1
|
Yu H, Zhang D, Xiong R, Liu S, Hu R, Chen P, Wu X, Zou H, Hu N, Ding D, Yan Q, He Z. Soil-dependent responses of bacterial communities, phosphorus and carbon turnover to uranium stress in different soil ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138383. [PMID: 40273857 DOI: 10.1016/j.jhazmat.2025.138383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/25/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Uranium (U) can impact microbially driven soil phosphorus (P) and carbon (C) cycling. However, the response of microbial P and C turnover to U in different soils is not well understood. Through the quantitative assay of P pools and soil organic C (SOC) quantitative assay and sequencing of 16S rRNA gene amplicons and metagenomes, we investigated the effect of U on P and C biotransformation in grassland (GL), paddy soil (PY), forest soil (FT). U (60 mg kg-1) impacted the diversity, interaction and stability of soil bacterial communities, leading to a decrease in available P (AP). Under U stress, organophosphate mineralization substantially contributed to the AP in GL and FT, whereas intracellular P metabolism dominated the AP in PY. Also, the reductive citrate cycle (rTCA cycle) promoted the content of SOC in GL, while the rTCA cycle and complex organic C degradation pathways enhanced the SOC in PY and FT, respectively. Notably, functional bacteria carrying organic C degradation genes could decompose SOC to enhance soil AP. Bacteria developed various resistance strategies to cope with U stress. This study reveals soil-dependent response of microbial P and C cycling and its ecological functions under the influence of radioactive contaminants in different soil systems.
Collapse
Affiliation(s)
- Huang Yu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519080, China
| | - Dandan Zhang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Rui Xiong
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Shengwei Liu
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ruiwen Hu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Pubo Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Xiaoyan Wu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Hantong Zou
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China.
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Qingyun Yan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519080, China
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519080, China
| |
Collapse
|
2
|
Lei H, Zhou N, Zhang J, Lin R, Chen T, Wu J, Su L, Liu S, Liu T. Salinity as a key factor affects viral structure, function, and life strategies in lakes from arid and semi-arid regions. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138075. [PMID: 40163992 DOI: 10.1016/j.jhazmat.2025.138075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Salinity impacts lake microorganisms in arid and semiarid zones, affecting climate change. Viruses regulate community structure, facilitate gene transfer, and mediate nutrient cycling. However, studies on the diversity and functional differences of viruses in lakes of varying salinity are limited. Thus, we investigated metagenomic data from 20 lakes in Xinjiang Province, China, to determine viral distribution, virus-host linkage, function, and drivers in lakes of varying salinity. The results showed that salinity shaped the distribution of viral community composition, and Hafunaviridae was the dominant virus in high-salinity lakes. All the metagenome-assembled genomes (MAGs) belonging to Halobacteriota were predicted as hosts, with a lysogenic lifestyle predominating the life strategy, implying their potential protection in salt lakes. Moreover, some auxiliary metabolic genes (AMGs), such as cpeT and PTOX, were related to antioxidant and stress responses, which might help the host survive high salinity stress-induced peroxidation. Notably, the main antibiotic resistance genes (ARGs) carried by viruses, which conferred resistance to polymyxin and trimethoprim, related to the local use of veterinary antibiotics, suggesting that they are potential vehicles for the transmission of ARGs. Overall, these findings suggest that lake systems include unique viral varieties that may influence microbial ecosystems and host metabolism related to environmental adaptability.
Collapse
Affiliation(s)
- Haojun Lei
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Nuowen Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinhong Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ruifeng Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tianyi Chen
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jiang Wu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lei Su
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Shufeng Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Tang Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Xiong X, Li F, Yang H, Li C, Chen H, He D, Wu QL, Huang S, Ren L. Seepage area of the cold seep exhibits strong homogeneous selection on prokaryotic community assembly and supports high depth variability of both archaeal and bacterial communities. Microbiol Spectr 2025:e0272224. [PMID: 40492763 DOI: 10.1128/spectrum.02722-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/11/2025] [Indexed: 06/12/2025] Open
Abstract
Haima Cold Seep is an active cold seep system in the South China Sea with a thriving biological community that plays an important role in the global carbon cycle. Despite its ecological importance, we know little about the variability of its microbial communities and depth-related structure. In this study, we comprehensively investigated the microbial depth variability and its underlying assembly process in the seepage and non-seepage areas of Haima Cold Seep. We found significant inter-group differences in archaeal (ACC) and bacterial (BCC) other than eukaryotic (ECC) community compositions, between the seepage and non-seepage areas. The seepage area had significantly more archaeal and bacterial 16S rRNA gene copies than the non-seepage area and showed greater fluctuation with depth. Anaerobic methanotrophic archaea (primarily, ANME-3) and sulfate-reducing bacteria (primarily, SEEP-SRB1) were predominant in the seepage area, suggesting that ANME-3 might work in conjunction with sulfate-reducing microorganisms to support the carbon cycle in the cold seep environment. Moreover, there were more lineages found only in specific depth ranges, supporting higher depth variability of both ACC and BCC in the seepage area than in the non-seepage area. The greater depth variability of ACC and BCC in the seepage area appeared to be primarily driven by stronger homogeneous selection imposed by environmental factors (e.g., ammonium). By contrast, eukaryotic community assembly was influenced by random processes (primarily drift) and exhibited no depth dependence. Our findings may help broaden our understanding of the cold seep ecosystem and thus provide clues for its resource utilization.IMPORTANCEMarine cold seeps are characterized by the discharge of hydrocarbons and reducing fluids. Rising geological fluids in cold seeps may act as physical transport vectors for deep biosphere microorganisms from the subsurface environment to the surface environment, and thus may influence the depth patterns of microbial community assembly. Despite the ecological importance of microbial communities in cold seeps, we have limited knowledge about their responses to environmental changes along sediment depth and the underlying processes driving these responses. Our study showed that compared with non-seepage area, seepage area exhibited stronger homogeneous selection on prokaryotic community assembly, had more depth-related specialized microorganisms, and supported higher depth variability of both archaeal and bacterial communities. Our findings may provide a theoretical basis for protection and resource utilization of the cold seep ecosystem.
Collapse
Affiliation(s)
- Xueling Xiong
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Furun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Haokun Yang
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Chunshan Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Haiming Chen
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Dan He
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Qinglong L Wu
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Sijun Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Lijuan Ren
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Chu D, Zhang H, Wang Z, Ning K. Microbial resources and interactions across three-dimensional space for a freshwater ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 980:179522. [PMID: 40318372 DOI: 10.1016/j.scitotenv.2025.179522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/18/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
Freshwater ecosystems are important natural resources but face serious threats. Nevertheless, they host diverse microorganisms crucial for biosynthetic potential and global biochemical cycles. To fully understand the enrichment and interaction of species and functional resources in freshwater ecosystems, it is essential to profile the microbial resources in the whole three-dimensional space. We profiled 131 metagenomic samples to construct the Honghu Microbial Catalog, comprising 2617 metagenome-assembled genomes, 1718 candidate species, over 60 million non-redundant gene clusters, and 7396 biosynthetic gene clusters. We emphasized surface water may be the primary source of microbial species and ARGs for Honghu Lake. We also found the impact of surface water on groundwater had an "influence sphere". Furthermore, we have identified groundwater as a potential refuge for microbial resources, enriched with CPR bacteria and ARGs. These findings are crucial for the understanding, management, and protection of freshwater ecosystems.
Collapse
Affiliation(s)
- Dongliang Chu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Haohong Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China.
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Huang Y, Feng J, Wang X, Zhang Y, Zhang S. Microplastic type and concentration affect prokaryotic community structure and species coexistence in deep-sea cold seep sediments. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137727. [PMID: 40010225 DOI: 10.1016/j.jhazmat.2025.137727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
As important methane hydrate storage sites, cold seep areas are threatened by microplastics (MPs) contamination. To assess the environmental impact of MPs on microbial communities in cold seep sediments, an incubation experiment was conducted using cold seep sediment amended with different concentration of polyamide (PA), polyethylene (PE), polyethylene terephthalate (PET), and polypropylene (PP) microplastics. The results showed that the different type and concentration of MPs significantly altered the prokaryotic community structures. The PE and PET addition highly changed the relative abundance of bacterial taxa in the bacterial community, while the proportion of archaeal species in the archaeal community was significantly altered in 0.5 % MPs treatments. All of the MPs reduced the network complexity of the bacterial and archaeal communities, such as the lower average degree and greater average path length. Furthermore, the MPs treatments also significantly decreased the network stability of prokaryotic communities. The lower network complexity led to lower network stability was observed in the archaeal community. The formation of oxidative functional groups on PE and PET MP surface based on FTIR analysis suggested that biodegradation could occur in cold seep sediment. Together, these results provide new evidence that MPs could change the structures and species coexistence of prokaryotic communities in cold seep sediments.
Collapse
Affiliation(s)
- Yongji Huang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingchun Feng
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Xinyuan Wang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yue Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China
| | - Si Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
6
|
Zhang C, He Y, Wang J, Chen T, Baltar F, Hu M, Liao J, Xiao X, Li ZR, Dong X. LucaPCycle: Illuminating microbial phosphorus cycling in deep-sea cold seep sediments using protein language models. Nat Commun 2025; 16:4862. [PMID: 40419512 DOI: 10.1038/s41467-025-60142-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 05/16/2025] [Indexed: 05/28/2025] Open
Abstract
Phosphorus is essential for life and critically influences marine productivity. Despite geochemical evidence of active phosphorus cycling in deep-sea cold seeps, the microbial processes involved remain poorly understood. Traditional sequence-based searches often fail to detect proteins with remote homology. To address this, we developed a deep learning model, LucaPCycle, integrating raw sequences and contextual embeddings based on the protein language model ESM2-3B. LucaPCycle identified 5241 phosphorus-cycling protein families from global cold seep gene and genome catalogs, substantially enhancing our understanding of their diversity, ecology, and function. Among previously unannotated sequences, we discovered three alkaline phosphatase families that feature unique domain organizations and preserved enzymatic capabilities. These results highlight previously overlooked ecological importance of phosphorus cycling within cold seeps, corroborated by data from porewater geochemistry, metatranscriptomics, and metabolomics. We revealed a previously unrecognized diversity of archaea, including Asgardarchaeota, anaerobic methanotrophic archaea and Thermoproteota, which contribute to organic phosphorus mineralization and inorganic phosphorus solubilization through various mechanisms. Additionally, auxiliary metabolic genes of cold seep viruses primarily encode the PhoR-PhoB regulatory system and PhnCDE transporter, potentially enhancing their hosts' phosphorus utilization. Overall, LucaPCycle are capable of accessing previously 'hidden' sequence spaces for microbial phosphorus cycling and can be applied to various ecosystems.
Collapse
Affiliation(s)
- Chuwen Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yong He
- Apsara Lab, Alibaba Cloud Intelligence, Alibaba Group, Hangzhou, China
| | - Jieni Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Tengkai Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Federico Baltar
- Fungal and Biogeochemical Oceanography Group, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
- Fungal and Biogeochemical Oceanography Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Minjie Hu
- Key Laboratory of Humid Sub-tropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, China
- School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Jing Liao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xi Xiao
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Zhao-Rong Li
- Apsara Lab, Alibaba Cloud Intelligence, Alibaba Group, Hangzhou, China.
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
7
|
Zhang T, Han Y, Peng Y, Deng Z, Shi W, Xu X, Wu Y, Dong X. The risk of pathogenicity and antibiotic resistance in deep-sea cold seep microorganisms. mSystems 2025:e0157124. [PMID: 40396743 DOI: 10.1128/msystems.01571-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/23/2025] [Indexed: 05/22/2025] Open
Abstract
Deep-sea cold seeps host high microbial biomass and biodiversity that thrive on hydrocarbon and inorganic compound seepage, exhibiting diverse ecological functions and unique genetic resources. However, potential health risks from pathogenic or antibiotic-resistant microorganisms in these environments remain largely overlooked, especially during resource exploitation and laboratory research. Here, we analyzed 165 metagenomes and 33 metatranscriptomes from 16 global cold seep sites to investigate the diversity and distribution of virulence factors (VFs), antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs). A total of 2,353 VFs are retrieved in 689 metagenome-assembled genomes (MAGs), primarily associated with indirect pathogenesis like adherence. In addition, cold seeps harbor nearly 100,000 ARGs, as important reservoirs, with high-risk ARGs (11.22%) presenting at low abundance. Compared to other environments, microorganisms in cold seeps exhibit substantial differences in VF and ARG counts, with potential horizontal gene transfer facilitating their spread. These virulome and resistome profiles provide valuable insights into the evolutionary and ecological implications of pathogenicity and antibiotic resistance in extreme deep-sea ecosystems. Collectively, these results indicate that cold seep sediments pose minimal public health risks, shedding light on environmental safety in deep-sea resource exploitation and research. IMPORTANCE In the "One Health" era, understanding pathogenicity and antibiotic resistance in vast and largely unexplored regions like deep-sea cold seeps is critical for assessing public health risks. These environments serve as critical reservoirs where resistant and virulent bacteria can persist, adapt, and undergo genetic evolution. The increasing scope of human activities, such as deep-sea mining, is disrupting these previously isolated ecosystems, heightening the potential for microbial exchange between deep-sea communities and human or animal populations. This interaction poses a significant risk for the dissemination of resistance and virulence genes, with potential consequences for global public health and ecosystem stability. This study offers the first comprehensive analysis of virulome, resistome, and mobilome profiles in cold seep microbial communities. While cold seeps act as reservoirs for diverse ARGs, high-risk ARGs are rare, and most VFs were low risk that contribute to ecological functions. These results provide a reference for monitoring the spread of pathogenicity and resistance in extreme ecosystems, informing environmental safety assessments during deep-sea resource exploitation.
