-Shih Chang
- Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-Devices, and Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Tzu Lo
- Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-Devices, and Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Jessica Epps
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Kathleen A. Scorsone
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Hua-Sheng Chiu
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Emporia Faith Hollingsworth
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Cintia R. Perez
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | | | - Barry Zorman
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Milton Finegold
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - John A. Goss
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Rita Alaggio
- Department of Pathology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Angshumoy Roy
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Kevin E. Fisher
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Andras Heczey
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Sarah Woodfield
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Sanjeev Vasudevan
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Kalyani Patel
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Ting-Wen Chen
- Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-Devices, and Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Dolores Lopez-Terrada
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Pavel Sumazin
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
10
|
Wu PV, Fish M, Hazard FK, Zhu C, Vennam S, Walton H, Wagh D, Coller J, Przybyl J, Morri M, Neff N, West RB, Nusse R. A developmental biliary lineage program cooperates with Wnt activation to promote cell proliferation in hepatoblastoma. Nat Commun 2024; 15:10007. [PMID: 39567523 PMCID: PMC11579301 DOI: 10.1038/s41467-024-53802-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/17/2024] [Indexed: 11/22/2024] Open
Abstract
Cancers evolve not only through the acquisition and clonal transmission of somatic mutations but also by epigenetic mechanisms that modify cell phenotype. Here, we use histology-guided and spatial transcriptomics to characterize hepatoblastoma, a childhood liver cancer that exhibits significant histologic and proliferative heterogeneity despite clonal activating mutations in the Wnt/β-catenin pathway. Highly proliferative regions with embryonal histology show high expression of Wnt target genes, the embryonic biliary transcription factor SOX4, and striking focal expression of the growth factor FGF19. In patient-derived tumoroids with constitutive Wnt activation, FGF19 is a required growth signal for FGF19-negative cells. Indeed, some tumoroids contain subsets of cells that endogenously express FGF19, downstream of Wnt/β-catenin and SOX4. Thus, the embryonic biliary lineage program cooperates with stabilized nuclear β-catenin, inducing FGF19 as a paracrine growth signal that promotes tumor cell proliferation, together with active Wnt signaling. In this pediatric cancer presumed to originate from a multipotent hepatobiliary progenitor, lineage-driven heterogeneity results in a functional growth advantage, a non-genetic mechanism whereby developmental lineage programs influence tumor evolution.
Collapse
Affiliation(s)
- Peng V Wu
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| | - Matt Fish
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Florette K Hazard
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Chunfang Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sujay Vennam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Hannah Walton
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Population Health, NYC Health + Hospitals, New York, NY, 10004, USA
| | - Dhananjay Wagh
- Stanford Genomics, Stanford University, Stanford, CA, 94305, USA
| | - John Coller
- Stanford Genomics, Stanford University, Stanford, CA, 94305, USA
| | - Joanna Przybyl
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Surgery, McGill University, Montreal, H4A 3J1, QC, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, H4A 3J1, QC, Canada
| | - Maurizio Morri
- Chan Zuckerberg Biohub, Stanford, CA, 94305, USA
- Altos Labs, Redwood City, CA, 94065, USA
| | - Norma Neff
- Chan Zuckerberg Biohub, Stanford, CA, 94305, USA
| | - Robert B West
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Roel Nusse
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
11
|
Kluiver TA, Lu Y, Schubert SA, Kraaier LJ, Ringnalda F, Lijnzaad P, DeMartino J, Megchelenbrink WL, Amo-Addae V, Eising S, de Faria FW, Münter D, van de Wetering M, Kerl K, Duiker E, van den Heuvel MC, de Meijer VE, de Kleine RH, Molenaar JJ, Margaritis T, Stunnenberg HG, de Krijger RR, Zsiros J, Clevers H, Peng WC. Divergent WNT signaling and drug sensitivity profiles within hepatoblastoma tumors and organoids. Nat Commun 2024; 15:8576. [PMID: 39567475 PMCID: PMC11579375 DOI: 10.1038/s41467-024-52757-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 09/20/2024] [Indexed: 11/22/2024] Open
Abstract
Hepatoblastoma, the most prevalent pediatric liver cancer, almost always carries a WNT-activating CTNNB1 mutation, yet exhibits notable molecular heterogeneity. To characterize this heterogeneity and identify novel targeted therapies, we perform comprehensive analysis of hepatoblastomas and tumor-derived organoids using single-cell RNA-seq/ATAC-seq, spatial transcriptomics, and high-throughput drug profiling. We identify two distinct tumor epithelial signatures: hepatic 'fetal' and WNT-high 'embryonal', displaying divergent WNT signaling patterns. The fetal group is enriched for liver-specific WNT targets, while the embryonal group is enriched in canonical WNT target genes. Gene regulatory network analysis reveals enrichment of regulons related to hepatic functions such as bile acid, lipid and xenobiotic metabolism in the fetal subtype but not in the embryonal subtype. In addition, the dichotomous expression pattern of the transcription factors HNF4A and LEF1 allows for a clear distinction between the fetal and embryonal tumor cells. We also perform high-throughput drug screening using patient-derived tumor organoids and identify sensitivity to HDAC inhibitors. Intriguingly, embryonal and fetal tumor organoids are sensitive to FGFR and EGFR inhibitors, respectively, indicating a dependency on EGF/FGF signaling in hepatoblastoma tumorigenesis. In summary, our data uncover the molecular and drug sensitivity landscapes of hepatoblastoma and pave the way for the development of targeted therapies.
