1
|
Claverie JM, Legendre M, Rigou S, Abergel C. Refining the taxonomy of pithovirus-related giant DNA viruses within the order Pimascovirales. Arch Virol 2025; 170:111. [PMID: 40268777 DOI: 10.1007/s00705-025-06297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
The first member of the family Pithoviridae (Pithovirus sibericum) was isolated from ancient Siberian permafrost and characterized in 2014. Since then, many relatives have been isolated, characterized, and classified as members of the genera Alphapithovirus, Alphacedratvirus, and Alphaorpheovirus. In addition, one complete circular genome sequence was assembled from metagenomic data (hydrivirus). All of these viruses form distinctive giant elongated ovoid particles, up to 2 µm in length, but they differ significantly in the size of their genome, their nucleotide composition, and their gene content. Based on their shared ovoid virion shape, common replication strategy, and core gene similarity, we recently proposed to update their taxonomic status by classifying them in three distinct families (Pithoviridae, Orpheoviridae, and Hydriviridae) within a new suborder, the Ocovirineae, to separate them clearly from the other more distant families (Marseilleviridae, Ascoviridae, Iridoviridae) of the order Pimascovirales. This new taxonomy, validated by the last ICTV Ratification vote held in March 2025, extends the previous partition from three clades to four (to include hydrivirus) while keeping the genera Alphacedratvirus and Alphapithovirus in the same family, Pithoviridae (but split into two subfamilies), due to their much greater similarity to each other than to orpheovirus and hydrivirus.
Collapse
Affiliation(s)
- Jean-Michel Claverie
- Information Génomique & Structurale, UMR7256, IMM, IM2B, IOM, CNRS & Aix-Marseille Université, Marseille, France.
| | - Matthieu Legendre
- Information Génomique & Structurale, UMR7256, IMM, IM2B, IOM, CNRS & Aix-Marseille Université, Marseille, France
| | - Sofia Rigou
- Information Génomique & Structurale, UMR7256, IMM, IM2B, IOM, CNRS & Aix-Marseille Université, Marseille, France
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Chantal Abergel
- Information Génomique & Structurale, UMR7256, IMM, IM2B, IOM, CNRS & Aix-Marseille Université, Marseille, France
| |
Collapse
|
2
|
Henriques LR, Botelho BBF, Carlson RM, Carvalho JVRP, Oliveira EG, Agarkova IV, Van Etten JL, Dunigan DD, Rodrigues RAL. Revealing the hidden diversity of Chlorella heliozoae-infecting giant viruses. NPJ VIRUSES 2025; 3:12. [PMID: 40295838 PMCID: PMC11847008 DOI: 10.1038/s44298-025-00088-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/07/2025] [Indexed: 04/30/2025]
Abstract
A new level of viral complexity has emerged from the isolation of green algae-infecting chloroviruses from diverse aquatic environments around the world over the past few decades. This study focuses on describing and comparing the genomic features of gammachloroviruses, previously referred to as SAG-viruses. We present 24 novel isolates capable of forming plaques on lawns of Chlorella heliozoae SAG 3.83, including the first giant virus isolated from Greenland. Together with 13 previous isolates, these new viruses form a robust dataset that we used to investigate the genomic landscape and to test whether environmental conditions influence the species diversity of gammachloroviruses. Genome sizes range from 283 kbp to 385 kbp, with one new isolate having the smallest genome found in the genus Chlorovirus. Based on phylogenomics and global genome identity analysis, we defined 10 species of "Gammachlorovirus", half of which are represented by a single isolate. We observed a high level of genome synteny, and the tRNA islets maintain a distinct interspecific pattern, although some notable variations are evident. Our analysis reveals an open pan-genome composed of 681 COGs, more than 30% of which consist of uncharacterized genes, highlighting significant innovative genetic potential for these viruses. Our results suggest that the subgenus "Gammachlorovirus" exhibits the greatest genetic diversity among chloroviruses, with variability that is independent of geographic location. Overall, these findings underscore the considerable diversity within these ten newly defined species and the importance of isolating and characterizing chloroviruses from new locations worldwide to enhance our understanding of the ecology and evolution of this group of giant algal viruses.
Collapse
Affiliation(s)
- Lethícia R Henriques
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
- Núcleo de Apoio Técnico ao Ensino, Pesquisa e Extensão, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brasil
| | - Bruna B F Botelho
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Roger M Carlson
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE, USA
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
| | - João Victor R P Carvalho
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Ellen G Oliveira
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Irina V Agarkova
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE, USA
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
| | - James L Van Etten
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE, USA
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
| | - David D Dunigan
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE, USA.
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA.
| | - Rodrigo A L Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.
| |
Collapse
|
3
|
Mackelprang R, Barbato RA, Ramey AM, Schütte UME, Waldrop MP. Cooling perspectives on the risk of pathogenic viruses from thawing permafrost. mSystems 2025; 10:e0004224. [PMID: 39772968 PMCID: PMC11834396 DOI: 10.1128/msystems.00042-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Climate change is inducing wide-scale permafrost thaw in the Arctic and subarctic, triggering concerns that long-dormant pathogens could reemerge from the thawing ground and initiate epidemics or pandemics. Viruses, as opposed to bacterial pathogens, garner particular interest because outbreaks cannot be controlled with antibiotics, though the effects can be mitigated by vaccines and newer antiviral drugs. To evaluate the potential hazards posed by viral pathogens emerging from thawing permafrost, we review information from a diverse range of disciplines. This includes efforts to recover infectious virus from human remains, studies on disease occurrence in polar animal populations, investigations into viral persistence and infectivity in permafrost, and assessments of human exposure to the enormous viral diversity present in the environment. Based on currently available knowledge, we conclude that the risk posed by viruses from thawing permafrost is no greater than viruses in other environments such as temperate soils and aquatic systems.
Collapse
Affiliation(s)
| | - Robyn A. Barbato
- U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, USA
| | - Andrew M. Ramey
- U.S. Geological Survey Alaska Science Center, Anchorage, Alaska, USA
| | - Ursel M. E. Schütte
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Mark P. Waldrop
- U.S. Geological Survey, Geology, Minerals, Energy, and Geophysics Science Center, Moffett Field, Moffett Field, California, USA
| |
Collapse
|
4
|
Lamb DC, Goldstone JV, Belhaouari DB, Andréani J, Farooqi A, Allen MJ, Kelly SL, La Scola B, Stegeman JJ. Cytochrome b5 occurrence in giant and other viruses belonging to the phylum Nucleocytoviricota. NPJ VIRUSES 2025; 3:8. [PMID: 40295896 PMCID: PMC11814380 DOI: 10.1038/s44298-025-00091-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/22/2025] [Indexed: 04/30/2025]
Abstract
Cytochrome b5 is an electron transport protein found in eukaryotes and bacteria, and plays roles in energy production, lipid biosynthesis and cytochrome P450 biochemistry. Here we report that genes for cytochrome b5 occur broadly among viruses in the class Megaviricetes isolated from the deep ocean, freshwater and terrestrial sources, and human patients. Transcriptional analysis showed that Mimivirus bradfordmassiliense cytochrome b5 is expressed in the host and has characteristic spectral properties. Viral cytochrome b5s have either a unique N-terminal transmembrane anchor or are predicted to be soluble proteins. Virus cytochrome b5 proteins share 45-95% sequence identity with one another but no more than 25% identity with that in Acanthamoeba castellanii, a host for many giant viruses. Thus, the origin of cytochrome b5 genes in giant viruses remains unknown. Our findings raise questions regarding the evolution and diversity of cytochrome b5, and about the origin of viral haemoproteins in general.