Collapse
Affiliation(s)
- Tianxueyu Zhang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, Shanghai, China
- State Key Laboratory of Submarine Geoscience, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang, China
| | - Yingchun Han
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Zhaochao Deng
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, Zhejiang, China
- Ocean Research Center of Zhoushan, Zhejiang University, Zhoushan, Zhejiang, China
| | - Wenqing Shi
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University College of Ocean and Earth Science, Xiamen, Fujian, China
- RU Marine Symbioses, RD3 Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany
| | - Xuewei Xu
- State Key Laboratory of Submarine Geoscience, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang, China
| | - Yuehong Wu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, Shanghai, China
- State Key Laboratory of Submarine Geoscience, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang, China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| |
Collapse
|
8
|
Wang Y, Yang L, Wu W, Feng Z, He J, Guo C, He J. Bacillus haimaensis sp. nov.: a novel cold seep-adapted bacterium with unique biosynthetic potential. Appl Environ Microbiol 2025; 91:e0245624. [PMID: 40277363 DOI: 10.1128/aem.02456-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/18/2025] [Indexed: 04/26/2025] Open
Abstract
Deep-sea cold seeps harbor unique microbial communities that play crucial roles in biogeochemical cycles and possess potential biotechnological applications. Herein, we report the isolation, characterization, and genomic analysis of a novel Bacillus species, Bacillus haimaensis sp. nov. (type strain CSS-39T, CCTCC M20241382), obtained from sediments collected at a depth of 1,350 m in the Haima cold seep, South China Sea. Phylogenomic analysis, revealing an average nucleotide identity of 87.78% and a digital DNA-DNA hybridization value of 34.0% with its closest relative B. tianshenii DSM 25879T, confirms the taxonomic novelty of the genus Bacillus. The complete 4.54 Mb genome of B. haimaensis reveals adaptations to the cold seep environment, including enhanced nutrient acquisition capabilities and stress response mechanisms. Comparative genomic analysis identifies 27 unique gene clusters related to spore germination and sulfate assimilation, suggesting specialized metabolic strategies for this extreme habitat. Furthermore, six biosynthetic gene clusters, including a novel lassopeptide cluster, indicate a potential for secondary metabolite production. Phenotypic characterization demonstrates the strain's ability to utilize diverse carbon sources and tolerate a wide range of environmental conditions. Our findings provide insights into microbial adaptations to deep-sea cold seeps and highlight the potential of B. haimaensis for biotechnological applications in bioremediation and natural product discovery. This study expands our understanding of microbial diversity in extreme marine environments and offers a new model bacterium for investigating bacterial adaptations to deep-sea ecosystems.IMPORTANCEThe discovery of Bacillus haimaensis sp. nov. in the Haima cold seep of the South China Sea represents a significant advancement in our understanding of microbial adaptations to extreme marine environments. This novel species exhibits remarkable metabolic versatility and unique genomic features, providing insights into bacterial survival strategies in nutrient-variable, high-pressure deep-sea ecosystems. Comprehensive genomic analysis reveals distinctive biosynthetic gene clusters, suggesting untapped potential for discovering novel natural product. Furthermore, B. haimaensis exhibits promising capabilities for aromatic compound degradation, indicating potential applications in marine bioremediation. This work not only expands our knowledge of microbial diversity in understudied deep-sea habitats but also highlights the biotechnological promise of extremophiles. The adaptive mechanisms elucidated in B. haimaensis, particularly those related to sporulation and sulfate assimilation, contribute to our broader understanding of microbial ecology in cold seeps and may inform future research on climate change impacts on deep-sea ecosystems.
Collapse
Affiliation(s)
- Yuanyuan Wang
- School of Marine Sciences, State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals / Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, China
| | - Luyi Yang
- School of Marine Sciences, State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals / Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, China
| | - Wenbo Wu
- School of Marine Sciences, State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals / Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, China
| | - Zhengqi Feng
- School of Marine Sciences, State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals / Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, China
| | - Jian He
- School of Marine Sciences, State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals / Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, China
| | - Changjun Guo
- School of Marine Sciences, State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals / Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- School of Marine Sciences, State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals / Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Yang H, Xiong X, Tai Y, Xiao LJ, He D, Wu L, Zhou L, Ren L, Wu QL, Han BP. Sediment bacterial biogeography across reservoirs in the Hanjiang river basin, southern China: the predominant influence of eutrophication-induced carbon enrichment. Front Microbiol 2025; 16:1554914. [PMID: 40226101 PMCID: PMC11991844 DOI: 10.3389/fmicb.2025.1554914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
A fundamental goal of reservoir ecosystem management is to understand bacterial biogeographic patterns and the mechanisms shaping them at a regional scale. However, little is known about how eutrophication, a major water quality challenge in reservoirs, influences sediment bacterial biogeographic patterns in subtropical regions. In this study, sediment bacterial communities were sampled from 21 subtropical reservoirs in the Hanjiang river basin, southern China, and spanning trophic states from oligotrophic to eutrophic. Our findings demonstrated that eutrophication-driven changes in total carbon (TC) significantly shaped the regional biogeographic patterns of sediment bacterial communities, weakening the "distance-decay" relationships that typically link bacterial community similarity to geographical distance. TC content exceeding a threshold of 13.2 g·kg-1 resulted in substantial shifts in bacterial community structure. Specifically, high TC levels promoted the dominance of copiotrophic bacteria such as Syntrophales (Deltaproteobacteria), Clostridiaceae (Firmicutes), and VadinHA17 (Bacteroidetes), while oligotrophic taxa like Anaerolineaceae (Chloroflexi) and Nitrospirota were prevalent in low TC sediments. Additionally, higher TC content was associated with increased regional heterogeneity in bacterial community composition. Reservoirs with elevated TC levels exhibited more complex bacterial interaction networks, characterized by stronger niche segregation and higher competition compared to low TC networks. Overall, these findings underscore the pivotal role of sediment TC in shaping bacterial biogeography at a regional scale. They provide valuable insights for predicting ecosystem responses to eutrophication and offer guidance for mitigating the impacts of anthropogenic activities on freshwater ecosystems.
Collapse
Affiliation(s)
- Haokun Yang
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Xueling Xiong
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Yiping Tai
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Li-Juan Xiao
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Dan He
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Liqin Wu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, Guangdong, China
| | - Lijun Zhou
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Lijuan Ren
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Qinglong L. Wu
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Bo-Ping Han
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Zhong Y, Li Y, Wang Z, Cui L, Lv S, Zhu H, Yuan Q, Lai Q, Wang S, Jiang L. Sulfurimonas microaerophilic sp. nov. and Sulfurimonas diazotrophicus sp. nov.: Two Novel Nitrogen-Fixing and Hydrogen- and Sulfur-Oxidizing Chemolithoautotrophs Within the Campylobacteria Isolated from Mangrove Sediments. Microorganisms 2025; 13:713. [PMID: 40284549 PMCID: PMC12029903 DOI: 10.3390/microorganisms13040713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Two novel marine hydrogen- and sulfur-oxidizing bacteria, designated HSL1-7T and HSL3-1T, were isolated from mangrove sediments from Fujian Province, China. Strain HSL1-7T exhibited Gram-negative, rod-shaped to slightly curved morphology with polar flagellum-driven motility, whereas strain HSL3-1T was Gram-negative, rod-shaped and non-motile. Strain HSL1-7T and HSL3-1T were obligate chemolithoautotrophs, capable of using molecular hydrogen and thiosulfate as an energy source, and molecular oxygen and elemental sulfur as the electron acceptors for growth. Cellular fatty acid profiles revealed similar predominant components (C16:1ω7c, C16:0, C18:1ω7c, and C14:0) in both strains. Strains HSL1-7T and HSL3-1T were strongly diazotrophic, as demonstrated by 15N2 fixation when a fixed nitrogen source was absent from the growth medium. The DNA G+C contents of strains HSL1-7T and HSL3-1T were determined to be 36.1% and 57.3%, respectively. Based on the 16S rRNA gene sequences, strains HSL1-7T and HSL3-1T exhibited the highest sequence similarities with Sulfurimonas marina B2T (98.5% and 94.45%, respectively). Notably, the 16S rRNA gene sequence similarity between strains HSL1-7T and HSL3-1T was 93.19%, indicating that they represent distinct species within the genus Sulfurimonas. Comparative genomic analyses revealed the presence of diverse metabolic profiles in strains HSL1-7T and HSL3-1T, including carbon fixation, hydrogen oxidation, sulfur oxidation, and nitrogen fixation. The combined phenotypic, chemotaxonomic, and phylogenetic evidence, including average nucleotide identity and in silico DNA-DNA hybridization values, shows that strains HSL1-7T and HSL3-1T represent two novel species of the genus Sulfurimonas for which the names Sulfurimonas microaerophilic sp. nov. and Sulfurimonas diazotrophicus sp. nov. are proposed, with the type strains HSL1-7T (=MCCC 1A18899T = KCTC 25640T) and HSL3-1T (=MCCC 1A18844T), respectively.
Collapse
Affiliation(s)
- Yangsheng Zhong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China; (Y.Z.); (Y.L.); (Z.W.); (L.C.); (S.L.); (Q.Y.); (Q.L.)
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Yufei Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China; (Y.Z.); (Y.L.); (Z.W.); (L.C.); (S.L.); (Q.Y.); (Q.L.)
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Zhaodi Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China; (Y.Z.); (Y.L.); (Z.W.); (L.C.); (S.L.); (Q.Y.); (Q.L.)
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Liang Cui
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China; (Y.Z.); (Y.L.); (Z.W.); (L.C.); (S.L.); (Q.Y.); (Q.L.)
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Shiwei Lv
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China; (Y.Z.); (Y.L.); (Z.W.); (L.C.); (S.L.); (Q.Y.); (Q.L.)
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Han Zhu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China; (Y.Z.); (Y.L.); (Z.W.); (L.C.); (S.L.); (Q.Y.); (Q.L.)
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Qing Yuan
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China; (Y.Z.); (Y.L.); (Z.W.); (L.C.); (S.L.); (Q.Y.); (Q.L.)
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China; (Y.Z.); (Y.L.); (Z.W.); (L.C.); (S.L.); (Q.Y.); (Q.L.)
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Shasha Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China; (Y.Z.); (Y.L.); (Z.W.); (L.C.); (S.L.); (Q.Y.); (Q.L.)
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Lijing Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China; (Y.Z.); (Y.L.); (Z.W.); (L.C.); (S.L.); (Q.Y.); (Q.L.)
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
- School of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361012, China
| |
Collapse
|
11
|
Jiang Q, Cao L, Han Y, Li S, Zhao R, Zhang X, Ruff SE, Zhao Z, Peng J, Liao J, Zhu B, Wang M, Lin X, Dong X. Cold seeps are potential hotspots of deep-sea nitrogen loss driven by microorganisms across 21 phyla. Nat Commun 2025; 16:1646. [PMID: 39952920 PMCID: PMC11828985 DOI: 10.1038/s41467-025-56774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/29/2025] [Indexed: 02/17/2025] Open
Abstract
Nitrogen bioavailability, governed by fixation and loss processes, is crucial for oceanic productivity and global biogeochemical cycles. The key nitrogen loss organisms-denitrifiers and anaerobic ammonium-oxidizing (anammox) bacteria-remain poorly understood in deep-sea cold seeps. This study combined geochemical measurements, 15N stable isotope tracer analysis, metagenomics, metatranscriptomics, and three-dimensional protein structural simulations to explore cold-seeps nitrogen loss processes. Geochemical evidence from 359 sediment samples shows significantly higher nitrogen loss rates in cold seeps compared to typical deep-sea sediments, with nitrogen loss flux from surface sediments estimated at 4.96-7.63 Tg N yr-1 (1.65-2.54% of global marine sediment). Examination of 147 million non-redundant genes indicates a high prevalence of nitrogen loss genes, including nitrous-oxide reductase (NosZ; 6.88 genes per million reads, GPM), nitric oxide dismutase (Nod; 1.29 GPM), and hydrazine synthase (HzsA; 3.35 GPM) in surface sediments. Analysis of 3,164 metagenome-assembled genomes expands the nitrous-oxide reducers by three phyla, nitric oxide-dismutating organisms by one phylum and two orders, and anammox bacteria by ten phyla going beyond Planctomycetota. These microbes exhibit structural adaptations and complex gene cluster enabling survival in cold seeps. Cold seeps likely are previously underestimated nitrogen loss hotspots, potentially contributing notably to the global nitrogen cycle.
Collapse
Affiliation(s)
- Qiuyun Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Lei Cao
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yingchun Han
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Shengjie Li
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Xiaoli Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - S Emil Ruff
- Ecosystems Center and J. Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Zhuoming Zhao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Jiaxue Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Jing Liao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Baoli Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Regions, Taoyuan Agroecosystem Research Station, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Minxiao Wang
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xianbiao Lin
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China.
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
12
|
Shen W, Wang D, Li J, Liu Y, Wang Y, Yang X, Peng X, Xie B, Su L, Wei Z, He Q, Wang Z, Feng K, Du W, Deng Y. Developing a microfluidic-based epicPCR reveals diverse potential hosts of the mcrA gene in marine cold seep. MLIFE 2025; 4:70-82. [PMID: 40026575 PMCID: PMC11868836 DOI: 10.1002/mlf2.12159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/03/2024] [Accepted: 12/19/2024] [Indexed: 03/05/2025]
Abstract
Anaerobic methanotrophic (ANME) microbes play a crucial role in the bioprocess of anaerobic oxidation of methane (AOM). However, due to their unculturable status, their diversity is poorly understood. In this study, we established a microfluidics-based epicPCR (Emulsion, Paired Isolation, and Concatenation PCR) to fuse the 16S rRNA gene and mcrA gene to reveal the diversity of ANME microbes (mcrA gene hosts) in three sampling push-cores from the marine cold seep. A total of 3725 16S amplicon sequence variants (ASVs) of the mcrA gene hosts were detected, and classified into 78 genera across 23 phyla. Across all samples, the dominant phyla with high relative abundance (>10%) were the well-known Euryarchaeota, and some bacterial phyla such as Campylobacterota, Proteobacteria, and Chloroflexi; however, the specificity of these associations was not verified. In addition, the compositions of the mcrA gene hosts were significantly different in different layers, where the archaeal hosts increased with the depths of sediments, indicating the carriers of AOM were divergent in depth. Furthermore, the consensus phylogenetic trees of the mcrA gene and the 16S rRNA gene showed congruence in archaea not in bacteria, suggesting the horizontal transfer of the mcrA gene may occur among host members. Finally, some bacterial metagenomes were found to contain the mcrA gene as well as other genes that encode enzymes in the AOM pathway, which prospectively propose the existence of ANME bacteria. This study describes improvements for a potential method for studying the diversity of uncultured functional microbes and broadens our understanding of the diversity of ANMEs.