Collapse
Affiliation(s)
- Thomas A Kluiver
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Yuyan Lu
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
- Department of Hepatobiliary Surgery, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Xiamen, China
| | - Stephanie A Schubert
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Lianne J Kraaier
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Femke Ringnalda
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Philip Lijnzaad
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Jeff DeMartino
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Wouter L Megchelenbrink
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. De Crecchio 7, Naples, Italy
| | - Vicky Amo-Addae
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Selma Eising
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Flavia W de Faria
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Daniel Münter
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Marc van de Wetering
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Evelien Duiker
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Marius C van den Heuvel
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Vincent E de Meijer
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ruben H de Kleine
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Thanasis Margaritis
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Hendrik G Stunnenberg
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, the Netherlands
| | - József Zsiros
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, the Netherlands
- Pharma, Research and Early Development (pRED) of F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Weng Chuan Peng
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands.
| |
Collapse
|
12
|
Zhan Y, Dong X, Yang M, Li S, Ou M, Wang Y, Gao Y. Gamma-butyrobetaine hydroxylase (BBOX1) exerts suppressive effects on HepG2 hepatoblastoma cells. Med Oncol 2024; 41:253. [PMID: 39331195 DOI: 10.1007/s12032-024-02496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Gamma-butyrobetaine hydroxylase (BBOX1) plays a pivotal role in catalyzing the final stage of L-carnitine biosynthesis. Recently, increasing number of studies have reported that BBOX1 is weakly expressed in tumor cells and exhibits antitumor activity. The role of BBOX1 in Hepatoblastoma (HB) has yet to be determined. To substantiate this, we have investigated BBOX1 expression and its clinical relevance in HB, and explored how BBOX1 might inhibit the occurrence and development of HB. The GSE104766 and GSE131329 datasets were used to screen for the core gene BBOX1 in HB and to analyze differences in expression between hepatoblastoma and normal tissues. Based on the clinicopathological features of the GSE131329 dataset, the connections between the expression of BBOX1 and the clinicopathological feature of HB patients were determined. After BBOX1 was overexpressed, CCK-8 and colony formation assays were employed to assess cell proliferation and wound healing experiments were utilized to assess cell migration. The presence of cell apoptosis, cell cycle changes, and reactive oxygen species (ROS) was assayed using flow cytometry. Compared with normal tissues, the expression of BBOX1 in hepatoblastoma tissues was notably decreased. Dysregulated expression of BBOX1 was indicated as a prognostic risk factor closely linked to clinical stag of patients with HB. Furthermore, following BBOX1 overexpression, cell proliferation and migration are decreased, the cell cycle is arrested, and ROS are attenuated. BBOX1 has suppressive effects on HepG2 cells, potentially through its ability to hinder cancer cell proliferation, arrest cell cycle progression, and decrease ROS levels, suggesting its potential as a novel prognostic biomarker and therapeutic candidate for hepatoblastoma.
Collapse
Affiliation(s)
- Yuling Zhan
- School of Life Science, Bengbu Medical University, 2600 Donghai Road, Bengbu, 233030, China
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, 233030, China
| | - Xiang Dong
- School of Life Science, Bengbu Medical University, 2600 Donghai Road, Bengbu, 233030, China
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, 233030, China
| | - Minghui Yang
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, 233030, China
- School of Basic Courses, Bengbu Medical University, Bengbu, 233030, China
| | - Suwan Li
- School of Life Science, Bengbu Medical University, 2600 Donghai Road, Bengbu, 233030, China
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, 233030, China
| | - Mingrui Ou
- Department of General Surgery, The Third People's Hospital of Bengbu, Bengbu, 233000, China
| | - Yuanyuan Wang
- School of Life Science, Bengbu Medical University, 2600 Donghai Road, Bengbu, 233030, China.
| | - Yu Gao
- School of Life Science, Bengbu Medical University, 2600 Donghai Road, Bengbu, 233030, China.
- Laboratory Animal Center, Bengbu Medical University, Bengbu, 233030, China.
| |
Collapse
|
13
|
Ak Ç, Sayar Z, Thibault G, Burlingame EA, Kuykendall MJ, Eng J, Chitsazan A, Chin K, Adey AC, Boniface C, Spellman PT, Thomas GV, Kopp RP, Demir E, Chang YH, Stavrinides V, Eksi SE. Multiplex imaging of localized prostate tumors reveals altered spatial organization of AR-positive cells in the microenvironment. iScience 2024; 27:110668. [PMID: 39246442 PMCID: PMC11379676 DOI: 10.1016/j.isci.2024.110668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Mapping the spatial interactions of cancer, immune, and stromal cell states presents novel opportunities for patient stratification and for advancing immunotherapy. While single-cell studies revealed significant molecular heterogeneity in prostate cancer cells, the impact of spatial stromal cell heterogeneity remains poorly understood. Here, we used cyclic immunofluorescent imaging on whole-tissue sections to uncover novel spatial associations between cancer and stromal cells in low- and high-grade prostate tumors and tumor-adjacent normal tissues. Our results provide a spatial map of single cells and recurrent cellular neighborhoods in the prostate tumor microenvironment of treatment-naive patients. We report unique populations of mast cells that show distinct spatial associations with M2 macrophages and regulatory T cells. Our results show disease-specific neighborhoods that are primarily driven by androgen receptor-positive (AR+) stromal cells and identify inflammatory gene networks active in AR+ prostate stroma.
Collapse
Affiliation(s)
- Çiğdem Ak
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - Zeynep Sayar
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - Guillaume Thibault
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - Erik A Burlingame
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - M J Kuykendall
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Jennifer Eng
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - Alex Chitsazan
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Koei Chin
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Andrew C Adey
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Christopher Boniface
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Paul T Spellman
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - George V Thomas
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Pathology & Laboratory Medicine, School of Medicine, OHSU, Portland, OR 97239, USA
| | - Ryan P Kopp
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Urology, School of Medicine, Knight Cancer Institute, Portland, OR 97239, USA
| | - Emek Demir
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Division of Oncological Sciences, School of Medicine, OHSU, Portland, OR 97239, USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | | | - Sebnem Ece Eksi
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| |
Collapse
|
14
|
Montoya-Novoa I, Gardeazábal-Torbado JL, Alegre-Martí A, Fuentes-Prior P, Estébanez-Perpiñá E. Androgen receptor post-translational modifications and their implications for pathology. Biochem Soc Trans 2024; 52:1673-1694. [PMID: 38958586 DOI: 10.1042/bst20231082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
A major mechanism to modulate the biological activities of the androgen receptor (AR) involves a growing number of post-translational modifications (PTMs). In this review we summarise the current knowledge on the structural and functional impact of PTMs that affect this major transcription factor. Next, we discuss the cross-talk between these different PTMs and the presence of clusters of modified residues in the AR protein. Finally, we discuss the implications of these covalent modifications for the aetiology of diseases such as spinal and bulbar muscular atrophy (Kennedy's disease) and prostate cancer, and the perspectives for pharmacological intervention.
