1
|
Wang P, Zhang J, Zhan M, Tan Z, Wang C, Liu B, Wang Z, Zhao J. Dual-Functional Amino-MOF with Enhanced Ice Suppression and Intrinsic Photothermal Activity for High-Performance Oocyte Cryopreservation. ACS APPLIED BIO MATERIALS 2025. [PMID: 40294340 DOI: 10.1021/acsabm.5c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The current vitrification-based oocyte cryopreservation relies on inherently cytotoxic high-concentration cryoprotective agents (CPAs), leading to suboptimal post-thaw survival rates and diminished developmental competence. To address this, we developed a series of highly biocompatible amino-functionalized iron-based metal-organic frameworks (Fe-MOFs) via a facile hydrothermal method to synergistically suppress ice crystallization and minimize the reliance on toxic CPAs. Among the synthesized materials, 2NH2-MIL88(Fe) demonstrated exceptional ice-inhibition performance, reducing ice crystal size to 16.78% of that observed in pure water, significantly outperforming its nonaminated counterpart MIL88(Fe) and monoaminated counterpart NH2-MIL88(Fe). Notably, 2NH2-MIL88(Fe) exhibited an unprecedented intrinsic photothermal response without requiring photosensitizer modification, achieving rapid temperature elevation from 25 to 86.6 °C under 808 nm laser irradiation (1 W/cm2, 1 min). When applied to mouse oocyte cryopreservation, this dual-functional amino-MOF enabled complete elimination of dimethyl sulfoxide (DMSO) from CPAs while maintaining an exceptional post-thaw survival rate of 95.1%. Our findings establish a dual correlation between amino group density and both ice-growth suppression efficiency and photothermal performance, revealing a synergistic mechanism for mouse oocyte cryopreservation enhancement. This structure-function relationship provides critical insights for the rational design of next-generation nano-CPAs.
Collapse
Affiliation(s)
- Pan Wang
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jixiang Zhang
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Minghui Zhan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zicong Tan
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Chao Wang
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Bianhua Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhenyang Wang
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jun Zhao
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
2
|
Huang M, Hu M, Cai G, Wei H, Huang S, Zheng E, Wu Z. Overcoming ice: cutting-edge materials and advanced strategies for effective cryopreservation of biosample. J Nanobiotechnology 2025; 23:187. [PMID: 40050919 PMCID: PMC11887326 DOI: 10.1186/s12951-025-03265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/20/2025] [Indexed: 03/09/2025] Open
Abstract
Cryopreservation techniques have been widely used, especially in biomedical applications and preservation of germplasm resources. Ideally, biological materials would maintain functional integrity as well as a normal structure and can be recovered when needed. However, this tool does not work all the time. Ice formation and growth are the key challenges. The other major reason is that the cryoprotective agents (CPAs) currently used do not meet these needs and are always accompanied by their cytotoxicity. A comprehensive and synergistic approach that focuses on the overall frozen biological system is crucial for the evolution of cryopreservation methods. In this review, we first summarize the fundamental damage mechanisms during cryopreservation, as well as common cryoprotectants and their limitations. Next, we discuss materials that interact with ice to improve cryopreservation outcomes. We evaluated natural and synthetic materials, including sugars and polymers, AFPs and mimics, ice nucleators, and hydrogels. In addition, biochemical regulation, which enhances the tolerance of biosamples to cryopreservation-induced stresses, was also mentioned. Nanotechnology, cell encapsulation, cryomesh, and isochoric freezing, such scalable approaches, are further discussed for cryopreservation. Finally, future research directions in this field for efficient cryopreservation are proposed. We emphasized the need for multidisciplinary progress to address these challenges. The combination of cryobiology mechanisms with technologies, such as synthetic biology, nanotechnology, microfluidics, and 3D bioprinting, is highlighted.