Collapse
Affiliation(s)
- Wenli Shen
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
- Institute for Marine Science and TechnologyShandong UniversityQingdaoChina
| | - Danrui Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
- Soil Ecology LabNanjing Agricultural UniversityNanjingChina
| | - Jiangtao Li
- State Key Laboratory of Marine GeologyTongji UniversityShanghaiChina
| | - Yue Liu
- College of Environmental Science and EngineeringLiaoning Technical UniversityFuxinChina
| | - Yinzhao Wang
- Microbiology Division, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xingsheng Yang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | - Xi Peng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | - Bingliang Xie
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Lei Su
- State Key Laboratory of Marine GeologyTongji UniversityShanghaiChina
| | - Ziyan Wei
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Qing He
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | - Zhiyi Wang
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Kai Feng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- Savaid Medical SchoolUniversity of the Chinese Academy of SciencesBeijingChina
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
- Institute for Marine Science and TechnologyShandong UniversityQingdaoChina
| |
Collapse
|
13
|
Nichio BTDL, Chaves RBR, Pedrosa FDO, Raittz RT. Exploring diazotrophic diversity: unveiling Nif core distribution and evolutionary patterns in nitrogen-fixing organisms. BMC Genomics 2025; 26:81. [PMID: 39871141 PMCID: PMC11773926 DOI: 10.1186/s12864-024-10994-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/05/2024] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Diazotrophs carry out biological nitrogen fixation (BNF) using the nitrogenase enzyme complex (NEC), which relies on nitrogenase encoded by nif genes. Horizontal gene transfer (HGT) and gene duplications have created significant diversity among these genes, making it challenging to identify potential diazotrophs. Previous studies have established a minimal set of Nif proteins, known as the Nif core, which includes NifH, NifD, NifK, NifE, NifN, and NifB. This study aimed to identify potential diazotroph groups based on the Nif core and to analyze the inheritance patterns of accessory Nif proteins related to Mo-nitrogenase, along with their impact on N2 fixation maintenance. RESULTS In a systematic study, 118 diazotrophs were identified, resulting in a database of 2,156 Nif protein sequences obtained with RAFTS³G. Using this Nif database and a data mining strategy, we extended our analysis to 711 species and found that 544 contain the Nif core. A partial Nif core set was observed in eight species in this study. Finally, we cataloged 662 species with Nif core, of which 52 were novel. Our analysis generated 10,076 Nif proteins from these species and revealed some Nif core duplications. Additionally, we determined the optimal cluster value (k = 10) for analyzing diazotrophic diversity. Combining synteny and phylogenetic analyses revealed distinct syntenies in the nif gene composition across ten groups. CONCLUSIONS This study advances our understanding of the distribution of nif genes, aiding in the prediction and classification of N₂-fixing organisms. Furthermore, we present a comprehensive overview of the diversity, distribution, and evolutionary relationships among diazotrophic organisms associated with the Nif core. The analysis revealed the phylogenetic and functional organization of different groups, identifying synteny patterns and new nif gene arrangements across various bacterial and archaeal species.The identified groups serve as a valuable framework for further exploration of the molecular mechanisms underlying biological nitrogen fixation and its evolutionary significance across different bacterial lineages.
Collapse
Affiliation(s)
- Bruno Thiago de Lima Nichio
- Laboratory of Artificial Intelligence Applied to Bioinformatics, Professional and Technical Education Sector - SEPT, UFPR, Curitiba, Paraná, Brazil
- Department of Biochemistry, Biological Sciences Sector, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Roxana Beatriz Ribeiro Chaves
- Department of Biochemistry, Biological Sciences Sector, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Fábio de Oliveira Pedrosa
- Laboratory of Artificial Intelligence Applied to Bioinformatics, Professional and Technical Education Sector - SEPT, UFPR, Curitiba, Paraná, Brazil
- Department of Biochemistry, Biological Sciences Sector, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Roberto Tadeu Raittz
- Laboratory of Artificial Intelligence Applied to Bioinformatics, Professional and Technical Education Sector - SEPT, UFPR, Curitiba, Paraná, Brazil.
- Department of Biochemistry, Biological Sciences Sector, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil.
| |
Collapse
|
14
|
Hu W, Teng Y, Wang X, Xu Y, Sun Y, Wang H, Li Y, Dai S, Zhong M, Luo Y. Mixotrophic cyanobacteria are critical active diazotrophs in polychlorinated biphenyl-contaminated paddy soil. ISME COMMUNICATIONS 2025; 5:ycae160. [PMID: 40114670 PMCID: PMC11924043 DOI: 10.1093/ismeco/ycae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/07/2024] [Accepted: 12/12/2024] [Indexed: 03/22/2025]
Abstract
Biological nitrogen fixation by diazotrophs is a crucial biogeochemical process in global terrestrial ecosystems, especially in nitrogen-limited, organic-contaminated soils. The metabolic activities of diazotrophs and their ability to supply fixed nitrogen may facilitate the transformation of organic pollutants. However, the active diazotrophic communities in organic-contaminated soils and their potential metabolic functions have received little attention. In the current study, the relationship between biological nitrogen fixation and polychlorinated biphenyl (PCB) metabolism was analyzed in situ in paddy soil contaminated with a representative tetrachlorobiphenyl (PCB52). 15N-DNA stable isotope probing was combined with high-throughput sequencing to identify active diazotrophs, which were distributed in 14 phyla, predominantly Cyanobacteria (23.40%). Subsequent metagenome binning and functional gene mining revealed that some mixotrophic cyanobacteria (e.g. FACHB-36 and Cylindrospermum) contain essential genes for nitrogen fixation, PCB metabolism, and photosynthesis. The bifunctionality of Cylindrospermum sp. in nitrogen fixation and PCB metabolism was further confirmed by metabolite analyses of Cylindrospermum sp. from a culture collection as a representative species, which showed that Cylindrospermum sp. metabolized PCB and produced 2-chlorobiphenyl and 2,5-dihydroxybenzonic acid. Collectively, these findings indicate that active diazotrophs, particularly mixotrophic cyanobacteria, have important ecological remediation functions and are a promising nature-based in situ remediation solution for organic-contaminated environments.
Collapse
Affiliation(s)
- Wenbo Hu
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Resources, Environment and Earth Science, University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Ying Teng
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
- College of Resources, Environment and Earth Science, University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Xiaomi Wang
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
- College of Resources, Environment and Earth Science, University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Yongfeng Xu
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
- College of Resources, Environment and Earth Science, University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Yi Sun
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Resources, Environment and Earth Science, University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Hongzhe Wang
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Resources, Environment and Earth Science, University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Yanning Li
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Resources, Environment and Earth Science, University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Shixiang Dai
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
- College of Resources, Environment and Earth Science, University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Ming Zhong
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Yongming Luo
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
- College of Resources, Environment and Earth Science, University of Chinese Academy of Sciences, Nanjing 211135, China
| |
Collapse
|
15
|
Zhang Y, Xue B, Mao Y, Chen X, Yan W, Wang Y, Wang Y, Liu L, Yu J, Zhang X, Chao S, Topp E, Zheng W, Zhang T. High-throughput single-cell sequencing of activated sludge microbiome. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 23:100493. [PMID: 39430728 PMCID: PMC11490935 DOI: 10.1016/j.ese.2024.100493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/22/2024]
Abstract
Wastewater treatment plants (WWTPs) represent one of biotechnology's largest and most critical applications, playing a pivotal role in environmental protection and public health. In WWTPs, activated sludge (AS) plays a major role in removing contaminants and pathogens from wastewater. While metagenomics has advanced our understanding of microbial communities, it still faces challenges in revealing the genomic heterogeneity of cells, uncovering the microbial dark matter, and establishing precise links between genetic elements and their host cells as a bulk method. These issues could be largely resolved by single-cell sequencing, which can offer unprecedented resolution to show the unique genetic information. Here we show the high-throughput single-cell sequencing to the AS microbiome. The single-amplified genomes (SAGs) of 15,110 individual cells were clustered into 2,454 SAG bins. We find that 27.5% of the genomes in the AS microbial community represent potential novel species, highlighting the presence of microbial dark matter. Furthermore, we identified 1,137 antibiotic resistance genes (ARGs), 10,450 plasmid fragments, and 1,343 phage contigs, with shared plasmid and phage groups broadly distributed among hosts, indicating a high frequency of horizontal gene transfer (HGT) within the AS microbiome. Complementary analysis using 1,529 metagenome-assembled genomes from the AS samples allowed for the taxonomic classification of 98 SAG bins, which were previously unclassified. Our study establishes the feasibility of single-cell sequencing in characterizing the AS microbiome, providing novel insights into its ecological dynamics, and deepening our understanding of HGT processes, particularly those involving ARGs. Additionally, this valuable tool could monitor the distribution, spread, and pathogenic hosts of ARGs both within AS environments and between AS and other environments, which will ultimately contribute to developing a health risk evaluation system for diverse environments within a One Health framework.
Collapse
Affiliation(s)
- Yulin Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Bingjie Xue
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
- School of Public Health, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, Guangdong, China
| | - Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, Guangdong, China
| | - Xi Chen
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Weifu Yan
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Yanren Wang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Jiale Yu
- MobiDrop (Zhejiang) Company Limited, Jiaxing, 314000, Zhejiang, China
| | - Xiaojin Zhang
- MobiDrop (Zhejiang) Company Limited, Jiaxing, 314000, Zhejiang, China
| | - Shan Chao
- MobiDrop (Zhejiang) Company Limited, Jiaxing, 314000, Zhejiang, China
| | - Edward Topp
- Agroecology Research unit, Bourgogne Franche-Comté Research Centre, National Research Institute for Agriculture, Food and the Environment, 35000, France
| | - Wenshan Zheng
- MobiDrop (Zhejiang) Company Limited, Jiaxing, 314000, Zhejiang, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
- School of Public Health, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| |
Collapse
|
16
|
Xu Y, Teng Y, Dai S, Liao J, Wang X, Hu W, Guo Z, Pan X, Dong X, Luo Y. Atmospheric Trace Gas Oxidizers Contribute to Soil Carbon Fixation Driven by Key Soil Conditions in Terrestrial Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21617-21628. [PMID: 39443297 DOI: 10.1021/acs.est.4c06516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Microbial oxidizers of trace gases such as hydrogen (H2) and carbon monoxide (CO) are widely distributed in soil microbial communities and play a vital role in modulating biogeochemical cycles. However, the contribution of trace gas oxidizers to soil carbon fixation and the driving environmental factors remain unclear, especially on large scales. Here, we utilized biogeochemical and genome-resolved metagenomic profiling, assisted by machine learning analysis, to estimate the contributions of trace gas oxidizers to soil carbon fixation and to predict the key environmental factors driving this process in soils from five distinct ecosystems. The results showed that phylogenetically and physiologically diverse H2 and CO oxidizers and chemosynthetic carbon-fixing microbes are present in the soil in different terrestrial ecosystems. The large-scale variations in soil carbon fixation were highly positively correlated with both the abundance and the activity of H2 and CO oxidizers (p < 0.05-0.001). Furthermore, soil pH and moisture-induced shifts in the abundance of H2 and CO oxidizers partially explained the variation in soil carbon fixation (55%). The contributions of trace gas oxidizers to soil carbon fixation in the different terrestrial ecosystems were estimated to range from 1.1% to 35.0%. The estimated rate of trace gas carbon fixation varied from 0.04 to 1.56 mg kg-1 d-1. These findings reveal that atmospheric trace gas oxidizers may contribute to soil carbon fixation driven by key soil environmental factors, highlighting the non-negligible contribution of these microbes to terrestrial carbon cycling.
Collapse
Affiliation(s)
- Yongfeng Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Teng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shixiang Dai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xia Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbo Hu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiying Guo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianzhang Pan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yongming Luo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Lu R, Li D, Guo Y, Cui Z, Wei Z, Fan G, Zhang W, Wang Y, Gu Y, Han M, Liu S, Meng L. Comparative metagenomics highlights the habitat-related diversity in taxonomic composition and metabolic potential of deep-sea sediment microbiota. Heliyon 2024; 10:e39055. [PMID: 39634420 PMCID: PMC11616513 DOI: 10.1016/j.heliyon.2024.e39055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024] Open
Abstract
Sediment plays a pivotal role in deep-sea ecosystems by providing habitats for a diverse range of microorganisms and facilitates the cycling processes of carbon, sulfur and nitrogen. Beyond the normal seafloor (NS), distinctive geographical features such as cold seeps (CS) and hydrothermal vent (HV) are recognized as life oases harboring highly diverse microbial communities. A global atlas of microorganisms can reveal the notable association between geological processes and microbial colonization. However, a comprehensive understanding of the systematic comparison of microbial communities in sediments across various deep-sea regions worldwide and their contributions to Earth's elemental cycles remains limited. Analyzing metagenomic data from 163 deep-sea sediment samples across 73 locations worldwide revealed that microbial communities in CS sediments exhibited the highest richness and diversity, followed by HV sediments, with NS sediments showing the lowest diversity. The NS sediments were predominantly inhabited by Nitrosopumilaceae, a type of ammonia-oxidizing archaea (AOA). In contrast, CSs and HVs were dominated by ANME-1, a family of anaerobic methane-oxidizing archaea (ANME), and Desulfofervidaceae, a family of sulfate-reducing bacteria (SRB), respectively. Microbial networks were established for each ecosystem to analyze the relationships and interactions among different microorganisms. Additionally, we analyzed the metabolic patterns of microbial communities in different deep-sea sediments. Despite variations in carbon fixation pathways in ecosystems with different oxygen concentrations, carbon metabolism remains the predominant biogeochemical cycle in deep-sea sediments. Benthic ecosystems exhibit distinct microbial potentials for sulfate reduction, both assimilatory and dissimilatory sulfate reduction (ASR and DSR), in response to different environmental conditions. The presence of nitrogen-fixing microorganisms in CS sediments may influence the global nitrogen balance. In this study, the significant differences in the taxonomic composition and functional potential of microbial communities inhabiting various deep-sea environments were investigated. Our findings emphasize the importance of conducting comparative studies on ecosystems to reveal the complex interrelationships between marine sediments and global biogeochemical cycles.