Collapse
Affiliation(s)
- David C Lamb
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Jared V Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543, USA
| | - Djamal Brahim Belhaouari
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Julien Andréani
- Microbes Evolution Phylogeny and Infection (MEPHI), UR D-258, Aix-Marseille University, Marseille, France
- IHU Méditerranée Infection, Timone Hospital, 19-21 Bd Jean Moulin, Marseille, 13005, France
| | - Ayesha Farooqi
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Michael J Allen
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
| | - Steven L Kelly
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Bernard La Scola
- Microbes Evolution Phylogeny and Infection (MEPHI), UR D-258, Aix-Marseille University, Marseille, France
- IHU Méditerranée Infection, Timone Hospital, 19-21 Bd Jean Moulin, Marseille, 13005, France
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543, USA.
| |
Collapse
|
5
|
Bosmon T, Abergel C, Claverie JM. 20 years of research on giant viruses. NPJ VIRUSES 2025; 3:9. [PMID: 40295850 PMCID: PMC11814242 DOI: 10.1038/s44298-025-00093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/23/2025] [Indexed: 04/30/2025]
Abstract
Some twenty years ago, the discovery of the first giant virus, Acanthamoeba polyphaga mimivirus (now mimivirus bradfordmassiliense species), paved the way for the discovery of more than 10 new families of protist-infecting DNA viruses with unexpected diversity in virion shape and size, gene content, genome topology and mode of replication. Following their brief description, we examine how the historical concepts of virology have held up in the light of this new knowledge. Although the initial emphasis was on the gigantism of the newly described viruses infecting amoebae, the subsequent discovery of viruses with intermediate virion and genome sizes gradually re-established a continuum between the smallest and largest viruses within the phylum Nucleocytoviricota.
Collapse
Affiliation(s)
- Tressy Bosmon
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B, IOM), 13288, Marseille Cedex 9, France
| | - Chantal Abergel
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B, IOM), 13288, Marseille Cedex 9, France.
| | - Jean-Michel Claverie
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B, IOM), 13288, Marseille Cedex 9, France.
| |
Collapse
|
6
|
Santini S, Lartigue A, Alempic JM, Couté Y, Belmudes L, Brazelton WJ, Lang SQ, Claverie JM, Legendre M, Abergel C. Pacmanvirus isolated from the Lost City hydrothermal field extends the concept of transpoviron beyond the family Mimiviridae. THE ISME JOURNAL 2025; 19:wraf002. [PMID: 39789911 PMCID: PMC11788076 DOI: 10.1093/ismejo/wraf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/29/2024] [Accepted: 01/08/2025] [Indexed: 01/12/2025]
Abstract
The microbial sampling of submarine hydrothermal vents remains challenging, with even fewer studies focused on viruses. Here we report what is to our knowledge the first isolation of a eukaryotic virus from the Lost City hydrothermal field, by co-culture with the laboratory host Acanthamoeba castellanii. This virus, named pacmanvirus lostcity, is closely related to previously isolated pacmanviruses (strains A23 and S19), clustering in a divergent clade within the long-established family Asfarviridae. The icosahedral particles of this virus are 200 nm in diameter, with an electron-dense core surrounded by an inner membrane. The viral genome of 395 708 bp (33% G + C) has been predicted to encode 473 proteins. However, besides these standard properties, pacmanvirus lostcity was found to be associated with a new type of selfish genetic element, 7 kb in length, whose architecture and gene content are reminiscent of those of transpovirons, hitherto specific to the family Mimiviridae. As in previously described transpovirons, this selfishg genetic element propagates as an episome within its host virus particles and exhibits partial recombination with its genome. In addition, an unrelated episome with a length of 2 kb was also found to be associated with pacmanvirus lostcity. Together, the transpoviron and the 2-kb episome might participate in exchanges between pacmanviruses and other DNA virus families. It remains to be elucidated if the presence of these mobile genetic elements is restricted to pacmanviruses or was simply overlooked in other members of the Asfarviridae.
Collapse
Affiliation(s)
- Sébastien Santini
- Information Génomique & Structurale, Unité Mixte de Recherche 7256, Aix-Marseille University, Centre National de la Recherche Scientifique, IMM, IM2B, IOM, 13288, Marseille Cedex 9, France
| | - Audrey Lartigue
- Information Génomique & Structurale, Unité Mixte de Recherche 7256, Aix-Marseille University, Centre National de la Recherche Scientifique, IMM, IM2B, IOM, 13288, Marseille Cedex 9, France
| | - Jean-Marie Alempic
- Information Génomique & Structurale, Unité Mixte de Recherche 7256, Aix-Marseille University, Centre National de la Recherche Scientifique, IMM, IM2B, IOM, 13288, Marseille Cedex 9, France
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Lucid Belmudes
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - William J Brazelton
- School of Biological Sciences, University of Utah, Salt Lake City, United States
| | - Susan Q Lang
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA United States
| | - Jean-Michel Claverie
- Information Génomique & Structurale, Unité Mixte de Recherche 7256, Aix-Marseille University, Centre National de la Recherche Scientifique, IMM, IM2B, IOM, 13288, Marseille Cedex 9, France
| | - Matthieu Legendre
- Information Génomique & Structurale, Unité Mixte de Recherche 7256, Aix-Marseille University, Centre National de la Recherche Scientifique, IMM, IM2B, IOM, 13288, Marseille Cedex 9, France
| | - Chantal Abergel
- Information Génomique & Structurale, Unité Mixte de Recherche 7256, Aix-Marseille University, Centre National de la Recherche Scientifique, IMM, IM2B, IOM, 13288, Marseille Cedex 9, France
| |
Collapse
|
7
|
Sun X, Zhang X, Zhang X. Revitalized abyssal ancient viruses trigger viral pandemic in terrestrial soil. ENVIRONMENT INTERNATIONAL 2024; 194:109183. [PMID: 39671824 DOI: 10.1016/j.envint.2024.109183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/05/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Viruses are the most abundant biological entities on the earth. Some ancient viruses can revive from permafrost along with melting to infect the current hosts. The "zombie viruses" trapped in the ancient deep-sea sediments become the public health concern due to the environmental changes and human activities in deep oceans. However, the biosecurity risk of benthic viruses has not been explored. Here, two viruses purified from the ancient deep-sea sediments were infectious to the bacteria of terrestrial soil. Furthermore, the benthic viruses were purified from each of 106 deep-sea sediments with 1,900-17,300 years old and then the biothreats of deep-sea viruses to terrestrial soil were evaluated on a global scale. The results revealed that the viruses purified from each of 9 sediments could disturb the native bacterial communities in soil and destroy the soil functions. These viruses with the capacity to invade soil were widely distributed in the abyssal sea. Therefore, our findings highlighted the revitalized risks of deep-sea ancient viruses to terrestrial soil ecosystems for the first time. The biosecurity of deep-sea viruses to terrestrial soil should be assessed before performing deep-sea mining and scientific activities.
