1
|
Larsen BB, McMahon T, Brown JT, Wang Z, Radford CE, Crowe JE, Veesler D, Bloom JD. Functional and antigenic landscape of the Nipah virus receptor-binding protein. Cell 2025; 188:2480-2494.e22. [PMID: 40132580 PMCID: PMC12048240 DOI: 10.1016/j.cell.2025.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 12/30/2024] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Nipah virus recurrently spills over to humans, causing fatal infections. The viral receptor-binding protein (RBP or G) attaches to host receptors and is a major target of neutralizing antibodies. Here, we use deep mutational scanning to measure how all amino-acid mutations to the RBP affect cell entry, receptor binding, and escape from neutralizing antibodies. We identify functionally constrained regions of the RBP, including sites involved in oligomerization, along with mutations that differentially modulate RBP binding to its two ephrin receptors. We map escape mutations for six anti-RBP antibodies and find that few antigenic mutations are present in natural Nipah strains. Our findings offer insights into the potential for functional and antigenic evolution of the RBP that can inform the development of antibody therapies and vaccines.
Collapse
Affiliation(s)
- Brendan B Larsen
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Teagan McMahon
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jack T Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Zhaoqian Wang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Caelan E Radford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James E Crowe
- Department of Pathology Microbiology and Immunology, The Vanderbilt Vaccine Center, and Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA.
| |
Collapse
|
2
|
Sandhu M, Chen JZ, Matthews DS, Spence MA, Pulsford SB, Gall B, Kaczmarski JA, Nichols J, Tokuriki N, Jackson CJ. Computational and Experimental Exploration of Protein Fitness Landscapes: Navigating Smooth and Rugged Terrains. Biochemistry 2025; 64:1673-1684. [PMID: 40132127 DOI: 10.1021/acs.biochem.4c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Proteins evolve through complex sequence spaces, with fitness landscapes serving as a conceptual framework that links sequence to function. Fitness landscapes can be smooth, where multiple similarly accessible evolutionary paths are available, or rugged, where the presence of multiple local fitness optima complicate evolution and prediction. Indeed, many proteins, especially those with complex functions or under multiple selection pressures, exist on rugged fitness landscapes. Here we discuss the theoretical framework that underpins our understanding of fitness landscapes, alongside recent work that has advanced our understanding─particularly the biophysical basis for smoothness versus ruggedness. Finally, we address the rapid advances that have been made in computational and experimental exploration and exploitation of fitness landscapes, and how these can identify efficient routes to protein optimization.
Collapse
Affiliation(s)
- Mahakaran Sandhu
- Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
| | - John Z Chen
- Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
- ARC Centre of Excellence in Synthetic Biology, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| | - Dana S Matthews
- Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
| | - Matthew A Spence
- Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
| | - Sacha B Pulsford
- Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
| | - Barnabas Gall
- Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
| | - Joe A Kaczmarski
- Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
- ARC Centre of Excellence in Synthetic Biology, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| | - James Nichols
- Biological Data Science Institute, Australian National University, Canberra ACT 2601, Australia
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
- Biological Data Science Institute, Australian National University, Canberra ACT 2601, Australia
- ARC Centre of Excellence in Synthetic Biology, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
3
|
Frei L, Gao B, Han J, Taft JM, Irvine EB, Weber CR, Kumar RK, Eisinger BN, Ignatov A, Yang Z, Reddy ST. Deep mutational learning for the selection of therapeutic antibodies resistant to the evolution of Omicron variants of SARS-CoV-2. Nat Biomed Eng 2025; 9:552-565. [PMID: 40044817 PMCID: PMC12003156 DOI: 10.1038/s41551-025-01353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/16/2025] [Indexed: 04/18/2025]
Abstract
Most antibodies for treating COVID-19 rely on binding the receptor-binding domain (RBD) of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). However, Omicron and its sub-lineages, as well as other heavily mutated variants, have rendered many neutralizing antibodies ineffective. Here we show that antibodies with enhanced resistance to the evolution of SARS-CoV-2 can be identified via deep mutational learning. We constructed a library of full-length RBDs of Omicron BA.1 with high mutational distance and screened it for binding to the angiotensin-converting-enzyme-2 receptor and to neutralizing antibodies. After deep-sequencing the library, we used the data to train ensemble deep-learning models for the prediction of the binding and escape of a panel of eight therapeutic antibody candidates targeting a diverse range of RBD epitopes. By using in silico evolution to assess antibody breadth via the prediction of the binding and escape of the antibodies to millions of Omicron sequences, we found combinations of two antibodies with enhanced and complementary resistance to viral evolution. Deep learning may enable the development of therapeutic antibodies that remain effective against future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Lester Frei
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Basel Research Centre for Child Health, Basel, Switzerland
| | - Beichen Gao
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Basel Research Centre for Child Health, Basel, Switzerland
| | - Jiami Han
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Basel Research Centre for Child Health, Basel, Switzerland
| | - Joseph M Taft
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Basel Research Centre for Child Health, Basel, Switzerland
| | - Edward B Irvine
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Cédric R Weber
- Alloy Therapeutics (Switzerland) AG, Allschwil, Switzerland
| | - Rachita K Kumar
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Benedikt N Eisinger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Andrey Ignatov
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Zhouya Yang
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- Basel Research Centre for Child Health, Basel, Switzerland.
- Botnar Institute of Immune Engineering, Basel, Switzerland.
| |
Collapse
|
4
|
Matsuzawa Y, Tsujita K. Impact of SARS-CoV-2 variants on viral infectivity and the role of the renin-angiotensin-aldosterone system. Hypertens Res 2025; 48:1636-1638. [PMID: 39871005 DOI: 10.1038/s41440-025-02115-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/29/2025]
Abstract
Balance between Protective vs. Exacerbating Effects of ACEIs and ARBs in Omicron Variant Infections. The spike protein on the surface of the Omicron variant has a high affinity for ACE2, making it more prone to enter cells and induce ACE2 downregulation. Therefore, the effects of ACEIs and ARBs on Omicron variant infections may differ from those of the previous variants. The current study demonstrates that ACEIs and ARBs do not aggravate or prolong COVID-19 due to Omicron variant infections.
Collapse
Affiliation(s)
- Yasushi Matsuzawa
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
5
|
Allman BE, Vieira L, Diaz DJ, Wilke CO. A systematic evaluation of the language-of-viral-escape model using multiple machine learning frameworks. J R Soc Interface 2025; 22:20240598. [PMID: 40300635 PMCID: PMC12040448 DOI: 10.1098/rsif.2024.0598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/02/2025] [Accepted: 02/18/2025] [Indexed: 05/01/2025] Open
Abstract
Predicting the evolutionary patterns of emerging and endemic viruses is key for mitigating their spread. In particular, it is critical to rapidly identify mutations with the potential for immune escape or increased disease burden. Knowing which circulating mutations pose a concern can inform treatment or mitigation strategies such as alternative vaccines or targeted social distancing. In 2021, Hie B, Zhong ED, Berger B, Bryson B. 2021 Learning the language of viral evolution and escape. Science 371, 284-288. (doi:10.1126/science.abd7331) proposed that variants of concern can be identified using two quantities extracted from protein language models, grammaticality and semantic change. These quantities are defined by analogy to concepts from natural language processing. Grammaticality is intended to be a measure of whether a variant viral protein is viable, and semantic change is intended to be a measure of potential for immune escape. Here, we systematically test this hypothesis, taking advantage of several high-throughput datasets that have become available, and also comparing this model with several more recently published machine learning models. We find that grammaticality can be a measure of protein viability, though methods that are trained explicitly to predict mutational effects appear to be more effective. By contrast, we do not find compelling evidence that semantic change is a useful tool for identifying immune escape mutations.
Collapse
Affiliation(s)
- Brent E. Allman
- Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Luiz Vieira
- Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Daniel J. Diaz
- Institute for Foundations of Machine Learning, The University of Texas at Austin, Austin, Texas, USA
| | - Claus O. Wilke
- Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
6
|
Li Y, Zhang J. On the Probability of Reaching High Peaks in Fitness Landscapes by Adaptive Walks. Mol Biol Evol 2025; 42:msaf066. [PMID: 40120127 PMCID: PMC11975533 DOI: 10.1093/molbev/msaf066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
Adaptive evolution can be described by an uphill walk in a fitness landscape. However, climbing the global peak in a multipeak landscape is improbable because of the high chance of being trapped at a local peak. Nonetheless, over three-quarters of simulated adaptive walks in the fitness landscape of the Escherichia coli dihydrofolate reductase (DHFR) gene were reported to end at the highest 14% of peaks, suggesting that biological systems may be substantially more evolvable than commonly thought. To investigate the cause and generality of this observation, we estimate in empirical and theoretical fitness landscapes the probability of reaching high peaks by adaptive walks (PHP), where high peaks refer to the highest 1, 5, 14, or 25% of all peaks. We find that (i) PHP varies substantially among landscapes, (ii) PHP in empirical landscapes is generally comparable to or smaller than that in same-size Rough Mount Fuji landscapes of similar ruggedness, and (iii) lowering landscape ruggedness boosts PHP. As observed in DHFR, we find in every examined landscape a positive correlation between the fitness of a peak and its basin size, which is the number of genotypes that can reach the peak through adaptive walks. Yet, this correlation does not guarantee a large PHP because of the influences of other factors. We conclude that evolvability depends on the specific fitness landscape and that the large PHP in the DHFR landscape is not a general property of empirical or theoretical fitness landscapes.
Collapse
Affiliation(s)
- Yang Li
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Mohanty V, Shakhnovich EI. Biophysical fitness landscape design traps viral evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.30.646233. [PMID: 40236159 PMCID: PMC11996392 DOI: 10.1101/2025.03.30.646233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
We introduce foundational principles for designing customizable fitness landscapes for proteins. We focus on crafting antibody ensembles to create evolutionary traps which restrict viral fitness enhancement. By deriving a fundamental relationship between a mutant protein's fitness and its binding affinities to host receptors and antibodies, we show that the fitnesses of different protein sequences are designable, meaning they can be independently tuned by careful choice of antibodies. Given a user-defined target fitness landscape, stochastic optimization can be performed to obtain such an ensemble of antibodies which force the protein to evolve according to the designed target fitness landscape. We conduct in silico serial dilution experiments using microscopic chemical reaction dynamics to simulate viral evolution and validate the fitness landscape design. We then apply the design protocol to control the relative fitnesses of two SARS-CoV-2 neutral genotype networks while ensuring absolute fitness reduction. Finally, we introduce an iterative design protocol which consistently discovers better vaccination target sequences, generating antibodies that restrict the post-vaccination fitness growth of escape variants while simultaneously suppressing wildtype fitness. Biophysical fitness landscape design thus opens the door to prescient vaccine, antibody, and peptide design, thinking several steps ahead of pathogen evolution.
