1
|
Farndale L, Insall R, Yuan K. TriDeNT : Triple deep network training for privileged knowledge distillation in histopathology. Med Image Anal 2025; 102:103479. [PMID: 40174325 DOI: 10.1016/j.media.2025.103479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 04/04/2025]
Abstract
Computational pathology models rarely utilise data that will not be available for inference. This means most models cannot learn from highly informative data such as additional immunohistochemical (IHC) stains and spatial transcriptomics. We present TriDeNT , a novel self-supervised method for utilising privileged data that is not available during inference to improve performance. We demonstrate the efficacy of this method for a range of different paired data including immunohistochemistry, spatial transcriptomics and expert nuclei annotations. In all settings, TriDeNT outperforms other state-of-the-art methods in downstream tasks, with observed improvements of up to 101%. Furthermore, we provide qualitative and quantitative measurements of the features learned by these models and how they differ from baselines. TriDeNT offers a novel method to distil knowledge from scarce or costly data during training, to create significantly better models for routine inputs.
Collapse
Affiliation(s)
- Lucas Farndale
- School of Cancer Sciences, University of Glasgow, Scotland, UK; Cancer Research UK Scotland Institute, Scotland, UK; School of Computing Science, University of Glasgow, Scotland, UK; School of Mathematics and Statistics, University of Glasgow, Scotland, UK.
| | - Robert Insall
- School of Cancer Sciences, University of Glasgow, Scotland, UK; Cancer Research UK Scotland Institute, Scotland, UK; Division of Biosciences, University College London, England, UK
| | - Ke Yuan
- School of Cancer Sciences, University of Glasgow, Scotland, UK; Cancer Research UK Scotland Institute, Scotland, UK; School of Computing Science, University of Glasgow, Scotland, UK.
| |
Collapse
|
2
|
Brodsky V, Ullah E, Bychkov A, Song AH, Walk EE, Louis P, Rasool G, Singh RS, Mahmood F, Bui MM, Parwani AV. Generative Artificial Intelligence in Anatomic Pathology. Arch Pathol Lab Med 2025; 149:298-318. [PMID: 39836377 DOI: 10.5858/arpa.2024-0215-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
CONTEXT.— Generative artificial intelligence (AI) has emerged as a transformative force in various fields, including anatomic pathology, where it offers the potential to significantly enhance diagnostic accuracy, workflow efficiency, and research capabilities. OBJECTIVE.— To explore the applications, benefits, and challenges of generative AI in anatomic pathology, with a focus on its impact on diagnostic processes, workflow efficiency, education, and research. DATA SOURCES.— A comprehensive review of current literature and recent advancements in the application of generative AI within anatomic pathology, categorized into unimodal and multimodal applications, and evaluated for clinical utility, ethical considerations, and future potential. CONCLUSIONS.— Generative AI demonstrates significant promise in various domains of anatomic pathology, including diagnostic accuracy enhanced through AI-driven image analysis, virtual staining, and synthetic data generation; workflow efficiency, with potential for improvement by automating routine tasks, quality control, and reflex testing; education and research, facilitated by AI-generated educational content, synthetic histology images, and advanced data analysis methods; and clinical integration, with preliminary surveys indicating cautious optimism for nondiagnostic AI tasks and growing engagement in academic settings. Ethical and practical challenges require rigorous validation, prompt engineering, federated learning, and synthetic data generation to help ensure trustworthy, reliable, and unbiased AI applications. Generative AI can potentially revolutionize anatomic pathology, enhancing diagnostic accuracy, improving workflow efficiency, and advancing education and research. Successful integration into clinical practice will require continued interdisciplinary collaboration, careful validation, and adherence to ethical standards to ensure the benefits of AI are realized while maintaining the highest standards of patient care.
Collapse
Affiliation(s)
- Victor Brodsky
- From the Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, Missouri (Brodsky)
| | - Ehsan Ullah
- the Department of Surgery, Health New Zealand, Counties Manukau, New Zealand (Ullah)
| | - Andrey Bychkov
- the Department of Pathology, Kameda Medical Center, Kamogawa City, Chiba Prefecture, Japan (Bychkov)
- the Department of Pathology, Nagasaki University, Nagasaki, Japan (Bychkov)
| | - Andrew H Song
- the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Song, Mahmood)
| | - Eric E Walk
- Office of the Chief Medical Officer, PathAI, Boston, Massachusetts (Walk)
| | - Peter Louis
- the Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey (Louis)
| | - Ghulam Rasool
- the Department of Oncologic Sciences, Morsani College of Medicine and Department of Electrical Engineering, University of South Florida, Tampa (Rasool)
- the Department of Machine Learning, Moffitt Cancer Center and Research Institute, Tampa, Florida (Rasool)
- Department of Machine Learning, Neuro-Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida (Rasool)
| | - Rajendra S Singh
- Dermatopathology and Digital Pathology, Summit Health, Berkley Heights, New Jersey (Singh)
| | - Faisal Mahmood
- the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Song, Mahmood)
| | - Marilyn M Bui
- Department of Machine Learning, Pathology, Moffitt Cancer Center and Research Institute, Tampa, Florida (Bui)
| | - Anil V Parwani
- the Department of Pathology, The Ohio State University, Columbus (Parwani)
| |
Collapse
|
3
|
Hölscher DL, Bülow RD. Decoding pathology: the role of computational pathology in research and diagnostics. Pflugers Arch 2025; 477:555-570. [PMID: 39095655 PMCID: PMC11958429 DOI: 10.1007/s00424-024-03002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
Traditional histopathology, characterized by manual quantifications and assessments, faces challenges such as low-throughput and inter-observer variability that hinder the introduction of precision medicine in pathology diagnostics and research. The advent of digital pathology allowed the introduction of computational pathology, a discipline that leverages computational methods, especially based on deep learning (DL) techniques, to analyze histopathology specimens. A growing body of research shows impressive performances of DL-based models in pathology for a multitude of tasks, such as mutation prediction, large-scale pathomics analyses, or prognosis prediction. New approaches integrate multimodal data sources and increasingly rely on multi-purpose foundation models. This review provides an introductory overview of advancements in computational pathology and discusses their implications for the future of histopathology in research and diagnostics.
Collapse
Affiliation(s)
- David L Hölscher
- Department for Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
- Institute for Pathology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Roman D Bülow
- Institute for Pathology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
4
|
Pulgarín-Ospina CC, Amor RD, Silva-Rodríguez JJ, Colomer A, Naranjo V. HistoColAi: An open-source web platform for collaborative digital histology image annotation with AI-driven predictive integration. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 260:108577. [PMID: 39813900 DOI: 10.1016/j.cmpb.2024.108577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/30/2024] [Accepted: 12/25/2024] [Indexed: 01/18/2025]
Abstract
Digital pathology is now a standard component of the pathology workflow, offering numerous benefits such as high-detail whole slide images and the capability for immediate case sharing between hospitals. Recent advances in deep learning-based methods for image analysis make them a potential aid in digital pathology. However, A significant challenge in developing computer-aided diagnostic systems for pathology is the lack of intuitive, open-source web applications for data annotation. This paper proposes a web service that efficiently provides a tool to visualize and annotate digitized histological images, integrating AI-driven predictive insights. While the tool is capable of handling various image formats, its primary use case is for Whole Slide Imaging (WSI) in the TIFF format, specifically tailored for histopathology applications. This innovative integration not only revolutionizes accessibility but also democratizes the utilization of complex deep-learning models for pathologists unfamiliar with such tools. Moreover, to demonstrate the effectiveness of this approach, we present a use case centered on the diagnosis of spindle cell skin neoplasm involving multiple annotators. Additionally, we conduct a usability study, showing the feasibility of the developed tool.
Collapse
Affiliation(s)
- Cristian Camilo Pulgarín-Ospina
- Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, Universitat Politècnica de València, Valencia, Spain.
| | - Rocío Del Amor
- Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, Universitat Politècnica de València, Valencia, Spain
| | | | - Adrián Colomer
- Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, Universitat Politècnica de València, Valencia, Spain; valgrAI: Valencian Graduate School and Research Network of Artificial Intelligence, Valencia, Spain
| | - Valery Naranjo
- Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, Universitat Politècnica de València, Valencia, Spain; valgrAI: Valencian Graduate School and Research Network of Artificial Intelligence, Valencia, Spain
| |
Collapse
|
5
|
Kanca E, Ayas S, Baykal Kablan E, Ekinci M. Evaluating and enhancing the robustness of vision transformers against adversarial attacks in medical imaging. Med Biol Eng Comput 2025; 63:673-690. [PMID: 39453557 DOI: 10.1007/s11517-024-03226-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
Deep neural networks (DNNs) have demonstrated exceptional performance in medical image analysis. However, recent studies have uncovered significant vulnerabilities in DNN models, particularly their susceptibility to adversarial attacks that manipulate these models into making inaccurate predictions. Vision Transformers (ViTs), despite their advanced capabilities in medical imaging tasks, have not been thoroughly evaluated for their robustness against such attacks in this domain. This study addresses this research gap by conducting an extensive analysis of various adversarial attacks on ViTs specifically within medical imaging contexts. We explore adversarial training as a potential defense mechanism and assess the resilience of ViT models against state-of-the-art adversarial attacks and defense strategies using publicly available benchmark medical image datasets. Our findings reveal that ViTs are vulnerable to adversarial attacks even with minimal perturbations, although adversarial training significantly enhances their robustness, achieving over 80% classification accuracy. Additionally, we perform a comparative analysis with state-of-the-art convolutional neural network models, highlighting the unique strengths and weaknesses of ViTs in handling adversarial threats. This research advances the understanding of ViTs robustness in medical imaging and provides insights into their practical deployment in real-world scenarios.