Collapse
Affiliation(s)
- Miaorong Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Regional Gene Bank of Livestock and Poultry, Gene Bank of Guangdong Livestock and Poultry, South China Agricultural University, Guangzhou, 510642, China
| | - Minhua Hu
- National Canine Laboratory Animal Resources Center, Guangzhou General Pharmaceutical Research Institute Co., Ltd, Guangzhou, 510240, China
| | - Gengyuan Cai
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Regional Gene Bank of Livestock and Poultry, Gene Bank of Guangdong Livestock and Poultry, South China Agricultural University, Guangzhou, 510642, China
| | - Hengxi Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Regional Gene Bank of Livestock and Poultry, Gene Bank of Guangdong Livestock and Poultry, South China Agricultural University, Guangzhou, 510642, China
| | - Sixiu Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Regional Gene Bank of Livestock and Poultry, Gene Bank of Guangdong Livestock and Poultry, South China Agricultural University, Guangzhou, 510642, China
| | - Enqin Zheng
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- National Regional Gene Bank of Livestock and Poultry, Gene Bank of Guangdong Livestock and Poultry, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhenfang Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- National Regional Gene Bank of Livestock and Poultry, Gene Bank of Guangdong Livestock and Poultry, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Pu Z, Zhang L, Yang H, Shao T, Wang D, Wang J, Yan Y, Si W. Vitrification of 3D-MSCs encapsulated in GelMA hydrogel: Improved cryosurvival, reduced cryoprotectant concentration, and enhanced wound healing. Int J Biol Macromol 2025; 296:139716. [PMID: 39809395 DOI: 10.1016/j.ijbiomac.2025.139716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Compared to traditional 2D-cultured mesenchymal stem cells (MSCs), 3D-MSCs offer distinct advantages in disease treatment. However, large-scale culture of 3D-MSCs remains labor-intensive and time-consuming. Thus, developing cryopreservation method for 3D-MSCs is essential for clinical application. Existing cryopreservation techniques primarily focus on 2D-cultured MSCs, and vitrification methods such as Cryotop are not suitable for large-scale applications, often leading to cytotoxicity due to high concentrations of cryoprotective agents. To address these challenges, we developed an innovative vitrification method using microfluidics, which involved encapsulating 3D human umbilical cord MSCs in GelMA hydrogel to create 3D-MSCs hydrogel microspheres (3D-MSCsHM). This approach significantly enhanced the survival rates of MSCs while reducing the need for cryoprotective agents. The entire process could be completed in 30 min, yielding 96 % viability and functionality upon rewarming. Proteomic analysis further revealed that improved viability and functions post rewarming were linked to enhance mitochondrial function, increased antioxidant proteins, and elevated growth factors. Furthermore, this method showed effective therapeutic outcomes in wound healing in a mouse model, comparable to those achieved with fresh 3D-MSCs. The presented vitrification technique offers a practical solution for the cryopreservation of multicellular stem cell tissues, enhancing their therapeutic applications.
Collapse
Affiliation(s)
- Zixi Pu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650000, China; Southwest United Graduate School, Kunming, Yunnan 650092, China
| | - Lei Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650000, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Hongju Yang
- Division of geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Tianao Shao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650000, China
| | - Dan Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650000, China
| | - Junfeng Wang
- Department of Hepatic and Bile Duct Surgery, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Yaping Yan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650000, China.