Collapse
Affiliation(s)
- Xumei Sun
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao) and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou 310058, People's Republic of China; School of Marine Sciences, Ningbo University, Ningbo 315211, People's Republic of China
| | - Xinyi Zhang
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao) and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaobo Zhang
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao) and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
8
|
Lamb DC, Goldstone JV, Belhaouari DB, Andréani J, Farooqi A, Allen MJ, Kelly SL, La Scola B, Stegeman JJ. Cytochromes b5 Occurrence in Viruses Belonging to the Order Megavirales. RESEARCH SQUARE 2024:rs.3.rs-5246363. [PMID: 39502774 PMCID: PMC11537341 DOI: 10.21203/rs.3.rs-5246363/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2024]
Abstract
Cytochrome b5 is a small electron transport protein that is found in animals, plants, fungi and photosynthetic proteobacteria where it plays key metabolic roles in energy production, lipid and sterol biosynthesis and cytochrome P450 biochemistry. Previously it was shown that a gene encoding a soluble and functional cytochrome b5 protein was encoded in the large double stranded DNA virus OtV2 that infects the unicellular marine green alga Ostreococcus tauri, the smallest free-living eukaryote described to-date. This single gene represented a unique finding in the virosphere. We now report that genes for soluble and membrane-bound cytochromes b5 also occur in giant viruses in the proposed order Megavirales, particularly the AT-rich Mimiviridae and Tupanviruses. Conversely, other members of the Megavirales taxa such as the GC-rich Pandoraviridae have not been found to encode cytochrome b5 as yet. Megaviruses encoding cytochrome b5 have been isolated from the deep ocean, from freshwater and terrestrial sources, as well as from human patients. Giant virus cytochrome b5 proteins share high sequence identity with one another (45-95% depending on group) but no more than 25% identity with the cytochrome b5 gene product we identified in Acanthamoeba castellanii, an amoeba host for many giant viruses. Thus, the origin of the unique cytochrome b5 genes in giant viruses remains unknown. Examination of viral cytochrome b5 primary amino acid sequences revealed that some have either a N- or C-terminal transmembrane anchor, whilst others lack a membrane anchor and are thus predicted to be soluble proteins. This cytochrome b5 topography suggests adapted biochemical functions in those viruses. Our findings raise questions regarding the evolution and diversity of cytochrome b5 proteins in nature, adding to questions about the origin of viral haemoproteins in general.
Collapse
Affiliation(s)
- David C. Lamb
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, Wales SA2 8PP, UK
| | - Jared V. Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - Djamal Brahim Belhaouari
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Julien Andréani
- Aix Marseille Univ, MEPHI, Marseille, France
- IHU-Méditerranée infection, Marseille, France
| | - Ayesha Farooqi
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, Wales SA2 8PP, UK
| | - Michael J. Allen
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road EX4 4QD, UK
| | - Steven L. Kelly
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, Wales SA2 8PP, UK
| | - Bernard La Scola
- Aix Marseille Univ, MEPHI, Marseille, France
- IHU-Méditerranée infection, Marseille, France
| | - John J. Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| |
Collapse
|
9
|
Bessenay A, Bisio H, Belmudes L, Couté Y, Bertaux L, Claverie JM, Abergel C, Jeudy S, Legendre M. Complex transcriptional regulations of a hyperparasitic quadripartite system in giant viruses infecting protists. Nat Commun 2024; 15:8608. [PMID: 39384766 PMCID: PMC11464507 DOI: 10.1038/s41467-024-52906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024] Open
Abstract
Hyperparasitism is a common pattern in nature that is not limited to cellular organisms. Giant viruses infecting protists can be hyperparasitized by smaller ones named virophages. In addition, both may carry episomal DNA molecules known as transpovirons in their particles. They all share transcriptional regulatory elements that dictate the expression of their genes within viral factories built by giant viruses in the host cytoplasm. This suggests the existence of interactions between their respective transcriptional networks. Here we investigated Acanthamoeba castellanii cells infected by a giant virus (megavirus chilensis), and coinfected with a virophage (zamilon vitis) and/or a transpoviron (megavirus vitis transpoviron). Infectious cycles were monitored through time-course RNA sequencing to decipher the transcriptional program of each partner and its impact on the gene expression of the others. We found highly diverse transcriptional responses. While the giant virus drastically reshaped the host cell transcriptome, the transpoviron had no effect on the gene expression of any of the players. In contrast, the virophage strongly modified the giant virus gene expression, albeit transiently, without altering the protein composition of mature viral particles. The virophage also induced the overexpression of transpoviron genes, likely through the indirect upregulation of giant virus-encoded transcription factors. Together, these analyses document the intricated transcriptionally regulated networks taking place in the infected cell.
Collapse
Affiliation(s)
- Alexandra Bessenay
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (IGS), Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Marseille, Cedex 9, France
| | - Hugo Bisio
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (IGS), Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Marseille, Cedex 9, France
| | - Lucid Belmudes
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, FR2048, Grenoble, France
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, FR2048, Grenoble, France
| | - Lionel Bertaux
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (IGS), Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Marseille, Cedex 9, France
- Aix-Marseille University, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne (LCB), Unité Mixte de Recherche 7283 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, Marseille, France
| | - Jean-Michel Claverie
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (IGS), Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Marseille, Cedex 9, France
| | - Chantal Abergel
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (IGS), Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Marseille, Cedex 9, France
| | - Sandra Jeudy
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (IGS), Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Marseille, Cedex 9, France.
| | - Matthieu Legendre
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (IGS), Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Marseille, Cedex 9, France.
| |
Collapse
|
10
|
Yi X, Liang JL, Wen P, Jia P, Feng SW, Liu SY, Zhuang YY, Guo YQ, Lu JL, Zhong SJ, Liao B, Wang Z, Shu WS, Li JT. Giant viruses as reservoirs of antibiotic resistance genes. Nat Commun 2024; 15:7536. [PMID: 39214976 PMCID: PMC11364636 DOI: 10.1038/s41467-024-51936-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Nucleocytoplasmic large DNA viruses (NCLDVs; also called giant viruses), constituting the phylum Nucleocytoviricota, can infect a wide range of eukaryotes and exchange genetic material with not only their hosts but also prokaryotes and phages. A few NCLDVs were reported to encode genes conferring resistance to beta‑lactam, trimethoprim, or pyrimethamine, suggesting that they are potential vehicles for the transmission of antibiotic resistance genes (ARGs) in the biome. However, the incidence of ARGs across the phylum Nucleocytoviricota, their evolutionary characteristics, their dissemination potential, and their association with virulence factors remain unexplored. Here, we systematically investigated ARGs of 1416 NCLDV genomes including those of almost all currently available cultured isolates and high-quality metagenome-assembled genomes from diverse habitats across the globe. We reveal that 39.5% of them carry ARGs, which is approximately 37 times higher than that for phage genomes. A total of 12 ARG types are encoded by NCLDVs. Phylogenies of the three most abundant NCLDV-encoded ARGs hint that NCLDVs acquire ARGs from not only eukaryotes but also prokaryotes and phages. Two NCLDV-encoded trimethoprim resistance genes are demonstrated to confer trimethoprim resistance in Escherichia coli. The presence of ARGs in NCLDV genomes is significantly correlated with mobile genetic elements and virulence factors.