Collapse
Affiliation(s)
- Elif Kanca
- Department of Software Engineering, Karadeniz Technical University, Trabzon, Turkey.
| | - Selen Ayas
- Department of Computer Engineering, Karadeniz Technical University, Trabzon, Turkey.
| | - Elif Baykal Kablan
- Department of Software Engineering, Karadeniz Technical University, Trabzon, Turkey
| | - Murat Ekinci
- Department of Computer Engineering, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
6
|
Chauveau B, Couzi L, Merville P. The Microscope and Beyond: Current Trends in the Characterization of Kidney Allograft Rejection From Tissue Samples. Transplantation 2025; 109:440-453. [PMID: 39436268 DOI: 10.1097/tp.0000000000005153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The Banff classification is regularly updated to integrate recent advances in the characterization of kidney allograft rejection, gathering novel diagnostic, prognostic, and theragnostic data into a diagnostic and pathogenesis-based framework. Despite ongoing research on noninvasive biomarkers of kidney rejection, the Banff classification remains, to date, biopsy-centered, primarily relying on a semiquantitative histological scoring system that overall lacks reproducibility and granularity. Besides, the ability of histopathological injuries and transcriptomics analyses from bulk tissue to accurately infer the pathogenesis of rejection is questioned. This review discusses findings from past, current, and emerging innovative tools that have the potential to enhance the characterization of allograft rejection from tissue samples. First, the digitalization of pathological workflows and the rise of deep learning should yield more reproducible and quantitative results from routine slides. Additionally, novel histomorphometric features of kidney rejection could be discovered with an overall genuine clinical implementation perspective. Second, multiplex immunohistochemistry enables in-depth in situ phenotyping of cells from formalin-fixed samples, which can decipher the heterogeneity of the immune infiltrate during kidney allograft rejection. Third, transcriptomics from bulk tissue is gradually integrated into the Banff classification, and its specific context of use is currently under extensive consideration. Finally, single-cell transcriptomics and spatial transcriptomics from formalin-fixed and paraffin-embedded samples are emerging techniques capable of producing up to genome-wide data with unprecedented precision levels. Combining all these approaches gives us hope for novel advances that will address the current blind spots of the Banff system.
Collapse
Affiliation(s)
- Bertrand Chauveau
- Department of Pathology, Bordeaux University Hospital, Pellegrin Hospital, Place Amélie Raba Léon, Bordeaux, France
- CNRS UMR 5164 ImmunoConcEpT, University of Bordeaux, Bordeaux, France
| | - Lionel Couzi
- CNRS UMR 5164 ImmunoConcEpT, University of Bordeaux, Bordeaux, France
- Department of Nephrology, Transplantation Dialysis, Apheresis, Bordeaux University Hospital, Pellegrin Hospital, Bordeaux, France
| | - Pierre Merville
- CNRS UMR 5164 ImmunoConcEpT, University of Bordeaux, Bordeaux, France
- Department of Nephrology, Transplantation Dialysis, Apheresis, Bordeaux University Hospital, Pellegrin Hospital, Bordeaux, France
| |
Collapse
|
7
|
Lammie C, Büchel J, Vasilopoulos A, Le Gallo M, Sebastian A. The inherent adversarial robustness of analog in-memory computing. Nat Commun 2025; 16:1756. [PMID: 39971908 PMCID: PMC11840121 DOI: 10.1038/s41467-025-56595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/23/2025] [Indexed: 02/21/2025] Open
Abstract
A key challenge for deep neural network algorithms is their vulnerability to adversarial attacks. Inherently non-deterministic compute substrates, such as those based on analog in-memory computing, have been speculated to provide significant adversarial robustness when performing deep neural network inference. In this paper, we experimentally validate this conjecture for the first time on an analog in-memory computing chip based on phase change memory devices. We demonstrate higher adversarial robustness against different types of adversarial attacks when implementing an image classification network. Additional robustness is also observed when performing hardware-in-the-loop attacks, for which the attacker is assumed to have full access to the hardware. A careful study of the various noise sources indicate that a combination of stochastic noise sources (both recurrent and non-recurrent) are responsible for the adversarial robustness and that their type and magnitude disproportionately effects this property. Finally, it is demonstrated, via simulations, that when a much larger transformer network is used to implement a natural language processing task, additional robustness is still observed.
Collapse
|
8
|
Duron L, Soyer P, Lecler A. Generative AI smartphones: From entertainment to potentially serious risks in radiology. Diagn Interv Imaging 2025; 106:76-78. [PMID: 39370391 DOI: 10.1016/j.diii.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Affiliation(s)
- Loïc Duron
- Université Paris Cité, 75006 Paris, France; Department of Neuroradiology, Hôpital Fondation A.de Rothschild, 75019 Paris, France
| | - Philippe Soyer
- Université Paris Cité, 75006 Paris, France; Department of Radiology, Hôpital Cochin, AP-HP, 75014 Paris, France
| | - Augustin Lecler
- Université Paris Cité, 75006 Paris, France; Department of Neuroradiology, Hôpital Fondation A.de Rothschild, 75019 Paris, France.
| |
Collapse
|
9
|
Gerussi A, Saldanha OL, Cazzaniga G, Verda D, Carrero ZI, Engel B, Taubert R, Bolis F, Cristoferi L, Malinverno F, Colapietro F, Akpinar R, Di Tommaso L, Terracciano L, Lleo A, Viganó M, Rigamonti C, Cabibi D, Calvaruso V, Gibilisco F, Caldonazzi N, Valentino A, Ceola S, Canini V, Nofit E, Muselli M, Calderaro J, Tiniakos D, L’Imperio V, Pagni F, Zucchini N, Invernizzi P, Carbone M, Kather JN. Deep learning helps discriminate between autoimmune hepatitis and primary biliary cholangitis. JHEP Rep 2025; 7:101198. [PMID: 39829723 PMCID: PMC11741034 DOI: 10.1016/j.jhepr.2024.101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND & AIMS Biliary abnormalities in autoimmune hepatitis (AIH) and interface hepatitis in primary biliary cholangitis (PBC) occur frequently, and misinterpretation may lead to therapeutic mistakes with a negative impact on patients. This study investigates the use of a deep learning (DL)-based pipeline for the diagnosis of AIH and PBC to aid differential diagnosis. METHODS We conducted a multicenter study across six European referral centers, and built a library of digitized liver biopsy slides dating from 1997 to 2023. A training set of 354 cases (266 AIH and 102 PBC) and an external validation set of 92 cases (62 AIH and 30 PBC) were available for analysis. A novel DL model, the autoimmune liver neural estimator (ALNE), was trained on whole-slide images (WSIs) with H&E staining, without human annotations. The ALNE model was evaluated against clinico-pathological diagnoses and tested for interobserver variability among general pathologists. RESULTS The ALNE model demonstrated high accuracy in differentiating AIH from PBC, achieving an area under the receiver operating characteristic curve of 0.81 in external validation. Attention heatmaps showed that ALNE tends to focus more on areas with increased inflammation, associating such patterns predominantly with AIH. A multivariate explainable ML model revealed that PBC cases misclassified as AIH more often had ALP values between 1 × upper limit of normal (ULN) and 2 × ULN, coupled with AST values above 1 × ULN. Inconsistency among general pathologists was noticed when evaluating a random sample of the same cases (Fleiss's kappa value 0.09). CONCLUSIONS The ALNE model is the first system generating a quantitative and accurate differential diagnosis between cases with AIH or PBC. IMPACT AND IMPLICATIONS This study demonstrates the significant potential of the autoimmune liver neural estimator model, a transformer-based deep learning system, in accurately distinguishing between autoimmune hepatitis and primary biliary cholangitis using digitized liver biopsy slides without human annotation. The scientific justification for this work lies in addressing the challenge of differentiating these conditions, which often present with overlapping features and can lead to therapeutic mistakes. In addition, there is need for quantitative assessment of information embedded in liver biopsies, which are currently evaluated on qualitative or semi-quantitative methods. The results of this study are crucial for pathologists, researchers, and clinicians, providing a reliable diagnostic tool that reduces interobserver variability and improves diagnostic accuracy of these conditions. Potential methodological limitations, such as the diversity in scanning techniques and slide colorations, were considered, ensuring the robustness and generalizability of the findings.
Collapse
Affiliation(s)
- Alessio Gerussi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Oliver Lester Saldanha
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Giorgio Cazzaniga
- Department of Medicine and Surgery, Pathology, Fondazione IRCCS San Gerardo dei Tintori, Università di Milano-Bicocca, Monza, Italy
| | | | - Zunamys I. Carrero
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Bastian Engel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| | - Richard Taubert
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| | - Francesca Bolis
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Cristoferi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Federica Malinverno
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Francesca Colapietro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Reha Akpinar
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Pathology, IRCSS Humanitas Research Hospital, Rozzano-Milan, Italy
| | - Luca Di Tommaso
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Pathology, IRCSS Humanitas Research Hospital, Rozzano-Milan, Italy
| | - Luigi Terracciano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Pathology, IRCSS Humanitas Research Hospital, Rozzano-Milan, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mauro Viganó
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Cristina Rigamonti
- Department of Translational Medicine, Università del Piemonte Orientale, Division of Internal Medicine, AOU Maggiore della Carità, Novara, Italy
| | - Daniela Cabibi
- Pathology Institute, PROMISE, University of Palermo, Palermo, Italy
| | - Vincenza Calvaruso
- Gastrointestinal and Liver Unit, Department of Health Promotion Sciences, Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Fabio Gibilisco
- Department of Pathology, Hospital “Gravina e Santo Pietro”, Caltagirone, Italy
- Department of Medical and Surgical Sciences and Advanced Technologies, “G. F. Ingrassia”, University of Catania, Catania, Italy
| | - Nicoló Caldonazzi
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | | | - Stefano Ceola
- Department of Medicine and Surgery, Pathology, Fondazione IRCCS San Gerardo dei Tintori, Università di Milano-Bicocca, Monza, Italy
| | - Valentina Canini
- Department of Medicine and Surgery, Pathology, Fondazione IRCCS San Gerardo dei Tintori, Università di Milano-Bicocca, Monza, Italy
| | - Eugenia Nofit
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Julien Calderaro
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Department of Pathology, Créteil, France
- Inserm, U955, Team 18, Créteil, France
| | - Dina Tiniakos
- Department of Pathology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Vincenzo L’Imperio
- Department of Medicine and Surgery, Pathology, Fondazione IRCCS San Gerardo dei Tintori, Università di Milano-Bicocca, Monza, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, Fondazione IRCCS San Gerardo dei Tintori, Università di Milano-Bicocca, Monza, Italy
| | - Nicola Zucchini
- Department of Medicine and Surgery, Pathology, Fondazione IRCCS San Gerardo dei Tintori, Università di Milano-Bicocca, Monza, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Marco Carbone
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Liver Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
- Department of Medicine 1, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
10
|
Clusmann J, Ferber D, Wiest IC, Schneider CV, Brinker TJ, Foersch S, Truhn D, Kather JN. Prompt injection attacks on vision language models in oncology. Nat Commun 2025; 16:1239. [PMID: 39890777 PMCID: PMC11785991 DOI: 10.1038/s41467-024-55631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/17/2024] [Indexed: 02/03/2025] Open
Abstract
Vision-language artificial intelligence models (VLMs) possess medical knowledge and can be employed in healthcare in numerous ways, including as image interpreters, virtual scribes, and general decision support systems. However, here, we demonstrate that current VLMs applied to medical tasks exhibit a fundamental security flaw: they can be compromised by prompt injection attacks. These can be used to output harmful information just by interacting with the VLM, without any access to its parameters. We perform a quantitative study to evaluate the vulnerabilities to these attacks in four state of the art VLMs: Claude-3 Opus, Claude-3.5 Sonnet, Reka Core, and GPT-4o. Using a set of N = 594 attacks, we show that all of these models are susceptible. Specifically, we show that embedding sub-visual prompts in manifold medical imaging data can cause the model to provide harmful output, and that these prompts are non-obvious to human observers. Thus, our study demonstrates a key vulnerability in medical VLMs which should be mitigated before widespread clinical adoption.