Collapse
|
8
|
Huot M, Wang D, Liu J, Shakhnovich E. Few-Shot Viral Variant Detection via Bayesian Active Learning and Biophysics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642881. [PMID: 40161822 PMCID: PMC11952382 DOI: 10.1101/2025.03.12.642881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The early detection of high-fitness viral variants is critical for pandemic response, yet limited experimental resources at the onset of variant emergence hinder effective identification. To address this, we introduce an active learning framework that integrates protein language model ESM3, Gaussian process with uncertainty estimation, and a biophysical model to predict the fitness of novel variants in a few-shot learning setting. By benchmarking on past SARS-CoV-2 data, we demonstrate that our methods accelerates the identification of high-fitness variants by up to fivefold compared to random sampling while requiring experimental characterization of fewer than 1% of possible variants. We also demonstrate that our framework benchmarked on deep mutational scans effectively identifies sites that are frequently mutated during natural viral evolution with a predictive advantage of up to two years compared to baseline strategies, particularly those enabling antibody escape while preserving ACE2 binding. Through systematic analysis of different acquisition strategies, we show that incorporating uncertainty in variant selection enables broader exploration of the sequence landscape, leading to the discovery of evolutionarily distant but potentially dangerous variants. Our results suggest that this framework could serve as an effective early warning system for identifying concerning SARS-CoV-2 variants and potentially emerging viruses with pandemic potential before they achieve widespread circulation.
Collapse
Affiliation(s)
- Marian Huot
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
- Laboratory of Physics of the Ecole Normale Supérieure, CNRS UMR 8023 and PSL Research, Sorbonne Université
| | - Dianzhuo Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | | | - Eugene Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
| |
Collapse
|
9
|
Raharinirina NA, Gubela N, Börnigen D, Smith MR, Oh DY, Budt M, Mache C, Schillings C, Fuchs S, Dürrwald R, Wolff T, Hölzer M, Paraskevopoulou S, von Kleist M. SARS-CoV-2 evolution on a dynamic immune landscape. Nature 2025; 639:196-204. [PMID: 39880955 PMCID: PMC11882442 DOI: 10.1038/s41586-024-08477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/02/2024] [Indexed: 01/31/2025]
Abstract
Since the onset of the pandemic, many SARS-CoV-2 variants have emerged, exhibiting substantial evolution in the virus' spike protein1, the main target of neutralizing antibodies2. A plausible hypothesis proposes that the virus evolves to evade antibody-mediated neutralization (vaccine- or infection-induced) to maximize its ability to infect an immunologically experienced population1,3. Because viral infection induces neutralizing antibodies, viral evolution may thus navigate on a dynamic immune landscape that is shaped by local infection history. Here we developed a comprehensive mechanistic model, incorporating deep mutational scanning data4,5, antibody pharmacokinetics and regional genomic surveillance data, to predict the variant-specific relative number of susceptible individuals over time. We show that this quantity precisely matched historical variant dynamics, predicted future variant dynamics and explained global differences in variant dynamics. Our work strongly suggests that the ongoing pandemic continues to shape variant-specific population immunity, which determines a variant's ability to transmit, thus defining variant fitness. The model can be applied to any region by utilizing local genomic surveillance data, allows contextualizing risk assessment of variants and provides information for vaccine design.
Collapse
Affiliation(s)
- N Alexia Raharinirina
- Department of Mathematics & Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Nils Gubela
- Department of Mathematics & Computer Science, Freie Universität Berlin, Berlin, Germany
- International Max-Planck Research School for Biology and Computation (IMPRS-BAC), Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | - Djin-Ye Oh
- Department 1, Robert Koch Institute, Berlin, Germany
| | - Matthias Budt
- Department 1, Robert Koch Institute, Berlin, Germany
| | | | - Claudia Schillings
- Department of Mathematics & Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Stephan Fuchs
- Department MFI, Robert Koch Institute, Berlin, Germany
| | - Ralf Dürrwald
- Department 1, Robert Koch Institute, Berlin, Germany
| | | | - Martin Hölzer
- Department MFI, Robert Koch Institute, Berlin, Germany
| | | | - Max von Kleist
- Department of Mathematics & Computer Science, Freie Universität Berlin, Berlin, Germany.
- Project Groups, Robert Koch Institute, Berlin, Germany.
| |
Collapse
|
10
|
Gonzales JE, Kim I, Bastiray A, Hwang W, Cho JH. Evolutionary rewiring of the dynamic network underpinning allosteric epistasis in NS1 of the influenza A virus. Proc Natl Acad Sci U S A 2025; 122:e2410813122. [PMID: 39977319 PMCID: PMC11873825 DOI: 10.1073/pnas.2410813122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/22/2025] [Indexed: 02/22/2025] Open
Abstract
Viral proteins frequently mutate to evade host innate immune responses, yet the impact of these mutations on the molecular energy landscape remains unclear. Epistasis, the intramolecular communications between mutations, often renders the combined mutational effects unpredictable. Nonstructural protein 1 (NS1) is a major virulence factor of the influenza A virus (IAV) that activates host PI3K by binding to its p85β subunit. Here, we present a deep analysis of the impact of evolutionary mutations in NS1 that emerged between the 1918 pandemic IAV strain and its descendant PR8 strain. Our analysis reveals how the mutations rewired interresidue communications, which underlie long-range allosteric and epistatic networks in NS1. Our findings show that PR8 NS1 binds to p85β with approximately 10-fold greater affinity than 1918 NS1 due to allosteric mutational effects, which are further tuned by epistasis. NMR chemical shift perturbation and methyl-axis order parameter analyses revealed that the mutations induced long-range structural and dynamic changes in PR8 NS1, relative to 1918 NS1, enhancing its affinity to p85β. Complementary molecular dynamics simulations and graph theory-based network analysis for conformational dynamics on the submicrosecond timescales uncover how these mutations rewire the dynamic network, which underlies the allosteric epistasis. Significantly, we find that conformational dynamics of residues with high betweenness centrality play a crucial role in communications between network communities and are highly conserved across influenza A virus evolution. These findings advance our mechanistic understanding of the allosteric and epistatic communications between distant residues and provide insight into their role in the molecular evolution of NS1.
Collapse
Affiliation(s)
- James E. Gonzales
- Department of Biomedical Engineering, Texas A&M University, College Station, TX77843
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD20892
| | - Iktae Kim
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Abhishek Bastiray
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX77843
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX77843
- Department of Physics and Astronomy, Texas A&M University, College Station, TX77843
- Center for Artificial Intelligence and Natural Sciences, Korea Institute for Advanced Study, Seoul02455, Republic of Korea
| | - Jae-Hyun Cho
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| |
Collapse
|
11
|
Chitra U, Arnold B, Raphael BJ. Resolving discrepancies between chimeric and multiplicative measures of higher-order epistasis. Nat Commun 2025; 16:1711. [PMID: 39962081 PMCID: PMC11833126 DOI: 10.1038/s41467-025-56986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
Epistasis - the interaction between alleles at different genetic loci - plays a fundamental role in biology. However, several recent approaches quantify epistasis using a chimeric formula that measures deviations from a multiplicative fitness model on an additive scale, thus mixing two scales. Here, we show that for pairwise interactions, the chimeric formula yields a different magnitude but the same sign of epistasis compared to the multiplicative formula that measures both fitness and deviations on a multiplicative scale. However, for higher-order interactions, we show that the chimeric formula can have both different magnitude and sign compared to the multiplicative formula. We resolve these inconsistencies by deriving mathematical relationships between the different epistasis formulae and different parametrizations of the multivariate Bernoulli distribution. We argue that the chimeric formula does not appropriately model interactions between the Bernoulli random variables. In simulations, we show that the chimeric formula is less accurate than the classical multiplicative/additive epistasis formulae and may falsely detect higher-order epistasis. Analyzing multi-gene knockouts in yeast, multi-way drug interactions in E. coli, and deep mutational scanning of several proteins, we find that approximately 10% to 60% of inferred higher-order interactions change sign using the multiplicative/additive formula compared to the chimeric formula.
Collapse
Affiliation(s)
- Uthsav Chitra
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Brian Arnold
- Department of Computer Science, Princeton University, Princeton, NJ, USA
- Center for Statistics and Machine Learning, Princeton University, Princeton, NJ, USA
| | - Benjamin J Raphael
- Department of Computer Science, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
12
|
Zhang X, Lei Z, Zhang J, Yang T, Liu X, Xue J, Ni M. AnnCovDB: a manually curated annotation database for mutations in SARS-CoV-2 spike protein. Database (Oxford) 2025; 2025:baaf002. [PMID: 39937661 PMCID: PMC11817795 DOI: 10.1093/database/baaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/05/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been circulating and adapting within the human population for >4 years. A large number of mutations have occurred in the viral genome, resulting in significant variants known as variants of concern (VOCs) and variants of interest (VOIs). The spike (S) protein harbors many of the characteristic mutations of VOCs and VOIs, and significant efforts have been made to explore functional effects of the mutations in the S protein, which can cause or contribute to viral infection, transmission, immune evasion, pathogenicity, and illness severity. However, the knowledge and understanding are dispersed throughout various publications, and there is a lack of a well-structured database for functional annotation that is based on manual curation. AnnCovDB is a database that provides manually curated functional annotations for mutations in the S protein of SARS-CoV-2. Mutations in the S protein carried by at least 8000 variants in the GISAID were chosen, and the mutations were then utilized as query keywords to search in the PubMed database. The searched publications revealed that 2093 annotation entities for 205 single mutations and 93 multiple mutations were manually curated. These entities were organized into multilevel hierarchical categories for user convenience. For example, one annotation entity of N501Y mutation was 'Infectious cycle➔Attachment➔ACE2 binding affinity➔Increase'. AnnCovDB can be used to query specific mutations and browse through function annotation entities. Database URL: https://AnnCovDB.app.bio-it.tech/.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Academy of Military Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, PR China
| | - Zhongyi Lei
- Academy of Military Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring Road East, Chaoyang District, Beijing 100029, PR China
| | - Jiarong Zhang
- Academy of Military Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, PR China
- School of Forensic Medicine, Shanxi Medical University, No.98, University Street, Wujinshan Town, Yuci District, Jinzhong, Shanxi Province 030600, PR China
| | - Tingting Yang
- Academy of Military Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, PR China
- School of Forensic Medicine, Shanxi Medical University, No.98, University Street, Wujinshan Town, Yuci District, Jinzhong, Shanxi Province 030600, PR China
| | - Xian Liu
- Academy of Military Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, PR China
| | - Jiguo Xue
- Academy of Military Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, PR China
| | - Ming Ni
- Academy of Military Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, PR China
| |
Collapse
|
13
|
Rouzine IM. Evolutionary Mechanisms of the Emergence of the Variants of Concern of SARS-CoV-2. Viruses 2025; 17:197. [PMID: 40006952 PMCID: PMC11861269 DOI: 10.3390/v17020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
The evolutionary origin of the variants of concern (VOCs) of SARS-CoV-2, characterized by a large number of new substitutions and strong changes in virulence and transmission rate, is intensely debated. The leading explanation in the literature is a chronic infection in immunocompromised individuals, where the virus evolves before returning into the main population. The present article reviews less-investigated hypotheses of VOC emergence with transmission between acutely infected hosts, with a focus on the mathematical models of stochastic evolution that have proved to be useful for other viruses, such as HIV and influenza virus. The central message is that understanding the acting factors of VOC evolution requires the framework of stochastic multi-locus evolution models, and that alternative hypotheses can be effectively verified by fitting results of computer simulation to empirical data.