| | - Wei Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650000, China; Southwest United Graduate School, Kunming, Yunnan 650092, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| |
Collapse
|
4
|
Stewart S, White A, Ou W, Liu W, Nagashima J, Songsasen N, He X. Controlled Ice Nucleation With a Sand-PDMS Film Device Enhances Cryopreservation of Mouse Preantral Ovarian Follicles. J Med Device 2024; 18:041007. [PMID: 39465055 PMCID: PMC11500804 DOI: 10.1115/1.4066445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/28/2024] [Indexed: 10/29/2024] Open
Abstract
Ovarian follicle cryopreservation is a promising strategy for fertility preservation; however, cryopreservation protocols have room for improvement to maximize post-thaw follicle viability and quality. Current slow-freezing protocols use either manual ice-seeding in combination with expensive programmable-rate freezers or other clinically incompatible ice initiators to control the ice-seeding temperature in the extracellular solution, a critical parameter that impacts post-cryopreservation cell/tissue quality. Previously, sand has been shown to be an excellent, biocompatible ice initiator, and its use in cryopreservation of human induced pluripotent stem cells enables high cell viability and quality after cryopreservation. This study applies sand as an ice initiator to cryopreserve multicellular microtissue, preantral ovarian follicles, using a simple slow-freezing protocol in the mouse model. Ovarian follicles cryopreserved using the sand partially embedded in polydimethylsiloxane (PDMS) film to seed ice in the extracellular solution exhibit healthy morphology, high viability, and the ability to grow similarly to fresh follicles in culture post-thaw. This sand-based cryopreservation strategy can facilitate convenient ovarian follicle cryopreservation using simple equipment, and this study further demonstrates the translatability of this strategy to not only single cells but also multicellular tissues.
Collapse
Affiliation(s)
- Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Alisa White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Wenquan Ou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Wei Liu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Jennifer Nagashima
- Center for Species Survival, Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630
| | - Nucharin Songsasen
- Center for Species Survival, Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
5
|
Wang X, Yang J, Li Q, Zhang X, Zhang L. Globular Antifreeze Protein-Inspired Nanoparticle-Based Large-Scale T-Cell Cryoprotection System for Lymphoma Immunotherapy. ACS NANO 2024; 18:27372-27382. [PMID: 39327157 DOI: 10.1021/acsnano.4c06610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Large-scale biosafe T-cell cryopreservation is required to bring T-cell therapies to the market, but it remains challenging due to the cytotoxicity of common cryoprotectants [e.g., dimethyl sulfoxide (DMSO)] and unavoidable ice injuries to cells. Herein, inspired by natural globular antifreeze proteins, we establish a biocompatible zwitterionic magnetic nanoparticle (ZMNP)-based cryoprotection system, achieving large-scale cryopreservation of T cells for lymphoma immunotherapy. ZMNPs could form a globular hydration shell to inhibit water molecule aggregation as well as ice growth, and the surficial hydration strength-antifreeze performance relationship of ZMNPs was investigated. During the thawing process, ZMNPs possessed a magnetic field-mediated nanowarming property that enabled rapid heating and also facilitated easy magnetic separation for cell recovery. These combined effects resulted in a high post-thaw viability (>80%) of large-scale T-cell cryopreservation (20 mL). Notably, post-thaw T cells exhibited similar transcript profiles to fresh cells, while up- or downregulation of 1050 genes was found in the DMSO group. In a mouse E.G7-OVA lymphoma model, ZMNP-system-cryopreserved T cells achieved a tumor suppression rate of 77.5%, twice as high as the DMSO group. This work holds great promise for the application of advanced cryopreservation techniques in the development of therapeutic cellular products.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Qingsi Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Xiangyu Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
6
|
Zhu Y, Liu H, Zheng L, Luo Y, Zhou G, Li J, Hou Y, Fu X. Vitrification of Mammalian Oocytes: Recent Studies on Mitochondrial Dysfunction. Biopreserv Biobank 2024; 22:428-440. [PMID: 38227396 DOI: 10.1089/bio.2023.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Vitrification of reproductive cells is definitely essential and integral in animal breeding, as well as in assisted reproduction. However, issues accompanied with this technology such as decreased oocyte competency and relatively low embryo survival rates appear to be a tough conundrum that has long perplexed us. As significant organelles in cell metabolism, mitochondria play pivotal roles in numerous pathways. Nonetheless, extensive evidence has demonstrated that vitrification can seriously impair mitochondrial function in mammalian oocytes. Thus, in this article, we summarize the current progress in oocyte vitrification and particularly outline the common mitochondrial abnormalities alongside subsequent injury cascades seen in mammalian oocytes following vitrification. Based on existing literature, we tentatively come up with the potential mechanisms related to mitochondrial dysfunction and generalize efficacious ways which have been recommended to restore mitochondrial function.