Collapse
Affiliation(s)
- Rui Lu
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, Shandong, 266555, China
| | - Denghui Li
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, Shandong, 266555, China
| | - Yang Guo
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Zhen Cui
- BGI Research, Qingdao, 266555, China
| | - Zhanfei Wei
- BGI Research, Qingdao, 266555, China
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao, 266071, China
| | - Guangyi Fan
- BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, Shandong, 266555, China
| | - Weijia Zhang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, Sanya, 572000, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, International Center for Deep Life Investigation (IC-DLI), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Gu
- BGI Research, Shenzhen, 518083, China
| | - Mo Han
- BGI Research, Sanya, 572025, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
- Shenzhen Key Laboratory of Bioenergy, BGI Research, Shenzhen, 518083, China
| | - Shanshan Liu
- MGI Tech, Shenzhen, 518083, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, Sanya, 572000, China
- Shenzhen Key Laboratory of Marine Genomics, BGI Research, Shenzhen, 518083, China
| | - Liang Meng
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, Shandong, 266555, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, Sanya, 572000, China
| |
Collapse
|
18
|
Li Y, Chen J, Lin Y, Zhong C, Jing H, Liu H. Thaumarchaeota from deep-sea methane seeps provide novel insights into their evolutionary history and ecological implications. MICROBIOME 2024; 12:197. [PMID: 39385283 PMCID: PMC11463064 DOI: 10.1186/s40168-024-01912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/19/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota mediate the rate-limiting step of nitrification and remove the ammonia that inhibits the aerobic metabolism of methanotrophs. However, the AOA that inhabit deep-sea methane-seep surface sediments (DMS) are rarely studied. Here, we used global DMS metagenomics and metagenome-assembled genomes (MAGs) to investigate the metabolic activity, evolutionary history, and ecological contributions of AOA. Expression of AOA-specific ammonia-oxidizing gene (amoA) was examined in the sediments collected from the South China Sea (SCS) to identify their active ammonia metabolism in the DMS. RESULTS Our analysis indicated that AOA contribute > 75% to the composition of ammonia-utilization genes within the surface layers (above 30 cm) of global DMS. The AOA-specific ammonia-oxidizing gene was actively expressed in the DMS collected from the SCS. Phylogenomic analysis of medium-/high-quality MAGs from 18 DMS-AOA indicated that they evolved from ancestors in the barren deep-sea sediment and then expanded from the DMS to shallow water forming an amoA-NP-gamma clade-affiliated lineage. Molecular dating suggests that the DMS-AOA origination coincided with the Neoproterozoic oxidation event (NOE), which occurred ~ 800 million years ago (mya), and their expansion to shallow water coincided with the Sturtian glaciation (~ 713 mya). Comparative genomic analysis suggests that DMS-AOA exhibit higher requirement of carbon source for protein synthesis with enhanced genomic capability for osmotic regulation, motility, chemotaxis, and utilization of exogenous organic compounds, suggesting it could be more heterotrophic compared with other lineages. CONCLUSION Our findings provide new insights into the evolutionary history of AOA within the Thaumarchaeota, highlighting their critical roles in nitrogen cycling in the global DMS ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Yingdong Li
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jiawei Chen
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yanxun Lin
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Cheng Zhong
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Hongbin Liu
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| |
Collapse
|
19
|
Quan Q, Liu J, Xia X, Zhang S, Ke Z, Wang M, Tan Y. Cold seep nitrogen fixation and its potential relationship with sulfur cycling. Microbiol Spectr 2024; 12:e0053624. [PMID: 39171911 PMCID: PMC11448218 DOI: 10.1128/spectrum.00536-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/25/2024] [Indexed: 08/23/2024] Open
Abstract
Dinitrogen (N2) fixation is a crucial source of bioavailable nitrogen in carbon-dominated cold seep systems. Previous studies have shown that diazotrophy is not necessarily dependent on sulfate-dependent anaerobic oxidation of methane for energy, and diverse catabolism can fuel the high-energy-demanding process in sediments. However, it remains unclear whether diazotroph can obtain energy by sulfur oxidation in sulfur-rich cold seep water column. Here, field investigations and in situ experiments were conducted in Haima cold seep to examine the effects of diverse sources of dissolved organic matter (DOM) on N2 fixation, specifically containing sulfur, carbon, nitrogen, and phosphorus. We found that active N2 fixation occurred in the water column above the Haima cold seep, with the Dechloromonas genus dominating the diazotroph community as revealed by nifH gene using high-throughput sequencing. In situ experiments showed an increased rate of N2 fixation (1.15- to 12.70-fold compared to that in control group) and a greater relative abundance of the Dechloromonas genus following enrichment with sulfur-containing organic matter. Furthermore, metagenomic assembly and binning revealed that Dechloromonas sp. carried genes related to N2 fixation (nifDHK) and sulfur compound oxidation (fccAB and soxABCXYZ), implying that the genus potentially serves as a multifunctional mediator for N2 fixation and sulfur cycling. Our results provide new insights regarding potential coupling mechanism associated with sulfur-driven N2 fixation in methane- and sulfide-rich environments. IMPORTANCE N2 fixation is an important source of biologically available in carbon-dominated cold seep systems as little nitrogen is released by hydrocarbon seepage, thereby promoting biological productivity and the degradation of non-nitrogenous organic matter. Cold seeps are rich in diverse sources of dissolved organic matter (DOM) derived from the sinking of photosynthetic products in euphotic layer and the release of chemosynthesis products on the seafloor. However, it remains unclear whether N2 fixation is coupled to the metabolic processes of DOM, as determined by e.g., carbon, nitrogen, phosphorus, and sulfur content, for energy acquisition in sulfur-rich cold seeps. In this study, diazotroph community structure and its response to DOM compositions were revealed. Moreover, the metagenomics analysis suggested that Dechloromonas genus plays a dominant role in potential coupling N2 fixation and sulfur oxidation. Our study highlighted that sulfur oxidation in deep-sea cold seeps may serve as an energy source to drive N2 fixation.
Collapse
Affiliation(s)
- Qiumei Quan
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxing Liu
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaomin Xia
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Si Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Zhixin Ke
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Minxiao Wang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yehui Tan
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Liao H, Liu C, Zhou S, Liu C, Eldridge DJ, Ai C, Wilhelm SW, Singh BK, Liang X, Radosevich M, Yang QE, Tang X, Wei Z, Friman VP, Gillings M, Delgado-Baquerizo M, Zhu YG. Prophage-encoded antibiotic resistance genes are enriched in human-impacted environments. Nat Commun 2024; 15:8315. [PMID: 39333115 PMCID: PMC11437078 DOI: 10.1038/s41467-024-52450-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 09/07/2024] [Indexed: 09/29/2024] Open
Abstract
The spread of antibiotic resistance genes (ARGs) poses a substantial threat to human health. Phage-mediated transduction could exacerbate ARG transmission. While several case studies exist, it is yet unclear to what extent phages encode and mobilize ARGs at the global scale and whether human impacts play a role in this across different habitats. Here, we combine 38,605 bacterial genomes, 1432 metagenomes, and 1186 metatranscriptomes across 12 contrasting habitats to explore the distribution of prophages and their cargo ARGs in natural and human-impacted environments. Worldwide, we observe a significant increase in the abundance, diversity, and activity of prophage-encoded ARGs in human-impacted habitats linked with relatively higher risk of past antibiotic exposure. This effect was driven by phage-encoded cargo ARGs that could be mobilized to provide increased resistance in heterologous E. coli host for a subset of analyzed strains. Our findings suggest that human activities have altered bacteria-phage interactions, enriching ARGs in prophages and making ARGs more mobile across habitats globally.
Collapse
Affiliation(s)
- Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chen Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Chunqin Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Chaofan Ai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Steven W Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| | - Brajesh K Singh
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Xiaolong Liang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning Province, China
| | - Mark Radosevich
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN, USA
| | - Qiu-E Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiang Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | | | - Michael Gillings
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas, Seville, Spain.
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
21
|
Chen J, Deng L, Wang X, Zhong C, Xia X, Liu H. Chemosynthetic alphaproteobacterial diazotrophs reside in deep-sea cold-seep bottom waters. mSystems 2024; 9:e0017624. [PMID: 39105582 PMCID: PMC11406894 DOI: 10.1128/msystems.00176-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/07/2024] [Indexed: 08/07/2024] Open
Abstract
Nitrogen (N)-fixing organisms, also known as diazotrophs, play a crucial role in N-limited ecosystems by controlling the production of bioavailable N. The carbon-dominated cold-seep ecosystems are inherently N-limited, making them hotspots of N fixation. However, the knowledge of diazotrophs in cold-seep ecosystems is limited compared to other marine ecosystems. In this study, we used multi-omics to investigate the diversity and catabolism of diazotrophs in deep-sea cold-seep bottom waters. Our findings showed that the relative abundance of diazotrophs in the bacterial community reached its highest level in the cold-seep bottom waters compared to the cold-seep upper waters and non-seep bottom waters. Remarkably, more than 98% of metatranscriptomic reads aligned on diazotrophs in cold-seep bottom waters belonged to the genus Sagittula, an alphaproteobacterium. Its metagenome-assembled genome, named Seep-BW-D1, contained catalytic genes (nifHDK) for nitrogen fixation, and the nifH gene was actively transcribed in situ. Seep-BW-D1 also exhibited chemosynthetic capability to oxidize C1 compounds (methanol, formaldehyde, and formate) and thiosulfate (S2O32-). In addition, we observed abundant transcripts mapped to genes involved in the transport systems for acetate, spermidine/putrescine, and pectin oligomers, suggesting that Seep-BW-D1 can utilize organics from the intermediates synthesized by methane-oxidizing microorganisms, decaying tissues from cold-seep benthic animals, and refractory pectin derived from upper photosynthetic ecosystems. Overall, our study corroborates that carbon-dominated cold-seep bottom waters select for diazotrophs and reveals the catabolism of a novel chemosynthetic alphaproteobacterial diazotroph in cold-seep bottom waters. IMPORTANCE Bioavailable nitrogen (N) is a crucial element for cellular growth and division, and its production is controlled by diazotrophs. Marine diazotrophs contribute to nearly half of the global fixed N and perform N fixation in various marine ecosystems. While previous studies mainly focused on diazotrophs in the sunlit ocean and oxygen minimum zones, recent research has recognized cold-seep ecosystems as overlooked N-fixing hotspots because the seeping fluids in cold-seep ecosystems introduce abundant bioavailable carbon but little bioavailable N, making most cold seeps inherently N-limited. With thousands of cold-seep ecosystems detected at continental margins worldwide in the past decades, the significant role of cold seeps in marine N biogeochemical cycling is emphasized. However, the diazotrophs in cold-seep bottom waters remain poorly understood. Through multi-omics, this study identified a novel alphaproteobacterial chemoheterotroph belonging to Sagittula as one of the most active diazotrophs residing in cold-seep bottom waters and revealed its catabolism.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Lixia Deng
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiao Wang
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Cheng Zhong
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, China
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Research Center for Carbon Neutralization, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Hongbin Liu
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong, China
| |
Collapse
|
22
|
Hu N, Xiao F, Zhang D, Hu R, Xiong R, Lv W, Yang Z, Tan W, Yu H, Ding D, Yan Q, He Z. Organophosphorus mineralizing-Streptomyces species underpins uranate immobilization and phosphorus availability in uranium tailings. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134975. [PMID: 38908177 DOI: 10.1016/j.jhazmat.2024.134975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Phosphate-solubilizing bacteria (PSB) are important but often overlooked regulators of uranium (U) cycling in soil. However, the impact of PSB on uranate fixation coupled with the decomposition of recalcitrant phosphorus (P) in mining land remains poorly understood. Here, we combined gene amplicon sequencing, metagenome and metatranscriptome sequencing analysis and strain isolation to explore the effects of PSB on the stabilization of uranate and P availability in U mining areas. We found that the content of available phosphorus (AP), carbonate-U and Fe-Mn-U oxides in tailings was significantly (P < 0.05) higher than their adjacent soils. Also, organic phosphate mineralizing (PhoD) bacteria (e.g., Streptomyces) and inorganic phosphate solubilizing (gcd) bacteria (e.g., Rhodococcus) were enriched in tailings and soils, but only organic phosphate mineralizing-bacteria substantially contributed to the AP. Notably, most genes involved in organophosphorus mineralization and uranate resistance were widely present in tailings rather than soil. Comparative genomics analyses supported that organophosphorus mineralizing-Streptomyces species could increase soil AP content and immobilize U(VI) through organophosphorus mineralization (e.g., PhoD, ugpBAEC) and U resistance related genes (e.g., petA). We further demonstrated that the isolated Streptomyces sp. PSBY1 could enhance the U(VI) immobilization mediated by the NADH-dependent ubiquinol-cytochrome c reductase (petA) through decomposing organophosphorous compounds. This study advances our understanding of the roles of PSB in regulating the fixation of uranate and P availability in U tailings.
Collapse
Affiliation(s)
- Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Fangfang Xiao
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Dandan Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519080, China
| | - Ruiwen Hu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rui Xiong
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Wenpan Lv
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Zhaolan Yang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Wenfa Tan
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Huang Yu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China.