Collapse
Grants
- R01 CA263318 NCI NIH HHS
- JC is supported by the Mildred-Scheel-Postdoktorandenprogramm of the German Cancer Aid (grant #70115730). C.V.S is supported by a grant from the Interdisciplinary Centre for Clinical Research within the faculty of Medicine at the RWTH Aachen University (PTD 1-13/IA 532313), the Junior Principal Investigator Fellowship program of RWTH Aachen Excellence strategy, the NRW Rueckkehr Programme of the Ministry of Culture and Science of the German State of North Rhine-Westphalia and by the CRC 1382 (ID 403224013) funded by Deutsche Forschungsgesellschaft (DFG, German Research Foundation). SF is supported by the German Federal Ministry of Education and Research (SWAG, 01KD2215A), the German Cancer Aid (DECADE, 70115166 and TargHet, 70115995) and the German Research Foundation (504101714). DT is funded by the German Federal Ministry of Education and Research (TRANSFORM LIVER, 031L0312A), the European Union’s Horizon Europe and innovation programme (ODELIA, 101057091), and the German Federal Ministry of Health (SWAG, 01KD2215B). JNK is supported by the German Cancer Aid (DECADE, 70115166), the German Federal Ministry of Education and Research (PEARL, 01KD2104C; CAMINO, 01EO2101; SWAG, 01KD2215A; TRANSFORM LIVER, 031L0312A; TANGERINE, 01KT2302 through ERA-NET Transcan; Come2Data, 16DKZ2044A; DEEP-HCC, 031L0315A), the German Academic Exchange Service (SECAI, 57616814), the German Federal Joint Committee (TransplantKI, 01VSF21048) the European Union’s Horizon Europe and innovation programme (ODELIA, 101057091; GENIAL, 101096312), the European Research Council (ERC; NADIR, 101114631), the National Institutes of Health (EPICO, R01 CA263318) and the National Institute for Health and Care Research (NIHR, NIHR203331) Leeds Biomedical Research Centre. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care. This work was funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.
Collapse
Affiliation(s)
- Jan Clusmann
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Dyke Ferber
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
| | - Isabella C Wiest
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolin V Schneider
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Titus J Brinker
- Digital Biomarkers for Oncology Group, German Cancer Research Center, Heidelberg, Germany
| | - Sebastian Foersch
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, University Hospital Aachen, Aachen, Germany
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany.
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany.
- Department of Medicine I, University Hospital Dresden, Dresden, Germany.
| |
Collapse
|
11
|
Gonzalez R, Saha A, Campbell CJ, Nejat P, Lokker C, Norgan AP. Seeing the random forest through the decision trees. Supporting learning health systems from histopathology with machine learning models: Challenges and opportunities. J Pathol Inform 2024; 15:100347. [PMID: 38162950 PMCID: PMC10755052 DOI: 10.1016/j.jpi.2023.100347] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/06/2023] [Accepted: 11/01/2023] [Indexed: 01/03/2024] Open
Abstract
This paper discusses some overlooked challenges faced when working with machine learning models for histopathology and presents a novel opportunity to support "Learning Health Systems" with them. Initially, the authors elaborate on these challenges after separating them according to their mitigation strategies: those that need innovative approaches, time, or future technological capabilities and those that require a conceptual reappraisal from a critical perspective. Then, a novel opportunity to support "Learning Health Systems" by integrating hidden information extracted by ML models from digitalized histopathology slides with other healthcare big data is presented.
Collapse
Affiliation(s)
- Ricardo Gonzalez
- DeGroote School of Business, McMaster University, Hamilton, Ontario, Canada
- Division of Computational Pathology and Artificial Intelligence, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Ashirbani Saha
- Department of Oncology, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Escarpment Cancer Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Clinton J.V. Campbell
- William Osler Health System, Brampton, Ontario, Canada
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Peyman Nejat
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, United States
| | - Cynthia Lokker
- Health Information Research Unit, Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Andrew P. Norgan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
12
|
Fok WYR, Fieselmann A, Huemmer C, Biniazan R, Beister M, Geiger B, Kappler S, Saalfeld S. Adversarial robustness improvement for X-ray bone segmentation using synthetic data created from computed tomography scans. Sci Rep 2024; 14:25813. [PMID: 39468116 PMCID: PMC11519576 DOI: 10.1038/s41598-024-73363-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/17/2024] [Indexed: 10/30/2024] Open
Abstract
Deep learning-based image analysis offers great potential in clinical practice. However, it faces mainly two challenges: scarcity of large-scale annotated clinical data for training and susceptibility to adversarial data in inference. As an example, an artificial intelligence (AI) system could check patient positioning, by segmenting and evaluating relative positions of anatomical structures in medical images. Nevertheless, data to train such AI system might be highly imbalanced with mostly well-positioned images being available. Thus, we propose the use of synthetic X-ray images and annotation masks forward projected from 3D photon-counting CT volumes to create realistic non-optimally positioned X-ray images for training. An open-source model (TotalSegmentator) was used to annotate the clavicles in 3D CT volumes. We evaluated model robustness with respect to the internal (simulated) patient rotation α on real-data-trained models and real&synthetic-data-trained models. Our results showed that real&synthetic- data-trained models have Dice score percentage improvements of 3% to 15% across different α groups compared to the real-data-trained model. Therefore, we demonstrated that synthetic data could be supplementary used to train and enrich heavily underrepresented conditions to increase model robustness.
Collapse
Affiliation(s)
- Wai Yan Ryana Fok
- Faculty of Computer Science, Otto-von-Guericke-University Magdeburg, 39106, Magdeburg, Germany.
- X-ray Products, Siemens Healthineers AG, 91301, Forchheim, Germany.
| | | | | | - Ramyar Biniazan
- X-ray Products, Siemens Healthineers AG, 91301, Forchheim, Germany
| | - Marcel Beister
- X-ray Products, Siemens Healthineers AG, 91301, Forchheim, Germany
| | - Bernhard Geiger
- X-ray Products, Siemens Healthineers AG, 91301, Forchheim, Germany
| | - Steffen Kappler
- X-ray Products, Siemens Healthineers AG, 91301, Forchheim, Germany
| | - Sylvia Saalfeld
- Faculty of Computer Science, Otto-von-Guericke-University Magdeburg, 39106, Magdeburg, Germany
- Institute for Medical Informatics and Statistics, University Hospital Schleswig-Holstein Campus Kiel, 24105, Kiel, Germany
| |
Collapse
|
13
|
Kanwal N, Khoraminia F, Kiraz U, Mosquera-Zamudio A, Monteagudo C, Janssen EAM, Zuiverloon TCM, Rong C, Engan K. Equipping computational pathology systems with artifact processing pipelines: a showcase for computation and performance trade-offs. BMC Med Inform Decis Mak 2024; 24:288. [PMID: 39375719 PMCID: PMC11457387 DOI: 10.1186/s12911-024-02676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Histopathology is a gold standard for cancer diagnosis. It involves extracting tissue specimens from suspicious areas to prepare a glass slide for a microscopic examination. However, histological tissue processing procedures result in the introduction of artifacts, which are ultimately transferred to the digitized version of glass slides, known as whole slide images (WSIs). Artifacts are diagnostically irrelevant areas and may result in wrong predictions from deep learning (DL) algorithms. Therefore, detecting and excluding artifacts in the computational pathology (CPATH) system is essential for reliable automated diagnosis. METHODS In this paper, we propose a mixture of experts (MoE) scheme for detecting five notable artifacts, including damaged tissue, blur, folded tissue, air bubbles, and histologically irrelevant blood from WSIs. First, we train independent binary DL models as experts to capture particular artifact morphology. Then, we ensemble their predictions using a fusion mechanism. We apply probabilistic thresholding over the final probability distribution to improve the sensitivity of the MoE. We developed four DL pipelines to evaluate computational and performance trade-offs. These include two MoEs and two multiclass models of state-of-the-art deep convolutional neural networks (DCNNs) and vision transformers (ViTs). These DL pipelines are quantitatively and qualitatively evaluated on external and out-of-distribution (OoD) data to assess generalizability and robustness for artifact detection application. RESULTS We extensively evaluated the proposed MoE and multiclass models. DCNNs-based MoE and ViTs-based MoE schemes outperformed simpler multiclass models and were tested on datasets from different hospitals and cancer types, where MoE using (MobileNet) DCNNs yielded the best results. The proposed MoE yields 86.15 % F1 and 97.93% sensitivity scores on unseen data, retaining less computational cost for inference than MoE using ViTs. This best performance of MoEs comes with relatively higher computational trade-offs than multiclass models. Furthermore, we apply post-processing to create an artifact segmentation mask, a potential artifact-free RoI map, a quality report, and an artifact-refined WSI for further computational analysis. During the qualitative evaluation, field experts assessed the predictive performance of MoEs over OoD WSIs. They rated artifact detection and artifact-free area preservation, where the highest agreement translated to a Cohen Kappa of 0.82, indicating substantial agreement for the overall diagnostic usability of the DCNN-based MoE scheme. CONCLUSIONS The proposed artifact detection pipeline will not only ensure reliable CPATH predictions but may also provide quality control. In this work, the best-performing pipeline for artifact detection is MoE with DCNNs. Our detailed experiments show that there is always a trade-off between performance and computational complexity, and no straightforward DL solution equally suits all types of data and applications. The code and HistoArtifacts dataset can be found online at Github and Zenodo , respectively.