Collapse
Affiliation(s)
- Yixiao Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Hongyu Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Lv Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Yuwen Luo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guizhen Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunpeng Hou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
7
|
Li Y, Zhang J, Han W, Liu B, Zhai M, Li N, Wang Z, Zhao J. Multifunctional Laser-Induced Graphene-Based Microfluidic Chip for High-Performance Oocyte Cryopreservation with Low Concentration of Cryoprotectants. Adv Healthc Mater 2024; 13:e2400981. [PMID: 38885030 DOI: 10.1002/adhm.202400981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Oocyte cryopreservation is essential in the field of assisted reproduction, but due to the large size and poor environmental tolerance of oocytes, cell freezing technology needs further improvement. Here, a Y-shaped microfluidic chip based on 3D graphene is ingeniously devised by combining laser-induced graphene (LIG) technology and fiber etching technology. The prepared LIG/PDMS microfluidic chip can effectively suppress ice crystal size and delay ice crystal freezing time by adjusting surface hydrophobicity. In addition, LIG endows the microfluidic chip with an outstanding photothermal effect, which allows to sharply increase its surface temperature from 25 to 71.8 °C with 10 s of low-power 808 nm laser irradiation (0.4 W cm-2). Notably, the LIG/PDMS microfluidic chip not only replaces the traditional cryopreservation carriers, but also effectively reduces the dosage of cryoprotectants (CPAs) needed in mouse oocyte cryopreservation. Even when the concentration of CPAs is cut in half (final concentration of 7.5% ethylene glycol (EG) and 7.5% dimethyl sulfoxide (DMSO)), the survival rate of oocytes is still as high as 92.4%, significantly higher than the control group's 85.8%. Therefore, this work provides a novel design strategy to construct multifunctional microfluidic chips for high-performance oocytes cryopreservation.
Collapse
Affiliation(s)
- Yifang Li
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jixiang Zhang
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Wei Han
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Bianhua Liu
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Mengjie Zhai
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Nian Li
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Zhenyang Wang
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jun Zhao
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| |
Collapse
|
8
|
Pan J, Zeng Q, Peng K, Zhou Y, Shu Z. Review of Rewarming Methods for Cryopreservation. Biopreserv Biobank 2024; 22:304-311. [PMID: 37751240 DOI: 10.1089/bio.2023.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Cryopreservation is the most effective technology for the long-term preservation of biological materials, including cells, tissues, and even organs in the future. The process of cooling and rewarming is essential to the successful preservation of biological materials. One of the critical problems in the development of cryopreservation is the optimization of effective rewarming technologies. This article reviewed rewarming methods, including traditional boundary rewarming commonly used for small-volume biological materials and other advanced techniques that could be potentially feasible for organ preservation in the future. The review focused on various rewarming technique principles, typical applications, and their possible limitations for cryopreservation of biological materials. This article introduced nanowarming methods in the progressing optimization and the possible difficulties. The trends of novel rewarming methods were discussed, and suggestions were given for future development.