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Qingyun Yan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519080, China
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519080, China
| |
Collapse
|
23
|
Pallen MJ. The dynamic history of prokaryotic phyla: discovery, diversity and division. Int J Syst Evol Microbiol 2024; 74:006508. [PMID: 39250184 PMCID: PMC11382960 DOI: 10.1099/ijsem.0.006508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
Here, I review the dynamic history of prokaryotic phyla. Following leads set by Darwin, Haeckel and Woese, the concept of phylum has evolved from a group sharing common phenotypes to a set of organisms sharing a common ancestry, with modern taxonomy based on phylogenetic classifications drawn from macromolecular sequences. Phyla came as surprising latecomers to the formalities of prokaryotic nomenclature in 2021. Since then names have been validly published for 46 prokaryotic phyla, replacing some established names with neologisms, prompting criticism and debate within the scientific community. Molecular barcoding enabled phylogenetic analysis of microbial ecosystems without cultivation, leading to the identification of candidate divisions (or phyla) from diverse environments. The introduction of metagenome-assembled genomes marked a significant advance in identifying and classifying uncultured microbial phyla. The lumper-splitter dichotomy has led to disagreements, with experts cautioning against the pressure to create a profusion of new phyla and prominent databases adopting a conservative stance. The Candidatus designation has been widely used to provide provisional status to uncultured prokaryotic taxa, with phyla named under this convention now clearly surpassing those with validly published names. The Genome Taxonomy Database (GTDB) has offered a stable, standardized prokaryotic taxonomy with normalized taxonomic ranks, which has led to both lumping and splitting of pre-existing phyla. The GTDB framework introduced unwieldy alphanumeric placeholder labels, prompting recent publication of over 100 user-friendly Latinate names for unnamed prokaryotic phyla. Most candidate phyla remain 'known unknowns', with limited knowledge of their genomic diversity, ecological roles, or environments. Whether phyla still reflect significant evolutionary and ecological partitions across prokaryotic life remains an area of active debate. However, phyla remain of practical importance for microbiome analyses, particularly in clinical research. Despite potential diminishing returns in discovery of biodiversity, prokaryotic phyla offer extensive research opportunities for microbiologists for the foreseeable future.
Collapse
Affiliation(s)
- Mark J. Pallen
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, UK
| |
Collapse
|
24
|
Zhu C, Lin Z, Fen W, Jiajia W, Xiang Z, Kai C, Yu Z, Kelai Z, Yelin J, Salin KR. Suitability of coconut bran and biochar as a composite substrate for lettuce cultivation in aquaponic systems. Heliyon 2024; 10:e35515. [PMID: 39170356 PMCID: PMC11336761 DOI: 10.1016/j.heliyon.2024.e35515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Growth substrates are essential for aquaponic systems and play an important role in vegetable growth and water quality. In this study, we explored an innovative combination of coconut bran and coconut shell biochar (CSB) as a composite growth substrate for lettuce cultivation in aquaponic systems. The study included the control (100 % coconut bran as the growth substrate) and treatment groups (T1-T5; containing 10 %, 20 %, 30 %, 40 %, and 50 % CSB as the growth substrate, respectively). The substrate properties; lettuce growth performance; and soil enzyme activity, nitrogen content, and abundance of microbial communities in the substrate were analyzed to determine the optimal substrate. Our findings indicated that CSB incorporation significantly altered the properties of the substrate, resulting in increased dry and bulk densities, pH, and water-holding capacity, and decreased electrical conductivity, water-absorption capacity, and porosity. Furthermore, the fresh weight of lettuce was notably increased in the treatment groups. The activities of fluorescein diacetate hydrolase, urease, nitrate reductase, and hydroxylamine reductase initially increased and further decreased, reaching the maximum in the T3 group. Conversely, the activity of nitrite reductase and contents of available nitrogen, nitrate-nitrogen, and ammonium-nitrogen in the substrates initially decreased and further increased, with the minimum values observed in the T3 group. The microbial sequencing results indicated that CSB incorporation significantly increased the microbial diversity and relative abundance of microorganisms associated with nitrogen transformation. Moreover, 30 % CSB incorporation exhibited the greatest effect on lettuce growth, with a 34.5 % and 31.6 % increase in fresh weight compared to the control during the growth and harvest periods, respectively. This study indicated the enormous potential of biochar in the research and development of green technologies for substrate amendment in aquaponic systems.
Collapse
Affiliation(s)
- Chen Zhu
- Key Laboratory of Aquaculture and Stock Enhancement for Anhui Province, Fishery Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Zuo Lin
- Key Laboratory of Aquaculture and Stock Enhancement for Anhui Province, Fishery Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Aquaculture and Aquatic Resources Management, SERD, Asian Institute of Technology, Pathumthani, 12120, Thailand
| | - Wang Fen
- Key Laboratory of Aquaculture and Stock Enhancement for Anhui Province, Fishery Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Wang Jiajia
- Key Laboratory of Aquaculture and Stock Enhancement for Anhui Province, Fishery Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Zhou Xiang
- Key Laboratory of Aquaculture and Stock Enhancement for Anhui Province, Fishery Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Cui Kai
- Key Laboratory of Aquaculture and Stock Enhancement for Anhui Province, Fishery Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Zhang Yu
- Chuzhou Huixiangbenjue Agricultural Development Co., Ltd., Chuzhou, 239000, China
| | - Zhang Kelai
- Hefei Liuxing Blue Agriculture Co., Ltd, Hefei, 230031, China
| | - Jiang Yelin
- Key Laboratory of Aquaculture and Stock Enhancement for Anhui Province, Fishery Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Anhui Yutao Agriculture Co., Ltd., Hefei, 230031, China
| | - Krishna R. Salin
- Aquaculture and Aquatic Resources Management, SERD, Asian Institute of Technology, Pathumthani, 12120, Thailand
| |
Collapse
|
25
|
Huang Y, Zhang X, Xin Y, Tian J, Li M. Distinct microbial nitrogen cycling processes in the deepest part of the ocean. mSystems 2024; 9:e0024324. [PMID: 38940525 PMCID: PMC11265455 DOI: 10.1128/msystems.00243-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
The Mariana Trench (MT) is the deepest part of the ocean on Earth. Previous studies have described the microbial community structures and functional potential in the seawater and surface sediment of MT. Still, the metabolic features and adaptation strategies of the microorganisms involved in nitrogen cycling processes are poorly understood. In this study, comparative metagenomic approaches were used to study microbial nitrogen cycling in three MT habitats, including hadal seawater [9,600-10,500 m below sea level (mbsl)], surface sediments [0-46 cm below seafloor (cmbsf) at a water depth between 7,143 and 8,638 mbsl], and deep sediments (200-306 cmbsf at a water depth of 8,300 mbsl). We identified five new nitrite-oxidizing bacteria (NOB) lineages that had adapted to the oligotrophic MT slope sediment, via their CO2 fixation capability through the reductive tricarboxylic acid (rTCA) or Calvin-Benson-Bassham (CBB) cycle; an anammox bacterium might perform aerobic respiration and utilize sedimentary carbohydrates for energy generation because it contains genes encoding type A cytochrome c oxidase and complete glycolysis pathway. In seawater, abundant alkane-oxidizing Ketobacter species can fix inert N2 released from other denitrifying and/or anammox bacteria. This study further expands our understanding of microbial life in the largely unexplored deepest part of the ocean. IMPORTANCE The metabolic features and adaptation strategies of the nitrogen cycling microorganisms in the deepest part of the ocean are largely unknown. This study revealed that anammox bacteria might perform aerobic respiration in response to nutrient limitation or O2 fluctuations in the Mariana Trench sediments. Meanwhile, an abundant alkane-oxidizing Ketobacter species could fix N2 in hadal seawater. This study provides new insights into the roles of hadal microorganisms in global nitrogen biogeochemical cycles. It substantially expands our understanding of the microbial life in the largely unexplored deepest part of the ocean.
Collapse
Affiliation(s)
- Yuhan Huang
- Archaeal Biology Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xinxu Zhang
- Archaeal Biology Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yu Xin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, Shandong, China
| | - Jiwei Tian
- MOE Key Laboratory of Physical Oceanography, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Meng Li
- Archaeal Biology Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
26
|
Yu T, Luo Y, Tan X, Zhao D, Bi X, Li C, Zheng Y, Xiang H, Hu S. Global Marine Cold Seep Metagenomes Reveal Diversity of Taxonomy, Metabolic Function, and Natural Products. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzad006. [PMID: 39160620 PMCID: PMC12016038 DOI: 10.1093/gpbjnl/qzad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/25/2023] [Accepted: 09/20/2023] [Indexed: 08/21/2024]
Abstract
Cold seeps in the deep sea are closely linked to energy exploration as well as global climate change. The alkane-dominated chemical energy-driven model makes cold seeps an oasis of deep-sea life, showcasing an unparalleled reservoir of microbial genetic diversity. Here, by analyzing 113 metagenomes collected from 14 global sites across 5 cold seep types, we present a comprehensive Cold Seep Microbiomic Database (CSMD) to archive the genomic and functional diversity of cold seep microbiomes. The CSMD includes over 49 million non-redundant genes and 3175 metagenome-assembled genomes, which represent 1895 species spanning 105 phyla. In addition, beta diversity analysis indicates that both the sampling site and cold seep type have a substantial impact on the prokaryotic microbiome community composition. Heterotrophic and anaerobic metabolisms are prevalent in microbial communities, accompanied by considerable mixotrophs and facultative anaerobes, highlighting the versatile metabolic potential in cold seeps. Furthermore, secondary metabolic gene cluster analysis indicates that at least 98.81% of the sequences potentially encode novel natural products, with ribosomally synthesized and post-translationally modified peptides being the predominant type widely distributed in archaea and bacteria. Overall, the CSMD represents a valuable resource that would enhance the understanding and utilization of global cold seep microbiomes.
Collapse
Affiliation(s)
- Tao Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingfeng Luo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochun Bi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenji Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanning Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Qiu Z, Zhu Y, Zhang Q, Qiao X, Mu R, Xu Z, Yan Y, Wang F, Zhang T, Zhuang WQ, Yu K. Unravelling biosynthesis and biodegradation potentials of microbial dark matters in hypersaline lakes. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100359. [PMID: 39221074 PMCID: PMC11361885 DOI: 10.1016/j.ese.2023.100359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/26/2023] [Accepted: 11/26/2023] [Indexed: 09/04/2024]
Abstract
Biosynthesis and biodegradation of microorganisms critically underpin the development of biotechnology, new drugs and therapies, and environmental remediation. However, most uncultured microbial species along with their metabolic capacities in extreme environments, remain obscured. Here we unravel the metabolic potential of microbial dark matters (MDMs) in four deep-inland hypersaline lakes in Xinjiang, China. Utilizing metagenomic binning, we uncovered a rich diversity of 3030 metagenome-assembled genomes (MAGs) across 82 phyla, revealing a substantial portion, 2363 MAGs, as previously unclassified at the genus level. These unknown MAGs displayed unique distribution patterns across different lakes, indicating a strong correlation with varied physicochemical conditions. Our analysis revealed an extensive array of 9635 biosynthesis gene clusters (BGCs), with a remarkable 9403 being novel, suggesting untapped biotechnological potential. Notably, some MAGs from potentially new phyla exhibited a high density of these BGCs. Beyond biosynthesis, our study also identified novel biodegradation pathways, including dehalogenation, anaerobic ammonium oxidation (Anammox), and degradation of polycyclic aromatic hydrocarbons (PAHs) and plastics, in previously unknown microbial clades. These findings significantly enrich our understanding of biosynthesis and biodegradation processes and open new avenues for biotechnological innovation, emphasizing the untapped potential of microbial diversity in hypersaline environments.
Collapse
Affiliation(s)
- Zhiguang Qiu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, 518055, China
| | - Yuanyuan Zhu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Qing Zhang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xuejiao Qiao
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Rong Mu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zheng Xu
- Southern University of Sciences and Technology Yantian Hospital, Shenzhen, 518081, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Yan
- State Key Laboratory of Isotope Geochemistry, CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Fan Wang
- School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Tong Zhang
- Department of Civil Engineering, University of Hong Kong, 999077, Hong Kong, China
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Auckland, New Zealand
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, 518055, China
| |
Collapse
|
28
|
Chen Y, Dong X, Sun Z, Xu C, Zhang X, Qin S, Geng W, Cao H, Zhai B, Li X, Wu N. Potential coupling of microbial methane, nitrogen, and sulphur cycling in the Okinawa Trough cold seep sediments. Microbiol Spectr 2024; 12:e0349023. [PMID: 38690913 PMCID: PMC11237511 DOI: 10.1128/spectrum.03490-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/13/2024] [Indexed: 05/03/2024] Open
Abstract
The Okinawa Trough (OT) is a back-arc basin with a wide distribution of active cold seep systems. However, our understanding of the metabolic function of microbial communities in the cold seep sediments of the OT remains limited. In this study, we investigated the vertical profiles of functional genes involved in methane, nitrogen, and sulphur cycling in the cold seep sediments of the OT. Furthermore, we explored the possible coupling mechanisms between these biogeochemical cycles. The study revealed that the majority of genes associated with the nitrogen and sulphur cycles were most abundant in the surface sediment layers. However, only the key genes responsible for sulphur disproportionation (sor), nitrogen fixation (nifDKH), and methane metabolism (mcrABG) were more prevalent within sulfate-methane transition zone (SMTZ). Significant positive correlations (P < 0.05) were observed between functional genes involved in sulphur oxidation, thiosulphate disproportionation with denitrification, and dissimilatory nitrate reduction to ammonium (DNRA), as well as between AOM/methanogenesis and nitrogen fixation, and between sulphur disproportionation and AOM. A genome of Filomicrobium (class Alphaproteobacteria) has demonstrated potential in chemoautotrophic activities, particularly in coupling DNRA and denitrification with sulphur oxidation. Additionally, the characterized sulfate reducers such as Syntrophobacterales have been found to be capable of utilizing nitrate as an electron acceptor. The predominant methanogenic/methanotrophic groups in the OT sediments were identified as H2-dependent methylotrophic methanogens (Methanomassiliicoccales and Methanofastidiosales) and ANME-1a. This study offered a thorough understanding of microbial ecosystems in the OT cold seep sediments, emphasizing their contribution to nutrient cycling.IMPORTANCEThe Okinawa Trough (OT) is a back-arc basin formed by extension within the continental lithosphere behind the Ryukyu Trench arc system. Cold seeps are widespread in the OT. While some studies have explored microbial communities in OT cold seep sediments, their metabolic potential remains largely unknown. In this study, we used metagenomic analysis to enhance comprehension of the microbial community's role in nutrient cycling and proposed hypotheses on the coupling process and mechanisms involved in biogeochemical cycles. It was revealed that multiple metabolic pathways can be performed by a single organism or microbes that interact with each other to carry out various biogeochemical cycling. This data set provided a genomic road map on microbial nutrient cycling in OT sediment microbial communities.