Collapse
Affiliation(s)
- Xinzhu Yi
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Ping Wen
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Shi-Wei Feng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Shen-Yan Liu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Yuan-Yue Zhuang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Yu-Qian Guo
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Jing-Li Lu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Sheng-Ji Zhong
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Zhang Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China.
| |
Collapse
|
11
|
Wu J, Meng L, Gaïa M, Hikida H, Okazaki Y, Endo H, Ogata H. Gene Transfer Among Viruses Substantially Contributes to Gene Gain of Giant Viruses. Mol Biol Evol 2024; 41:msae161. [PMID: 39093595 PMCID: PMC11334073 DOI: 10.1093/molbev/msae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
The phylum Nucleocytoviricota comprises a diverse group of double-stranded DNA viruses that display a wide range of gene repertoires. Although these gene repertoires determine the characteristics of individual viruses, the evolutionary processes that have shaped the gene repertoires of extant viruses since their common ancestor are poorly characterized. In this study, we aimed to address this gap in knowledge by using amalgamated likelihood estimation, a probabilistic tree reconciliation method that infers evolutionary scenarios by distinguishing origination, gene duplications, virus-to-virus horizontal gene transfer (vHGT), and gene losses. We analyzed over 4,700 gene families from 195 genomes spanning all known viral orders. The evolutionary reconstruction suggests a history of extensive gene gains and losses during the evolution of these viruses, notably with vHGT contributing to gene gains at a comparable level to duplications and originations. The vHGT frequently occurred between phylogenetically closely related viruses, as well as between distantly related viruses with an overlapping host range. We observed a pattern of massive gene duplications that followed vHGTs for gene families that was potentially related to host range control and virus-host arms race. These results suggest that vHGT represents a previously overlooked, yet important, evolutionary force that integrates the evolutionary paths of multiple viruses and affects shaping of Nucleocytoviricota virus gene repertoires.
Collapse
Affiliation(s)
- Junyi Wu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Lingjie Meng
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Morgan Gaïa
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry F-91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris F-75016, France
| | - Hiroyuki Hikida
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Yusuke Okazaki
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Hisashi Endo
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| |
Collapse
|
12
|
Liang JL, Feng SW, Jia P, Lu JL, Yi X, Gao SM, Wu ZH, Liao B, Shu WS, Li JT. Unraveling the habitat preferences, ecological drivers, potential hosts, and auxiliary metabolism of soil giant viruses across China. MICROBIOME 2024; 12:136. [PMID: 39039586 PMCID: PMC11265010 DOI: 10.1186/s40168-024-01851-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/30/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Soil giant viruses are increasingly believed to have profound effects on ecological functioning by infecting diverse eukaryotes. However, their biogeography and ecology remain poorly understood. RESULTS In this study, we analyzed 333 soil metagenomes from 5 habitat types (farmland, forest, grassland, Gobi desert, and mine wasteland) across China and identified 533 distinct giant virus phylotypes affiliated with nine families, thereby greatly expanding the diversity of soil giant viruses. Among the nine families, Pithoviridae were the most diverse. The majority of phylotypes exhibited a heterogeneous distribution among habitat types, with a remarkably high proportion of unique phylotypes in mine wasteland. The abundances of phylotypes were negatively correlated with their environmental ranges. A total of 76 phylotypes recovered in this study were detectable in a published global topsoil metagenome dataset. Among climatic, geographical, edaphic, and biotic characteristics, soil eukaryotes were identified as the most important driver of beta-diversity of giant viral communities across habitat types. Moreover, co-occurrence network analysis revealed some pairings between giant viral phylotypes and eukaryotes (protozoa, fungi, and algae). Analysis of 44 medium- to high-quality giant virus genomes recovered from our metagenomes uncovered not only their highly shared functions but also their novel auxiliary metabolic genes related to carbon, sulfur, and phosphorus cycling. CONCLUSIONS These findings extend our knowledge of diversity, habitat preferences, ecological drivers, potential hosts, and auxiliary metabolism of soil giant viruses. Video Abstract.
Collapse
Affiliation(s)
- Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Shi-Wei Feng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Jing-Li Lu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Xinzhu Yi
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Shao-Ming Gao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zhuo-Hui Wu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Bin Liao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China.
| |
Collapse
|
13
|
Chokmangmeepisarn P, Azmai MNA, Domingos JA, van Aerle R, Bass D, Prukbenjakul P, Senapin S, Rodkhum C. Genome Characterization and Phylogenetic Analysis of Scale Drop Disease Virus Isolated from Asian Seabass ( Lates calcarifer). Animals (Basel) 2024; 14:2097. [PMID: 39061559 PMCID: PMC11274154 DOI: 10.3390/ani14142097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/07/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Scale drop disease virus (SDDV), a double-stranded DNA virus in the family Iridoviridae, has been reported widely in southeast Asian countries as a causative agent of scale drop syndrome (SDS) in Asian seabass. SDS has resulted in high mortality and significant economic losses to the aquaculture industry. This study demonstrated the use of metagenomic methods to investigate bacterial and viral communities present in infected fish tissues and recover a complete genome of the causative agent named SDDV TH7_2019. Characterization of the TH7_2019 genome revealed a genome size of 131 kb with 134 putative ORFs encoding viral proteins potentially associated with host apoptosis manipulation. A comparative genome analysis showed a high degree of amino acid identity across SDDV strains, with variations in number of repeat sequences and mutations within core genes. Phylogenetic analyses indicate a close relationship among SDDV genomes. This research enhances our understanding of the genetic diversity and evolutionary relationship of SDDV, contributing valuable insights for further development of effective control strategies of SDDV.
Collapse
Affiliation(s)
- Putita Chokmangmeepisarn
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mohammad Noor Amal Azmai
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
| | - Jose A. Domingos
- Tropical Futures Institute, James Cook University, Singapore 387370, Singapore;
| | - Ronny van Aerle
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Weymouth, Dorset DT4 8UB, UK; (R.v.A.); (D.B.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Stocker Road, Exeter EX4 4QY, UK
| | - David Bass
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Weymouth, Dorset DT4 8UB, UK; (R.v.A.); (D.B.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Stocker Road, Exeter EX4 4QY, UK
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
| | - Pochara Prukbenjakul
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Saengchan Senapin
- Tropical Futures Institute, James Cook University, Singapore 387370, Singapore;
- Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Pathum Thani 12120, Thailand
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
14
|
Wen Q, Yin X, Moming A, Liu G, Jiang B, Wang J, Fan Z, Sajjad W, Ge Y, Kang S, Shen S, Deng F. Viral communities locked in high elevation permafrost up to 100 m in depth on the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172829. [PMID: 38692332 DOI: 10.1016/j.scitotenv.2024.172829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
Permafrost serves as a natural cold reservoir for viral communities. However, little is known about the viromes in deep permafrost soil, as most studies of permafrost were restricted to shallow areas. Here, permafrost soil samples of up to 100 m in depth were collected from two sites in the Tuotuo River permafrost area on the Tibetan Plateau. We investigated the viral composition in these permafrost soil samples and analyzed the relationship of viral composition and diversity along with depths. Our study revealed that greater permafrost thickness corresponds to higher diversity within the viral community. Bacteriophages were found to be the dominant viral communities, with "kill the winner" dynamics observed within the Siphoviridae and Myoviridae. The abundance and diversity of viral communities may follow a potential pattern along soil layers and depths, influenced by pH, trace elements, and permafrost thickness. Notably, strong correlations were discovered between the content of inorganic elements, including B, Mg, Cr, Bi, Ti, Na, Ni, and Cu, and the viral composition. Moreover, we discovered highly conserved sequences of giant viruses at depth of 10, 20, and 50 m in permafrost, which play a crucial role in evolutionary processes. These findings provide valuable insights into the viral community patterns from shallow to 100-m-depth in high-elevation permafrost, offering crucial data support for the formulation of strategies for permafrost thaw caused by climate change and anthropogenic activities.