Collapse
Affiliation(s)
- Inés Montoya-Novoa
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - José Luis Gardeazábal-Torbado
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Andrea Alegre-Martí
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Pablo Fuentes-Prior
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Eva Estébanez-Perpiñá
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| |
Collapse
|
15
|
Liu J, Xiu W, Duan G, Wang B, Jiang N, Dong Q, Xia N, Lin A. Digital medicine and minimally invasive surgery in pediatric hepatoblastoma: An update. Asian J Surg 2024; 47:2132-2137. [PMID: 38331610 DOI: 10.1016/j.asjsur.2024.01.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/15/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Hepatoblastoma (HB) is the most common liver malignancy in children, accounting for approximately 60 % of liver tumors in this population. However, the exact cause of HB remains unclear. The combination of surgery and neoadjuvant chemotherapy has significantly improved the overall survival rate of children with HB, increasing it from 40 % in the past to over 70 %. The concept of precise hepatectomy, which aims to achieve the best rehabilitation outcomes with minimal trauma and maximum liver protection, has been widely accepted by hepatobiliary surgeons. This article provides a comprehensive review of the recent advancements in surgical treatment of HB, focusing on digital surgery and minimally invasive techniques.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pediatric Surgery, Yijishan Hospital of Wannan Medical College, Wannan Medical College, Wuhu, China; Department of Medical Biology of Wannan Medical College, Wannan Medical College, Wuhu, China
| | - Wenli Xiu
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Guangqi Duan
- Department of Pediatric Surgery, Yijishan Hospital of Wannan Medical College, Wannan Medical College, Wuhu, China
| | - Bao Wang
- Department of Pediatric Surgery, Yijishan Hospital of Wannan Medical College, Wannan Medical College, Wuhu, China
| | - Nannan Jiang
- Department of Pediatric Surgery, Yijishan Hospital of Wannan Medical College, Wannan Medical College, Wuhu, China
| | - Qian Dong
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| | - Nan Xia
- Institute of Digital Medicine and Computer-assisted Surgery of Qingdao University, Qingdao University, Qingdao, China; Shandong Provincial Key Laboratory of Digital Medicine and Computer-assisted Surgery, Qingdao, China.
| | - Aiqin Lin
- Department of Medical Biology of Wannan Medical College, Wannan Medical College, Wuhu, China.
| |
Collapse
|
16
|
Yang Y, Wang H, Si J, Zhang L, Ding H, Wang F, He L, Chen X. Predicting response of hepatoblastoma primary lesions to neoadjuvant chemotherapy through contrast-enhanced computed tomography radiomics. J Cancer Res Clin Oncol 2024; 150:223. [PMID: 38691204 PMCID: PMC11063102 DOI: 10.1007/s00432-024-05746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVE To investigate the clinical value of contrast-enhanced computed tomography (CECT) radiomics for predicting the response of primary lesions to neoadjuvant chemotherapy in hepatoblastoma. METHODS Clinical and CECT imaging data were retrospectively collected from 116 children with hepatoblastoma who received neoadjuvant chemotherapy. Tumor response was assessed according to the Response Evaluation Criteria in Solid Tumors (RECIST). Subsequently, they were randomly stratified into a training cohort and a test cohort in a 7:3 ratio. The clinical model was constructed using univariate and multivariate logistic regression, while the radiomics model was developed based on selected radiomics features employing the support vector machine algorithm. The combined clinical-radiomics model incorporated both clinical and radiomics features. RESULTS The area under the curve (AUC) for the clinical, radiomics, and combined models was 0.704 (95% CI: 0.563-0.845), 0.830 (95% CI: 0.704-0.959), and 0.874 (95% CI: 0.768-0.981) in the training cohort, respectively. In the validation cohort, the combined model achieved the highest mean AUC of 0.830 (95% CI 0.616-0.999), with a sensitivity, specificity, accuracy, precision, and f1 score of 72.0%, 81.1%, 78.5%, 57.2%, and 63.5%, respectively. CONCLUSION CECT radiomics has the potential to predict primary lesion response to neoadjuvant chemotherapy in hepatoblastoma.
Collapse
Affiliation(s)
- Yanlin Yang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Haoru Wang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Jiajun Si
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Li Zhang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Hao Ding
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
| | - Fang Wang
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd, Shanghai, China
| | - Ling He
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China.
| | - Xin Chen
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China.
| |
Collapse
|
17
|
Aguiar TFM, Rivas MP, de Andrade Silva EM, Pires SF, Dangoni GD, Macedo TC, Defelicibus A, Barros BDDF, Novak E, Cristofani LM, Odone V, Cypriano M, de Toledo SRC, da Cunha IW, da Costa CML, Carraro DM, Tojal I, de Oliveira Mendes TA, Krepischi ACV. First Transcriptome Analysis of Hepatoblastoma in Brazil: Unraveling the Pivotal Role of Noncoding RNAs and Metabolic Pathways. Biochem Genet 2024:10.1007/s10528-024-10764-y. [PMID: 38649558 DOI: 10.1007/s10528-024-10764-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/27/2024] [Indexed: 04/25/2024]
Abstract
Hepatoblastoma stands as the most prevalent liver cancer in the pediatric population. Characterized by a low mutational burden, chromosomal and epigenetic alterations are key drivers of its tumorigenesis. Transcriptome analysis is a powerful tool for unraveling the molecular intricacies of hepatoblastoma, shedding light on the effects of genetic and epigenetic changes on gene expression. In this study conducted in Brazilian patients, an in-depth whole transcriptome analysis was performed on 14 primary hepatoblastomas, compared to control liver tissues. The analysis unveiled 1,492 differentially expressed genes (1,031 upregulated and 461 downregulated), including 920 protein-coding genes (62%). Upregulated biological processes were linked to cell differentiation, signaling, morphogenesis, and development, involving known hepatoblastoma-associated genes (DLK1, MEG3, HDAC2, TET1, HMGA2, DKK1, DKK4), alongside with novel findings (GYNG4, CDH3, and TNFRSF19). Downregulated processes predominantly centered around oxidation and metabolism, affecting amines, nicotinamides, and lipids, featuring novel discoveries like the repression of SYT7, TTC36, THRSP, CCND1, GCK and CAMK2B. Two genes, which displayed a concordant pattern of DNA methylation alteration in their promoter regions and dysregulation in the transcriptome, were further validated by RT-qPCR: the upregulated TNFRSF19, a key gene in the embryonic development, and the repressed THRSP, connected to lipid metabolism. Furthermore, based on protein-protein interaction analysis, we identified genes holding central positions