Collapse
Affiliation(s)
- Neel Kanwal
- Department of Electrical Engineering and Computer Science, University of Stavanger, 4021, Stavanger, Norway.
| | - Farbod Khoraminia
- Department of Urology, University Medical Center Rotterdam, Erasmus MC Cancer Institute, 1035 GD, Rotterdam, The Netherlands
| | - Umay Kiraz
- Department of Pathology, Stavanger University Hospital, 4011, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021, Stavanger, Norway
| | - Andrés Mosquera-Zamudio
- Department of Pathology, INCLIVA Biomedical Research Institute, and University of Valencia, 46010, Valencia, Spain
| | - Carlos Monteagudo
- Department of Pathology, INCLIVA Biomedical Research Institute, and University of Valencia, 46010, Valencia, Spain
| | - Emiel A M Janssen
- Department of Pathology, Stavanger University Hospital, 4011, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021, Stavanger, Norway
| | - Tahlita C M Zuiverloon
- Department of Urology, University Medical Center Rotterdam, Erasmus MC Cancer Institute, 1035 GD, Rotterdam, The Netherlands
| | - Chunming Rong
- Department of Electrical Engineering and Computer Science, University of Stavanger, 4021, Stavanger, Norway
| | - Kjersti Engan
- Department of Electrical Engineering and Computer Science, University of Stavanger, 4021, Stavanger, Norway.
| |
Collapse
|
14
|
Hanna MG, Olson NH, Zarella M, Dash RC, Herrmann MD, Furtado LV, Stram MN, Raciti PM, Hassell L, Mays A, Pantanowitz L, Sirintrapun JS, Krishnamurthy S, Parwani A, Lujan G, Evans A, Glassy EF, Bui MM, Singh R, Souers RJ, de Baca ME, Seheult JN. Recommendations for Performance Evaluation of Machine Learning in Pathology: A Concept Paper From the College of American Pathologists. Arch Pathol Lab Med 2024; 148:e335-e361. [PMID: 38041522 DOI: 10.5858/arpa.2023-0042-cp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 12/03/2023]
Abstract
CONTEXT.— Machine learning applications in the pathology clinical domain are emerging rapidly. As decision support systems continue to mature, laboratories will increasingly need guidance to evaluate their performance in clinical practice. Currently there are no formal guidelines to assist pathology laboratories in verification and/or validation of such systems. These recommendations are being proposed for the evaluation of machine learning systems in the clinical practice of pathology. OBJECTIVE.— To propose recommendations for performance evaluation of in vitro diagnostic tests on patient samples that incorporate machine learning as part of the preanalytical, analytical, or postanalytical phases of the laboratory workflow. Topics described include considerations for machine learning model evaluation including risk assessment, predeployment requirements, data sourcing and curation, verification and validation, change control management, human-computer interaction, practitioner training, and competency evaluation. DATA SOURCES.— An expert panel performed a review of the literature, Clinical and Laboratory Standards Institute guidance, and laboratory and government regulatory frameworks. CONCLUSIONS.— Review of the literature and existing documents enabled the development of proposed recommendations. This white paper pertains to performance evaluation of machine learning systems intended to be implemented for clinical patient testing. Further studies with real-world clinical data are encouraged to support these proposed recommendations. Performance evaluation of machine learning models is critical to verification and/or validation of in vitro diagnostic tests using machine learning intended for clinical practice.
Collapse
Affiliation(s)
- Matthew G Hanna
- From the Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York (Hanna, Sirintrapun)
| | - Niels H Olson
- The Defense Innovation Unit, Mountain View, California (Olson)
- The Department of Pathology, Uniformed Services University, Bethesda, Maryland (Olson)
| | - Mark Zarella
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota (Zarella, Seheult)
| | - Rajesh C Dash
- Department of Pathology, Duke University Health System, Durham, North Carolina (Dash)
| | - Markus D Herrmann
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston (Herrmann)
| | - Larissa V Furtado
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee (Furtado)
| | - Michelle N Stram
- The Department of Forensic Medicine, New York University, and Office of Chief Medical Examiner, New York (Stram)
| | | | - Lewis Hassell
- Department of Pathology, Oklahoma University Health Sciences Center, Oklahoma City (Hassell)
| | - Alex Mays
- The MITRE Corporation, McLean, Virginia (Mays)
| | - Liron Pantanowitz
- Department of Pathology & Clinical Labs, University of Michigan, Ann Arbor (Pantanowitz)
| | - Joseph S Sirintrapun
- From the Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York (Hanna, Sirintrapun)
| | | | - Anil Parwani
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus (Parwani, Lujan)
| | - Giovanni Lujan
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus (Parwani, Lujan)
| | - Andrew Evans
- Laboratory Medicine, Mackenzie Health, Toronto, Ontario, Canada (Evans)
| | - Eric F Glassy
- Affiliated Pathologists Medical Group, Rancho Dominguez, California (Glassy)
| | - Marilyn M Bui
- Departments of Pathology and Machine Learning, Moffitt Cancer Center, Tampa, Florida (Bui)
| | - Rajendra Singh
- Department of Dermatopathology, Summit Health, Summit Woodland Park, New Jersey (Singh)
| | - Rhona J Souers
- Department of Biostatistics, College of American Pathologists, Northfield, Illinois (Souers)
| | | | - Jansen N Seheult
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota (Zarella, Seheult)
| |
Collapse
|
15
|
Zhang K, Zhou HY, Baptista-Hon DT, Gao Y, Liu X, Oermann E, Xu S, Jin S, Zhang J, Sun Z, Yin Y, Razmi RM, Loupy A, Beck S, Qu J, Wu J. Concepts and applications of digital twins in healthcare and medicine. PATTERNS (NEW YORK, N.Y.) 2024; 5:101028. [PMID: 39233690 PMCID: PMC11368703 DOI: 10.1016/j.patter.2024.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The digital twin (DT) is a concept widely used in industry to create digital replicas of physical objects or systems. The dynamic, bi-directional link between the physical entity and its digital counterpart enables a real-time update of the digital entity. It can predict perturbations related to the physical object's function. The obvious applications of DTs in healthcare and medicine are extremely attractive prospects that have the potential to revolutionize patient diagnosis and treatment. However, challenges including technical obstacles, biological heterogeneity, and ethical considerations make it difficult to achieve the desired goal. Advances in multi-modal deep learning methods, embodied AI agents, and the metaverse may mitigate some difficulties. Here, we discuss the basic concepts underlying DTs, the requirements for implementing DTs in medicine, and their current and potential healthcare uses. We also provide our perspective on five hallmarks for a healthcare DT system to advance research in this field.
Collapse
Affiliation(s)
- Kang Zhang
- National Clinical Eye Research Center, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
- Institute for Clinical Data Science, Wenzhou Medical University, Wenzhou 325000, China
- Institute for AI in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
- Institute for Advanced Study on Eye Health and Diseases, Wenzhou Medical University, Wenzhou 325000, China
| | - Hong-Yu Zhou
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02138, USA
| | - Daniel T. Baptista-Hon
- Institute for AI in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
- School of Medicine, University of Dundee, DD1 9SY Dundee, UK
| | - Yuanxu Gao
- Department of Big Data and Biomedical AI, College of Future Technology, Peking University, Beijing 100000, China
| | - Xiaohong Liu
- Cancer Institute, University College London, WC1E 6BT London, UK
| | - Eric Oermann
- NYU Langone Medical Center, New York University, New York, NY 10016, USA
| | - Sheng Xu
- Department of Chemical Engineering and Nanoengineering, University of California San Diego, San Diego, CA 92093, USA
| | - Shengwei Jin
- Institute for Clinical Data Science, Wenzhou Medical University, Wenzhou 325000, China
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Jian Zhang
- National Clinical Eye Research Center, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhuo Sun
- Institute for Advanced Study on Eye Health and Diseases, Wenzhou Medical University, Wenzhou 325000, China
| | - Yun Yin
- Faculty of Business and Health Science Institute, City University of Macau, Macau 999078, China
| | | | - Alexandre Loupy
- Université Paris Cité, INSERM U970 PARCC, Paris Institute for Transplantation and Organ Regeneration, 75015 Paris, France
| | - Stephan Beck
- Cancer Institute, University College London, WC1E 6BT London, UK
| | - Jia Qu
- National Clinical Eye Research Center, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
- Institute for Clinical Data Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Joseph Wu
- Cardiovascular Research Institute, Stanford University, Standford, CA 94305, USA
| | - International Consortium of Digital Twins in Medicine
- National Clinical Eye Research Center, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
- Institute for Clinical Data Science, Wenzhou Medical University, Wenzhou 325000, China
- Institute for AI in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02138, USA
- Department of Big Data and Biomedical AI, College of Future Technology, Peking University, Beijing 100000, China
- Cancer Institute, University College London, WC1E 6BT London, UK
- NYU Langone Medical Center, New York University, New York, NY 10016, USA
- Department of Chemical Engineering and Nanoengineering, University of California San Diego, San Diego, CA 92093, USA
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325000, China
- Institute for Advanced Study on Eye Health and Diseases, Wenzhou Medical University, Wenzhou 325000, China
- Faculty of Business and Health Science Institute, City University of Macau, Macau 999078, China
- Zoi Capital, New York, NY 10013, USA
- Université Paris Cité, INSERM U970 PARCC, Paris Institute for Transplantation and Organ Regeneration, 75015 Paris, France
- Cardiovascular Research Institute, Stanford University, Standford, CA 94305, USA
- School of Medicine, University of Dundee, DD1 9SY Dundee, UK
| |
Collapse
|
16
|
Li W, Li Y, Gao S, Huang N, Kojima I, Kusama T, Ou Y, Iikubo M, Niu X. Integrating lipid metabolite analysis with MRI-based transformer and radiomics for early and late stage prediction of oral squamous cell carcinoma. BMC Cancer 2024; 24:795. [PMID: 38961418 PMCID: PMC11221018 DOI: 10.1186/s12885-024-12533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Oral Squamous Cell Carcinoma (OSCC) presents significant diagnostic challenges in its early and late stages. This study aims to utilize preoperative MRI and biochemical indicators of OSCC patients to predict the stage of tumors. METHODS This study involved 198 patients from two medical centers. A detailed analysis of contrast-enhanced T1-weighted (ceT1W) and T2-weighted (T2W) MRI were conducted, integrating these with biochemical indicators for a comprehensive evaluation. Initially, 42 clinical biochemical indicators were selected for consideration. Through univariate analysis and multivariate analysis, only those indicators with p-values less than 0.05 were retained for model development. To extract imaging features, machine learning algorithms in conjunction with Vision Transformer (ViT) techniques were utilized. These features were integrated with biochemical indicators for predictive modeling. The performance of model was evaluated using the Receiver Operating Characteristic (ROC) curve. RESULTS After rigorously screening biochemical indicators, four key markers were selected for the model: cholesterol, triglyceride, very low-density lipoprotein cholesterol and chloride. The model, developed using radiomics and deep learning for feature extraction from ceT1W and T2W images, showed a lower Area Under the Curve (AUC) of 0.85 in the validation cohort when using these imaging modalities alone. However, integrating these biochemical indicators improved the model's performance, increasing the validation cohort AUC to 0.87. CONCLUSION In this study, the performance of the model significantly improved following multimodal fusion, outperforming the single-modality approach. CLINICAL RELEVANCE STATEMENT This integration of radiomics, ViT models, and lipid metabolite analysis, presents a promising non-invasive technique for predicting the staging of OSCC.