Collapse
Affiliation(s)
- Igor M Rouzine
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| |
Collapse
|
14
|
Bayarri-Olmos R, Sutta A, Rosbjerg A, Mortensen MM, Helgstrand C, Nielsen PF, Pérez-Alós L, González-García B, Johnsen LB, Matthiesen F, Egebjerg T, Hansen CB, Sette A, Grifoni A, da Silva Antunes R, Garred P. Unraveling the impact of SARS-CoV-2 mutations on immunity: insights from innate immune recognition to antibody and T cell responses. Front Immunol 2024; 15:1412873. [PMID: 39720734 PMCID: PMC11666439 DOI: 10.3389/fimmu.2024.1412873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024] Open
Abstract
Throughout the COVID-19 pandemic, the emergence of new viral variants has challenged public health efforts, often evading antibody responses generated by infections and vaccinations. This immune escape has led to waves of breakthrough infections, raising questions about the efficacy and durability of immune protection. Here we focus on the impact of SARS-CoV-2 Delta and Omicron spike mutations on ACE-2 receptor binding, protein stability, and immune response evasion. Delta and Omicron variants had 3-5 times higher binding affinities to ACE-2 than the ancestral strain (KDwt = 23.4 nM, KDDelta = 8.08 nM, KDBA.1 = 4.77 nM, KDBA.2 = 4.47 nM). The pattern recognition molecule mannose-binding lectin (MBL) has been shown to recognize the spike protein. Here we found that MBL binding remained largely unchanged across the variants, even after introducing mutations at single glycan sites. Although MBL binding decreased post-vaccination, it increased by 2.6-fold upon IgG depletion, suggesting a compensatory or redundant role in immune recognition. Notably, we identified two glycan sites (N717 and N801) as potentially essential for the structural integrity of the spike protein. We also evaluated the antibody and T cell responses. Neutralization by serum immunoglobulins was predominantly mediated by IgG rather than IgA and was markedly impaired against the Delta (5.8-fold decrease) and Omicron variants BA.1 (17.4-fold) and BA.2 (14.2-fold). T cell responses, initially conserved, waned rapidly within 3 months post-Omicron infection. Our data suggests that immune imprinting may have hindered antibody and T cell responses toward the variants. Overall, despite decreased antibody neutralization, MBL recognition and T cell responses were generally unaffected by the variants. These findings extend our understanding of the complex interplay between viral adaptation and immune response, underscoring the importance of considering MBL interactions, immune imprinting, and viral evolution dynamics in developing new vaccine and treatment strategies.
Collapse
Affiliation(s)
- Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Recombinant Protein and Antibody Unit, Copenhagen University Hospital,
Rigshospitalet, Copenhagen, Denmark
| | - Adrian Sutta
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Recombinant Protein and Antibody Unit, Copenhagen University Hospital,
Rigshospitalet, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Recombinant Protein and Antibody Unit, Copenhagen University Hospital,
Rigshospitalet, Copenhagen, Denmark
| | | | | | | | - Laura Pérez-Alós
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Beatriz González-García
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | - Cecilie Bo Hansen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, United States
| | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Chowell G, Skums P. Investigating and forecasting infectious disease dynamics using epidemiological and molecular surveillance data. Phys Life Rev 2024; 51:294-327. [PMID: 39488136 DOI: 10.1016/j.plrev.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
The integration of viral genomic data into public health surveillance has revolutionized our ability to track and forecast infectious disease dynamics. This review addresses two critical aspects of infectious disease forecasting and monitoring: the methodological workflow for epidemic forecasting and the transformative role of molecular surveillance. We first present a detailed approach for validating epidemic models, emphasizing an iterative workflow that utilizes ordinary differential equation (ODE)-based models to investigate and forecast disease dynamics. We recommend a more structured approach to model validation, systematically addressing key stages such as model calibration, assessment of structural and practical parameter identifiability, and effective uncertainty propagation in forecasts. Furthermore, we underscore the importance of incorporating multiple data streams by applying both simulated and real epidemiological data from the COVID-19 pandemic to produce more reliable forecasts with quantified uncertainty. Additionally, we emphasize the pivotal role of viral genomic data in tracking transmission dynamics and pathogen evolution. By leveraging advanced computational tools such as Bayesian phylogenetics and phylodynamics, researchers can more accurately estimate transmission clusters and reconstruct outbreak histories, thereby improving data-driven modeling and forecasting and informing targeted public health interventions. Finally, we discuss the transformative potential of integrating molecular epidemiology with mathematical modeling to complement and enhance epidemic forecasting and optimize public health strategies.
Collapse
Affiliation(s)
- Gerardo Chowell
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA, USA; Department of Applied Mathematics, Kyung Hee University, Yongin 17104, Korea.
| | - Pavel Skums
- School of Computing, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
16
|
Dadonaite B, Ahn JJ, Ort JT, Yu J, Furey C, Dosey A, Hannon WW, Vincent Baker AL, Webby RJ, King NP, Liu Y, Hensley SE, Peacock TP, Moncla LH, Bloom JD. Deep mutational scanning of H5 hemagglutinin to inform influenza virus surveillance. PLoS Biol 2024; 22:e3002916. [PMID: 39531474 PMCID: PMC11584116 DOI: 10.1371/journal.pbio.3002916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
H5 influenza is considered a potential pandemic threat. Recently, H5 viruses belonging to clade 2.3.4.4b have caused large outbreaks in avian and multiple nonhuman mammalian species. Previous studies have identified molecular phenotypes of the viral hemagglutinin (HA) protein that contribute to pandemic potential in humans, including cell entry, receptor preference, HA stability, and reduced neutralization by polyclonal sera. However, prior experimental work has only measured how these phenotypes are affected by a handful of the >10,000 different possible amino-acid mutations to HA. Here, we use pseudovirus deep mutational scanning to measure how all mutations to a 2.3.4.4b H5 HA affect each phenotype. We identify mutations that allow HA to better bind α2-6-linked sialic acids and show that some viruses already carry mutations that stabilize HA. We also measure how all HA mutations affect neutralization by sera from mice and ferrets vaccinated against or infected with 2.3.4.4b H5 viruses. These antigenic maps enable rapid assessment of when new viral strains have acquired mutations that may create mismatches with candidate vaccine virus, and we show that a mutation present in some recent H5 HAs causes a large antigenic change. Overall, the systematic nature of deep mutational scanning combined with the safety of pseudoviruses enables comprehensive measurements of the phenotypic effects of mutations that can inform real-time interpretation of viral variation observed during surveillance of H5 influenza.
Collapse
Affiliation(s)
- Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, DC, United States of America
| | - Jenny J Ahn
- Department of Microbiology, University of Washington, Seattle, Washington, DC, United States of America
| | - Jordan T Ort
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jin Yu
- Glycosciences Laboratory, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Colleen Furey
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Annie Dosey
- Department of Biochemistry, University of Washington, Seattle, Washington, DC, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, DC, United States of America
| | - William W Hannon
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, DC, United States of America
| | - Amy L Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa, United States of America
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, Washington, DC, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, DC, United States of America
| | - Yan Liu
- Glycosciences Laboratory, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Thomas P Peacock
- The Pirbright Institute, Pirbright, Woking, United Kingdom
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, United Kingdom
| | - Louise H Moncla
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, DC, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, DC, United States of America
| |
Collapse
|
17
|
Shimagaki KS, Barton JP. Efficient epistasis inference via higher-order covariance matrix factorization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618287. [PMID: 39464126 PMCID: PMC11507688 DOI: 10.1101/2024.10.14.618287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Epistasis can profoundly influence evolutionary dynamics. Temporal genetic data, consisting of sequences sampled repeatedly from a population over time, provides a unique resource to understand how epistasis shapes evolution. However, detecting epistatic interactions from sequence data is technically challenging. Existing methods for identifying epistasis are computationally demanding, limiting their applicability to real-world data. Here, we present a novel computational method for inferring epistasis that significantly reduces computational costs without sacrificing accuracy. We validated our approach in simulations and applied it to study HIV-1 evolution over multiple years in a data set of 16 individuals. There we observed a strong excess of negative epistatic interactions between beneficial mutations, especially mutations involved in immune escape. Our method is general and could be used to characterize epistasis in other large data sets.
Collapse
Affiliation(s)
- Kai S. Shimagaki
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, USA
- Department of Physics and Astronomy, University of Pittsburgh, USA
| | - John P. Barton
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, USA
- Department of Physics and Astronomy, University of Pittsburgh, USA
| |
Collapse
|
18
|
Alpay BA, Desai MM. Effects of selection stringency on the outcomes of directed evolution. PLoS One 2024; 19:e0311438. [PMID: 39401192 PMCID: PMC11472920 DOI: 10.1371/journal.pone.0311438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/18/2024] [Indexed: 10/17/2024] Open
Abstract
Directed evolution makes mutant lineages compete in climbing complicated sequence-function landscapes. Given this underlying complexity it is unclear how selection stringency, a ubiquitous parameter of directed evolution, impacts the outcome. Here we approach this question in terms of the fitnesses of the candidate variants at each round and the heterogeneity of their distributions of fitness effects. We show that even if the fittest mutant is most likely to yield the fittest mutants in the next round of selection, diversification can improve outcomes by sampling a larger variety of fitness effects. We find that heterogeneity in fitness effects between variants, larger population sizes, and evolution over a greater number of rounds all encourage diversification.