in the network, such as HDAC2, CCND1, GCK, and CAMK2B, among others, that emerged as prime candidates warranting functional validation in future studies. Notably, a significant dysregulation of non-coding RNAs (ncRNAs), predominantly upregulated transcripts, was observed, with 42% of the top 50 highly expressed genes being ncRNAs. An integrative miRNA-mRNA analysis revealed crucial biological processes associated with metabolism, oxidation reactions of lipids and carbohydrates, and methylation-dependent chromatin silencing. In particular, four upregulated miRNAs (miR-186, miR-214, miR-377, and miR-494) played a pivotal role in the network, potentially targeting multiple protein-coding transcripts, including CCND1 and CAMK2B. In summary, our transcriptome analysis highlighted disrupted embryonic development as well as metabolic pathways, particularly those involving lipids, emphasizing the emerging role of ncRNAs as epigenetic regulators in hepatoblastomas. These findings provide insights into the complexity of the hepatoblastoma transcriptome and identify potential targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Talita Ferreira Marques Aguiar
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil
- Columbia University Irving Medical Center, New York, NY, USA
| | - Maria Prates Rivas
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Edson Mario de Andrade Silva
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Minas Gerais, Brazil
- Horticultural Sciences Department, University of Florida, Gainesville, USA
| | - Sara Ferreira Pires
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Gustavo Dib Dangoni
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Taiany Curdulino Macedo
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil
| | | | | | - Estela Novak
- Pediatric Cancer Institute (ITACI) at the Pediatric Department, São Paulo University Medical School, São Paulo, Brazil
| | - Lilian Maria Cristofani
- Pediatric Cancer Institute (ITACI) at the Pediatric Department, São Paulo University Medical School, São Paulo, Brazil
| | - Vicente Odone
- Pediatric Cancer Institute (ITACI) at the Pediatric Department, São Paulo University Medical School, São Paulo, Brazil
| | - Monica Cypriano
- Department of Pediatrics, Adolescent and Child With Cancer Support Group (GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | - Silvia Regina Caminada de Toledo
- Department of Pediatrics, Adolescent and Child With Cancer Support Group (GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Dirce Maria Carraro
- International Center for Research, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Israel Tojal
- International Center for Research, A. C. Camargo Cancer Center, São Paulo, Brazil
| | | | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
18
|
Roehrig A, Hirsch TZ, Pire A, Morcrette G, Gupta B, Marcaillou C, Imbeaud S, Chardot C, Gonzales E, Jacquemin E, Sekiguchi M, Takita J, Nagae G, Hiyama E, Guérin F, Fabre M, Aerts I, Taque S, Laithier V, Branchereau S, Guettier C, Brugières L, Fresneau B, Zucman-Rossi J, Letouzé E. Single-cell multiomics reveals the interplay of clonal evolution and cellular plasticity in hepatoblastoma. Nat Commun 2024; 15:3031. [PMID: 38589411 PMCID: PMC11001886 DOI: 10.1038/s41467-024-47280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Hepatoblastomas (HB) display heterogeneous cellular phenotypes that influence the clinical outcome, but the underlying mechanisms are poorly understood. Here, we use a single-cell multiomic strategy to unravel the molecular determinants of this plasticity. We identify a continuum of HB cell states between hepatocytic (scH), liver progenitor (scLP) and mesenchymal (scM) differentiation poles, with an intermediate scH/LP population bordering scLP and scH areas in spatial transcriptomics. Chromatin accessibility landscapes reveal the gene regulatory networks of each differentiation pole, and the sequence of transcription factor activations underlying cell state transitions. Single-cell mapping of somatic alterations reveals the clonal architecture of each tumor, showing that each genetic subclone displays its own range of cellular plasticity across differentiation states. The most scLP subclones, overexpressing stem cell and DNA repair genes, proliferate faster after neo-adjuvant chemotherapy. These results highlight how the interplay of clonal evolution and epigenetic plasticity shapes the potential of HB subclones to respond to chemotherapy.
Collapse
Affiliation(s)
- Amélie Roehrig
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
| | - Theo Z Hirsch
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
| | - Aurore Pire
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
| | - Guillaume Morcrette
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
- Department of Pathology, Robert Debré and Necker-Enfants Malades Hospitals, APHP, Paris, France
| | - Barkha Gupta
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
| | | | - Sandrine Imbeaud
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
| | | | - Emmanuel Gonzales
- Pediatric Hepatology and Liver Transplantation Unit, National Reference Centre for Rare Pediatric Liver Diseases, FILFOIE, ERN RARE LIVER, APHP, Bicêtre University Hospital, University of Paris-Saclay, Le Kremlin Bicêtre, and INSERM UMR_S 1193, Hepatinov, University of Paris-Saclay, Orsay, France
| | - Emmanuel Jacquemin
- Pediatric Hepatology and Liver Transplantation Unit, National Reference Centre for Rare Pediatric Liver Diseases, FILFOIE, ERN RARE LIVER, APHP, Bicêtre University Hospital, University of Paris-Saclay, Le Kremlin Bicêtre, and INSERM UMR_S 1193, Hepatinov, University of Paris-Saclay, Orsay, France
| | - Masahiro Sekiguchi
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Genta Nagae
- Genome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Eiso Hiyama
- Department of Pediatric Surgery, Hiroshima University Hospital, Hiroshima, Japan
- Department of Biomedical Science, Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Florent Guérin
- Department of Pediatric Surgery, Bicêtre Hospital, APHP, Paris-Saclay University, Orsay, France
| | - Monique Fabre
- Department of Pathology, Hôpital Universitaire Necker-Enfants malades, AP-HP, Paris, France
| | - Isabelle Aerts
- Oncology Center SIREDO, Institut Curie, PSL Research University, Paris, France
| | - Sophie Taque
- Département de Pédiatrie, CHU Fontenoy, Rennes, France
| | - Véronique Laithier
- Department of Children Oncology, Centre Hospitalier Universitaire Besançon, Besançon, France
| | - Sophie Branchereau
- Department of Pediatric Surgery, Bicêtre Hospital, APHP, Paris-Saclay University, Orsay, France
| | - Catherine Guettier
- Department of Pathology Hôpital Bicêtre-AP-HP, INSERM U1193, Paris-Saclay University, Orsay, France
| | - Laurence Brugières
- Gustave Roussy, Université Paris-Saclay, Department of Children and Adolescents Oncology, Villejuif, France
| | - Brice Fresneau
- Gustave Roussy, Université Paris-Saclay, Department of Children and Adolescents Oncology, Villejuif, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, Paris, France.
- Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France.
| | - Eric Letouzé
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, Paris, France.
- CRCI2NA, Nantes Université, INSERM, CNRS, Nantes, France.
- University Hospital Hôtel-Dieu, Nantes, France.
| |
Collapse
|
19
|
Pire A, Hirsch TZ, Morcrette G, Imbeaud S, Gupta B, Pilet J, Cornet M, Fabre M, Guettier C, Branchereau S, Brugières L, Guerin F, Laithier V, Coze C, Nagae G, Hiyama E, Laurent-Puig P, Rebouissou S, Sarnacki S, Chardot C, Capito C, Faure-Conter C, Aerts I, Taque S, Fresneau B, Zucman-Rossi J. Mutational signature, cancer driver genes mutations and transcriptomic subgroups predict hepatoblastoma survival. Eur J Cancer 2024; 200:113583. [PMID: 38330765 DOI: 10.1016/j.ejca.2024.113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Hepatoblastoma is the most frequent pediatric liver cancer. The current treatments lead to 80% of survival rate at 5 years. In this study, we evaluated the clinical relevance of molecular features to identify patients at risk of chemoresistance, relapse and death of disease. METHODS All the clinical data of 86 children with hepatoblastoma were retrospectively collected. Pathological slides were reviewed, tumor DNA sequencing (by whole exome, whole genome or target) and transcriptomic profiling with RNAseq or 300-genes panel were performed. Associations between the clinical, pathological, mutational and transcriptomic data were investigated. RESULTS High-risk patients represented 44% of our series and the median age at diagnosis was 21.9 months (range: 0-208). Alterations of the WNT/ß-catenin pathway and of the 11p15.5 imprinted locus were identified in 98% and 74% of the tumors, respectively. Other cancer driver genes mutations were only found in less than 11% of tumors. After neoadjuvant chemotherapy, disease-specific survival and poor response to neoadjuvant chemotherapy were associated with 'Liver Progenitor' (p = 0.00049, p < 0.0001) and 'Immune Cold' (p = 0.0011, p < 0.0001) transcriptomic tumor subtypes, SBS35 cisplatin mutational signature (p = 0.018, p = 0.001), mutations in rare cancer driver genes (p = 0.0039, p = 0.0017) and embryonal predominant histological type (p = 0.0013, p = 0.0077), respectively. Integration of the clinical and molecular features revealed a cluster of molecular markers associated with resistance to chemotherapy and survival, enlightening transcriptomic 'Immune Cold' and Liver Progenitor' as a predictor of survival independent of the clinical features. CONCLUSIONS Response to neoadjuvant chemotherapy and survival in children treated for hepatoblastoma are associated with genomic and pathological features independently of the clinical features.
Collapse
Affiliation(s)
- Aurore Pire
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France; Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Theo Z Hirsch
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France
| | - Guillaume Morcrette
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France; Pathology Department, AP-HP Necker Enfants Malades Hospital, F-75015 Paris, France
| | - Sandrine Imbeaud
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France
| | - Barkha Gupta
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France
| | - Jill Pilet
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France
| | - Marianna Cornet
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France
| | - Monique Fabre
- Pathology Department, AP-HP Necker Enfants Malades Hospital, F-75015 Paris, France
| | - Catherine Guettier
- Department of Pathology, AP-HP Bicêtre Hospital, F-94270 Le Kremlin-Bicêtre, France
| | - Sophie Branchereau
- Department of Pediatric Surgery, AP-HP Bicêtre Hospital, F-94270 Le Kremlin-Bicêtre, France
| | - Laurence Brugières
- Gustave Roussy, Université Paris-Saclay, Department of Children and Adolescents Oncology, Villejuif F-94805, France
| | - Florent Guerin
- Department of Pediatric Surgery, AP-HP Bicêtre Hospital, F-94270 Le Kremlin-Bicêtre, France
| | | | - Carole Coze
- Department of Pediatric and Oncology, Hopital de La Timone, Aix Marseille University, F-13005 Marseille, France
| | - Genta Nagae
- Genome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Eiso Hiyama
- Department of Pediatric Surgery, Hiroshima University Hospital, Hiroshima, Japan; Department of Biomedical Science, Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University, Hiroshima, Japan
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France
| | - Sandra Rebouissou
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France
| | - Sabine Sarnacki
- Department of Pediatric Surgery, AP-HP Necker Enfants Malades Hospital, F-75015 Paris, France
| | - Christophe Chardot
- Department of Pediatric Surgery, AP-HP Necker Enfants Malades Hospital, F-75015 Paris, France
| | - Carmen Capito
- Department of Pediatric Surgery, AP-HP Necker Enfants Malades Hospital, F-75015 Paris, France
| | - Cécile Faure-Conter
- Institut d'hématologie et d'oncologie pédiatrique de Lyon, F-69008 Lyon, France
| | - Isabelle Aerts
- Institut Curie, Oncology Center SIREDO, F-75005 Paris, France
| | - Sophie Taque
- Pediatric Department hemato-oncology, CHU Rennes, F-35033 Rennes, France
| | - Brice Fresneau
- Gustave Roussy, Université Paris-Saclay, Department of Children and Adolescents Oncology, Villejuif F-94805, France; Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, Cancer and Radiation Team, F-94805 Villejuif, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France; AP-HP, Department of Oncology, Hopital Européen Georges Pompidou, F-75015 Paris, France.