Collapse
Affiliation(s)
- Wen Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yang Li
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Oral Diagnosis, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Shiyu Gao
- School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, China
| | - Nengwen Huang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Ikuho Kojima
- Department of Oral Diagnosis, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Taro Kusama
- Department of Oral Diagnosis, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yanjing Ou
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Masahiro Iikubo
- Department of Oral Diagnosis, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| | - Xuegang Niu
- Department of Neurosurgey, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Department of Neurosurgey, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
17
|
Bülow RD, Lan YC, Amann K, Boor P. [Artificial intelligence in kidney transplant pathology]. PATHOLOGIE (HEIDELBERG, GERMANY) 2024; 45:277-283. [PMID: 38598097 DOI: 10.1007/s00292-024-01324-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Artificial intelligence (AI) systems have showed promising results in digital pathology, including digital nephropathology and specifically also kidney transplant pathology. AIM Summarize the current state of research and limitations in the field of AI in kidney transplant pathology diagnostics and provide a future outlook. MATERIALS AND METHODS Literature search in PubMed and Web of Science using the search terms "deep learning", "transplant", and "kidney". Based on these results and studies cited in the identified literature, a selection was made of studies that have a histopathological focus and use AI to improve kidney transplant diagnostics. RESULTS AND CONCLUSION Many studies have already made important contributions, particularly to the automation of the quantification of some histopathological lesions in nephropathology. This likely can be extended to automatically quantify all relevant lesions for a kidney transplant, such as Banff lesions. Important limitations and challenges exist in the collection of representative data sets and the updates of Banff classification, making large-scale studies challenging. The already positive study results make future AI support in kidney transplant pathology appear likely.
Collapse
Affiliation(s)
- Roman David Bülow
- Institut für Pathologie, Sektion Nephropathologie, Universitätsklinikum RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Deutschland
| | - Yu-Chia Lan
- Institut für Pathologie, Sektion Nephropathologie, Universitätsklinikum RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Deutschland
| | - Kerstin Amann
- Abteilung Nephropathologie, Institut für Pathologie, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Deutschland
| | - Peter Boor
- Institut für Pathologie, Sektion Nephropathologie, Universitätsklinikum RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Deutschland.
- Medizinische Klinik II, Universitätsklinikum RWTH Aachen, Aachen, Deutschland.
| |
Collapse
|
18
|
Jaspers TJM, Boers TGW, Kusters CHJ, Jong MR, Jukema JB, de Groof AJ, Bergman JJ, de With PHN, van der Sommen F. Robustness evaluation of deep neural networks for endoscopic image analysis: Insights and strategies. Med Image Anal 2024; 94:103157. [PMID: 38574544 DOI: 10.1016/j.media.2024.103157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
Computer-aided detection and diagnosis systems (CADe/CADx) in endoscopy are commonly trained using high-quality imagery, which is not representative for the heterogeneous input typically encountered in clinical practice. In endoscopy, the image quality heavily relies on both the skills and experience of the endoscopist and the specifications of the system used for screening. Factors such as poor illumination, motion blur, and specific post-processing settings can significantly alter the quality and general appearance of these images. This so-called domain gap between the data used for developing the system and the data it encounters after deployment, and the impact it has on the performance of deep neural networks (DNNs) supportive endoscopic CAD systems remains largely unexplored. As many of such systems, for e.g. polyp detection, are already being rolled out in clinical practice, this poses severe patient risks in particularly community hospitals, where both the imaging equipment and experience are subject to considerable variation. Therefore, this study aims to evaluate the impact of this domain gap on the clinical performance of CADe/CADx for various endoscopic applications. For this, we leverage two publicly available data sets (KVASIR-SEG and GIANA) and two in-house data sets. We investigate the performance of commonly-used DNN architectures under synthetic, clinically calibrated image degradations and on a prospectively collected dataset including 342 endoscopic images of lower subjective quality. Additionally, we assess the influence of DNN architecture and complexity, data augmentation, and pretraining techniques for improved robustness. The results reveal a considerable decline in performance of 11.6% (±1.5) as compared to the reference, within the clinically calibrated boundaries of image degradations. Nevertheless, employing more advanced DNN architectures and self-supervised in-domain pre-training effectively mitigate this drop to 7.7% (±2.03). Additionally, these enhancements yield the highest performance on the manually collected test set including images with lower subjective quality. By comprehensively assessing the robustness of popular DNN architectures and training strategies across multiple datasets, this study provides valuable insights into their performance and limitations for endoscopic applications. The findings highlight the importance of including robustness evaluation when developing DNNs for endoscopy applications and propose strategies to mitigate performance loss.
Collapse
Affiliation(s)
- Tim J M Jaspers
- Department of Electrical Engineering, Video Coding & Architectures, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Tim G W Boers
- Department of Electrical Engineering, Video Coding & Architectures, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Carolus H J Kusters
- Department of Electrical Engineering, Video Coding & Architectures, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Martijn R Jong
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Jelmer B Jukema
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Albert J de Groof
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Jacques J Bergman
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter H N de With
- Department of Electrical Engineering, Video Coding & Architectures, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Fons van der Sommen
- Department of Electrical Engineering, Video Coding & Architectures, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
19
|
Wang W, Wang Y, Song D, Zhou Y, Luo R, Ying S, Yang L, Sun W, Cai J, Wang X, Bao Z, Zheng J, Zeng M, Gao Q, Wang X, Zhou J, Wang M, Shao G, Rao SX, Zhu K. A Transformer-Based microvascular invasion classifier enhances prognostic stratification in HCC following radiofrequency ablation. Liver Int 2024; 44:894-906. [PMID: 38263714 DOI: 10.1111/liv.15846] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/15/2023] [Accepted: 01/07/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND & AIMS We aimed to develop a Transformer-based deep learning (DL) network for prognostic stratification in hepatocellular carcinoma (HCC) patients undergoing RFA. METHODS A Swin Transformer DL network was trained to establish associations between magnetic resonance imaging (MRI) datasets and the ground truth of microvascular invasion (MVI) based on 696 surgical resection (SR) patients with solitary HCC ≤3 cm, and was validated in an external cohort (n = 180). The multiphase MRI-based DL risk outputs using an optimal threshold of .5 was employed as a MVI classifier for prognosis stratification in the RFA cohort (n = 180). RESULTS Over 90% of all enrolled patients exhibited hepatitis B virus infection. Liver cirrhosis was significantly more prevalent in the RFA cohort compared to the SR cohort (72.2% vs. 44.1%, p < .001). The MVI risk outputs exhibited good performance (area under the curve values = .938 and .883) for predicting MVI in the training and validation cohort, respectively. The RFA patients at high risk of MVI classified by the MVI classifier demonstrated significantly lower recurrence-free survival (RFS) and overall survival rates at 1, 3 and 5 years compared to those classified as low risk (p < .001). Multivariate cox regression modelling of a-fetoprotein > 20 ng/mL [hazard ratio (HR) = 1.53; 95% confidence interval (95% CI): 1.02-2.33, p = .047], high risk of MVI (HR = 3.76; 95% CI: 2.40-5.88, p < .001) and unfavourable tumour location (HR = 2.15; 95% CI: 1.40-3.29, p = .001) yielded a c-index of .731 (bootstrapped 95% CI: .667-.778) for evaluating RFS after RFA. Among the three risk factors, MVI was the most powerful predictor for intrahepatic distance recurrence. CONCLUSIONS The proposed MVI classifier can serve as a valuable imaging biomarker for prognostic stratification in early-stage HCC patients undergoing RFA.
Collapse
Affiliation(s)
- Wentao Wang
- Department of Radiology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | | | - Danjun Song
- Department of Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Yingting Zhou
- Department of Hepatic Oncology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Siqi Ying
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, China
| | - Li Yang
- Department of Radiology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Wei Sun
- Department of Radiology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiabin Cai
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhen Bao
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiaping Zheng
- Department of Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Mengsu Zeng
- Department of Radiology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Qiang Gao
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiaoying Wang
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Manning Wang
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, China
| | - Guoliang Shao
- Department of Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Sheng-Xiang Rao
- Department of Radiology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Kai Zhu
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Unger M, Kather JN. Deep learning in cancer genomics and histopathology. Genome Med 2024; 16:44. [PMID: 38539231 PMCID: PMC10976780 DOI: 10.1186/s13073-024-01315-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/13/2024] [Indexed: 07/08/2024] Open
Abstract
Histopathology and genomic profiling are cornerstones of precision oncology and are routinely obtained for patients with cancer. Traditionally, histopathology slides are manually reviewed by highly trained pathologists. Genomic data, on the other hand, is evaluated by engineered computational pipelines. In both applications, the advent of modern artificial intelligence methods, specifically machine learning (ML) and deep learning (DL), have opened up a fundamentally new way of extracting actionable insights from raw data, which could augment and potentially replace some aspects of traditional evaluation workflows. In this review, we summarize current and emerging applications of DL in histopathology and genomics, including basic diagnostic as well as advanced prognostic tasks. Based on a growing body of evidence, we suggest that DL could be the groundwork for a new kind of workflow in oncology and cancer research. However, we also point out that DL models can have biases and other flaws that users in healthcare and research need to know about, and we propose ways to address them.