Collapse
Affiliation(s)
- Ye Chen
- Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Mineral Resources, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Zhilei Sun
- Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Mineral Resources, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Cuiling Xu
- Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Mineral Resources, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xilin Zhang
- Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Mineral Resources, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Shuangshuang Qin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
| | - Wei Geng
- Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Mineral Resources, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Hong Cao
- Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Mineral Resources, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Bin Zhai
- Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Mineral Resources, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xuecheng Li
- China Offshore Fugro Geosolutions (Shenzhen)Co.Ltd., Shenzhen, China
| | - Nengyou Wu
- Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Mineral Resources, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
29
|
Li Y, Wang T, Jing H, Xiao Y. Evolutionary ecology of denitrifying methanotrophic NC10 bacteria in the deep-sea biosphere. Mol Ecol 2024; 33:e17372. [PMID: 38709214 DOI: 10.1111/mec.17372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
The NC10 phylum links anaerobic methane oxidation to nitrite denitrification through a unique O2-producing intra-aerobic methanotrophic pathway. Although numerous amplicon-based studies revealed the distribution of this phylum, comprehensive genomic insights and niche characterization in deep-sea environments were still largely unknown. In this study, we extensively surveyed the NC10 bacteria across diverse deep-sea environments, including waters, sediments, cold seeps, biofilms, rocky substrates, and subseafloor aquifers. We then reconstructed and analysed 38 metagenome-assembled genomes (MAGs), and revealed the extensive distribution of NC10 bacteria and their intense selective pressure in these harsh environments. Isotopic analyses combined with gene expression profiling confirmed that active nitrite-dependent anaerobic methane oxidation (n-DAMO) occurs within deep-sea sediments. In addition, the identification of the Wood-Ljungdahl (WL) and 3-hydroxypropionate/4-hydroxybutyrat (3HB/4HP) pathways in these MAGs suggests their capability for carbon fixation as chemoautotrophs in these deep-sea environments. Indeed, we found that for their survival in the oligotrophic deep-sea biosphere, NC10 bacteria encode two branches of the WL pathway, utilizing acetyl-CoA from the carbonyl branch for citric acid cycle-based energy production and methane from the methyl branch for n-DAMO. The observed low ratios of non-synonymous substitutions to synonymous substitutions (pN/pS) in n-DAMO-related genes across these habitats suggest a pronounced purifying selection that is critical for the survival of NC10 bacteria in oligotrophic deep-sea environments. These findings not only advance our understanding of the evolutionary adaptations of NC10 bacteria but also underscore the intricate coupling between the carbon and nitrogen cycles within deep-sea ecosystems, driven by this bacterial phylum.
Collapse
Affiliation(s)
- Yingdong Li
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
| | - Ting Wang
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
| | - Yao Xiao
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Dong X, Zhang T, Wu W, Peng Y, Liu X, Han Y, Chen X, Gao Z, Xia J, Shao Z, Greening C. A vast repertoire of secondary metabolites potentially influences community dynamics and biogeochemical processes in cold seeps. SCIENCE ADVANCES 2024; 10:eadl2281. [PMID: 38669328 PMCID: PMC11051675 DOI: 10.1126/sciadv.adl2281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
In deep-sea cold seeps, microbial communities thrive on the geological seepage of hydrocarbons and inorganic compounds, differing from photosynthetically driven ecosystems. However, their biosynthetic capabilities remain largely unexplored. Here, we analyzed 81 metagenomes, 33 metatranscriptomes, and 7 metabolomes derived from nine different cold seep areas to investigate their secondary metabolites. Cold seep microbiomes encode diverse and abundant biosynthetic gene clusters (BGCs). Most BGCs are affiliated with understudied bacteria and archaea, including key mediators of methane and sulfur cycling. The BGCs encode diverse antimicrobial compounds that potentially shape community dynamics and various metabolites predicted to influence biogeochemical cycling. BGCs from key players are widely distributed and highly expressed, with their abundance and expression levels varying with sediment depth. Sediment metabolomics reveals unique natural products, highlighting uncharted chemical potential and confirming BGC activity in these sediments. Overall, these results demonstrate that cold seep sediments serve as a reservoir of hidden natural products and sheds light on microbial adaptation in chemosynthetically driven ecosystems.
Collapse
Affiliation(s)
- Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Tianxueyu Zhang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310005, China
| | - Weichao Wu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Xinyue Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yingchun Han
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xiangwei Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zhizeng Gao
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Jinmei Xia
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
31
|
Lv JL, Min D, Cheng ZH, Zhang JX, Li WW, Mu Y, Liu SJ, Liu DF. Direct ammonia oxidation (Dirammox) is favored over cell growth in Alcaligenes ammonioxydans HO-1 to deal with the toxicity of ammonium. Biotechnol Bioeng 2024; 121:980-990. [PMID: 38088435 DOI: 10.1002/bit.28623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/13/2023] [Accepted: 12/05/2023] [Indexed: 02/20/2024]
Abstract
Bacteria capable of direct ammonia oxidation (Dirammox) play important roles in global nitrogen cycling and nutrient removal from wastewater. Dirammox process, NH3 → NH2 OH → N2 , first defined in Alcaligenes ammonioxydans HO-1 and encoded by dnf gene cluster, has been found to widely exist in aquatic environments. However, because of multidrug resistance in Alcaligenes species, the key genes involved in the Dirammox pathway and the interaction between Dirammox process and the physiological state of Alcaligenes species remain unclear. In this work, ammonia removal via the redistribution of nitrogen between Dirammox and microbial growth in A. ammonioxydans HO-1, a model organism of Alcaligenes species, was investigated. The dnfA, dnfB, dnfC, and dnfR genes were found to play important roles in the Dirammox process in A. ammonioxydans HO-1, while dnfH, dnfG, and dnfD were not essential genes. Furthermore, an unexpected redistribution phenomenon for nitrogen between Dirammox and cell growth for ammonia removal in HO-1 was revealed. After the disruption of the Dirammox in HO-1, more consumed NH4 + was recovered as biomass-N via rapid metabolic response and upregulated expression of genes associated with ammonia transport and assimilation, tricarboxylic acid cycle, sulfur metabolism, ribosome synthesis, and other molecular functions. These findings deepen our understanding of the molecular mechanisms for Dirammox process in the genus Alcaligenes and provide useful information about the application of Alcaligenes species for ammonia-rich wastewater treatment.
Collapse
Affiliation(s)
- Jun-Lu Lv
- School of Life Science, University of Science and Technology of China, Hefei, China
| | - Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Zhou-Hua Cheng
- School of Life Science, University of Science and Technology of China, Hefei, China
| | - Jia-Xin Zhang
- School of Life Science, University of Science and Technology of China, Hefei, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| |
Collapse
|
32
|
Peng C, Zhang X, Li J, Yang M, Ma S, Fan H, Dai L, Cheng L. Oleispirillum naphthae gen. nov., sp. nov., a bacterium isolated from oil sludge, and proposal of Oleispirillaceae fam. nov. Int J Syst Evol Microbiol 2024; 74. [PMID: 38512751 DOI: 10.1099/ijsem.0.006292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
A microaerophilic, Gram-negative, motile, and spiral-shaped bacterium, designated Y-M2T, was isolated from oil sludge of Shengli oil field. The optimal growth condition of strain Y-M2T was at 25 °C, pH 7.0, and in the absence of NaCl. The major polar lipid was phosphatidylethanolamine. The main cellular fatty acid was iso-C17 : 0 3-OH. It contained Q-9 and Q-10 as the predominant quinones. The DNA G+C content was 68.1 mol%. Strain Y-M2T showed the highest 16S rRNA gene sequence similarity to Telmatospirillum siberiense 26-4bT (91.1 %). Phylogenetic analyses based on 16S rRNA gene and genomes showed that strain Y-M2T formed a distinct cluster in the order Rhodospirillales. Genomic analysis showed that Y-M2T possesses a complete nitrogen-fixation cluster which is phylogenetically close to that of methanogene. The nif cluster, encompassing the nitrogenase genes, was found in every N2-fixing strain within the order Rhodospirillales. Phylogeny, phenotype, chemotaxonomy, and genomic results demonstrated that strain Y-M2T represents a novel species of a novel genus in a novel family Oleispirillaceae fam. nov. in the order Rhodospirillales, for which the name Oleispirillum naphthae gen. nov., sp. nov. was proposed. The type strain is Y-M2T (=CCAM 827T=JCM 34765T).
Collapse
Affiliation(s)
- Chenghui Peng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, Sichuan Province, PR China
- Center for Anaerobic Microbial Resources of Sichuan Province, Chengdu 610041, PR China
| | - Xue Zhang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, Sichuan Province, PR China
- Center for Anaerobic Microbial Resources of Sichuan Province, Chengdu 610041, PR China
| | - Jiang Li
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, Sichuan Province, PR China
- Center for Anaerobic Microbial Resources of Sichuan Province, Chengdu 610041, PR China
| | - Min Yang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, Sichuan Province, PR China
- Center for Anaerobic Microbial Resources of Sichuan Province, Chengdu 610041, PR China
| | - Shichun Ma
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, Sichuan Province, PR China
- Center for Anaerobic Microbial Resources of Sichuan Province, Chengdu 610041, PR China
- National Agricultural Experimental Station for Microorganisms, Shuangliu, Chengdu 610213, Sichuan Province, PR China
| | - Hui Fan
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, Sichuan Province, PR China
- Center for Anaerobic Microbial Resources of Sichuan Province, Chengdu 610041, PR China
| | - Lirong Dai
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, Sichuan Province, PR China
- Center for Anaerobic Microbial Resources of Sichuan Province, Chengdu 610041, PR China
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, Sichuan Province, PR China
- Center for Anaerobic Microbial Resources of Sichuan Province, Chengdu 610041, PR China
- National Agricultural Experimental Station for Microorganisms, Shuangliu, Chengdu 610213, Sichuan Province, PR China
| |
Collapse
|
33
|
Wang S, Jiang L, Zhao Z, Chen Z, Wang J, Alain K, Cui L, Zhong Y, Peng Y, Lai Q, Dong X, Shao Z. Chemolithoautotrophic diazotrophs dominate dark nitrogen fixation in mangrove sediments. THE ISME JOURNAL 2024; 18:wrae119. [PMID: 38916247 PMCID: PMC11474244 DOI: 10.1093/ismejo/wrae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/21/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
Diazotrophic microorganisms regulate marine productivity by alleviating nitrogen limitation. So far chemolithoautotrophic bacteria are widely recognized as the principal diazotrophs in oligotrophic marine and terrestrial ecosystems. However, the contribution of chemolithoautotrophs to nitrogen fixation in organic-rich habitats remains unclear. Here, we utilized metagenomic and metatranscriptomic approaches integrated with cultivation assays to investigate the diversity, distribution, and activity of diazotrophs residing in Zhangzhou mangrove sediments. Physicochemical assays show that the studied mangrove sediments are typical carbon-rich, sulfur-rich, nitrogen-limited, and low-redox marine ecosystems. These sediments host a wide phylogenetic variety of nitrogenase genes, including groups I-III and VII-VIII. Unexpectedly diverse chemolithoautotrophic taxa including Campylobacteria, Gammaproteobacteria, Zetaproteobacteria, and Thermodesulfovibrionia are the predominant and active nitrogen fixers in the 0-18 cm sediment layer. In contrast, the 18-20 cm layer is dominated by active diazotrophs from the chemolithoautotrophic taxa Desulfobacterota and Halobacteriota. Further analysis of MAGs shows that the main chemolithoautotrophs can fix nitrogen by coupling the oxidation of hydrogen, reduced sulfur, and iron, with the reduction of oxygen, nitrate, and sulfur. Culture experiments further demonstrate that members of chemolithoautotrophic Campylobacteria have the nitrogen-fixing capacity driven by hydrogen and sulfur oxidation. Activity measurements confirm that the diazotrophs inhabiting mangrove sediments preferentially drain energy from diverse reduced inorganic compounds other than from organics. Overall, our results suggest that chemolithoautotrophs rather than heterotrophs are dominant nitrogen fixers in mangrove sediments. This study underscores the significance of chemolithoautotrophs in carbon-dominant ecosystems.