Collapse
Affiliation(s)
- Qian Wen
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiufeng Yin
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China
| | - Abulimiti Moming
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Guanyue Liu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China
| | - Boyong Jiang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Jun Wang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Zhaojun Fan
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China
| | - Yingying Ge
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| | - Shu Shen
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China; Hubei Jiangxia Laboratory, 430200 Wuhan, China.
| | - Fei Deng
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China.
| |
Collapse
|
15
|
Graham EB, Garayburu-Caruso VA, Wu R, Zheng J, McClure R, Jones GD. Genomic fingerprints of the world's soil ecosystems. mSystems 2024; 9:e0111223. [PMID: 38722174 PMCID: PMC11237643 DOI: 10.1128/msystems.01112-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/25/2024] [Indexed: 06/19/2024] Open
Abstract
Despite the explosion of soil metagenomic data, we lack a synthesized understanding of patterns in the distribution and functions of soil microorganisms. These patterns are critical to predictions of soil microbiome responses to climate change and resulting feedbacks that regulate greenhouse gas release from soils. To address this gap, we assay 1,512 manually curated soil metagenomes using complementary annotation databases, read-based taxonomy, and machine learning to extract multidimensional genomic fingerprints of global soil microbiomes. Our objective is to uncover novel biogeographical patterns of soil microbiomes across environmental factors and ecological biomes with high molecular resolution. We reveal shifts in the potential for (i) microbial nutrient acquisition across pH gradients; (ii) stress-, transport-, and redox-based processes across changes in soil bulk density; and (iii) greenhouse gas emissions across biomes. We also use an unsupervised approach to reveal a collection of soils with distinct genomic signatures, characterized by coordinated changes in soil organic carbon, nitrogen, and cation exchange capacity and in bulk density and clay content that may ultimately reflect soil environments with high microbial activity. Genomic fingerprints for these soils highlight the importance of resource scavenging, plant-microbe interactions, fungi, and heterotrophic metabolisms. Across all analyses, we observed phylogenetic coherence in soil microbiomes-more closely related microorganisms tended to move congruently in response to soil factors. Collectively, the genomic fingerprints uncovered here present a basis for global patterns in the microbial mechanisms underlying soil biogeochemistry and help beget tractable microbial reaction networks for incorporation into process-based models of soil carbon and nutrient cycling.IMPORTANCEWe address a critical gap in our understanding of soil microorganisms and their functions, which have a profound impact on our environment. We analyzed 1,512 global soils with advanced analytics to create detailed genetic profiles (fingerprints) of soil microbiomes. Our work reveals novel patterns in how microorganisms are distributed across different soil environments. For instance, we discovered shifts in microbial potential to acquire nutrients in relation to soil acidity, as well as changes in stress responses and potential greenhouse gas emissions linked to soil structure. We also identified soils with putative high activity that had unique genomic characteristics surrounding resource acquisition, plant-microbe interactions, and fungal activity. Finally, we observed that closely related microorganisms tend to respond in similar ways to changes in their surroundings. Our work is a significant step toward comprehending the intricate world of soil microorganisms and its role in the global climate.
Collapse
Affiliation(s)
- Emily B. Graham
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | | | - Ruonan Wu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jianqiu Zheng
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Ryan McClure
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Gerrad D. Jones
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
16
|
Queiroz VF, Rodrigues RAL, Abrahão JS. A taxonomic proposal for cedratviruses, orpheoviruses, and pithoviruses. Arch Virol 2024; 169:132. [PMID: 38822903 DOI: 10.1007/s00705-024-06055-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Orpheoviruses, cedratviruses, and pithoviruses are large DNA viruses that cluster together taxonomically within the order Pimascovirales of the phylum Nucleocytoviricota. However, they were not classified previously by the International Committee on Taxonomy of Viruses (ICTV). Here, we present a comprehensive analysis of the gene content, morphology, and phylogenomics of these viruses, providing data that underpinned the recent proposal to establish new taxa for their initial classification. The new taxonomy, which has now been ratified by the ICTV, includes the family Orpheoviridae and genus Alphaorpheovirus, the family Pithoviridae and genus Alphapithovirus, and the family Cedratviridae and genus Alphacedratvirus, aiming to formally catalogue the isolates covered in this study. Additionally, as per the newly adopted rules, we applied standardized binomial names for the virus species created to classify isolates with complete genome sequences available in public databases at the time of the proposal. The specific epithet of each virus species was chosen as a reference to the location where the exemplar virus was isolated.
Collapse
Affiliation(s)
- Victória F Queiroz
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Rodrigo A L Rodrigues
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.
| |
Collapse
|
17
|
Huang J, Wang D, Zhu Y, Yang Z, Yao M, Shi X, An T, Zhang Q, Huang C, Bi X, Li J, Wang Z, Liu Y, Zhu G, Chen S, Hang J, Qiu X, Deng W, Tian H, Zhang T, Chen T, Liu S, Lian X, Chen B, Zhang B, Zhao Y, Wang R, Li H. An overview for monitoring and prediction of pathogenic microorganisms in the atmosphere. FUNDAMENTAL RESEARCH 2024; 4:430-441. [PMID: 38933199 PMCID: PMC11197502 DOI: 10.1016/j.fmre.2023.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2024] Open
Abstract
Corona virus disease 2019 (COVID-19) has exerted a profound adverse impact on human health. Studies have demonstrated that aerosol transmission is one of the major transmission routes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pathogenic microorganisms such as SARS-CoV-2 can survive in the air and cause widespread infection among people. Early monitoring of pathogenic microorganism transmission in the atmosphere and accurate epidemic prediction are the frontier guarantee for preventing large-scale epidemic outbreaks. Monitoring of pathogenic microorganisms in the air, especially in densely populated areas, may raise the possibility to detect viruses before people are widely infected and contain the epidemic at an earlier stage. The multi-scale coupled accurate epidemic prediction system can provide support for governments to analyze the epidemic situation, allocate health resources, and formulate epidemic response policies. This review first elaborates on the effects of the atmospheric environment on pathogenic microorganism transmission, which lays a theoretical foundation for the monitoring and prediction of epidemic development. Secondly, the monitoring technique development and the necessity of monitoring pathogenic microorganisms in the atmosphere are summarized and emphasized. Subsequently, this review introduces the major epidemic prediction methods and highlights the significance to realize a multi-scale coupled epidemic prediction system by strengthening the multidisciplinary cooperation of epidemiology, atmospheric sciences, environmental sciences, sociology, demography, etc. By summarizing the achievements and challenges in monitoring and prediction of pathogenic microorganism transmission in the atmosphere, this review proposes suggestions for epidemic response, namely, the establishment of an integrated monitoring and prediction platform for pathogenic microorganism transmission in the atmosphere.