Collapse
Affiliation(s)
- Michaela Unger
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany.
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany.
- Department of Medicine I, University Hospital Dresden, Dresden, Germany.
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
21
|
Liu P, Ji L, Ye F, Fu B. AdvMIL: Adversarial multiple instance learning for the survival analysis on whole-slide images. Med Image Anal 2024; 91:103020. [PMID: 37926034 DOI: 10.1016/j.media.2023.103020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/05/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
The survival analysis on histological whole-slide images (WSIs) is one of the most important means to estimate patient prognosis. Although many weakly-supervised deep learning models have been developed for gigapixel WSIs, their potential is generally restricted by classical survival analysis rules and fully-supervised learning requirements. As a result, these models provide patients only with a completely-certain point estimation of time-to-event, and they could only learn from the labeled WSI data currently at a small scale. To tackle these problems, we propose a novel adversarial multiple instance learning (AdvMIL) framework. This framework is based on adversarial time-to-event modeling, and integrates the multiple instance learning (MIL) that is much necessary for WSI representation learning. It is a plug-and-play one, so that most existing MIL-based end-to-end methods can be easily upgraded by applying this framework, gaining the improved abilities of survival distribution estimation and semi-supervised learning. Our extensive experiments show that AdvMIL not only could often bring performance improvement to mainstream WSI survival analysis methods at a relatively low computational cost, but also enables these methods to effectively utilize unlabeled data via semi-supervised learning. Moreover, it is observed that AdvMIL could help improving the robustness of models against patch occlusion and two representative image noises. The proposed AdvMIL framework could promote the research of survival analysis in computational pathology with its novel adversarial MIL paradigm.
Collapse
Affiliation(s)
- Pei Liu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Xiyuan Ave, Chengdu, 611731, Sichuan, China.
| | - Luping Ji
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Xiyuan Ave, Chengdu, 611731, Sichuan, China.
| | - Feng Ye
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| | - Bo Fu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Xiyuan Ave, Chengdu, 611731, Sichuan, China.
| |
Collapse
|
22
|
Vafaei Sadr A, Bülow R, von Stillfried S, Schmitz NEJ, Pilva P, Hölscher DL, Ha PP, Schweiker M, Boor P. Operational greenhouse-gas emissions of deep learning in digital pathology: a modelling study. Lancet Digit Health 2024; 6:e58-e69. [PMID: 37996339 PMCID: PMC10728828 DOI: 10.1016/s2589-7500(23)00219-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Deep learning is a promising way to improve health care. Image-processing medical disciplines, such as pathology, are expected to be transformed by deep learning. The first clinically applicable deep-learning diagnostic support tools are already available in cancer pathology, and their number is increasing. However, data on the environmental sustainability of these tools are scarce. We aimed to conduct an environmental-sustainability analysis of a theoretical implementation of deep learning in patient-care pathology. METHODS For this modelling study, we first assembled and calculated relevant data and parameters of a digital-pathology workflow. Data were breast and prostate specimens from the university clinic at the Institute of Pathology of the Rheinisch-Westfälische Technische Hochschule Aachen (Aachen, Germany), for which commercially available deep learning was already available. Only specimens collected between Jan 1 and Dec 31, 2019 were used, to omit potential biases due to the COVID-19 pandemic. Our final selection was based on 2 representative weeks outside holidays, covering different types of specimens. To calculate carbon dioxide (CO2) or CO2 equivalent (CO2 eq) emissions of deep learning in pathology, we gathered relevant data for exact numbers and sizes of whole-slide images (WSIs), which were generated by scanning histopathology samples of prostate and breast specimens. We also evaluated different data input scenarios (including all slide tiles, only tiles containing tissue, or only tiles containing regions of interest). To convert estimated energy consumption from kWh to CO2 eq, we used the internet protocol address of the computational server and the Electricity Maps database to obtain information on the sources of the local electricity grid (ie, renewable vs non-renewable), and estimated the number of trees and proportion of the local and world's forests needed to sequester the CO2 eq emissions. We calculated the computational requirements and CO2 eq emissions of 30 deep-learning models that varied in task and size. The first scenario represented the use of one commercially available deep-learning model for one task in one case (1-task), the second scenario considered two deep-learning models for two tasks per case (2-task), the third scenario represented a future, potentially automated workflow that could handle 7 tasks per case (7-task), and the fourth scenario represented the use of a single potential, large, computer-vision model that could conduct multiple tasks (multitask). We also compared the performance (ie, accuracy) and CO2 eq emissions of different deep-learning models for the classification of renal cell carcinoma on WSIs, also from Rheinisch-Westfälische Technische Hochschule Aachen. We also tested other approaches to reducing CO2 eq emissions, including model pruning and an alternative method for histopathology analysis (pathomics). FINDINGS The pathology database contained 35 552 specimens (237 179 slides), 6420 of which were prostate specimens (10 115 slides) and 11 801 of which were breast specimens (19 763 slides). We selected and subsequently digitised 140 slides from eight breast-cancer cases and 223 slides from five prostate-cancer cases. Applying large deep-learning models on all WSI tiles of prostate and breast pathology cases would result in yearly CO2 eq emissions of 7·65 metric tons (t; 95% CI 7·62-7·68) with the use of a single deep-learning model per case; yearly CO2 eq emissions were up to 100·56 t (100·21-100·99) with the use of seven deep-learning models per case. CO2 eq emissions for different deep-learning model scenarios, data inputs, and deep-learning model sizes for all slides varied from 3·61 t (3·59-3·63) to 2795·30 t (1177·51-6482·13. For the estimated number of overall pathology cases worldwide, the yearly CO2 eq emissions varied, reaching up to 16 megatons (Mt) of CO2 eq, requiring up to 86 590 km2 (0·22%) of world forest to sequester the CO2 eq emissions. Use of the 7-task scenario and small deep-learning models on slides containing tissue only could substantially reduce CO2 eq emissions worldwide by up to 141 times (0·1 Mt, 95% CI 0·1-0·1). Considering the local environment in Aachen, Germany, the maximum CO2 eq emission from the use of deep learning in digital pathology only would require 32·8% (95% CI 13·8-76·6) of the local forest to sequester the CO2 eq emissions. A single pathomics run on a tissue could provide information that was comparable to or even better than the output of multitask deep-learning models, but with 147 times reduced CO2 eq emissions. INTERPRETATION Our findings suggest that widespread use of deep learning in pathology might have considerable global-warming potential. The medical community, policy decision makers, and the public should be aware of this potential and encourage the use of CO2 eq emissions reduction strategies where possible. FUNDING German Research Foundation, European Research Council, German Federal Ministry of Education and Research, Health, Economic Affairs and Climate Action, and the Innovation Fund of the Federal Joint Committee.
Collapse
Affiliation(s)
- Alireza Vafaei Sadr
- Institute of Pathology, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Roman Bülow
- Institute of Pathology, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Saskia von Stillfried
- Institute of Pathology, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Nikolas E J Schmitz
- Institute of Pathology, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Pourya Pilva
- Institute of Pathology, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - David L Hölscher
- Institute of Pathology, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Peiman Pilehchi Ha
- Healthy Living Spaces Lab, Institute for Occupational, Social and Environmental Medicine, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Marcel Schweiker
- Healthy Living Spaces Lab, Institute for Occupational, Social and Environmental Medicine, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Department of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany.
| |
Collapse
|
23
|
Solovev IA. [Artificial intelligence in pathological anatomy]. Arkh Patol 2024; 86:65-71. [PMID: 38591909 DOI: 10.17116/patol20248602165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The review presents key concepts and global developments in the field of artificial intelligence used in pathological anatomy. The work examines two types of artificial intelligence (AI): weak and strong ones. A review of experimental algorithms using both deep machine learning and computer vision technologies to work with WSI images of preparations, diagnose and make a prognosis for various malignant neoplasms is carried out. It has been established that weak artificial intelligence at this stage of development of computer (digital) pathological anatomy shows significantly better results in speeding up and refining diagnostic procedures than strong artificial intelligence having signs of general intelligence. The article also discusses three options for the further development of AI assistants for pathologists based on the technologies of large language models (strong AI) ChatGPT (PathAsst), Flan-PaLM2 and LIMA. As a result of the analysis of the literature, key problems in the field were identified: the equipment of pathology institutions, the lack of experts in training neural networks, the lack of strict criteria for the clinical viability of AI diagnostic technologies.
Collapse
Affiliation(s)
- I A Solovev
- Pitirim Sorokin Syktyvkar State University, Syktyvkar, Russia
| |
Collapse
|
24
|
王 星, 李 茜, 马 彩, 张 铄, 林 钰, 李 建, 刘 澄. [Artificial intelligence in wearable electrocardiogram monitoring]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:1084-1092. [PMID: 38151930 PMCID: PMC10753313 DOI: 10.7507/1001-5515.202301032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/31/2023] [Indexed: 12/29/2023]
Abstract
Electrocardiogram (ECG) monitoring owns important clinical value in diagnosis, prevention and rehabilitation of cardiovascular disease (CVD). With the rapid development of Internet of Things (IoT), big data, cloud computing, artificial intelligence (AI) and other advanced technologies, wearable ECG is playing an increasingly important role. With the aging process of the population, it is more and more urgent to upgrade the diagnostic mode of CVD. Using AI technology to assist the clinical analysis of long-term ECGs, and thus to improve the ability of early detection and prediction of CVD has become an important direction. Intelligent wearable ECG monitoring needs the collaboration between edge and cloud computing. Meanwhile, the clarity of medical scene is conducive for the precise implementation of wearable ECG monitoring. This paper first summarized the progress of AI-related ECG studies and the current technical orientation. Then three cases were depicted to illustrate how the AI in wearable ECG cooperate with the clinic. Finally, we demonstrated the two core issues-the reliability and worth of AI-related ECG technology and prospected the future opportunities and challenges.