| |
Collapse
|
20
|
Hirao H, Adawy A, Li L, Yoshii D, Yano H, Fujiwara Y, Honda M, Harada M, Yamamoto M, Komohara Y, Hibi T. The expression analysis of SerpinB9 in hepatoblastoma microenvironment. Pediatr Surg Int 2024; 40:55. [PMID: 38347163 DOI: 10.1007/s00383-024-05647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 02/15/2024]
Abstract
PURPOSE In this research, we analyzed the expression of serpinB9 in hepatoblastoma and investigated the factors which enhance its expression. METHOD SerpinB9 expression in hepatoblastoma cell lines and macrophages co-cultured with each other or stimulated by anticancer agents was examined using RT-qPCR and western blotting. Immunohistochemistry for SerpinB9 in hepatoblastoma specimens was performed. Single-cell RNA-sequence data for hepatoblastoma from an online database were analyzed to investigate which types of cells express SerpinB9. RESULT HepG2, a hepatoblastoma cell line, exhibited increased expression of SerpinB9 when indirectly co-cultured with macrophages. Immunohistochemistry for the specimens demonstrated that serpinB9 is positive not in hepatoblastoma cells but in macrophages. Single-cell RNA sequence analysis in tissues from hepatoblastoma patients showed that macrophages expressed SerpinB9 more than tumor cells did. Co-culture of macrophages with hepatoblastoma cell lines led to the enhanced expression of SerpinB9 in both macrophages and cell lines. Anticancer agents induced an elevation of SerpinB9 in hepatoblastomas cell lines. CONCLUSION In hepatoblastoma, SerpinB9 is thought to be more highly expressed in macrophages and enhanced by interaction with hepatoblastoma cell.
Collapse
Affiliation(s)
- Hiroki Hirao
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, Kumamoto, 860-8556, Japan
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Ahmad Adawy
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, Kumamoto, 860-8556, Japan
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
- Department of Pediatric Surgery, Faculty of Medicine, Mansoura University, Mansoura , Egypt
| | - Lianbo Li
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, Kumamoto, 860-8556, Japan
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
- School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Daiki Yoshii
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Masaki Honda
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Mamoru Harada
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Masahiro Yamamoto
- Department of Morphological and Physiological Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, Kumamoto, 860-8556, Japan.
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan.
| | - Taizo Hibi
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| |
Collapse
|
21
|
Glaser K, Schepers EJ, Zwolshen HM, Lake CM, Timchenko NA, Karns RA, Cairo S, Geller JI, Tiao GM, Bondoc AJ. EZH2 is a key component of hepatoblastoma tumor cell growth. Pediatr Blood Cancer 2024; 71:e30774. [PMID: 37990130 PMCID: PMC10842061 DOI: 10.1002/pbc.30774] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Enhancer of zeste homolog 2 (EZH2) catalyzes the trimethylation of histone H3 at lysine 27 via the polycomb recessive complex 2 (PRC2) and plays a time-specific role in normal fetal liver development. EZH2 is overexpressed in hepatoblastoma (HB), an embryonal tumor. EZH2 can also promote tumorigenesis via a noncanonical, PRC2-independent mechanism via proto-oncogenic, direct protein interaction, including β-catenin. We hypothesize that the pathological activation of EZH2 contributes to HB propagation in a PRC2-independent manner. METHODS AND RESULTS We demonstrate that EZH2 promotes proliferation in HB tumor-derived cell lines through interaction with β-catenin. Although aberrant EZH2 expression occurs, we determine that both canonical and noncanonical EZH2 signaling occurs based on specific gene-expression patterns and interaction with SUZ12, a PRC2 component, and β-catenin. Silencing and inhibition of EZH2 reduce primary HB cell proliferation. CONCLUSIONS EZH2 overexpression promotes HB cell proliferation, with both canonical and noncanonical function detected. However, because EZH2 directly interacts with β-catenin in human tumors and EZH2 overexpression is not equal to SUZ12, it seems that a noncanonical mechanism is contributing to HB pathogenesis. Further mechanistic studies are necessary to elucidate potential pathogenic downstream mechanisms and translational potential of EZH2 inhibitors for the treatment of HB.
Collapse
Affiliation(s)
- Kathryn Glaser
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Emily J Schepers
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Harrison M Zwolshen
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Charissa M Lake
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nikolai A Timchenko
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rebekah A Karns
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Stefano Cairo
- Champions Oncology, US Research Headquarters, Rockville, Maryland, USA
| | - James I Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Gregory M Tiao
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alexander J Bondoc
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
22
|
Xu Y, Zhou A, Chen W, Yan Y, Chen K, Zhou X, Tian Z, Zhang X, Wu H, Fu Z, Ning X. An Integrative Bioorthogonal Nanoengineering Strategy for Dynamically Constructing Heterogenous Tumor Spheroids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304172. [PMID: 37801656 DOI: 10.1002/adma.202304172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/13/2023] [Indexed: 10/08/2023]
Abstract
Although tumor models have revolutionized perspectives on cancer aetiology and treatment, current cell culture methods remain challenges in constructing organotypic tumor with in vivo-like complexity, especially native characteristics, leading to unpredictable results for in vivo responses. Herein, the bioorthogonal nanoengineering strategy (BONE) for building photothermal dynamic tumor spheroids is developed. In this process, biosynthetic machinery incorporated bioorthogonal azide reporters into cell surface glycoconjugates, followed by reacting with multivalent click ligand (ClickRod) that is composed of hyaluronic acid-functionalized gold nanorod carrying dibenzocyclooctyne moieties, resulting in rapid construction of tumor spheroids. BONE can effectively assemble different cancer cells and immune cells together to construct heterogenous tumor spheroids is identified. Particularly, ClickRod exhibited favorable photothermal activity, which precisely promoted cell activity and shaped physiological microenvironment, leading to formation of dynamic features of original tumor, such as heterogeneous cell population and pluripotency, different maturation levels, and physiological gradients. Importantly, BONE not only offered a promising platform for investigating tumorigenesis and therapeutic response, but also improved establishment of subcutaneous xenograft model under mild photo-stimulation, thereby significantly advancing cancer research. Therefore, the first bioorthogonal nanoengineering strategy for developing dynamic tumor models, which have the potential for bridging gaps between in vitro and in vivo research is presented.