Collapse
Affiliation(s)
- Shasha Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Lijing Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Zhuoming Zhao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Zhen Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Jun Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Karine Alain
- Univ Brest, CNRS, Ifremer, EMR6002 BIOMEX, Biologie Interactions et adaptations des Organismes en Milieu EXtrême, IRP 1211 MicrobSea, F-29280 Plouzané, France
| | - Liang Cui
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Yangsheng Zhong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Keey Laboratory of Marine Genetic Resources; Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China
| |
Collapse
|
34
|
Lin YT, Ip JCH, He X, Gao ZM, Perez M, Xu T, Sun J, Qian PY, Qiu JW. Scallop-bacteria symbiosis from the deep sea reveals strong genomic coupling in the absence of cellular integration. THE ISME JOURNAL 2024; 18:wrae048. [PMID: 38531780 PMCID: PMC10999363 DOI: 10.1093/ismejo/wrae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Previous studies have revealed tight metabolic complementarity between bivalves and their endosymbiotic chemosynthetic bacteria, but little is known about their interactions with ectosymbionts. Our analysis of the ectosymbiosis between a deep-sea scallop (Catillopecten margaritatus) and a gammaproteobacterium showed that bivalves could be highly interdependent with their ectosymbionts as well. Our microscopic observation revealed abundant sulfur-oxidizing bacteria (SOB) on the surfaces of the gill epithelial cells. Microbial 16S rRNA gene amplicon sequencing of the gill tissues showed the dominance of the SOB. An analysis of the SOB genome showed that it is substantially smaller than its free-living relatives and has lost cellular components required for free-living. Genomic and transcriptomic analyses showed that this ectosymbiont relies on rhodanese-like proteins and SOX multienzyme complex for energy generation, mainly on the Calvin-Benson-Bassham (CBB) cycle and peripherally on a phosphoenolpyruvate carboxylase for carbon assimilation. Besides, the symbiont encodes an incomplete tricarboxylic acid (TCA) cycle. Observation of the scallop's digestive gland and its nitrogen metabolism pathways indicates it does not fully rely on the ectosymbiont for nutrition. Analysis of the host's gene expression provided evidence that it could offer intermediates for the ectosymbiont to complete its TCA cycle and some amino acid synthesis pathways using exosomes, and its phagosomes, endosomes, and lysosomes might be involved in harvesting nutrients from the symbionts. Overall, our study prompts us to rethink the intimacy between the hosts and ectosymbionts in Bivalvia and the evolution of chemosymbiosis in general.
Collapse
Affiliation(s)
- Yi-Tao Lin
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Jack Chi-Ho Ip
- Science Unit, Lingnan University, Hong Kong SAR, 999077, China
| | - Xing He
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Zhao-Ming Gao
- Deep-sea Science Division, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Maeva Perez
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Ting Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
| | - Jin Sun
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| |
Collapse
|
35
|
Dopson M, Rezaei Somee M, González-Rosales C, Lui LM, Turner S, Buck M, Nilsson E, Westmeijer G, Ashoor K, Nielsen TN, Mehrshad M, Bertilsson S. Novel candidate taxa contribute to key metabolic processes in Fennoscandian Shield deep groundwaters. ISME COMMUNICATIONS 2024; 4:ycae113. [PMID: 39421601 PMCID: PMC11484514 DOI: 10.1093/ismeco/ycae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
The continental deep biosphere contains a vast reservoir of microorganisms, although a large proportion of its diversity remains both uncultured and undescribed. In this study, the metabolic potential (metagenomes) and activity (metatranscriptomes) of the microbial communities in Fennoscandian Shield deep subsurface groundwaters were characterized with a focus on novel taxa. DNA sequencing generated 1270 de-replicated metagenome-assembled genomes and single-amplified genomes, containing 7 novel classes, 34 orders, and 72 families. The majority of novel taxa were affiliated with Patescibacteria, whereas among novel archaea taxa, Thermoproteota and Nanoarchaeota representatives dominated. Metatranscriptomes revealed that 30 of the 112 novel taxa at the class, order, and family levels were active in at least one investigated groundwater sample, implying that novel taxa represent a partially active but hitherto uncharacterized deep biosphere component. The novel taxa genomes coded for carbon fixation predominantly via the Wood-Ljungdahl pathway, nitrogen fixation, sulfur plus hydrogen oxidation, and fermentative pathways, including acetogenesis. These metabolic processes contributed significantly to the total community's capacity, with up to 9.9% of fermentation, 6.4% of the Wood-Ljungdahl pathway, 6.8% of sulfur plus 8.6% of hydrogen oxidation, and energy conservation via nitrate (4.4%) and sulfate (6.0%) reduction. Key novel taxa included the UBA9089 phylum, with representatives having a prominent role in carbon fixation, nitrate and sulfate reduction, and organic and inorganic electron donor oxidation. These data provided insights into deep biosphere microbial diversity and their contribution to nutrient and energy cycling in this ecosystem.
Collapse
Affiliation(s)
- Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Maryam Rezaei Somee
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Carolina González-Rosales
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Lauren M Lui
- Molecular Ecosystems Biology Department, Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Stephanie Turner
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7050, 75005 Uppsala, Sweden
| | - Moritz Buck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, 75005 Uppsala, Sweden
| | - Emelie Nilsson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - George Westmeijer
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Kamal Ashoor
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Torben N Nielsen
- Molecular Ecosystems Biology Department, Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, 75005 Uppsala, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, 75005 Uppsala, Sweden
| |
Collapse
|
36
|
Lyu Y, Zhang J, Chen Y, Li Q, Ke Z, Zhang S, Li J. Distinct diversity patterns and assembly mechanisms of prokaryotic microbial sub-community in the water column of deep-sea cold seeps. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119240. [PMID: 37837767 DOI: 10.1016/j.jenvman.2023.119240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
Methane leakage from deep-sea cold seeps has a major impact on marine ecosystems. Microbes sequester methane in the water column of cold seeps and can be divided into abundant and rare groups. Both abundant and rare groups play an important role in cold seep ecosystems, and the environmental heterogeneity in cold seeps may enhance conversion between taxa with different abundances. Yet, the environmental stratification and assembly mechanisms of these microbial sub-communities remain unclear. We investigated the diversities and assembly mechanisms in microbial sub-communities with distinct abundance in the deep-sea cold seep water column, from 400 m to 1400 m. We found that bacterial β-diversity, as measured by Sørensen dissimilarities, exhibited a significant species turnover pattern that was influenced by several environmental factors including depth, temperature, SiO32-, and salinity. In contrast, archaeal β-diversity showed a relatively high percentage of nestedness pattern, which was driven by the levels of soluble reactive phosphate and SiO32-. During the abundance dependency test, abundant taxa of both bacteria and archaea showed a significant species turnover, while the rare taxa possessed a higher percentage of nestedness. Stochastic processes were prominent in shaping the prokaryotic community, but deterministic processes were more pronounced for the abundant taxa than rare ones. Furthermore, the metagenomics results revealed that the abundances of methane oxidation, sulfur oxidation, and nitrogen fixation-related genes and related microbial groups were significantly higher in the bottom water. Our results implied that the carbon, sulfur, and nitrogen cycles were potentially strongly coupled in the bottom water. Overall, the results obtained in this study highlight taxonomic and abundance-dependent microbial community diversity patterns and assembly mechanisms in the water column of cold seeps, which will help understand the impacts of fluid seepage from the sea floor on the microbial community in the water column and further provide guidance for the management of cold seep ecosystem under future environmental pressures.
Collapse
Affiliation(s)
- Yuanjiao Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yu Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Zhixin Ke
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
37
|
Wang D, Li J, Su L, Shen W, Feng K, Peng X, Wang Z, Zhao B, Zhang Z, Zhang Z, Yergeau É, Deng Y. Phylogenetic diversity of functional genes in deep-sea cold seeps: a novel perspective on metagenomics. MICROBIOME 2023; 11:276. [PMID: 38102689 PMCID: PMC10722806 DOI: 10.1186/s40168-023-01723-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Leakages of cold, methane-rich fluids from subsurface reservoirs to the sea floor are termed cold seeps. Recent exploration of the deep sea has shed new light on the microbial communities in cold seeps. However, conventional metagenomic methods largely rely on reference databases and neglect the phylogeny of functional genes. RESULTS In this study, we developed the REMIRGE program to retrieve the full-length functional genes from shotgun metagenomic reads and fully explored the phylogenetic diversity in cold seep sediments. The abundance and diversity of functional genes involved in the methane, sulfur, and nitrogen cycles differed in the non-seep site and five cold seep sites. In one Haima cold seep site, the divergence of functional groups was observed at the centimeter scale of sediment depths, with the surface layer potentially acting as a reservoir of microbial species and functions. Additionally, positive correlations were found between specific gene sequence clusters of relevant genes, indicating coupling occurred within specific functional groups. CONCLUSION REMIRGE revealed divergent phylogenetic diversity of functional groups and functional pathway preferences in a deep-sea cold seep at finer scales, which could not be detected by conventional methods. Our work highlights that phylogenetic information is conducive to more comprehensive functional profiles, and REMIRGE has the potential to uncover more new insights from shotgun metagenomic data. Video Abstract.
Collapse
Affiliation(s)
- Danrui Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Lei Su
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Wenli Shen
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Kai Feng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi Peng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhujun Wang
- College of Tropical Crops, Hainan University, Haikou, 572000, China
| | - Bo Zhao
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Zhaojing Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Étienne Yergeau
- Institut National de La Recherche Scientique, Centre Armand-Frappier Santé Biotechnologie, Laval, H7V 1B7, QC, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
38
|
Rubin-Blum M, Yudkovsky Y, Marmen S, Raveh O, Amrani A, Kutuzov I, Guy-Haim T, Rahav E. Tar patties are hotspots of hydrocarbon turnover and nitrogen fixation during a nearshore pollution event in the oligotrophic southeastern Mediterranean Sea. MARINE POLLUTION BULLETIN 2023; 197:115747. [PMID: 37995430 DOI: 10.1016/j.marpolbul.2023.115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Weathered oil, that is, tar, forms hotspots of hydrocarbon degradation by complex biota in marine environment. Here, we used marker gene sequencing and metagenomics to characterize the communities of bacteria, archaea and eukaryotes that colonized tar patties and control samples (wood, plastic), collected in the littoral following an offshore spill in the warm, oligotrophic southeastern Mediterranean Sea (SEMS). We show potential aerobic and anaerobic hydrocarbon catabolism niches on tar interior and exterior, linking carbon, sulfur and nitrogen cycles. Alongside aromatics and larger alkanes, short-chain alkanes appear to fuel dominant populations, both the aerobic clade UBA5335 (Macondimonas), anaerobic Syntropharchaeales, and facultative Mycobacteriales. Most key organisms, including the hydrocarbon degraders and cyanobacteria, have the potential to fix dinitrogen, potentially alleviating the nitrogen limitation of hydrocarbon degradation in the SEMS. We highlight the complexity of these tar-associated communities, where bacteria, archaea and eukaryotes co-exist, likely exchanging metabolites and competing for resources and space.
Collapse
Affiliation(s)
- Maxim Rubin-Blum
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel.
| | - Yana Yudkovsky
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Sophi Marmen
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Ofrat Raveh
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Alon Amrani
- Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilya Kutuzov
- Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Eyal Rahav
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| |
Collapse
|
39
|
Liu X, Li P, Wang H, Han LL, Yang K, Wang Y, Jiang Z, Cui L, Kao SJ. Nitrogen fixation and diazotroph diversity in groundwater systems. THE ISME JOURNAL 2023; 17:2023-2034. [PMID: 37715043 PMCID: PMC10579273 DOI: 10.1038/s41396-023-01513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023]
Abstract
Biological nitrogen fixation (BNF), the conversion of N2 into bioavailable nitrogen (N), is the main process for replenishing N loss in the biosphere. However, BNF in groundwater systems remains poorly understood. In this study, we examined the activity, abundance, and community composition of diazotrophs in groundwater in the Hetao Plain of Inner Mongolia using 15N tracing methods, reverse transcription qPCR (RT-qPCR), and metagenomic/metatranscriptomic analyses. 15N2 tracing incubation of near in situ groundwater (9.5-585.4 nmol N L-1 h-1) and N2-fixer enrichment and isolates (13.2-1728.4 nmol N g-1 h-1, as directly verified by single-cell resonance Raman spectroscopy), suggested that BNF is a non-negligible source of N in groundwater in this region. The expression of nifH genes ranged from 3.4 × 103 to 1.2 × 106 copies L-1 and was tightly correlated with dissolved oxygen (DO), Fe(II), and NH4+. Diazotrophs in groundwater were chiefly aerobes or facultative anaerobes, dominated by Stutzerimonas, Pseudomonas, Paraburkholderia, Klebsiella, Rhodopseudomonas, Azoarcus, and additional uncultured populations. Active diazotrophs, which prefer reducing conditions, were more metabolically diverse and potentially associated with nitrification, sulfur/arsenic mobilization, Fe(II) transport, and CH4 oxidation. Our results highlight the importance of diazotrophs in subsurface geochemical cycles.
Collapse
Affiliation(s)
- Xiaohan Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China.
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China.
| | - Helin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Li-Li Han
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China
| | - Kai Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Yanhong Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Zhou Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China
| |
Collapse
|
40
|
Han Y, Zhang C, Zhao Z, Peng Y, Liao J, Jiang Q, Liu Q, Shao Z, Dong X. A comprehensive genomic catalog from global cold seeps. Sci Data 2023; 10:596. [PMID: 37684262 PMCID: PMC10491686 DOI: 10.1038/s41597-023-02521-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Cold seeps harbor abundant and diverse microbes with tremendous potential for biological applications and that have a significant influence on biogeochemical cycles. Although recent metagenomic studies have expanded our understanding of the community and function of seep microorganisms, knowledge of the diversity and genetic repertoire of global seep microbes is lacking. Here, we collected a compilation of 165 metagenomic datasets from 16 cold seep sites across the globe to construct a comprehensive gene and genome catalog. The non-redundant gene catalog comprised 147 million genes, and 36% of them could not be assigned to a function with the currently available databases. A total of 3,164 species-level representative metagenome-assembled genomes (MAGs) were obtained, most of which (94%) belonged to novel species. Of them, 81 ANME species were identified that cover all subclades except ANME-2d, and 23 syntrophic SRB species spanned the Seep-SRB1a, Seep-SRB1g, and Seep-SRB2 clades. The non-redundant gene and MAG catalog is a valuable resource that will aid in deepening our understanding of the functions of cold seep microbiomes.