Collapse
Affiliation(s)
- 星尧 王
- 东南大学 仪器科学与工程学院(南京 210096)School of Instrument Science and Engineering, Southeast University, Nanjing 210096, P. R. China
- 东南大学 生物电子学国家重点实验室(南京 210096)State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, P. R. China
| | - 茜 李
- 东南大学 仪器科学与工程学院(南京 210096)School of Instrument Science and Engineering, Southeast University, Nanjing 210096, P. R. China
- 东南大学 生物电子学国家重点实验室(南京 210096)State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, P. R. China
| | - 彩云 马
- 东南大学 仪器科学与工程学院(南京 210096)School of Instrument Science and Engineering, Southeast University, Nanjing 210096, P. R. China
- 东南大学 生物电子学国家重点实验室(南京 210096)State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, P. R. China
| | - 铄 张
- 东南大学 仪器科学与工程学院(南京 210096)School of Instrument Science and Engineering, Southeast University, Nanjing 210096, P. R. China
- 东南大学 生物电子学国家重点实验室(南京 210096)State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, P. R. China
| | - 钰洁 林
- 东南大学 仪器科学与工程学院(南京 210096)School of Instrument Science and Engineering, Southeast University, Nanjing 210096, P. R. China
- 东南大学 生物电子学国家重点实验室(南京 210096)State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, P. R. China
| | - 建清 李
- 东南大学 仪器科学与工程学院(南京 210096)School of Instrument Science and Engineering, Southeast University, Nanjing 210096, P. R. China
- 东南大学 生物电子学国家重点实验室(南京 210096)State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, P. R. China
| | - 澄玉 刘
- 东南大学 仪器科学与工程学院(南京 210096)School of Instrument Science and Engineering, Southeast University, Nanjing 210096, P. R. China
- 东南大学 生物电子学国家重点实验室(南京 210096)State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
25
|
Chauveau B, Merville P. Segment Anything by Meta as a foundation model for image segmentation: a new era for histopathological images. Pathology 2023; 55:1017-1020. [PMID: 37813761 DOI: 10.1016/j.pathol.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/16/2023] [Accepted: 09/17/2023] [Indexed: 10/11/2023]
Affiliation(s)
- Bertrand Chauveau
- CHU de Bordeaux, Service de Pathologie, Hôpital Pellegrin, Bordeaux, France; ImmunoConcEpT, CNRS, Université Bordeaux, UMR 5164, Bordeaux, France.
| | - Pierre Merville
- ImmunoConcEpT, CNRS, Université Bordeaux, UMR 5164, Bordeaux, France; CHU de Bordeaux, Service de Néphrologie-Transplantation-Dialyse-Aphéréses, Hôpital Pellegrin, Bordeaux, France
| |
Collapse
|
26
|
Waqas A, Bui MM, Glassy EF, El Naqa I, Borkowski P, Borkowski AA, Rasool G. Revolutionizing Digital Pathology With the Power of Generative Artificial Intelligence and Foundation Models. J Transl Med 2023; 103:100255. [PMID: 37757969 DOI: 10.1016/j.labinv.2023.100255] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Digital pathology has transformed the traditional pathology practice of analyzing tissue under a microscope into a computer vision workflow. Whole-slide imaging allows pathologists to view and analyze microscopic images on a computer monitor, enabling computational pathology. By leveraging artificial intelligence (AI) and machine learning (ML), computational pathology has emerged as a promising field in recent years. Recently, task-specific AI/ML (eg, convolutional neural networks) has risen to the forefront, achieving above-human performance in many image-processing and computer vision tasks. The performance of task-specific AI/ML models depends on the availability of many annotated training datasets, which presents a rate-limiting factor for AI/ML development in pathology. Task-specific AI/ML models cannot benefit from multimodal data and lack generalization, eg, the AI models often struggle to generalize to new datasets or unseen variations in image acquisition, staining techniques, or tissue types. The 2020s are witnessing the rise of foundation models and generative AI. A foundation model is a large AI model trained using sizable data, which is later adapted (or fine-tuned) to perform different tasks using a modest amount of task-specific annotated data. These AI models provide in-context learning, can self-correct mistakes, and promptly adjust to user feedback. In this review, we provide a brief overview of recent advances in computational pathology enabled by task-specific AI, their challenges and limitations, and then introduce various foundation models. We propose to create a pathology-specific generative AI based on multimodal foundation models and present its potentially transformative role in digital pathology. We describe different use cases, delineating how it could serve as an expert companion of pathologists and help them efficiently and objectively perform routine laboratory tasks, including quantifying image analysis, generating pathology reports, diagnosis, and prognosis. We also outline the potential role that foundation models and generative AI can play in standardizing the pathology laboratory workflow, education, and training.
Collapse
Affiliation(s)
- Asim Waqas
- Department of Machine Learning, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida; Department of Electrical Engineering, University of South Florida, Tampa, Florida.
| | - Marilyn M Bui
- Department of Machine Learning, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida; Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida; University of South Florida, Morsani College of Medicine, Tampa, Florida
| | - Eric F Glassy
- Affiliated Pathologists Medical Group, Inc., Rancho Dominguez, California
| | - Issam El Naqa
- Department of Machine Learning, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Piotr Borkowski
- Quest Diagnostics/Ameripath, Tampa, Florida; Center of Excellence for Digital and AI-Empowered Pathology, Quest Diagnostics, Tampa, Florida
| | - Andrew A Borkowski
- University of South Florida, Morsani College of Medicine, Tampa, Florida; James A. Haley Veterans' Hospital, Tampa, Florida; National Artificial Intelligence Institute, Washington, District of Columbia
| | - Ghulam Rasool
- Department of Machine Learning, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida; Department of Electrical Engineering, University of South Florida, Tampa, Florida; University of South Florida, Morsani College of Medicine, Tampa, Florida; Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
27
|
Wagner SJ, Reisenbüchler D, West NP, Niehues JM, Zhu J, Foersch S, Veldhuizen GP, Quirke P, Grabsch HI, van den Brandt PA, Hutchins GGA, Richman SD, Yuan T, Langer R, Jenniskens JCA, Offermans K, Mueller W, Gray R, Gruber SB, Greenson JK, Rennert G, Bonner JD, Schmolze D, Jonnagaddala J, Hawkins NJ, Ward RL, Morton D, Seymour M, Magill L, Nowak M, Hay J, Koelzer VH, Church DN, Matek C, Geppert C, Peng C, Zhi C, Ouyang X, James JA, Loughrey MB, Salto-Tellez M, Brenner H, Hoffmeister M, Truhn D, Schnabel JA, Boxberg M, Peng T, Kather JN. Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study. Cancer Cell 2023; 41:1650-1661.e4. [PMID: 37652006 PMCID: PMC10507381 DOI: 10.1016/j.ccell.2023.08.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/18/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
Deep learning (DL) can accelerate the prediction of prognostic biomarkers from routine pathology slides in colorectal cancer (CRC). However, current approaches rely on convolutional neural networks (CNNs) and have mostly been validated on small patient cohorts. Here, we develop a new transformer-based pipeline for end-to-end biomarker prediction from pathology slides by combining a pre-trained transformer encoder with a transformer network for patch aggregation. Our transformer-based approach substantially improves the performance, generalizability, data efficiency, and interpretability as compared with current state-of-the-art algorithms. After training and evaluating on a large multicenter cohort of over 13,000 patients from 16 colorectal cancer cohorts, we achieve a sensitivity of 0.99 with a negative predictive value of over 0.99 for prediction of microsatellite instability (MSI) on surgical resection specimens. We demonstrate that resection specimen-only training reaches clinical-grade performance on endoscopic biopsy tissue, solving a long-standing diagnostic problem.
Collapse
Affiliation(s)
- Sophia J Wagner
- Helmholtz Munich - German Research Center for Environment and Health, Munich, Germany; School of Computation, Information and Technology, Technical University of Munich, Munich, Germany; Else Kroener Fresenius Center for Digital Health (EFFZ), Technical University Dresden, Dresden, Germany
| | - Daniel Reisenbüchler
- Helmholtz Munich - German Research Center for Environment and Health, Munich, Germany
| | - Nicholas P West
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Jan Moritz Niehues
- Else Kroener Fresenius Center for Digital Health (EFFZ), Technical University Dresden, Dresden, Germany
| | - Jiefu Zhu
- Else Kroener Fresenius Center for Digital Health (EFFZ), Technical University Dresden, Dresden, Germany
| | - Sebastian Foersch
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | | | - Philip Quirke
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Heike I Grabsch
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK; Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Piet A van den Brandt
- Department of Epidemiology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Gordon G A Hutchins
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Susan D Richman
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Tanwei Yuan
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rupert Langer
- Institute of Pathology und Molecular Pathology, Johannes Kepler University Hospital Linz, Linz, Österreich
| | - Josien C A Jenniskens
- Department of Epidemiology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Kelly Offermans
- Department of Epidemiology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | | | - Richard Gray
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Stephen B Gruber
- Center for Precision Medicine and Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Joel K Greenson
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Gad Rennert
- Department of Community Medicine & Epidemiology, Lady Davis Carmel Medical Center, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Steve and Cindy Rasmussen Institute for Genomic Medicine, Lady Davis Carmel Medical Center and Technion Faculty of Medicine, Clalit National Cancer Control Center, Haifa, Israel
| | - Joseph D Bonner
- Department of Community Medicine & Epidemiology, Lady Davis Carmel Medical Center, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Daniel Schmolze
- Center for Precision Medicine and Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Jitendra Jonnagaddala
- School of Population Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Nicholas J Hawkins
- School of Medical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Robyn L Ward
- School of Medical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Dion Morton
- University Hospital Birmingham, Birmingham, UK
| | | | - Laura Magill
- University of Birmingham Clinical Trials Unit, Birmingham, UK
| | - Marta Nowak
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jennifer Hay
- Glasgow Tissue Research Facility, University of Glasgow, Queen Elizabeth University Hospital, Glasgow, UK
| | - Viktor H Koelzer
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Oncology, University of Oxford, Oxford, UK; Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, UK
| | - David N Church
- Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, UK; Oxford NIHR Comprehensive Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Christian Matek
- Helmholtz Munich - German Research Center for Environment and Health, Munich, Germany; Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nuremberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC), University Hospital Erlangen, FAU Erlangen-Nuremberg, Erlangen, Germany
| | - Carol Geppert
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nuremberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC), University Hospital Erlangen, FAU Erlangen-Nuremberg, Erlangen, Germany
| | - Chaolong Peng
- Medical School, Jianggang Shan University, Jiangxi, China
| | - Cheng Zhi
- Department of Pathology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoming Ouyang
- Department of Pathology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jacqueline A James
- Precision Medicine Centre of Excellence, Health Sciences Building, The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK; Regional Molecular Diagnostic Service, Belfast Health and Social Care Trust, Belfast, UK; The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Maurice B Loughrey
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK; Department of Cellular Pathology, Belfast Health and Social Care Trust, Belfast, UK; Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Manuel Salto-Tellez
- Precision Medicine Centre of Excellence, Health Sciences Building, The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK; Regional Molecular Diagnostic Service, Belfast Health and Social Care Trust, Belfast, UK; Integrated Pathology Unit, Institute for Cancer Research and Royal Marsden Hospital, London, UK
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Julia A Schnabel
- Helmholtz Munich - German Research Center for Environment and Health, Munich, Germany; School of Computation, Information and Technology, Technical University of Munich, Munich, Germany; School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Melanie Boxberg
- Institute of Pathology, Technical University Munich, Munich, Germany; Institute of Pathology Munich-North, Munich, Germany
| | - Tingying Peng
- Helmholtz Munich - German Research Center for Environment and Health, Munich, Germany.