Collapse
Affiliation(s)
- Berk A. Alpay
- Systems, Synthetic, and Quantitative Biology Program, Harvard University, Cambridge, MA, United States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States of America
| | - Michael M. Desai
- Systems, Synthetic, and Quantitative Biology Program, Harvard University, Cambridge, MA, United States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States of America
- Department of Physics, Harvard University, Cambridge, MA, United States of America
| |
Collapse
|
19
|
Raisinghani N, Alshahrani M, Gupta G, Verkhivker G. AlphaFold2 Modeling and Molecular Dynamics Simulations of the Conformational Ensembles for the SARS-CoV-2 Spike Omicron JN.1, KP.2 and KP.3 Variants: Mutational Profiling of Binding Energetics Reveals Epistatic Drivers of the ACE2 Affinity and Escape Hotspots of Antibody Resistance. Viruses 2024; 16:1458. [PMID: 39339934 PMCID: PMC11437503 DOI: 10.3390/v16091458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The most recent wave of SARS-CoV-2 Omicron variants descending from BA.2 and BA.2.86 exhibited improved viral growth and fitness due to convergent evolution of functional hotspots. These hotspots operate in tandem to optimize both receptor binding for effective infection and immune evasion efficiency, thereby maintaining overall viral fitness. The lack of molecular details on structure, dynamics and binding energetics of the latest FLiRT and FLuQE variants with the ACE2 receptor and antibodies provides a considerable challenge that is explored in this study. We combined AlphaFold2-based atomistic predictions of structures and conformational ensembles of the SARS-CoV-2 spike complexes with the host receptor ACE2 for the most dominant Omicron variants JN.1, KP.1, KP.2 and KP.3 to examine the mechanisms underlying the role of convergent evolution hotspots in balancing ACE2 binding and antibody evasion. Using the ensemble-based mutational scanning of the spike protein residues and computations of binding affinities, we identified binding energy hotspots and characterized the molecular basis underlying epistatic couplings between convergent mutational hotspots. The results suggested the existence of epistatic interactions between convergent mutational sites at L455, F456, Q493 positions that protect and restore ACE2-binding affinity while conferring beneficial immune escape. To examine immune escape mechanisms, we performed structure-based mutational profiling of the spike protein binding with several classes of antibodies that displayed impaired neutralization against BA.2.86, JN.1, KP.2 and KP.3. The results confirmed the experimental data that JN.1, KP.2 and KP.3 harboring the L455S and F456L mutations can significantly impair the neutralizing activity of class 1 monoclonal antibodies, while the epistatic effects mediated by F456L can facilitate the subsequent convergence of Q493E changes to rescue ACE2 binding. Structural and energetic analysis provided a rationale to the experimental results showing that BD55-5840 and BD55-5514 antibodies that bind to different binding epitopes can retain neutralizing efficacy against all examined variants BA.2.86, JN.1, KP.2 and KP.3. The results support the notion that evolution of Omicron variants may favor emergence of lineages with beneficial combinations of mutations involving mediators of epistatic couplings that control balance of high ACE2 affinity and immune evasion.
Collapse
Affiliation(s)
- Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (N.R.); (M.A.); (G.G.)
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (N.R.); (M.A.); (G.G.)
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (N.R.); (M.A.); (G.G.)
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (N.R.); (M.A.); (G.G.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
20
|
Park Y, Metzger BPH, Thornton JW. The simplicity of protein sequence-function relationships. Nat Commun 2024; 15:7953. [PMID: 39261454 PMCID: PMC11390738 DOI: 10.1038/s41467-024-51895-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
How complex are the rules by which a protein's sequence determines its function? High-order epistatic interactions among residues are thought to be pervasive, suggesting an idiosyncratic and unpredictable sequence-function relationship. But many prior studies may have overestimated epistasis, because they analyzed sequence-function relationships relative to a single reference sequence-which causes measurement noise and local idiosyncrasies to snowball into high-order epistasis-or they did not fully account for global nonlinearities. Here we present a reference-free method that jointly infers specific epistatic interactions and global nonlinearity using a bird's-eye view of sequence space. This technique yields the simplest explanation of sequence-function relationships and is more robust than existing methods to measurement noise, missing data, and model misspecification. We reanalyze 20 experimental datasets and find that context-independent amino acid effects and pairwise interactions, along with a simple nonlinearity to account for limited dynamic range, explain a median of 96% of phenotypic variance and over 92% in every case. Only a tiny fraction of genotypes are strongly affected by higher-order epistasis. Sequence-function relationships are also sparse: a miniscule fraction of amino acids and interactions account for 90% of phenotypic variance. Sequence-function causality across these datasets is therefore simple, opening the way for tractable approaches to characterize proteins' genetic architecture.
Collapse
Affiliation(s)
- Yeonwoo Park
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
| | - Brian P H Metzger
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Joseph W Thornton
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
21
|
Taylor AL, Starr TN. Deep mutational scanning of SARS-CoV-2 Omicron BA.2.86 and epistatic emergence of the KP.3 variant. Virus Evol 2024; 10:veae067. [PMID: 39310091 PMCID: PMC11414647 DOI: 10.1093/ve/veae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Deep mutational scanning experiments aid in the surveillance and forecasting of viral evolution by providing prospective measurements of mutational effects on viral traits, but epistatic shifts in the impacts of mutations can hinder viral forecasting when measurements were made in outdated strain backgrounds. Here, we report measurements of the impact of all single amino acid mutations on ACE2-binding affinity and protein folding and expression in the SARS-CoV-2 Omicron BA.2.86 spike receptor-binding domain. As with other SARS-CoV-2 variants, we find a plastic and evolvable basis for receptor binding, with many mutations at the ACE2 interface maintaining or even improving ACE2-binding affinity. Despite its large genetic divergence, mutational effects in BA.2.86 have not diverged greatly from those measured in its Omicron BA.2 ancestor. However, we do identify strong positive epistasis among subsequent mutations that have accrued in BA.2.86 descendants. Specifically, the Q493E mutation that decreased ACE2-binding affinity in all previous SARS-CoV-2 backgrounds is reversed in sign to enhance human ACE2-binding affinity when coupled with L455S and F456L in the currently emerging KP.3 variant. Our results point to a modest degree of epistatic drift in mutational effects during recent SARS-CoV-2 evolution but highlight how these small epistatic shifts can have important consequences for the emergence of new SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ashley L Taylor
- Department of Biochemistry, University of Utah School of Medicine, 15 N Medical Dr E, Salt Lake City, UT 84112, USA
| | - Tyler N Starr
- Department of Biochemistry, University of Utah School of Medicine, 15 N Medical Dr E, Salt Lake City, UT 84112, USA
| |
Collapse
|
22
|
Collesano L, Łuksza M, Lässig M. Energy landscapes of peptide-MHC binding. PLoS Comput Biol 2024; 20:e1012380. [PMID: 39226310 PMCID: PMC11398667 DOI: 10.1371/journal.pcbi.1012380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/13/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
Molecules of the Major Histocompatibility Complex (MHC) present short protein fragments on the cell surface, an important step in T cell immune recognition. MHC-I molecules process peptides from intracellular proteins; MHC-II molecules act in antigen-presenting cells and present peptides derived from extracellular proteins. Here we show that the sequence-dependent energy landscapes of MHC-peptide binding encode class-specific nonlinearities (epistasis). MHC-I has a smooth landscape with global epistasis; the binding energy is a simple deformation of an underlying linear trait. This form of epistasis enhances the discrimination between strong-binding peptides. In contrast, MHC-II has a rugged landscape with idiosyncratic epistasis: binding depends on detailed amino acid combinations at multiple positions of the peptide sequence. The form of epistasis affects the learning of energy landscapes from training data. For MHC-I, a low-complexity problem, we derive a simple matrix model of binding energies that outperforms current models trained by machine learning. For MHC-II, higher complexity prevents learning by simple regression methods. Epistasis also affects the energy and fitness effects of mutations in antigen-derived peptides (epitopes). In MHC-I, large-effect mutations occur predominantly in anchor positions of strong-binding epitopes. In MHC-II, large effects depend on the background epitope sequence but are broadly distributed over the epitope, generating a bigger target for escape mutations due to loss of presentation. Together, our analysis shows how an energy landscape of protein-protein binding constrains the target of escape mutations from T cell immunity, linking the complexity of the molecular interactions to the dynamics of adaptive immune response.
Collapse
Affiliation(s)
- Laura Collesano
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Marta Łuksza
- Tisch Cancer Institute, Departments of Oncological Sciences and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Michael Lässig
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| |
Collapse
|
23
|
Innocenti G, Obara M, Costa B, Jacobsen H, Katzmarzyk M, Cicin-Sain L, Kalinke U, Galardini M. Real-time identification of epistatic interactions in SARS-CoV-2 from large genome collections. Genome Biol 2024; 25:228. [PMID: 39175058 PMCID: PMC11342480 DOI: 10.1186/s13059-024-03355-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND The emergence of the SARS-CoV-2 virus has highlighted the importance of genomic epidemiology in understanding the evolution of pathogens and guiding public health interventions. The Omicron variant in particular has underscored the role of epistasis in the evolution of lineages with both higher infectivity and immune escape, and therefore the necessity to update surveillance pipelines to detect them early on. RESULTS In this study, we apply a method based on mutual information between positions in a multiple sequence alignment, which is capable of scaling up to millions of samples. We show how it can reliably predict known experimentally validated epistatic interactions, even when using as little as 10,000 sequences, which opens the possibility of making it a near real-time prediction system. We test this possibility by modifying the method to account for the sample collection date and apply it retrospectively to multiple sequence alignments for each month between March 2020 and March 2023. We detected a cornerstone epistatic interaction in the Spike protein between codons 498 and 501 as soon as seven samples with a double mutation were present in the dataset, thus demonstrating the method's sensitivity. We test the ability of the method to make inferences about emerging interactions by testing candidates predicted after March 2023, which we validate experimentally. CONCLUSIONS We show how known epistatic interaction in SARS-CoV-2 can be detected with high sensitivity, and how emerging ones can be quickly prioritized for experimental validation, an approach that could be implemented downstream of pandemic genome sequencing efforts.
Collapse
Affiliation(s)
- Gabriel Innocenti
- Institute for Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Maureen Obara
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Bibiana Costa
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Henning Jacobsen
- Helmholtz Centre for Infection Research, Department of Viral Immunology (VIRI), Brunswick, Germany
- Centre for Individualized Infection Medicine (CiiM) a Joint Venture of Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Maeva Katzmarzyk
- Helmholtz Centre for Infection Research, Department of Viral Immunology (VIRI), Brunswick, Germany
- Centre for Individualized Infection Medicine (CiiM) a Joint Venture of Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Luka Cicin-Sain
- Helmholtz Centre for Infection Research, Department of Viral Immunology (VIRI), Brunswick, Germany
- Centre for Individualized Infection Medicine (CiiM) a Joint Venture of Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Marco Galardini
- Institute for Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
24
|
Focosi D, Spezia PG, Maggi F. Subsequent Waves of Convergent Evolution in SARS-CoV-2 Genes and Proteins. Vaccines (Basel) 2024; 12:887. [PMID: 39204013 PMCID: PMC11358953 DOI: 10.3390/vaccines12080887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
Beginning in 2022, following widespread infection and vaccination among the global population, the SARS-CoV-2 virus mainly evolved to evade immunity derived from vaccines and past infections. This review covers the convergent evolution of structural, nonstructural, and accessory proteins in SARS-CoV-2, with a specific look at common mutations found in long-lasting infections that hint at the virus potentially reverting to an enteric sarbecovirus type.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| | - Pietro Giorgio Spezia
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| | - Fabrizio Maggi
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| |
Collapse
|
25
|
Dadonaite B, Ahn JJ, Ort JT, Yu J, Furey C, Dosey A, Hannon WW, Baker AV, Webby RJ, King NP, Liu Y, Hensley SE, Peacock TP, Moncla LH, Bloom JD. Deep mutational scanning of H5 hemagglutinin to inform influenza virus surveillance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595634. [PMID: 38826368 PMCID: PMC11142178 DOI: 10.1101/2024.05.23.595634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
H5 influenza is a potential pandemic threat. Previous studies have identified molecular phenotypes of the viral hemagglutinin (HA) protein that contribute to pandemic risk, including cell entry, receptor preference, HA stability, and reduced neutralization by polyclonal sera. Here we use pseudovirus deep mutational scanning to measure how all mutations to a clade 2.3.4.4b H5 HA affect each phenotype. We identify mutations that allow HA to better bind a2-6-linked sialic acids, and show that some viruses already carry mutations that stabilize HA. We also identify recent viral strains with reduced neutralization to sera elicited by candidate vaccine virus. Overall, the systematic nature of deep mutational scanning combined with the safety of pseudoviruses enables comprehensive characterization of mutations to inform surveillance of H5 influenza.