Collapse
Affiliation(s)
- Yingchun Han
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Chuwen Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Zhuoming Zhao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Jing Liao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Qiuyun Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Qing Liu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
41
|
Liu Y, Chen S, Wang J, Shao B, Fang J, Cao J. The Phylogeny, Metabolic Potentials, and Environmental Adaptation of an Anaerobe, Abyssisolibacter sp. M8S5, Isolated from Cold Seep Sediments of the South China Sea. Microorganisms 2023; 11:2156. [PMID: 37764000 PMCID: PMC10536192 DOI: 10.3390/microorganisms11092156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Bacillota are widely distributed in various environments, owing to their versatile metabolic capabilities and remarkable adaptation strategies. Recent studies reported that Bacillota species were highly enriched in cold seep sediments, but their metabolic capabilities, ecological functions, and adaption mechanisms in the cold seep habitats remained obscure. In this study, we conducted a systematic analysis of the complete genome of a novel Bacillota bacterium strain M8S5, which we isolated from cold seep sediments of the South China Sea at a depth of 1151 m. Phylogenetically, strain M8S5 was affiliated with the genus Abyssisolibacter within the phylum Bacillota. Metabolically, M8S5 is predicted to utilize various carbon and nitrogen sources, including chitin, cellulose, peptide/oligopeptide, amino acids, ethanolamine, and spermidine/putrescine. The pathways of histidine and proline biosynthesis were largely incomplete in strain M8S5, implying that its survival strictly depends on histidine- and proline-related organic matter enriched in the cold seep ecosystems. On the other hand, strain M8S5 contained the genes encoding a variety of extracellular peptidases, e.g., the S8, S11, and C25 families, suggesting its capabilities for extracellular protein degradation. Moreover, we identified a series of anaerobic respiratory genes, such as glycine reductase genes, in strain M8S5, which may allow it to survive in the anaerobic sediments of cold seep environments. Many genes associated with osmoprotectants (e.g., glycine betaine, proline, and trehalose), transporters, molecular chaperones, and reactive oxygen species-scavenging proteins as well as spore formation may contribute to its high-pressure and low-temperature adaptations. These findings regarding the versatile metabolic potentials and multiple adaptation strategies of strain M8S5 will expand our understanding of the Bacillota species in cold seep sediments and their potential roles in the biogeochemical cycling of deep marine ecosystems.
Collapse
Affiliation(s)
- Ying Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (J.W.); (B.S.)
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535000, China
| | - Songze Chen
- Shenzhen Ecological and Environmental Monitoring Center of Guangdong Province, Shenzhen 518049, China;
| | - Jiahua Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (J.W.); (B.S.)
| | - Baoying Shao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (J.W.); (B.S.)
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (J.W.); (B.S.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Junwei Cao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (J.W.); (B.S.)
| |
Collapse
|
42
|
Deng Z, Chen H, Wang J, Zhang N, Han Z, Xie Y, Zhang X, Fang X, Yu H, Zhang D, Yue Z, Zhang C. Marine Dehalogenator and Its Chaperones: Microbial Duties and Responses in 2,4,6-Trichlorophenol Dechlorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37478352 DOI: 10.1021/acs.est.3c03738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Marine environments contain diverse halogenated organic compounds (HOCs), both anthropogenic and natural, nourishing a group of versatile organohalide-respiring bacteria (OHRB). Here, we identified a novel OHRB (Peptococcaceae DCH) with conserved motifs but phylogenetically diverse reductive dehalogenase catalytic subunit (RdhAs) from marine enrichment culture. Further analyses clearly demonstrate the horizontal gene transfer of rdhAs among marine OHRB. Moreover, 2,4,6-trichlorophenol (TCP) was dechlorinated to 2,4-dichlorophenol and terminated at 4-chlorophenol in culture. Dendrosporobacter and Methanosarcina were the two dominant genera, and the constructed and verified metabolic pathways clearly demonstrated that the former provided various substrates for other microbes, while the latter drew nutrients, but might provide little benefit to microbial dehalogenation. Furthermore, Dendrosporobacter could readily adapt to TCP, and sporulation-related proteins of Dendrosporobacter were significantly upregulated in TCP-free controls, whereas other microbes (e.g., Methanosarcina and Aminivibrio) became more active, providing insights into how HOCs shape microbial communities. Additionally, sulfate could affect the dechlorination of Peptococcaceae DCH, but not debromination. Considering their electron accessibility and energy generation, the results clearly demonstrate that bromophenols are more suitable than chlorophenols for the enrichment of OHRB in marine environments. This study will greatly enhance our understanding of marine OHRB (rdhAs), auxiliary microbes, and microbial HOC adaptive mechanisms.
Collapse
Affiliation(s)
- Zhaochao Deng
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Haixin Chen
- BGI-Sanya, BGI-Shenzhen, Sanya 572025, China
| | - Jun Wang
- BGI-Sanya, BGI-Shenzhen, Sanya 572025, China
| | - Ning Zhang
- Department of Environmental Engineering, School of Chemical Engineering and Pharmacy, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Zhiqiang Han
- Department of Marine Resources and Environment, Fishery College, Zhejiang Ocean University, Zhoushan 316002, Zhejiang, China
| | - Yeting Xie
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, Guangxi, China
| | - Xiaoyan Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, Guangxi, China
| | | | - Hao Yu
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Dongdong Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Zhen Yue
- BGI-Sanya, BGI-Shenzhen, Sanya 572025, China
| | - Chunfang Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, Guangxi, China
| |
Collapse
|
43
|
Zhang C, Liu X, Shi LD, Li J, Xiao X, Shao Z, Dong X. Unexpected genetic and microbial diversity for arsenic cycling in deep sea cold seep sediments. NPJ Biofilms Microbiomes 2023; 9:13. [PMID: 36991068 PMCID: PMC10060404 DOI: 10.1038/s41522-023-00382-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Cold seeps, where cold hydrocarbon-rich fluid escapes from the seafloor, show strong enrichment of toxic metalloid arsenic (As). The toxicity and mobility of As can be greatly altered by microbial processes that play an important role in global As biogeochemical cycling. However, a global overview of genes and microbes involved in As transformation at seeps remains to be fully unveiled. Using 87 sediment metagenomes and 33 metatranscriptomes derived from 13 globally distributed cold seeps, we show that As detoxification genes (arsM, arsP, arsC1/arsC2, acr3) were prevalent at seeps and more phylogenetically diverse than previously expected. Asgardarchaeota and a variety of unidentified bacterial phyla (e.g. 4484-113, AABM5-125-24 and RBG-13-66-14) may also function as the key players in As transformation. The abundances of As cycling genes and the compositions of As-associated microbiome shifted across different sediment depths or types of cold seep. The energy-conserving arsenate reduction or arsenite oxidation could impact biogeochemical cycling of carbon and nitrogen, via supporting carbon fixation, hydrocarbon degradation and nitrogen fixation. Overall, this study provides a comprehensive overview of As cycling genes and microbes at As-enriched cold seeps, laying a solid foundation for further studies of As cycling in deep sea microbiome at the enzymatic and processual levels.
Collapse
Affiliation(s)
- Chuwen Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xinyue Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Ling-Dong Shi
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jiwei Li
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Xi Xiao
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
44
|
Hu W, Wang X, Wang X, Xu Y, Li R, Zhao L, Ren W, Teng Y. Enhancement of nitrogen fixation and diazotrophs by long-term polychlorinated biphenyl contamination in paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130697. [PMID: 36599277 DOI: 10.1016/j.jhazmat.2022.130697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Biological nitrogen fixation (BNF) driven by diazotrophs is a major means of increasing available nitrogen (N) in paddy soil, in addition to anthropogenic fertilization. However, the influence of long-term polychlorinated biphenyl (PCB) contamination on the diazotrophic community and nitrogen fixation in paddy soil is poorly understood. In this study, samples were collected from paddy soil subjected to > 30 years of PCB contamination, and the soil diazotrophic community and N2 fixation rate were evaluated by Illumina MiSeq sequencing and acetylene reduction assays, respectively. The results indicated that high PCB contamination increased diazotrophic abundance and the N2 fixation rate, and altered diazotrophic community structure in the paddy soil. The random forest model demonstrated that the β-diversity of the diazotrophic community was the most significant predictor of the N2 fixation rate. Structure equation modeling identified a specialized keystone diazotrophic ecological cluster, predominated by Bradyrhizobium, Desulfomonile, and Cyanobacteria, as the key driver of N2 fixation. Overall, our findings indicated that long-term PCB contamination enhanced the N2 fixation rate by altering diazotrophic community abundance and structure, which may deepen our understanding of the ecological function of diazotrophs in organic-contaminated soil.
Collapse
Affiliation(s)
- Wenbo Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xia Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ran Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
45
|
Shekarriz E, Chen J, Xu Z, Liu H. Disentangling the Functional Role of Fungi in Cold Seep Sediment. Microbiol Spectr 2023; 11:e0197822. [PMID: 36912690 PMCID: PMC10100914 DOI: 10.1128/spectrum.01978-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/22/2022] [Indexed: 03/14/2023] Open
Abstract
Cold seeps are biological oases of the deep sea fueled by methane, sulfates, nitrates, and other inorganic sources of energy. Chemolithoautotrophic bacteria and archaea dominate seep sediment, and their diversity and biogeochemical functions are well established. Fungi are likewise diverse, metabolically versatile, and known for their ability to capture and oxidize methane. Still, no study has ever explored the functional role of the mycobiota in the cold seep biome. To assess the complex role of fungi and fill in the gaps, we performed network analysis on 147 samples to disentangle fungal-prokaryotic interactions (fungal 18S and prokaryotic 16S) in the Haima cold seep region. We demonstrated that fungi are central species with high connectivity at the epicenter of prokaryotic networks, reduce their random-attack vulnerability by 60%, and enhance information transfer efficiency by 15%. We then scavenged a global metagenomic and metatranscriptomic data set from 10 cold seep regions for fungal genes of interest (hydrophobins, cytochrome P450s, and ligninolytic family of enzymes); this is the first study to report active transcription of 2,500+ fungal genes in the cold seep sediment. The genera Fusarium and Moniliella were of notable importance and directly correlated with high methane abundance in the sulfate-methane transition zone (SMTZ), likely due to their ability to degrade and solubilize methane and oils. Overall, our results highlight the essential yet overlooked contribution of fungi to cold seep biological networks and the role of fungi in regulating cold seep biogeochemistry. IMPORTANCE The challenges we face when analyzing eukaryotic metagenomic and metatranscriptomic data sets have hindered our understanding of cold seep fungi and microbial eukaryotes. This fact does not make the mycobiota any less critical in mediating cold seep biogeochemistry. On the contrary, many fungal genera can oxidize and solubilize methane, produce methane, and play a unique role in nutrient recycling via saprotrophic enzymatic activity. In this study, we used network analysis to uncover key fungal-prokaryotic interactions that can mediate methane biogeochemistry and metagenomics and metatranscriptomics to report that fungi are transcriptionally active in the cold seep sediment. With concerns over rising methane levels and cold seeps being a pivotal source of global methane input, our holistic understanding of methane biogeochemistry with all domains of life is essential. We ultimately encourage scientists to utilize state-of-the-art tools and multifaceted approaches to uncover the role of microeukaryotic organisms in understudied systems.
Collapse
Affiliation(s)
- Erfan Shekarriz
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jiawei Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhimeng Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hongbin Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
46
|
Zhang B, Zhang N, He A, Wang C, Li Z, Zhang G, Xue R. Carrier type affects anammox community assembly, species interactions and nitrogen conversion. BIORESOURCE TECHNOLOGY 2023; 369:128422. [PMID: 36462768 DOI: 10.1016/j.biortech.2022.128422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The impacts of carrier type on anammox community assembly, species interactions and nitrogen conversion were studied in this work. It was found that in addition to shared species with higher abundance, different carrier types recruited rare species by imposing selection pressure. Results from co-occurrence networks revealed that carrier type strongly influenced interactions between keystone species inhabiting within anammox biofilm through potentially inducing niche differences. Overall, elastic cubic sponges would lead to closer cooperation between different populations, whereas plastic hollow cylinders would trigger fiercer competition. Meanwhile, the results based on metagenomics sequencing showed carrier type significantly affected nitrogen conversion related genes abundances, and higher reads number was detected on the elastic cubic sponges. The information obtained in this work could provide some valuable information for the selection and optimization of carrier type in the anammox process.
Collapse
Affiliation(s)
- Baoyong Zhang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Nianbo Zhang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Ao He
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Chen Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zhen Li
- Shandong Chambroad Holding Group Co., Ltd., Binzhou, 256500, China
| | - Guanjun Zhang
- Shandong Chambroad Holding Group Co., Ltd., Binzhou, 256500, China
| | - Rong Xue
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|
47
|
Biogeochemical Activity of Methane-Related Microbial Communities in Bottom Sediments of Cold Seeps of the Laptev Sea. Microorganisms 2023; 11:microorganisms11020250. [PMID: 36838215 PMCID: PMC9964916 DOI: 10.3390/microorganisms11020250] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Bottom sediments at methane discharge sites of the Laptev Sea shelf were investigated. The rates of microbial methanogenesis and methane oxidation were measured, and the communities responsible for these processes were analyzed. Methane content in the sediments varied from 0.9 to 37 µmol CH4 dm-3. Methane carbon isotopic composition (δ13C-CH4) varied from -98.9 to -77.6‱, indicating its biogenic origin. The rates of hydrogenotrophic methanogenesis were low (0.4-5.0 nmol dm-3 day-1). Methane oxidation rates varied from 0.4 to 1.2 µmol dm-3 day-1 at the seep stations. Four lineages of anaerobic methanotrophic archaea (ANME) (1, 2a-2b, 2c, and 3) were found in the deeper sediments at the seep stations along with sulfate-reducing Desulfobacteriota. The ANME-2a-2b clade was predominant among ANME. Aerobic ammonium-oxidizing Crenarchaeota (family Nitrosopumilaceae) predominated in the upper sediments along with heterotrophic Actinobacteriota and Bacteroidota, and mehtanotrophs of the classes Alphaproteobacteria (Methyloceanibacter) and Gammaproteobacteria (families Methylophilaceae and Methylomonadaceae). Members of the genera Sulfurovum and Sulfurimonas occurred in the sediments of the seep stations. Mehtanotrophs of the classes Alphaproteobacteria (Methyloceanibacter) and Gammaproteobacteria (families Methylophilaceae and Methylomonadaceae) occurred in the sediments of all stations. The microbial community composition was similar to that of methane seep sediments from geographically remote areas of the global ocean.
Collapse
|