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health (EFFZ), Technical University Dresden, Dresden, Germany; Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK; Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg.
| |
Collapse
|
28
|
Veldhuizen GP, Röcken C, Behrens HM, Cifci D, Muti HS, Yoshikawa T, Arai T, Oshima T, Tan P, Ebert MP, Pearson AT, Calderaro J, Grabsch HI, Kather JN. Deep learning-based subtyping of gastric cancer histology predicts clinical outcome: a multi-institutional retrospective study. Gastric Cancer 2023; 26:708-720. [PMID: 37269416 PMCID: PMC10361890 DOI: 10.1007/s10120-023-01398-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/09/2023] [Indexed: 06/05/2023]
Abstract
INTRODUCTION The Laurén classification is widely used for Gastric Cancer (GC) histology subtyping. However, this classification is prone to interobserver variability and its prognostic value remains controversial. Deep Learning (DL)-based assessment of hematoxylin and eosin (H&E) stained slides is a potentially useful tool to provide an additional layer of clinically relevant information, but has not been systematically assessed in GC. OBJECTIVE We aimed to train, test and externally validate a deep learning-based classifier for GC histology subtyping using routine H&E stained tissue sections from gastric adenocarcinomas and to assess its potential prognostic utility. METHODS We trained a binary classifier on intestinal and diffuse type GC whole slide images for a subset of the TCGA cohort (N = 166) using attention-based multiple instance learning. The ground truth of 166 GC was obtained by two expert pathologists. We deployed the model on two external GC patient cohorts, one from Europe (N = 322) and one from Japan (N = 243). We assessed classification performance using the Area Under the Receiver Operating Characteristic Curve (AUROC) and prognostic value (overall, cancer specific and disease free survival) of the DL-based classifier with uni- and multivariate Cox proportional hazard models and Kaplan-Meier curves with log-rank test statistics. RESULTS Internal validation using the TCGA GC cohort using five-fold cross-validation achieved a mean AUROC of 0.93 ± 0.07. External validation showed that the DL-based classifier can better stratify GC patients' 5-year survival compared to pathologist-based Laurén classification for all survival endpoints, despite frequently divergent model-pathologist classifications. Univariate overall survival Hazard Ratios (HRs) of pathologist-based Laurén classification (diffuse type versus intestinal type) were 1.14 (95% Confidence Interval (CI) 0.66-1.44, p-value = 0.51) and 1.23 (95% CI 0.96-1.43, p-value = 0.09) in the Japanese and European cohorts, respectively. DL-based histology classification resulted in HR of 1.46 (95% CI 1.18-1.65, p-value < 0.005) and 1.41 (95% CI 1.20-1.57, p-value < 0.005), in the Japanese and European cohorts, respectively. In diffuse type GC (as defined by the pathologist), classifying patients using the DL diffuse and intestinal classifications provided a superior survival stratification, and demonstrated statistically significant survival stratification when combined with pathologist classification for both the Asian (overall survival log-rank test p-value < 0.005, HR 1.43 (95% CI 1.05-1.66, p-value = 0.03) and European cohorts (overall survival log-rank test p-value < 0.005, HR 1.56 (95% CI 1.16-1.76, p-value < 0.005)). CONCLUSION Our study shows that gastric adenocarcinoma subtyping using pathologist's Laurén classification as ground truth can be performed using current state of the art DL techniques. Patient survival stratification seems to be better by DL-based histology typing compared with expert pathologist histology typing. DL-based GC histology typing has potential as an aid in subtyping. Further investigations are warranted to fully understand the underlying biological mechanisms for the improved survival stratification despite apparent imperfect classification by the DL algorithm.
Collapse
Affiliation(s)
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts University, Kiel, Germany
| | | | - Didem Cifci
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Hannah Sophie Muti
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
- Department of Visceral, Thoracic and Vascular Surgery, Technical University Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Takaki Yoshikawa
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Takashi Oshima
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Patrick Tan
- Duke-NUS Medical School, Singapore, Singapore
| | - Matthias P Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center, Mannheim, Germany
- Clinical Cooperation Unit Healthy Metabolism, Center for Preventive Medicine and Digital Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alexander T Pearson
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, USA
| | - Julien Calderaro
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France
- Department of Pathology, Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Créteil, France
| | - Heike I Grabsch
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany.
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK.
- Department of Medicine I, University Hospital Dresden, Dresden, Germany.
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
29
|
Müller-Franzes G, Müller-Franzes F, Huck L, Raaff V, Kemmer E, Khader F, Arasteh ST, Lemainque T, Kather JN, Nebelung S, Kuhl C, Truhn D. Fibroglandular tissue segmentation in breast MRI using vision transformers: a multi-institutional evaluation. Sci Rep 2023; 13:14207. [PMID: 37648728 PMCID: PMC10468506 DOI: 10.1038/s41598-023-41331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
Accurate and automatic segmentation of fibroglandular tissue in breast MRI screening is essential for the quantification of breast density and background parenchymal enhancement. In this retrospective study, we developed and evaluated a transformer-based neural network for breast segmentation (TraBS) in multi-institutional MRI data, and compared its performance to the well established convolutional neural network nnUNet. TraBS and nnUNet were trained and tested on 200 internal and 40 external breast MRI examinations using manual segmentations generated by experienced human readers. Segmentation performance was assessed in terms of the Dice score and the average symmetric surface distance. The Dice score for nnUNet was lower than for TraBS on the internal testset (0.909 ± 0.069 versus 0.916 ± 0.067, P < 0.001) and on the external testset (0.824 ± 0.144 versus 0.864 ± 0.081, P = 0.004). Moreover, the average symmetric surface distance was higher (= worse) for nnUNet than for TraBS on the internal (0.657 ± 2.856 versus 0.548 ± 2.195, P = 0.001) and on the external testset (0.727 ± 0.620 versus 0.584 ± 0.413, P = 0.03). Our study demonstrates that transformer-based networks improve the quality of fibroglandular tissue segmentation in breast MRI compared to convolutional-based models like nnUNet. These findings might help to enhance the accuracy of breast density and parenchymal enhancement quantification in breast MRI screening.
Collapse
Affiliation(s)
- Gustav Müller-Franzes
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH, Aachen, Germany
| | - Fritz Müller-Franzes
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH, Aachen, Germany
| | - Luisa Huck
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH, Aachen, Germany
| | - Vanessa Raaff
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH, Aachen, Germany
| | - Eva Kemmer
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH, Aachen, Germany
| | - Firas Khader
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH, Aachen, Germany
| | - Soroosh Tayebi Arasteh
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH, Aachen, Germany
| | - Teresa Lemainque
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH, Aachen, Germany
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Technical University, Dresden, Germany
- Department of Medicine III, University Hospital RWTH, Aachen, Germany
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH, Aachen, Germany
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH, Aachen, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH, Aachen, Germany.
| |
Collapse
|
30
|
Joel MZ, Avesta A, Yang DX, Zhou JG, Omuro A, Herbst RS, Krumholz HM, Aneja S. Comparing Detection Schemes for Adversarial Images against Deep Learning Models for Cancer Imaging. Cancers (Basel) 2023; 15:1548. [PMID: 36900339 PMCID: PMC10000732 DOI: 10.3390/cancers15051548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Deep learning (DL) models have demonstrated state-of-the-art performance in the classification of diagnostic imaging in oncology. However, DL models for medical images can be compromised by adversarial images, where pixel values of input images are manipulated to deceive the DL model. To address this limitation, our study investigates the detectability of adversarial images in oncology using multiple detection schemes. Experiments were conducted on thoracic computed tomography (CT) scans, mammography, and brain magnetic resonance imaging (MRI). For each dataset we trained a convolutional neural network to classify the presence or absence of malignancy. We trained five DL and machine learning (ML)-based detection models and tested their performance in detecting adversarial images. Adversarial images generated using projected gradient descent (PGD) with a perturbation size of 0.004 were detected by the ResNet detection model with an accuracy of 100% for CT, 100% for mammogram, and 90.0% for MRI. Overall, adversarial images were detected with high accuracy in settings where adversarial perturbation was above set thresholds. Adversarial detection should be considered alongside adversarial training as a defense technique to protect DL models for cancer imaging classification from the threat of adversarial images.
Collapse
Affiliation(s)
- Marina Z. Joel
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Arman Avesta
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Daniel X. Yang
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jian-Ge Zhou
- Department of Chemistry, Physics and Atmospheric Science, Jackson State University, Jackson, MS 39217, USA
| | - Antonio Omuro
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Roy S. Herbst
- Department of Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Harlan M. Krumholz
- Department of Medicine, Yale School of Medicine, New Haven, CT 06510, USA
- Center for Outcomes Research and Evaluation (CORE), Yale School of Medicine, New Haven, CT 06510, USA
| | - Sanjay Aneja
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06510, USA
- Center for Outcomes Research and Evaluation (CORE), Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|