Collapse
Affiliation(s)
- Jianping Huang
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Danfeng Wang
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongguan Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zifeng Yang
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease (Guangzhou Medical University), Guangzhou 510230, China
| | - Maosheng Yao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Qiang Zhang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Xinhui Bi
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jiang Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zifa Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yongqin Liu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Guibing Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Siyu Chen
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jian Hang
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 510640, China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Weiwei Deng
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing and Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100101, China
| | - Tengfei Zhang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tianmu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xinbo Lian
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bin Chen
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Beidou Zhang
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingjie Zhao
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Rui Wang
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Han Li
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
18
|
Felipe Benites L, Stephens TG, Van Etten J, James T, Christian WC, Barry K, Grigoriev IV, McDermott TR, Bhattacharya D. Hot springs viruses at Yellowstone National Park have ancient origins and are adapted to thermophilic hosts. Commun Biol 2024; 7:312. [PMID: 38594478 PMCID: PMC11003980 DOI: 10.1038/s42003-024-05931-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/16/2024] [Indexed: 04/11/2024] Open
Abstract
Geothermal springs house unicellular red algae in the class Cyanidiophyceae that dominate the microbial biomass at these sites. Little is known about host-virus interactions in these environments. We analyzed the virus community associated with red algal mats in three neighboring habitats (creek, endolithic, soil) at Lemonade Creek, Yellowstone National Park (YNP), USA. We find that despite proximity, each habitat houses a unique collection of viruses, with the giant viruses, Megaviricetes, dominant in all three. The early branching phylogenetic position of genes encoded on metagenome assembled virus genomes (vMAGs) suggests that the YNP lineages are of ancient origin and not due to multiple invasions from mesophilic habitats. The existence of genomic footprints of adaptation to thermophily in the vMAGs is consistent with this idea. The Cyanidiophyceae at geothermal sites originated ca. 1.5 Bya and are therefore relevant to understanding biotic interactions on the early Earth.
Collapse
Affiliation(s)
- L Felipe Benites
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Julia Van Etten
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Graduate Program in Ecology and Evolution, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Timeeka James
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - William C Christian
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Timothy R McDermott
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
19
|
Zong G, Desfougères Y, Portela-Torres P, Kwon YU, Saiardi A, Shears SB, Wang H. Biochemical and structural characterization of an inositol pyrophosphate kinase from a giant virus. EMBO J 2024; 43:462-480. [PMID: 38216735 PMCID: PMC10897400 DOI: 10.1038/s44318-023-00005-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 01/14/2024] Open
Abstract
Kinases that synthesize inositol phosphates (IPs) and pyrophosphates (PP-IPs) control numerous biological processes in eukaryotic cells. Herein, we extend this cellular signaling repertoire to viruses. We have biochemically and structurally characterized a minimalist inositol phosphate kinase (i.e., TvIPK) encoded by Terrestrivirus, a nucleocytoplasmic large ("giant") DNA virus (NCLDV). We show that TvIPK can synthesize inositol pyrophosphates from a range of scyllo- and myo-IPs, both in vitro and when expressed in yeast cells. We present multiple crystal structures of enzyme/substrate/nucleotide complexes with individual resolutions from 1.95 to 2.6 Å. We find a heart-shaped ligand binding pocket comprising an array of positively charged and flexible side chains, underlying the observed substrate diversity. A crucial arginine residue in a conserved "G-loop" orients the γ-phosphate of ATP to allow substrate pyrophosphorylation. We highlight additional conserved catalytic and architectural features in TvIPK, and support their importance through site-directed mutagenesis. We propose that NCLDV inositol phosphate kinases may have assisted evolution of inositol pyrophosphate signaling, and we discuss the potential biogeochemical significance of TvIPK in soil niches.
Collapse
Affiliation(s)
- Guangning Zong
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Yann Desfougères
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Paloma Portela-Torres
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Yong-Uk Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK.
| | - Stephen B Shears
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| | - Huanchen Wang
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
20
|
Clark MS, Hoffman JI, Peck LS, Bargelloni L, Gande D, Havermans C, Meyer B, Patarnello T, Phillips T, Stoof-Leichsenring KR, Vendrami DLJ, Beck A, Collins G, Friedrich MW, Halanych KM, Masello JF, Nagel R, Norén K, Printzen C, Ruiz MB, Wohlrab S, Becker B, Dumack K, Ghaderiardakani F, Glaser K, Heesch S, Held C, John U, Karsten U, Kempf S, Lucassen M, Paijmans A, Schimani K, Wallberg A, Wunder LC, Mock T. Multi-omics for studying and understanding polar life. Nat Commun 2023; 14:7451. [PMID: 37978186 PMCID: PMC10656552 DOI: 10.1038/s41467-023-43209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Polar ecosystems are experiencing amongst the most rapid rates of regional warming on Earth. Here, we discuss 'omics' approaches to investigate polar biodiversity, including the current state of the art, future perspectives and recommendations. We propose a community road map to generate and more fully exploit multi-omics data from polar organisms. These data are needed for the comprehensive evaluation of polar biodiversity and to reveal how life evolved and adapted to permanently cold environments with extreme seasonality. We argue that concerted action is required to mitigate the impact of warming on polar ecosystems via conservation efforts, to sustainably manage these unique habitats and their ecosystem services, and for the sustainable bioprospecting of novel genes and compounds for societal gain.
Collapse
Affiliation(s)
- M S Clark
- British Antarctic Survey, UKRI-NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - J I Hoffman
- British Antarctic Survey, UKRI-NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
- Universität Bielefeld, VHF, Konsequenz 45, 33615, Bielefeld, Germany.