Collapse
Affiliation(s)
- Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Weiwei Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Yuxin Yan
- Department of Stomatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Xinyuan Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Zihan Tian
- School of Information Science and Engineering (School of Cyber Science and Engineering), Xinjiang University, Urumqi, 830046, China
| | - Xiaomin Zhang
- Department of Pediatric Stomatology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Heming Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Zhen Fu
- Department of Stomatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
23
|
Shevchenko JA, Nazarov KV, Alshevskaya AA, Sennikov SV. Erythroid Cells as Full Participants in the Tumor Microenvironment. Int J Mol Sci 2023; 24:15141. [PMID: 37894821 PMCID: PMC10606658 DOI: 10.3390/ijms242015141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The tumor microenvironment is an important factor that can determine the success or failure of antitumor therapy. Cells of hematopoietic origin are one of the most important mediators of the tumor-host interaction and, depending on the cell type and functional state, exert pro- or antitumor effects in the tumor microenvironment or in adjacent tissues. Erythroid cells can be full members of the tumor microenvironment and exhibit immunoregulatory properties. Tumor growth is accompanied by the need to obtain growth factors and oxygen, which stimulates the appearance of the foci of extramedullary erythropoiesis. Tumor cells create conditions to maintain the long-term proliferation and viability of erythroid cells. In turn, tumor erythroid cells have a number of mechanisms to suppress the antitumor immune response. This review considers current data on the existence of erythroid cells in the tumor microenvironment, formation of angiogenic clusters, and creation of optimal conditions for tumor growth. Despite being the most important life-support function of the body, erythroid cells support tumor growth and do not work against it. The study of various signaling mechanisms linking tumor growth with the mobilization of erythroid cells and the phenotypic and functional differences between erythroid cells of different origin allows us to identify potential targets for immunotherapy.
Collapse
Affiliation(s)
- Julia A. Shevchenko
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (J.A.S.); (K.V.N.)
- Laboratory of Immune Engineering, Federal State Autonomous Educational Institution, Ministry of Health of the Russian Federation, Higher Education I.M. Sechenov First Moscow State Medical University, Sechenov University, 119048 Moscow, Russia;
| | - Kirill V. Nazarov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (J.A.S.); (K.V.N.)
| | - Alina A. Alshevskaya
- Laboratory of Immune Engineering, Federal State Autonomous Educational Institution, Ministry of Health of the Russian Federation, Higher Education I.M. Sechenov First Moscow State Medical University, Sechenov University, 119048 Moscow, Russia;
| | - Sergey V. Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (J.A.S.); (K.V.N.)
- Laboratory of Immune Engineering, Federal State Autonomous Educational Institution, Ministry of Health of the Russian Federation, Higher Education I.M. Sechenov First Moscow State Medical University, Sechenov University, 119048 Moscow, Russia;
| |
Collapse
|
24
|
Adawy A, Li L, Hirao H, Irie T, Yoshii D, Yano H, Fujiwara Y, Esumi S, Honda M, Suzu S, Komohara Y, Hibi T. Potential involvement of IL-32 in cell-to-cell communication between macrophages and hepatoblastoma. Pediatr Surg Int 2023; 39:275. [PMID: 37751001 DOI: 10.1007/s00383-023-05557-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/27/2023]
Abstract
PURPOSE This study investigated the expression of interleukin 32 (IL-32) in hepatoblastoma, the most common primary pediatric liver tumor, and its possible roles in tumorigenesis. METHODS IL-32 expression was investigated in two hepatoblastoma cell lines (Hep G2 and HuH 6) in the steady state and after co-culture with macrophages by RNA-seq analysis and RT-qPCR, and after stimulation with chemotherapy. Cultured macrophages were stimulated by IL-32 isoforms followed by RT-qPCR and western blot analysis. IL-32 immunohistochemical staining (IHC) was performed using specimens from 21 hepatoblastoma patients. Clustering analysis was also performed using scRNA-seq data downloaded from Gene Expression Omnibus. RESULTS The IL-32 gene is expressed by hepatoblastoma cell lines; expression is upregulated by paracrine cell-cell communication with macrophages, also by carboplatin and etoposide. IL-32 causes protumor activation of macrophages with upregulation of PD-L1, IDO-1, IL-6, and IL-10. In the patient pool, IHC was positive only in 48% of cases. However, in the downloaded dataset, IL-32 gene expression was negative. CONCLUSION IL-32 was detected in hepatoblastoma cell lines, but not in all hepatoblastoma patients. We hypothesized that stimulation such as chemotherapy might induce expression of IL-32, which might be a critical mediator of chemoresistance in hepatoblastoma through inducing protumor activation in macrophages.
Collapse
Affiliation(s)
- Ahmad Adawy
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, 860-8556, Japan
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
- Department of Pediatric Surgery, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Lianbo Li
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, 860-8556, Japan
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Hiroki Hirao
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, 860-8556, Japan
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Tomoaki Irie
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, 860-8556, Japan
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Daiki Yoshii
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, 860-8556, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, 860-8556, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, 860-8556, Japan
| | - Shigeyuki Esumi
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaki Honda
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Shinya Suzu
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, 860-8556, Japan.
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan.
| | - Taizo Hibi
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| |
Collapse
|
25
|
Huang D, Ma N, Li X, Gou Y, Duan Y, Liu B, Xia J, Zhao X, Wang X, Li Q, Rao J, Zhang X. Advances in single-cell RNA sequencing and its applications in cancer research. J Hematol Oncol 2023; 16:98. [PMID: 37612741 PMCID: PMC10463514 DOI: 10.1186/s13045-023-01494-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Cancers are a group of heterogeneous diseases characterized by the acquisition of functional capabilities during the transition from a normal to a neoplastic state. Powerful experimental and computational tools can be applied to elucidate the mechanisms of occurrence, progression, metastasis, and drug resistance; however, challenges remain. Bulk RNA sequencing techniques only reflect the average gene expression in a sample, making it difficult to understand tumor heterogeneity and the tumor microenvironment. The emergence and development of single-cell RNA sequencing (scRNA-seq) technologies have provided opportunities to understand subtle changes in tumor biology by identifying distinct cell subpopulations, dissecting the tumor microenvironment, and characterizing cellular genomic mutations. Recently, scRNA-seq technology has been increasingly used in cancer studies to explore tumor heterogeneity and the tumor microenvironment, which has increased the understanding of tumorigenesis and evolution. This review summarizes the basic processes and development of scRNA-seq technologies and their increasing applications in cancer research and clinical practice.