Collapse
|
26
|
Taylor AL, Starr TN. Deep mutational scanning of SARS-CoV-2 Omicron BA.2.86 and epistatic emergence of the KP.3 variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604853. [PMID: 39091888 PMCID: PMC11291116 DOI: 10.1101/2024.07.23.604853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Deep mutational scanning experiments aid in the surveillance and forecasting of viral evolution by providing prospective measurements of mutational effects on viral traits, but epistatic shifts in the impacts of mutations can hinder viral forecasting when measurements were made in outdated strain backgrounds. Here, we report measurements of the impact of all single amino acid mutations on ACE2-binding affinity and protein folding and expression in the SARS-CoV-2 Omicron BA.2.86 spike receptor-binding domain (RBD). As with other SARS-CoV-2 variants, we find a plastic and evolvable basis for receptor binding, with many mutations at the ACE2 interface maintaining or even improving ACE2-binding affinity. Despite its large genetic divergence, mutational effects in BA.2.86 have not diverged greatly from those measured in its Omicron BA.2 ancestor. However, we do identify strong positive epistasis among subsequent mutations that have accrued in BA.2.86 descendants. Specifically, the Q493E mutation that decreased ACE2-binding affinity in all previous SARS-CoV-2 backgrounds is reversed in sign to enhance human ACE2-binding affinity when coupled with L455S and F456L in the currently emerging KP.3 variant. Our results point to a modest degree of epistatic drift in mutational effects during recent SARS-CoV-2 evolution but highlight how these small epistatic shifts can have important consequences for the emergence of new SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ashley L. Taylor
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Tyler N. Starr
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
27
|
Chitra U, Arnold BJ, Raphael BJ. Quantifying higher-order epistasis: beware the chimera. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603976. [PMID: 39071303 PMCID: PMC11275791 DOI: 10.1101/2024.07.17.603976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Epistasis, or interactions in which alleles at one locus modify the fitness effects of alleles at other loci, plays a fundamental role in genetics, protein evolution, and many other areas of biology. Epistasis is typically quantified by computing the deviation from the expected fitness under an additive or multiplicative model using one of several formulae. However, these formulae are not all equivalent. Importantly, one widely used formula - which we call the chimeric formula - measures deviations from a multiplicative fitness model on an additive scale, thus mixing two measurement scales. We show that for pairwise interactions, the chimeric formula yields a different magnitude, but the same sign (synergistic vs. antagonistic) of epistasis compared to the multiplicative formula that measures both fitness and deviations on a multiplicative scale. However, for higher-order interactions, we show that the chimeric formula can have both different magnitude and sign compared to the multiplicative formula - thus confusing negative epistatic interactions with positive interactions, and vice versa. We resolve these inconsistencies by deriving fundamental connections between the different epistasis formulae and the parameters of the multivariate Bernoulli distribution . Our results demonstrate that the additive and multiplicative epistasis formulae are more mathematically sound than the chimeric formula. Moreover, we demonstrate that the mathematical issues with the chimeric epistasis formula lead to markedly different biological interpretations of real data. Analyzing multi-gene knockout data in yeast, multi-way drug interactions in E. coli , and deep mutational scanning (DMS) of several proteins, we find that 10 - 60% of higher-order interactions have a change in sign with the multiplicative or additive epistasis formula. These sign changes result in qualitatively different findings on functional divergence in the yeast genome, synergistic vs. antagonistic drug interactions, and and epistasis between protein mutations. In particular, in the yeast data, the more appropriate multiplicative formula identifies nearly 500 additional negative three-way interactions, thus extending the trigenic interaction network by 25%.
Collapse
|
28
|
Raisinghani N, Alshahrani M, Gupta G, Verkhivker G. Atomistic Prediction of Structures, Conformational Ensembles and Binding Energetics for the SARS-CoV-2 Spike JN.1, KP.2 and KP.3 Variants Using AlphaFold2 and Molecular Dynamics Simulations: Mutational Profiling and Binding Free Energy Analysis Reveal Epistatic Hotspots of the ACE2 Affinity and Immune Escape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602810. [PMID: 39026832 PMCID: PMC11257589 DOI: 10.1101/2024.07.09.602810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The most recent wave of SARS-CoV-2 Omicron variants descending from BA.2 and BA.2.86 exhibited improved viral growth and fitness due to convergent evolution of functional hotspots. These hotspots operate in tandem to optimize both receptor binding for effective infection and immune evasion efficiency, thereby maintaining overall viral fitness. The lack of molecular details on structure, dynamics and binding energetics of the latest FLiRT and FLuQE variants with the ACE2 receptor and antibodies provides a considerable challenge that is explored in this study. We combined AlphaFold2-based atomistic predictions of structures and conformational ensembles of the SARS-CoV-2 Spike complexes with the host receptor ACE2 for the most dominant Omicron variants JN.1, KP.1, KP.2 and KP.3 to examine the mechanisms underlying the role of convergent evolution hotspots in balancing ACE2 binding and antibody evasion. Using the ensemble-based mutational scanning of the spike protein residues and computations of binding affinities, we identified binding energy hotspots and characterized molecular basis underlying epistatic couplings between convergent mutational hotspots. The results suggested that the existence of epistatic interactions between convergent mutational sites at L455, F456, Q493 positions that enable to protect and restore ACE2 binding affinity while conferring beneficial immune escape. To examine immune escape mechanisms, we performed structure-based mutational profiling of the spike protein binding with several classes of antibodies that displayed impaired neutralization against BA.2.86, JN.1, KP.2 and KP.3. The results confirmed the experimental data that JN.1, KP.2 and KP.3 harboring the L455S and F456L mutations can significantly impair the neutralizing activity of class-1 monoclonal antibodies, while the epistatic effects mediated by F456L can facilitate the subsequent convergence of Q493E changes to rescue ACE2 binding. Structural and energetic analysis provided a rationale to the experimental results showing that BD55-5840 and BD55-5514 antibodies that bind to different binding epitopes can retain neutralizing efficacy against all examined variants BA.2.86, JN.1, KP.2 and KP.3. The results support the notion that evolution of Omicron variants may favor emergence of lineages with beneficial combinations of mutations involving mediators of epistatic couplings that control balance of high ACE2 affinity and immune evasion.
Collapse
|
29
|
Wilke CO. The biophysical landscape of viral evolution. Proc Natl Acad Sci U S A 2024; 121:e2409667121. [PMID: 38913906 PMCID: PMC11228502 DOI: 10.1073/pnas.2409667121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Affiliation(s)
- Claus O. Wilke
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
30
|
Raisinghani N, Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. Exploring conformational landscapes and binding mechanisms of convergent evolution for the SARS-CoV-2 spike Omicron variant complexes with the ACE2 receptor using AlphaFold2-based structural ensembles and molecular dynamics simulations. Phys Chem Chem Phys 2024; 26:17720-17744. [PMID: 38869513 DOI: 10.1039/d4cp01372g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In this study, we combined AlphaFold-based approaches for atomistic modeling of multiple protein states and microsecond molecular simulations to accurately characterize conformational ensembles evolution and binding mechanisms of convergent evolution for the SARS-CoV-2 spike Omicron variants BA.1, BA.2, BA.2.75, BA.3, BA.4/BA.5 and BQ.1.1. We employed and validated several different adaptations of the AlphaFold methodology for modeling of conformational ensembles including the introduced randomized full sequence scanning for manipulation of sequence variations to systematically explore conformational dynamics of Omicron spike protein complexes with the ACE2 receptor. Microsecond atomistic molecular dynamics (MD) simulations provide a detailed characterization of the conformational landscapes and thermodynamic stability of the Omicron variant complexes. By integrating the predictions of conformational ensembles from different AlphaFold adaptations and applying statistical confidence metrics we can expand characterization of the conformational ensembles and identify functional protein conformations that determine the equilibrium dynamics for the Omicron spike complexes with the ACE2. Conformational ensembles of the Omicron RBD-ACE2 complexes obtained using AlphaFold-based approaches for modeling protein states and MD simulations are employed for accurate comparative prediction of the binding energetics revealing an excellent agreement with the experimental data. In particular, the results demonstrated that AlphaFold-generated extended conformational ensembles can produce accurate binding energies for the Omicron RBD-ACE2 complexes. The results of this study suggested complementarities and potential synergies between AlphaFold predictions of protein conformational ensembles and MD simulations showing that integrating information from both methods can potentially yield a more adequate characterization of the conformational landscapes for the Omicron RBD-ACE2 complexes. This study provides insights in the interplay between conformational dynamics and binding, showing that evolution of Omicron variants through acquisition of convergent mutational sites may leverage conformational adaptability and dynamic couplings between key binding energy hotspots to optimize ACE2 binding affinity and enable immune evasion.
Collapse
Affiliation(s)
- Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75275, USA
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75275, USA
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
31
|
Alpay BA, Desai MM. Effects of selection stringency on the outcomes of directed evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598029. [PMID: 38895455 PMCID: PMC11185767 DOI: 10.1101/2024.06.09.598029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Directed evolution makes mutant lineages compete in climbing complicated sequence-function landscapes. Given this underlying complexity it is unclear how selection stringency, a ubiquitous parameter of directed evolution, impacts the outcome. Here we approach this question in terms of the fitnesses of the candidate variants at each round and the heterogeneity of their distributions of fitness effects. We show that even if the fittest mutant is most likely to yield the fittest mutants in the next round of selection, diversification can improve outcomes by sampling a larger variety of fitness effects. We find that heterogeneity in fitness effects between variants, larger population sizes, and evolution over a greater number of rounds all encourage diversification.