| | - L S Peck
- British Antarctic Survey, UKRI-NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - L Bargelloni
- Department of Comparative Biomedicine and Food Science, Università degli Studi di Padova, Viale dell'Università 16, I-35020, Legnaro, Italy
| | - D Gande
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry & MARUM, University of Bremen, Leobener Straße 3, 28359, Bremen, Germany
| | - C Havermans
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - B Meyer
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), 23129, Oldenburg, Germany
| | - T Patarnello
- Department of Comparative Biomedicine and Food Science, Università degli Studi di Padova, Viale dell'Università 16, I-35020, Legnaro, Italy
| | - T Phillips
- British Antarctic Survey, UKRI-NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - K R Stoof-Leichsenring
- Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, 14473, Potsdam, Germany
| | - D L J Vendrami
- Universität Bielefeld, VHF, Konsequenz 45, 33615, Bielefeld, Germany
| | - A Beck
- Staatliche Naturwissenschaftliche Sammlungen Bayerns, Botanische Staatssammlung München (SNSB-BSM), Menzinger Str. 67, 80638, München, Germany
| | - G Collins
- Senckenberg Biodiversity and Climate Research Centre & Loewe-Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Manaaki Whenua-Landcare Research, 231 Morrin Road St Johns, Auckland, 1072, New Zealand
| | - M W Friedrich
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry & MARUM, University of Bremen, Leobener Straße 3, 28359, Bremen, Germany
| | - K M Halanych
- Center for Marine Science, University of North Carolina, 5600 Marvin K. Moss Lane, Wilmington, NC, 28409, USA
| | - J F Masello
- Universität Bielefeld, VHF, Konsequenz 45, 33615, Bielefeld, Germany
- Justus-Liebig-Universität Gießen, Giessen, Germany
| | - R Nagel
- Universität Bielefeld, VHF, Konsequenz 45, 33615, Bielefeld, Germany
- School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, UK
| | - K Norén
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - C Printzen
- Senckenberg Biodiversity and Climate Research Centre & Loewe-Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Natural History Museum Frankfurt, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - M B Ruiz
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
- Universität Duisburg-Essen, Universitätstrasse 5, 45151, Essen, Germany
| | - S Wohlrab
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), 23129, Oldenburg, Germany
| | - B Becker
- Universität zu Köln, Institut für Pflanzenwissenschaften, Zülpicher Str. 47b, 60674, Köln, Germany
| | - K Dumack
- Universität zu Köln, Terrestrische Ökologie, Zülpicher Str. 47b, 60674, Köln, Germany
| | - F Ghaderiardakani
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743, Jena, Germany
| | - K Glaser
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - S Heesch
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - C Held
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - U John
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - U Karsten
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - S Kempf
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - M Lucassen
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - A Paijmans
- Universität Bielefeld, VHF, Konsequenz 45, 33615, Bielefeld, Germany
| | - K Schimani
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Königin-Luise-Straße 6-8, 14195, Berlin, Germany
| | - A Wallberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | - L C Wunder
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry & MARUM, University of Bremen, Leobener Straße 3, 28359, Bremen, Germany
| | - T Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
21
|
Rigou S, Schmitt A, Alempic JM, Lartigue A, Vendloczki P, Abergel C, Claverie JM, Legendre M. Pithoviruses Are Invaded by Repeats That Contribute to Their Evolution and Divergence from Cedratviruses. Mol Biol Evol 2023; 40:msad244. [PMID: 37950899 PMCID: PMC10664404 DOI: 10.1093/molbev/msad244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/13/2023] Open
Abstract
Pithoviridae are amoeba-infecting giant viruses possessing the largest viral particles known so far. Since the discovery of Pithovirus sibericum, recovered from a 30,000-yr-old permafrost sample, other pithoviruses, and related cedratviruses, were isolated from various terrestrial and aquatic samples. Here, we report the isolation and genome sequencing of 2 Pithoviridae from soil samples, in addition to 3 other recent isolates. Using the 12 available genome sequences, we conducted a thorough comparative genomic study of the Pithoviridae family to decipher the organization and evolution of their genomes. Our study reveals a nonuniform genome organization in 2 main regions: 1 concentrating core genes and another gene duplications. We also found that Pithoviridae genomes are more conservative than other families of giant viruses, with a low and stable proportion (5% to 7%) of genes originating from horizontal transfers. Genome size variation within the family is mainly due to variations in gene duplication rates (from 14% to 28%) and massive invasion by inverted repeats. While these repeated elements are absent from cedratviruses, repeat-rich regions cover as much as a quarter of the pithoviruses genomes. These regions, identified using a dedicated pipeline, are hotspots of mutations, gene capture events, and genomic rearrangements that contribute to their evolution.
Collapse
Affiliation(s)
- Sofia Rigou
- Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Aix–Marseille University, Centre National de la Recherche Scientifique, Marseille 13288 Cedex 9, France
| | - Alain Schmitt
- Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Aix–Marseille University, Centre National de la Recherche Scientifique, Marseille 13288 Cedex 9, France
| | - Jean-Marie Alempic
- Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Aix–Marseille University, Centre National de la Recherche Scientifique, Marseille 13288 Cedex 9, France
| | - Audrey Lartigue
- Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Aix–Marseille University, Centre National de la Recherche Scientifique, Marseille 13288 Cedex 9, France
| | - Peter Vendloczki
- Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Aix–Marseille University, Centre National de la Recherche Scientifique, Marseille 13288 Cedex 9, France
| | - Chantal Abergel
- Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Aix–Marseille University, Centre National de la Recherche Scientifique, Marseille 13288 Cedex 9, France
| | - Jean-Michel Claverie
- Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Aix–Marseille University, Centre National de la Recherche Scientifique, Marseille 13288 Cedex 9, France
| | - Matthieu Legendre
- Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Aix–Marseille University, Centre National de la Recherche Scientifique, Marseille 13288 Cedex 9, France
| |
Collapse
|
22
|
Moniruzzaman M, Erazo Garcia MP, Farzad R, Ha AD, Jivaji A, Karki S, Sheyn U, Stanton J, Minch B, Stephens D, Hancks DC, Rodrigues RAL, Abrahao JS, Vardi A, Aylward FO. Virologs, viral mimicry, and virocell metabolism: the expanding scale of cellular functions encoded in the complex genomes of giant viruses. FEMS Microbiol Rev 2023; 47:fuad053. [PMID: 37740576 PMCID: PMC10583209 DOI: 10.1093/femsre/fuad053] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023] Open
Abstract
The phylum Nucleocytoviricota includes the largest and most complex viruses known. These "giant viruses" have a long evolutionary history that dates back to the early diversification of eukaryotes, and over time they have evolved elaborate strategies for manipulating the physiology of their hosts during infection. One of the most captivating of these mechanisms involves the use of genes acquired from the host-referred to here as viral homologs or "virologs"-as a means of promoting viral propagation. The best-known examples of these are involved in mimicry, in which viral machinery "imitates" immunomodulatory elements in the vertebrate defense system. But recent findings have highlighted a vast and rapidly expanding array of other virologs that include many genes not typically found in viruses, such as those involved in translation, central carbon metabolism, cytoskeletal structure, nutrient transport, vesicular trafficking, and light harvesting. Unraveling the roles of virologs during infection as well as the evolutionary pathways through which complex functional repertoires are acquired by viruses are important frontiers at the forefront of giant virus research.
Collapse
Affiliation(s)
- Mohammad Moniruzzaman
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Maria Paula Erazo Garcia
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Roxanna Farzad
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Anh D Ha
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Abdeali Jivaji
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Sangita Karki
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Uri Sheyn
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Joshua Stanton
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Benjamin Minch
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Danae Stephens
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, United States
| | - Rodrigo A L Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Jonatas S Abrahao
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
23
|
Sethi Y. 'Zombie virus' and the social media: A social media analysis and call for action. New Microbes New Infect 2023; 54:101167. [PMID: 37502568 PMCID: PMC10369458 DOI: 10.1016/j.nmni.2023.101167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
|
24
|
Queiroz VF, Carvalho JVRP, de Souza FG, Lima MT, Santos JD, Rocha KLS, de Oliveira DB, Araújo JP, Ullmann LS, Rodrigues RAL, Abrahão JS. Analysis of the Genomic Features and Evolutionary History of Pithovirus-Like Isolates Reveals Two Major Divergent Groups of Viruses. J Virol 2023; 97:e0041123. [PMID: 37395647 PMCID: PMC10373538 DOI: 10.1128/jvi.00411-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/09/2023] [Indexed: 07/04/2023] Open
Abstract
New representatives of the phylum Nucleocytoviricota have been rapidly described in the last decade. Despite this, not all viruses of this phylum are allocated to recognized taxonomic families, as is the case for orpheovirus, pithovirus, and cedratvirus, which form the proposed family Pithoviridae. In this study, we performed comprehensive comparative genomic analyses of 8 pithovirus-like isolates, aiming to understand their common traits and evolutionary history. Structural and functional genome annotation was performed de novo for all the viruses, which served as a reference for pangenome construction. The synteny analysis showed substantial differences in genome organization between these viruses, with very few and short syntenic blocks shared between orpheovirus and its relatives. It was possible to observe an open pangenome with a significant increase in the slope when orpheovirus was added, alongside a decrease in the core genome. Network analysis placed orpheovirus as a distant and major hub with a large fraction of unique clusters of orthologs, indicating a distant relationship between this virus and its relatives, with only a few shared genes. Additionally, phylogenetic analyses of strict core genes shared with other viruses of the phylum reinforced the divergence of orpheovirus from pithoviruses and cedratviruses. Altogether, our results indicate that although pithovirus-like isolates share common features, this group of ovoid-shaped giant viruses presents substantial differences in gene contents, genomic architectures, and the phylogenetic history of several core genes. Our data indicate that orpheovirus is an evolutionarily divergent viral entity, suggesting its allocation to a different viral family, Orpheoviridae. IMPORTANCE Giant viruses that infect amoebae form a monophyletic group named the phylum Nucleocytoviricota. Despite being genomically and morphologically very diverse, the taxonomic categories of some clades that form this phylum are not yet well established. With advances in isolation techniques, the speed at which new giant viruses are described has increased, escalating the need to establish criteria to define the emerging viral taxa. In this work, we performed a comparative genomic analysis of representatives of the putative family Pithoviridae. Based on the dissimilarity of orpheovirus from the other viruses of this putative family, we propose that orpheovirus be considered a member of an independent family, Orpheoviridae, and suggest criteria to demarcate families consisting of ovoid-shaped giant viruses.