Collapse
Affiliation(s)
- Dezhi Huang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Naya Ma
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xinlei Li
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Yang Gou
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Yishuo Duan
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Bangdong Liu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Jing Xia
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xianlan Zhao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Qiong Li
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| | - Jun Rao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
26
|
Fang J, Singh S, Cheng C, Natarajan S, Sheppard H, Abu-Zaid A, Durbin AD, Lee HW, Wu Q, Steele J, Connelly JP, Jin H, Chen W, Fan Y, Pruett-Miller SM, Rehg JE, Koo SC, Santiago T, Emmons J, Cairo S, Wang R, Glazer ES, Murphy AJ, Chen T, Davidoff AM, Armengol C, Easton J, Chen X, Yang J. Genome-wide mapping of cancer dependency genes and genetic modifiers of chemotherapy in high-risk hepatoblastoma. Nat Commun 2023; 14:4003. [PMID: 37414763 PMCID: PMC10326052 DOI: 10.1038/s41467-023-39717-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
A lack of relevant genetic models and cell lines hampers our understanding of hepatoblastoma pathogenesis and the development of new therapies for this neoplasm. Here, we report an improved MYC-driven hepatoblastoma-like murine model that recapitulates the pathological features of embryonal type of hepatoblastoma, with transcriptomics resembling the high-risk gene signatures of the human disease. Single-cell RNA-sequencing and spatial transcriptomics identify distinct subpopulations of hepatoblastoma cells. After deriving cell lines from the mouse model, we map cancer dependency genes using CRISPR-Cas9 screening and identify druggable targets shared with human hepatoblastoma (e.g., CDK7, CDK9, PRMT1, PRMT5). Our screen also reveals oncogenes and tumor suppressor genes in hepatoblastoma that engage multiple, druggable cancer signaling pathways. Chemotherapy is critical for human hepatoblastoma treatment. A genetic mapping of doxorubicin response by CRISPR-Cas9 screening identifies modifiers whose loss-of-function synergizes with (e.g., PRKDC) or antagonizes (e.g., apoptosis genes) the effect of chemotherapy. The combination of PRKDC inhibition and doxorubicin-based chemotherapy greatly enhances therapeutic efficacy. These studies provide a set of resources including disease models suitable for identifying and validating potential therapeutic targets in human high-risk hepatoblastoma.
Collapse
Affiliation(s)
- Jie Fang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shivendra Singh
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Changde Cheng
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sivaraman Natarajan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather Sheppard
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ahmed Abu-Zaid
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adam D Durbin
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ha Won Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qiong Wu
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jacob Steele
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jon P Connelly
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jerold E Rehg
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Selene C Koo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Teresa Santiago
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joseph Emmons
- VPC Diagnostic Laboratory, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stefano Cairo
- Champions Oncology, 1330 Piccard dr, Rockville, MD, USA
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, Hematology/Oncology & BMT, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Evan S Glazer
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Carolina Armengol
- Childhood Liver Oncology Group, Germans Trias i Pujol Research Institute (IGTP), Translational Program in Cancer Research (CARE), Badalona, Spain
- CIBER, Hepatic and Digestive Diseases, Barcelona, Spain
- CIBERehd, Madrid, Spain
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
27
|
Wang Y, Xiang X, Chen H, Zhou L, Chen S, Zhang G, Liu X, Ren X, Liu J, Kuang M, Jiang J, She J, Zhang Z, Xue R, Jiang H, Wang J, Peng S. Intratumoral erythroblastic islands restrain anti-tumor immunity in hepatoblastoma. Cell Rep Med 2023; 4:101044. [PMID: 37196629 DOI: 10.1016/j.xcrm.2023.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/28/2022] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
Erythroblastic islands (EBIs) are the specialized structures for erythropoiesis, but they have never been found functional in tumors. As the most common pediatric liver malignancy, hepatoblastoma (HB) requires more effective and safer therapies to prevent progression and the lifelong impact of complications on young children. However, developing such therapies is impeded by a lack of comprehensive understanding of the tumor microenvironment. By single-cell RNA sequencing of 13 treatment-naive HB patients, we discover an immune landscape characterized by aberrant accumulation of EBIs, formed by VCAM1+ macrophages and erythroid cells, which is inversely correlated with survival of HB. Erythroid cells inhibit the function of dendritic cells (DCs) via the LGALS9/TIM3 axis, leading to impaired anti-tumor T cell immune responses. Encouragingly, TIM3 blockades relieve the inhibitory effect of erythroid cells on DCs. Our study provides an immune evasion mechanism mediated by intratumoral EBIs and proposes TIM3 as a promising therapeutic target for HB.
Collapse
Affiliation(s)
- Yuanqi Wang
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao Xiang
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huadong Chen
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Luyao Zhou
- Division of Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuling Chen
- Division of Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guopei Zhang
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofei Liu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuxin Ren
- Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Juncheng Liu
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Kuang
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Division of Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Juan Jiang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinbiao She
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhichong Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruidong Xue
- Translational Cancer Research, Peking University First Hospital, Beijing, China
| | - Hong Jiang
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Ji Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Sui Peng
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
28
|
Liu J, Xiu W, Duan G, Xia N. Effect of narrow surgical margins on postoperative survival in children with hepatoblastoma. Asian J Surg 2023:S1015-9584(23)00204-X. [PMID: 36854638 DOI: 10.1016/j.asjsur.2023.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/09/2023] [Indexed: 02/27/2023] Open
Affiliation(s)
- Jie Liu
- Department of Pediatric Surgery, Yijishan Hospital of Wannan Medical College, Wannan Medical College, Wuhu, China; Institute of Digital Medicine and Computer-assisted Surgery of Qingdao University, Qingdao University, Qingdao, China
| | - Wenli Xiu
- Institute of Digital Medicine and Computer-assisted Surgery of Qingdao University, Qingdao University, Qingdao, China; Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Guangqi Duan
- Department of Pediatric Surgery, Yijishan Hospital of Wannan Medical College, Wannan Medical College, Wuhu, China
| | - Nan Xia
- Institute of Digital Medicine and Computer-assisted Surgery of Qingdao University, Qingdao University, Qingdao, China; Shandong Provincial Key Laboratory of Digital Medicine and Computer-assisted Surgery, Qingdao, China.
| |
Collapse
|