Collapse
Affiliation(s)
- Berk A. Alpay
- Systems, Synthetic, and Quantitative Biology Program, Harvard University, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Michael M. Desai
- Systems, Synthetic, and Quantitative Biology Program, Harvard University, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| |
Collapse
|
32
|
Wang D, Huot M, Mohanty V, Shakhnovich EI. Biophysical principles predict fitness of SARS-CoV-2 variants. Proc Natl Acad Sci U S A 2024; 121:e2314518121. [PMID: 38820002 PMCID: PMC11161772 DOI: 10.1073/pnas.2314518121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/19/2024] [Indexed: 06/02/2024] Open
Abstract
SARS-CoV-2 employs its spike protein's receptor binding domain (RBD) to enter host cells. The RBD is constantly subjected to immune responses, while requiring efficient binding to host cell receptors for successful infection. However, our understanding of how RBD's biophysical properties contribute to SARS-CoV-2's epidemiological fitness remains largely incomplete. Through a comprehensive approach, comprising large-scale sequence analysis of SARS-CoV-2 variants and the identification of a fitness function based on binding thermodynamics, we unravel the relationship between the biophysical properties of RBD variants and their contribution to viral fitness. We developed a biophysical model that uses statistical mechanics to map the molecular phenotype space, characterized by dissociation constants of RBD to ACE2, LY-CoV016, LY-CoV555, REGN10987, and S309, onto an epistatic fitness landscape. We validate our findings through experimentally measured and machine learning (ML) estimated binding affinities, coupled with infectivity data derived from population-level sequencing. Our analysis reveals that this model effectively predicts the fitness of novel RBD variants and can account for the epistatic interactions among mutations, including explaining the later reversal of Q493R. Our study sheds light on the impact of specific mutations on viral fitness and delivers a tool for predicting the future epidemiological trajectory of previously unseen or emerging low-frequency variants. These insights offer not only greater understanding of viral evolution but also potentially aid in guiding public health decisions in the battle against COVID-19 and future pandemics.
Collapse
Affiliation(s)
- Dianzhuo Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Marian Huot
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- École Polytechnique, Institut Polytechnique de Paris, Palaiseau91128, France
| | - Vaibhav Mohanty
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA02115
- Massachusetts Institute of Technology, Cambridge, MA02139
| | - Eugene I. Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| |
Collapse
|
33
|
Li XC, Gandara L, Ekelöf M, Richter K, Alexandrov T, Crocker J. Rapid response of fly populations to gene dosage across development and generations. Nat Commun 2024; 15:4551. [PMID: 38811562 PMCID: PMC11137061 DOI: 10.1038/s41467-024-48960-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Although the effects of genetic and environmental perturbations on multicellular organisms are rarely restricted to single phenotypic layers, our current understanding of how developmental programs react to these challenges remains limited. Here, we have examined the phenotypic consequences of disturbing the bicoid regulatory network in early Drosophila embryos. We generated flies with two extra copies of bicoid, which causes a posterior shift of the network's regulatory outputs and a decrease in fitness. We subjected these flies to EMS mutagenesis, followed by experimental evolution. After only 8-15 generations, experimental populations have normalized patterns of gene expression and increased survival. Using a phenomics approach, we find that populations were normalized through rapid increases in embryo size driven by maternal changes in metabolism and ovariole development. We extend our results to additional populations of flies, demonstrating predictability. Together, our results necessitate a broader view of regulatory network evolution at the systems level.
Collapse
Affiliation(s)
- Xueying C Li
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- College of Life Sciences, Beijing Normal University, Beijing, China.
| | - Lautaro Gandara
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Måns Ekelöf
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Kerstin Richter
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Theodore Alexandrov
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Medicine Partnership Unit between EMBL and Heidelberg University, Heidelberg, Germany
- BioInnovation Institute, Copenhagen, Denmark
| | - Justin Crocker
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
34
|
Xue S, Han Y, Wu F, Wang Q. Mutations in the SARS-CoV-2 spike receptor binding domain and their delicate balance between ACE2 affinity and antibody evasion. Protein Cell 2024; 15:403-418. [PMID: 38442025 PMCID: PMC11131022 DOI: 10.1093/procel/pwae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Intensive selection pressure constrains the evolutionary trajectory of SARS-CoV-2 genomes and results in various novel variants with distinct mutation profiles. Point mutations, particularly those within the receptor binding domain (RBD) of SARS-CoV-2 spike (S) protein, lead to the functional alteration in both receptor engagement and monoclonal antibody (mAb) recognition. Here, we review the data of the RBD point mutations possessed by major SARS-CoV-2 variants and discuss their individual effects on ACE2 affinity and immune evasion. Many single amino acid substitutions within RBD epitopes crucial for the antibody evasion capacity may conversely weaken ACE2 binding affinity. However, this weakened effect could be largely compensated by specific epistatic mutations, such as N501Y, thus maintaining the overall ACE2 affinity for the spike protein of all major variants. The predominant direction of SARS-CoV-2 evolution lies neither in promoting ACE2 affinity nor evading mAb neutralization but in maintaining a delicate balance between these two dimensions. Together, this review interprets how RBD mutations efficiently resist antibody neutralization and meanwhile how the affinity between ACE2 and spike protein is maintained, emphasizing the significance of comprehensive assessment of spike mutations.
Collapse
Affiliation(s)
- Song Xue
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuru Han
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fan Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
35
|
Gonzales J, Kim I, Hwang W, Cho JH. Evolutionary rewiring of the dynamic network underpinning allosteric epistasis in NS1 of influenza A virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595776. [PMID: 38826371 PMCID: PMC11142230 DOI: 10.1101/2024.05.24.595776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Viral proteins frequently mutate to evade or antagonize host innate immune responses, yet the impact of these mutations on the molecular energy landscape remains unclear. Epistasis, the intramolecular communications between mutations, often renders the combined mutational effects unpredictable. Nonstructural protein 1 (NS1) is a major virulence factor of the influenza A virus (IAV) that activates host PI3K by binding to its p85β subunit. Here, we present the deep analysis for the impact of evolutionary mutations in NS1 that emerged between the 1918 pandemic IAV strain and its descendant PR8 strain. Our analysis reveal how the mutations rewired inter-residue communications which underlies long-range allosteric and epistatic networks in NS1. Our findings show that PR8 NS1 binds to p85β with approximately 10-fold greater affinity than 1918 NS1 due to allosteric mutational effects. Notably, these mutations also exhibited long-range epistatic effects. NMR chemical shift perturbation and methyl-axis order parameter analyses revealed that the mutations induced long-range structural and dynamic changes in PR8 NS1, enhancing its affinity to p85β. Complementary MD simulations and graph-based network analysis uncover how these mutations rewire dynamic residue interaction networks, which underlies the long-range epistasis and allosteric effects on p85β-binding affinity. Significantly, we find that conformational dynamics of residues with high betweenness centrality play a crucial role in communications between network communities and are highly conserved across influenza A virus evolution. These findings advance our mechanistic understanding of the allosteric and epistatic communications between distant residues and provides insight into their role in the molecular evolution of NS1.
Collapse
|
36
|
Raisinghani N, Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. AlphaFold2 Predictions of Conformational Ensembles and Atomistic Simulations of the SARS-CoV-2 Spike XBB Lineages Reveal Epistatic Couplings between Convergent Mutational Hotspots that Control ACE2 Affinity. J Phys Chem B 2024; 128:4696-4715. [PMID: 38696745 DOI: 10.1021/acs.jpcb.4c01341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
In this study, we combined AlphaFold-based atomistic structural modeling, microsecond molecular simulations, mutational profiling, and network analysis to characterize binding mechanisms of the SARS-CoV-2 spike protein with the host receptor ACE2 for a series of Omicron XBB variants including XBB.1.5, XBB.1.5+L455F, XBB.1.5+F456L, and XBB.1.5+L455F+F456L. AlphaFold-based structural and dynamic modeling of SARS-CoV-2 Spike XBB lineages can accurately predict the experimental structures and characterize conformational ensembles of the spike protein complexes with the ACE2. Microsecond molecular dynamics simulations identified important differences in the conformational landscapes and equilibrium ensembles of the XBB variants, suggesting that combining AlphaFold predictions of multiple conformations with molecular dynamics simulations can provide a complementary approach for the characterization of functional protein states and binding mechanisms. Using the ensemble-based mutational profiling of protein residues and physics-based rigorous calculations of binding affinities, we identified binding energy hotspots and characterized the molecular basis underlying epistatic couplings between convergent mutational hotspots. Consistent with the experiments, the results revealed the mediating role of the Q493 hotspot in the synchronization of epistatic couplings between L455F and F456L mutations, providing a quantitative insight into the energetic determinants underlying binding differences between XBB lineages. We also proposed a network-based perturbation approach for mutational profiling of allosteric communications and uncovered the important relationships between allosteric centers mediating long-range communication and binding hotspots of epistatic couplings. The results of this study support a mechanism in which the binding mechanisms of the XBB variants may be determined by epistatic effects between convergent evolutionary hotspots that control ACE2 binding.
Collapse
Affiliation(s)
- Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
37
|
Ose NJ, Campitelli P, Modi T, Kazan IC, Kumar S, Ozkan SB. Some mechanistic underpinnings of molecular adaptations of SARS-COV-2 spike protein by integrating candidate adaptive polymorphisms with protein dynamics. eLife 2024; 12:RP92063. [PMID: 38713502 PMCID: PMC11076047 DOI: 10.7554/elife.92063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 spike (S) protein. With this approach, we first identified candidate adaptive polymorphisms (CAPs) of the SARS-CoV-2 S protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.
Collapse
Affiliation(s)
- Nicholas James Ose
- Department of Physics and Center for Biological Physics, Arizona State UniversityTempeUnited States
| | - Paul Campitelli
- Department of Physics and Center for Biological Physics, Arizona State UniversityTempeUnited States
| | - Tushar Modi
- Department of Physics and Center for Biological Physics, Arizona State UniversityTempeUnited States
| | - I Can Kazan
- Department of Physics and Center for Biological Physics, Arizona State UniversityTempeUnited States
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple UniversityPhiladelphiaUnited States
- Department of Biology, Temple UniversityPhiladelphiaUnited States
- Center for Genomic Medicine Research, King Abdulaziz UniversityJeddahSaudi Arabia
| | - Sefika Banu Ozkan
- Department of Physics and Center for Biological Physics, Arizona State UniversityTempeUnited States
| |
Collapse
|
38
|
Faure AJ, Lehner B, Miró Pina V, Serrano Colome C, Weghorn D. An extension of the Walsh-Hadamard transform to calculate and model epistasis in genetic landscapes of arbitrary shape and complexity. PLoS Comput Biol 2024; 20:e1012132. [PMID: 38805561 PMCID: PMC11161127 DOI: 10.1371/journal.pcbi.1012132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/07/2024] [Accepted: 05/04/2024] [Indexed: 05/30/2024] Open
Abstract
Accurate models describing the relationship between genotype and phenotype are necessary in order to understand and predict how mutations to biological sequences affect the fitness and evolution of living organisms. The apparent abundance of epistasis (genetic interactions), both between and within genes, complicates this task and how to build mechanistic models that incorporate epistatic coefficients (genetic interaction terms) is an open question. The Walsh-Hadamard transform represents a rigorous computational framework for calculating and modeling epistatic interactions at the level of individual genotypic values (known as genetical, biological or physiological epistasis), and can therefore be used to address fundamental questions related to sequence-to-function encodings. However, one of its main limitations is that it can only accommodate two alleles (amino acid or nucleotide states) per sequence position. In this paper we provide an extension of the Walsh-Hadamard transform that allows the calculation and modeling of background-averaged epistasis (also known as ensemble epistasis) in genetic landscapes with an arbitrary number of states per position (20 for amino acids, 4 for nucleotides, etc.). We also provide a recursive formula for the inverse matrix and then derive formulae to directly extract any element of either matrix without having to rely on the computationally intensive task of constructing or inverting large matrices. Finally, we demonstrate the utility of our theory by using it to model epistasis within both simulated and empirical multiallelic fitness landscapes, revealing that both pairwise and higher-order genetic interactions are enriched between physically interacting positions.