Collapse
Affiliation(s)
- Victória F. Queiroz
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - João Victor R. P. Carvalho
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda G. de Souza
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maurício T. Lima
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliane D. Santos
- Laboratório de Doenças Infecciosas e Parasitárias, Programa de pós graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Kamila L. S. Rocha
- Laboratório de Doenças Infecciosas e Parasitárias, Programa de pós graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Danilo B. de Oliveira
- Laboratório de Doenças Infecciosas e Parasitárias, Programa de pós graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - João Pessoa Araújo
- Laboratório de Virologia, Departamento de Microbiologia e Imunologia, Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Leila Sabrina Ullmann
- Laboratório de Virologia, Departamento de Microbiologia e Imunologia, Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
- Laboratório de Virologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Rodrigo A. L. Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jônatas S. Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
25
|
Alempic JM, Lartigue A, Goncharov AE, Grosse G, Strauss J, Tikhonov AN, Fedorov AN, Poirot O, Legendre M, Santini S, Abergel C, Claverie JM. An Update on Eukaryotic Viruses Revived from Ancient Permafrost. Viruses 2023; 15:564. [PMID: 36851778 PMCID: PMC9958942 DOI: 10.3390/v15020564] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
One quarter of the Northern hemisphere is underlain by permanently frozen ground, referred to as permafrost. Due to climate warming, irreversibly thawing permafrost is releasing organic matter frozen for up to a million years, most of which decomposes into carbon dioxide and methane, further enhancing the greenhouse effect. Part of this organic matter also consists of revived cellular microbes (prokaryotes, unicellular eukaryotes) as well as viruses that have remained dormant since prehistorical times. While the literature abounds on descriptions of the rich and diverse prokaryotic microbiomes found in permafrost, no additional report about "live" viruses have been published since the two original studies describing pithovirus (in 2014) and mollivirus (in 2015). This wrongly suggests that such occurrences are rare and that "zombie viruses" are not a public health threat. To restore an appreciation closer to reality, we report the preliminary characterizations of 13 new viruses isolated from seven different ancient Siberian permafrost samples, one from the Lena river and one from Kamchatka cryosol. As expected from the host specificity imposed by our protocol, these viruses belong to five different clades infecting Acanthamoeba spp. but not previously revived from permafrost: Pandoravirus, Cedratvirus, Megavirus, and Pacmanvirus, in addition to a new Pithovirus strain.
Collapse
Affiliation(s)
- Jean-Marie Alempic
- IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489), Institut Microbiologie, Bioénergies et Biotechnologie, and Institut Origines, CNRS, Aix Marseille University, 13288 Marseille, France
| | - Audrey Lartigue
- IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489), Institut Microbiologie, Bioénergies et Biotechnologie, and Institut Origines, CNRS, Aix Marseille University, 13288 Marseille, France
| | - Artemiy E. Goncharov
- Department of Molecular Microbiology, Institute of Experimental Medicine, Department of Epidemiology, Parasitology and Disinfectology, Northwestern State Medical Mechnikov University, Saint Petersburg 195067, Russia
| | - Guido Grosse
- Permafrost Research Section, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 14473 Potsdam, Germany
- Institute of Geosciences, University of Potsdam, 14478 Potsdam, Germany
| | - Jens Strauss
- Permafrost Research Section, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 14473 Potsdam, Germany
| | - Alexey N. Tikhonov
- Laboratory of Theriology, Zoological Institute of Russian Academy of Science, Saint Petersburg 199034, Russia
| | | | - Olivier Poirot
- IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489), Institut Microbiologie, Bioénergies et Biotechnologie, and Institut Origines, CNRS, Aix Marseille University, 13288 Marseille, France
| | - Matthieu Legendre
- IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489), Institut Microbiologie, Bioénergies et Biotechnologie, and Institut Origines, CNRS, Aix Marseille University, 13288 Marseille, France
| | - Sébastien Santini
- IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489), Institut Microbiologie, Bioénergies et Biotechnologie, and Institut Origines, CNRS, Aix Marseille University, 13288 Marseille, France
| | - Chantal Abergel
- IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489), Institut Microbiologie, Bioénergies et Biotechnologie, and Institut Origines, CNRS, Aix Marseille University, 13288 Marseille, France
| | - Jean-Michel Claverie
- IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489), Institut Microbiologie, Bioénergies et Biotechnologie, and Institut Origines, CNRS, Aix Marseille University, 13288 Marseille, France
| |
Collapse
|
26
|
Rigou S, Legendre M. [Prehistoric giant viruses identified by metagenomics]. Med Sci (Paris) 2023; 39:107-109. [PMID: 36799744 DOI: 10.1051/medsci/2023006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Affiliation(s)
- Sofia Rigou
- Information génomique et structurale, Aix - Marseille université, CNRS UMR7256, Institut de microbiologie de la méditerranée (FR3479), Marseille, France
| | - Matthieu Legendre
- Information génomique et structurale, Aix - Marseille université, CNRS UMR7256, Institut de microbiologie de la méditerranée (FR3479), Marseille, France
| |
Collapse
|
27
|
Giant Viruses as a Source of Novel Enzymes for Biotechnological Application. Pathogens 2022; 11:pathogens11121453. [PMID: 36558786 PMCID: PMC9787589 DOI: 10.3390/pathogens11121453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The global demand for industrial enzymes has been increasing in recent years, and the search for new sources of these biological products is intense, especially in microorganisms. Most known viruses have limited genetic machinery and, thus, have been overlooked by the enzyme industry for years. However, a peculiar group of viruses breaks this paradigm. Giant viruses of the phylum Nucleocytoviricota infect protists (i.e., algae and amoebae) and have complex genomes, reaching up to 2.7 Mb in length and encoding hundreds of genes. Different giant viruses have robust metabolic machinery, especially those in the Phycodnaviridae and Mimiviridae families. In this review, we present some peculiarities of giant viruses that infect protists and discuss why they should be seen as an outstanding source of new enzymes. We revisited the genomes of representatives of different groups of giant viruses and put together information about their enzymatic machinery, highlighting several genes to be explored in biotechnology involved in carbohydrate metabolism, DNA replication, and RNA processing, among others. Finally, we present additional evidence based on structural biology using chitinase as a model to reinforce the role of giant viruses as a source of novel enzymes for biotechnological application.
Collapse
|