Collapse
Affiliation(s)
- Andre J. Faure
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Verónica Miró Pina
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Claudia Serrano Colome
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Donate Weghorn
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
39
|
Iketani S, Ho DD. SARS-CoV-2 resistance to monoclonal antibodies and small-molecule drugs. Cell Chem Biol 2024; 31:632-657. [PMID: 38640902 PMCID: PMC11084874 DOI: 10.1016/j.chembiol.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/21/2024]
Abstract
Over four years have passed since the beginning of the COVID-19 pandemic. The scientific response has been rapid and effective, with many therapeutic monoclonal antibodies and small molecules developed for clinical use. However, given the ability for viruses to become resistant to antivirals, it is perhaps no surprise that the field has identified resistance to nearly all of these compounds. Here, we provide a comprehensive review of the resistance profile for each of these therapeutics. We hope that this resource provides an atlas for mutations to be aware of for each agent, particularly as a springboard for considerations for the next generation of antivirals. Finally, we discuss the outlook and thoughts for moving forward in how we continue to manage this, and the next, pandemic.
Collapse
Affiliation(s)
- Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
40
|
Raisinghani N, Alshahrani M, Gupta G, Verkhivker G. Ensemble-Based Mutational Profiling and Network Analysis of the SARS-CoV-2 Spike Omicron XBB Lineages for Interactions with the ACE2 Receptor and Antibodies: Cooperation of Binding Hotspots in Mediating Epistatic Couplings Underlies Binding Mechanism and Immune Escape. Int J Mol Sci 2024; 25:4281. [PMID: 38673865 PMCID: PMC11049863 DOI: 10.3390/ijms25084281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
In this study, we performed a computational study of binding mechanisms for the SARS-CoV-2 spike Omicron XBB lineages with the host cell receptor ACE2 and a panel of diverse class one antibodies. The central objective of this investigation was to examine the molecular factors underlying epistatic couplings among convergent evolution hotspots that enable optimal balancing of ACE2 binding and antibody evasion for Omicron variants BA.1, BA2, BA.3, BA.4/BA.5, BQ.1.1, XBB.1, XBB.1.5, and XBB.1.5 + L455F/F456L. By combining evolutionary analysis, molecular dynamics simulations, and ensemble-based mutational scanning of spike protein residues in complexes with ACE2, we identified structural stability and binding affinity hotspots that are consistent with the results of biochemical studies. In agreement with the results of deep mutational scanning experiments, our quantitative analysis correctly reproduced strong and variant-specific epistatic effects in the XBB.1.5 and BA.2 variants. It was shown that Y453W and F456L mutations can enhance ACE2 binding when coupled with Q493 in XBB.1.5, while these mutations become destabilized when coupled with the R493 position in the BA.2 variant. The results provided a molecular rationale of the epistatic mechanism in Omicron variants, showing a central role of the Q493/R493 hotspot in modulating epistatic couplings between convergent mutational sites L455F and F456L in XBB lineages. The results of mutational scanning and binding analysis of the Omicron XBB spike variants with ACE2 receptors and a panel of class one antibodies provide a quantitative rationale for the experimental evidence that epistatic interactions of the physically proximal binding hotspots Y501, R498, Q493, L455F, and F456L can determine strong ACE2 binding, while convergent mutational sites F456L and F486P are instrumental in mediating broad antibody resistance. The study supports a mechanism in which the impact on ACE2 binding affinity is mediated through a small group of universal binding hotspots, while the effect of immune evasion could be more variant-dependent and modulated by convergent mutational sites in the conformationally adaptable spike regions.
Collapse
Affiliation(s)
- Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (N.R.); (M.A.); (G.G.)
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (N.R.); (M.A.); (G.G.)
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (N.R.); (M.A.); (G.G.)
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (N.R.); (M.A.); (G.G.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
41
|
Raisinghani N, Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. Predicting Functional Conformational Ensembles and Binding Mechanisms of Convergent Evolution for SARS-CoV-2 Spike Omicron Variants Using AlphaFold2 Sequence Scanning Adaptations and Molecular Dynamics Simulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587850. [PMID: 38617283 PMCID: PMC11014522 DOI: 10.1101/2024.04.02.587850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
In this study, we combined AlphaFold-based approaches for atomistic modeling of multiple protein states and microsecond molecular simulations to accurately characterize conformational ensembles and binding mechanisms of convergent evolution for the SARS-CoV-2 Spike Omicron variants BA.1, BA.2, BA.2.75, BA.3, BA.4/BA.5 and BQ.1.1. We employed and validated several different adaptations of the AlphaFold methodology for modeling of conformational ensembles including the introduced randomized full sequence scanning for manipulation of sequence variations to systematically explore conformational dynamics of Omicron Spike protein complexes with the ACE2 receptor. Microsecond atomistic molecular dynamic simulations provide a detailed characterization of the conformational landscapes and thermodynamic stability of the Omicron variant complexes. By integrating the predictions of conformational ensembles from different AlphaFold adaptations and applying statistical confidence metrics we can expand characterization of the conformational ensembles and identify functional protein conformations that determine the equilibrium dynamics for the Omicron Spike complexes with the ACE2. Conformational ensembles of the Omicron RBD-ACE2 complexes obtained using AlphaFold-based approaches for modeling protein states and molecular dynamics simulations are employed for accurate comparative prediction of the binding energetics revealing an excellent agreement with the experimental data. In particular, the results demonstrated that AlphaFold-generated extended conformational ensembles can produce accurate binding energies for the Omicron RBD-ACE2 complexes. The results of this study suggested complementarities and potential synergies between AlphaFold predictions of protein conformational ensembles and molecular dynamics simulations showing that integrating information from both methods can potentially yield a more adequate characterization of the conformational landscapes for the Omicron RBD-ACE2 complexes. This study provides insights in the interplay between conformational dynamics and binding, showing that evolution of Omicron variants through acquisition of convergent mutational sites may leverage conformational adaptability and dynamic couplings between key binding energy hotspots to optimize ACE2 binding affinity and enable immune evasion.
Collapse
|
42
|
Mohebbi F, Zelikovsky A, Mangul S, Chowell G, Skums P. Early detection of emerging viral variants through analysis of community structure of coordinated substitution networks. Nat Commun 2024; 15:2838. [PMID: 38565543 PMCID: PMC10987511 DOI: 10.1038/s41467-024-47304-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
The emergence of viral variants with altered phenotypes is a public health challenge underscoring the need for advanced evolutionary forecasting methods. Given extensive epistatic interactions within viral genomes and known viral evolutionary history, efficient genomic surveillance necessitates early detection of emerging viral haplotypes rather than commonly targeted single mutations. Haplotype inference, however, is a significantly more challenging problem precluding the use of traditional approaches. Here, using SARS-CoV-2 evolutionary dynamics as a case study, we show that emerging haplotypes with altered transmissibility can be linked to dense communities in coordinated substitution networks, which become discernible significantly earlier than the haplotypes become prevalent. From these insights, we develop a computational framework for inference of viral variants and validate it by successful early detection of known SARS-CoV-2 strains. Our methodology offers greater scalability than phylogenetic lineage tracing and can be applied to any rapidly evolving pathogen with adequate genomic surveillance data.
Collapse
Affiliation(s)
- Fatemeh Mohebbi
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
- Titus Family Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - Alex Zelikovsky
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
| | - Serghei Mangul
- Titus Family Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, USC Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Gerardo Chowell
- School of Public Health, Georgia State University, Atlanta, GA, USA
| | - Pavel Skums
- Department of Computer Science, Georgia State University, Atlanta, GA, USA.
- School of Computing, College of Engineering, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
43
|
Li W, Xu Z, Niu T, Xie Y, Zhao Z, Li D, He Q, Sun W, Shi K, Guo W, Chang Z, Liu K, Fan Z, Qi J, Gao GF. Key mechanistic features of the trade-off between antibody escape and host cell binding in the SARS-CoV-2 Omicron variant spike proteins. EMBO J 2024; 43:1484-1498. [PMID: 38467833 PMCID: PMC11021471 DOI: 10.1038/s44318-024-00062-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/13/2024] Open
Abstract
Since SARS-CoV-2 Omicron variant emerged, it is constantly evolving into multiple sub-variants, including BF.7, BQ.1, BQ.1.1, XBB, XBB.1.5 and the recently emerged BA.2.86 and JN.1. Receptor binding and immune evasion are recognized as two major drivers for evolution of the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein. However, the underlying mechanism of interplay between two factors remains incompletely understood. Herein, we determined the structures of human ACE2 complexed with BF.7, BQ.1, BQ.1.1, XBB and XBB.1.5 RBDs. Based on the ACE2/RBD structures of these sub-variants and a comparison with the known complex structures, we found that R346T substitution in the RBD enhanced ACE2 binding upon an interaction with the residue R493, but not Q493, via a mechanism involving long-range conformation changes. Furthermore, we found that R493Q and F486V exert a balanced impact, through which immune evasion capability was somewhat compromised to achieve an optimal receptor binding. We propose a "two-steps-forward and one-step-backward" model to describe such a compromise between receptor binding affinity and immune evasion during RBD evolution of Omicron sub-variants.
Collapse
Affiliation(s)
- Weiwei Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zepeng Xu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Tianhui Niu
- Air Force Medical University, Air Force Medical center, PLA, Beijing, China
| | - Yufeng Xie
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Zhennan Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Dedong Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Qingwen He
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Wenqiao Sun
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Kaiyuan Shi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Wenjing Guo
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Chang
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Zheng Fan
- Institutional Core Facility, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.
| |
Collapse
|
44
|
Raisinghani N, Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. AlphaFold2-Enabled Atomistic Modeling of Structure, Conformational Ensembles, and Binding Energetics of the SARS-CoV-2 Omicron BA.2.86 Spike Protein with ACE2 Host Receptor and Antibodies: Compensatory Functional Effects of Binding Hotspots in Modulating Mechanisms of Receptor Binding and Immune Escape. J Chem Inf Model 2024; 64:1657-1681. [PMID: 38373700 PMCID: PMC12103816 DOI: 10.1021/acs.jcim.3c01857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The latest wave of SARS-CoV-2 Omicron variants displayed a growth advantage and increased viral fitness through convergent evolution of functional hotspots that work synchronously to balance fitness requirements for productive receptor binding and efficient immune evasion. In this study, we combined AlphaFold2-based structural modeling approaches with atomistic simulations and mutational profiling of binding energetics and stability for prediction and comprehensive analysis of the structure, dynamics, and binding of the SARS-CoV-2 Omicron BA.2.86 spike variant with ACE2 host receptor and distinct classes of antibodies. We adapted several AlphaFold2 approaches to predict both the structure and conformational ensembles of the Omicron BA.2.86 spike protein in the complex with the host receptor. The results showed that the AlphaFold2-predicted structural ensemble of the BA.2.86 spike protein complex with ACE2 can accurately capture the main conformational states of the Omicron variant. Complementary to AlphaFold2 structural predictions, microsecond molecular dynamics simulations reveal the details of the conformational landscape and produced equilibrium ensembles of the BA.2.86 structures that are used to perform mutational scanning of spike residues and characterize structural stability and binding energy hotspots. The ensemble-based mutational profiling of the receptor binding domain residues in the BA.2 and BA.2.86 spike complexes with ACE2 revealed a group of conserved hydrophobic hotspots and critical variant-specific contributions of the BA.2.86 convergent mutational hotspots R403K, F486P, and R493Q. To examine the immune evasion properties of BA.2.86 in atomistic detail, we performed structure-based mutational profiling of the spike protein binding interfaces with distinct classes of antibodies that displayed significantly reduced neutralization against the BA.2.86 variant. The results revealed the molecular basis of compensatory functional effects of the binding hotspots, showing that BA.2.86 lineage may have evolved to outcompete other Omicron subvariants by improving immune evasion while preserving binding affinity with ACE2 via through a compensatory effect of R493Q and F486P convergent mutational hotspots. This study demonstrated that an integrative approach combining AlphaFold2 predictions with complementary atomistic molecular dynamics simulations and robust ensemble-based mutational profiling of spike residues can enable accurate and comprehensive characterization of structure, dynamics, and binding mechanisms of newly emerging Omicron variants.
Collapse
Affiliation(s)
- Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States of America
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States of America
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States of America
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States of America
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States of America
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States of America
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States of America
| |
Collapse
|
45
|
Park Y, Metzger BP, Thornton JW. The simplicity of protein sequence-function relationships. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.02.556057. [PMID: 37732229 PMCID: PMC10508729 DOI: 10.1101/2023.09.02.556057] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
How complicated is the genetic architecture of proteins - the set of causal effects by which sequence determines function? High-order epistatic interactions among residues are thought to be pervasive, making a protein's function difficult to predict or understand from its sequence. Most studies, however, used methods that overestimate epistasis, because they analyze genetic architecture relative to a designated reference sequence - causing measurement noise and small local idiosyncrasies to propagate into pervasive high-order interactions - or have not effectively accounted for global nonlinearity in the sequence-function relationship. Here we present a new reference-free method that jointly estimates global nonlinearity and specific epistatic interactions across a protein's entire genotype-phenotype map. This method yields a maximally efficient explanation of a protein's genetic architecture and is more robust than existing methods to measurement noise, partial sampling, and model misspecification. We reanalyze 20 combinatorial mutagenesis experiments from a diverse set of proteins and find that additive and pairwise effects, along with a simple nonlinearity to account for limited dynamic range, explain a median of 96% of total variance in measured phenotypes (and >92% in every case). Only a tiny fraction of genotypes are strongly affected by third- or higher-order epistasis. Genetic architecture is also sparse: the number of terms required to explain the vast majority of variance is smaller than the number of genotypes by many orders of magnitude. The sequence-function relationship in most proteins is therefore far simpler than previously thought, opening the way for new and tractable approaches to characterize it.
Collapse
Affiliation(s)
- Yeonwoo Park
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL 60637
- Current affiliation: Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea 08826
| | - Brian P.H. Metzger
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637
- Current affiliation: Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Joseph W. Thornton
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| |
Collapse
|
46
|
Lan PD, Nissley DA, O’Brien EP, Nguyen TT, Li MS. Deciphering the free energy landscapes of SARS-CoV-2 wild type and Omicron variant interacting with human ACE2. J Chem Phys 2024; 160:055101. [PMID: 38310477 PMCID: PMC11223169 DOI: 10.1063/5.0188053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/08/2024] [Indexed: 02/05/2024] Open
Abstract
The binding of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein to the host cell receptor angiotensin-converting enzyme 2 (ACE2) is the first step in human viral infection. Therefore, understanding the mechanism of interaction between RBD and ACE2 at the molecular level is critical for the prevention of COVID-19, as more variants of concern, such as Omicron, appear. Recently, atomic force microscopy has been applied to characterize the free energy landscape of the RBD-ACE2 complex, including estimation of the distance between the transition state and the bound state, xu. Here, using a coarse-grained model and replica-exchange umbrella sampling, we studied the free energy landscape of both the wild type and Omicron subvariants BA.1 and XBB.1.5 interacting with ACE2. In agreement with experiment, we find that the wild type and Omicron subvariants have similar xu values, but Omicron binds ACE2 more strongly than the wild type, having a lower dissociation constant KD.
Collapse
Affiliation(s)
| | - Daniel A. Nissley
- Department of Statistics, University of Oxford, Oxford Protein Bioinformatics Group, Oxford OX1 2JD, United Kingdom
| | | | - Toan T. Nguyen
- Key Laboratory for Multiscale Simulation of Complex Systems and Department of Theoretical Physics, Faculty of Physics, University of Science, Vietnam National University - Hanoi, 334 Nguyen Trai Street, Thanh Xuan District, Hanoi 11400, Vietnam
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
47
|
Dupic T, Phillips AM, Desai MM. Protein sequence landscapes are not so simple: on reference-free versus reference-based inference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577800. [PMID: 38352387 PMCID: PMC10862727 DOI: 10.1101/2024.01.29.577800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
In a recent preprint, Park, Metzger, and Thornton reanalyze 20 empirical protein sequence-function landscapes using a "reference-free analysis" (RFA) method they recently developed. They argue that these empirical landscapes are simpler and less epistatic than earlier work suggested, and attribute the difference to limitations of the methods used in the original analyses of these landscapes, which they claim are more sensitive to measurement noise, missing data, and other artifacts. Here, we show that these claims are incorrect. Instead, we find that the RFA method introduced by Park et al. is exactly equivalent to the reference-based least-squares methods used in the original analysis of many of these empirical landscapes (and also equivalent to a Hadamard-based approach they implement). Because the reanalyzed and original landscapes are in fact identical, the different conclusions drawn by Park et al. instead reflect different interpretations of the parameters describing the inferred landscapes; we argue that these do not support the conclusion that epistasis plays only a small role in protein sequence-function landscapes.
Collapse
Affiliation(s)
- Thomas Dupic
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
| | - Angela M Phillips
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco CA
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
| |
Collapse
|
48
|
Ose NJ, Campitelli P, Modi T, Can Kazan I, Kumar S, Banu Ozkan S. Some mechanistic underpinnings of molecular adaptations of SARS-COV-2 spike protein by integrating candidate adaptive polymorphisms with protein dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.14.557827. [PMID: 37745560 PMCID: PMC10515954 DOI: 10.1101/2023.09.14.557827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 Spike (S) protein. With this approach, we first identified Candidate Adaptive Polymorphisms (CAPs) of the SARS-CoV-2 Spike protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.
Collapse
Affiliation(s)
- Nicholas J. Ose
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| | - Paul Campitelli
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| | - Tushar Modi
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| | - I. Can Kazan
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - S. Banu Ozkan
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
49
|
Wang D, Huot M, Mohanty V, Shakhnovich EI. Biophysical principles predict fitness of SARS-CoV-2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.23.549087. [PMID: 37577536 PMCID: PMC10418099 DOI: 10.1101/2023.07.23.549087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
SARS-CoV-2 employs its spike protein's receptor binding domain (RBD) to enter host cells. The RBD is constantly subjected to immune responses, while requiring efficient binding to host cell receptors for successful infection. However, our understanding of how RBD's biophysical properties contribute to SARS-CoV-2's epidemiological fitness remains largely incomplete. Through a comprehensive approach, comprising large-scale sequence analysis of SARS-CoV-2 variants and the discovery of a fitness function based on binding thermodynamics, we unravel the relationship between the biophysical properties of RBD variants and their contribution to viral fitness. We developed a biophysical model that uses statistical mechanics to map the molecular phenotype space, characterized by binding constants of RBD to ACE2, LY-CoV016, LY-CoV555, REGN10987, and S309, onto a epistatic fitness landscape. We validate our findings through experimentally measured and machine learning (ML) estimated binding affinities, coupled with infectivity data derived from population-level sequencing. Our analysis reveals that this model effectively predicts the fitness of novel RBD variants and can account for the epistatic interactions among mutations, including explaining the later reversal of Q493R. Our study sheds light on the impact of specific mutations on viral fitness and delivers a tool for predicting the future epidemiological trajectory of previously unseen or emerging low frequency variants. These insights offer not only greater understanding of viral evolution but also potentially aid in guiding public health decisions in the battle against COVID-19 and future pandemics.
Collapse
Affiliation(s)
- Dianzhuo Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Marian Huot
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
- Ecole Polytechnique, Institut Polytechnique de Paris
| | - Vaibhav Mohanty
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
- Harvard-MIT MD-PhD Program and Program in Health Sciences and Technology, Harvard Medical School, Boston, MA and Massachusetts Institute of Technology, Cambridge, MA
| | | |
Collapse
|
50
|
Harari S, Miller D, Fleishon S, Burstein D, Stern A. Using big sequencing data to identify chronic SARS-Coronavirus-2 infections. Nat Commun 2024; 15:648. [PMID: 38245511 PMCID: PMC10799923 DOI: 10.1038/s41467-024-44803-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
The evolution of SARS-Coronavirus-2 (SARS-CoV-2) has been characterized by the periodic emergence of highly divergent variants. One leading hypothesis suggests these variants may have emerged during chronic infections of immunocompromised individuals, but limited data from these cases hinders comprehensive analyses. Here, we harnessed millions of SARS-CoV-2 genomes to identify potential chronic infections and used language models (LM) to infer chronic-associated mutations. First, we mined the SARS-CoV-2 phylogeny and identified chronic-like clades with identical metadata (location, age, and sex) spanning over 21 days, suggesting a prolonged infection. We inferred 271 chronic-like clades, which exhibited characteristics similar to confirmed chronic infections. Chronic-associated mutations were often high-fitness immune-evasive mutations located in the spike receptor-binding domain (RBD), yet a minority were unique to chronic infections and absent in global settings. The probability of observing high-fitness RBD mutations was 10-20 times higher in chronic infections than in global transmission chains. The majority of RBD mutations in BA.1/BA.2 chronic-like clades bore predictive value, i.e., went on to display global success. Finally, we used our LM to infer hundreds of additional chronic-like clades in the absence of metadata. Our approach allows mining extensive sequencing data and providing insights into future evolutionary patterns of SARS-CoV-2.
Collapse
Affiliation(s)
- Sheri Harari
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Danielle Miller
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Shay Fleishon
- Israeli Health Intelligence Agency, Public Health Division, Ministry of Health, Jerusalem, Israel
| | - David Burstein
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Adi Stern
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel.
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|