Collapse
Affiliation(s)
- Jiaji Pan
- Department of Mechanical Engineering, College of Engineering and Design, Hunan Normal University, Changsha, China
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qijin Zeng
- Department of Mechanical Engineering, College of Engineering and Design, Hunan Normal University, Changsha, China
| | - Ke Peng
- Department of Mechanical Engineering, College of Engineering and Design, Hunan Normal University, Changsha, China
| | - Yulin Zhou
- Shuda College, Hunan Normal University, Changsha, China
| | - Zhiquan Shu
- School of Engineering and Technology, University of Washington, Tacoma, Washington, USA
| |
Collapse
|
9
|
Liu L, Wang Z, Wang M, Zhao G. Quantitative Analysis of Ice Crystal Growth During Freezing of Dimethyl Sulfoxide Solutions Under Alternating Current Electric Fields. Biopreserv Biobank 2024; 22:383-394. [PMID: 38011517 DOI: 10.1089/bio.2023.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
During cryopreservation, the growth of ice crystals can cause mechanical damage to samples, which is one of the important factors limiting the quality of preserved samples. To enhance the preservation quality of biological samples, scholars have tried various engineering methods. Among them, an electric field is an essential factor affecting solution freezing. Dimethyl sulfoxide, as a commonly used cryoprotectant, can cause mechanical damage to cells due to ice crystals even when freezing at the optimal freezing rate. Water is a strongly polar dielectric material, and the applied alternating current (AC) electric field will affect the water freezing performance. Therefore, a quantitative study of ice crystal nucleation and growth during freezing of dimethyl sulfoxide solutions under different AC electric field conditions is needed to try to reduce ice crystal damage. We created a liquid-film device to approximate the ice crystal growth process as a two-dimensional image. The frequency of the AC voltage was set from 0 to 50 kHz. We measured the supercooling of the dimethyl sulfoxide solution under AC electric field conditions. As an objective and accurate quantitative analysis of the ice crystal growth process, we propose a Dilated Convolutional Segmentation Transformer for semantic segmentation of ice crystal images. It is concluded that the average area and the growth rate of single ice crystals decrease with increasing electric field frequency at a certain concentration of dimethyl sulfoxide solution. Lower concentrations of dimethyl sulfoxide solution in combination with an AC electric field can achieve similar ice suppression effects as when higher concentrations of dimethyl sulfoxide solution act alone. We believe that AC electric fields are expected to be an aid to cryopreservation and provide some theoretical basis and experimental foundation for its development.
Collapse
Affiliation(s)
- Liting Liu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
| | - Zirui Wang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
| | - Menghan Wang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
| | - Gang Zhao
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
| |
Collapse
|
10
|
Mu Y, Zhou X, Li L, Liu X, Wen X, Zhang L, Yan B, Zhang W, Dong K, Hu H, Liao Y, Ye Z, Deng A, Wang Y, Mao Z, Yang M, Xiao X. Automatic high-throughput and non-invasive selection of sperm at the biochemical level. MED 2024; 5:603-621.e7. [PMID: 38608708 DOI: 10.1016/j.medj.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/06/2023] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Sperm selection, a key step in assisted reproductive technology (ART), has long been restrained at the preliminary physical level (morphology or motility); however, subsequent fertilization and embryogenesis are complicated biochemical processes. Such an enormous "gap" poses tough problems for couples dealing with infertility, especially patients with severe/total asthenozoospermia . METHODS We developed a biochemical-level, automatic-screening/separation, smart droplet-TO-hydrogel chip (BLASTO-chip) for sperm selection. The droplet can sense the pH change caused by sperm's respiration products and then transforms into a hydrogel to be selected out. FINDINGS The BLASTO-chip system can select biochemically active sperm with an accuracy of over 90%, and its selection efficiency can be flexibly tuned by nearly 10-fold. All the substances in the system were proven to be biosafe via evaluating mice fertilization and offspring health. Live sperm down to 1% could be enriched by over 76-fold to 76%. For clinical application to patients with severe/total asthenozoospermia, the BLASTO-chip could select live sperm from human semen samples containing 10% live but 100% immotile sperm. The rates of fertilization, cleavage, early embryos, and blastocysts were drastically elevated from 15% to 70.83%, 10% to 62.5%, 5% to 37.5%, and 0% to 16.67%, respectively. CONCLUSIONS The BLASTO-chip represents a real biochemical-level technology for sperm selection that is completely independent of sperm's motility. It can be a powerful tool in ART, especially for patients with severe/total asthenozoospermia. FUNDING This work was funded by the Ministry of Science and Technology of China, the Ministry of Education of China, and the Shenzhen-Hong Kong Hetao Cooperation Zone.
Collapse
Affiliation(s)
- Yaoqin Mu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic Technology (FRI), Department of Biomedical Sciences and Tung Biomedical Sciences Centre, Key Laboratory of Biochip Technology and Biotech and Health Centre (SRI), City University of Hong Kong, Hong Kong, China
| | - Longjie Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaowen Liu
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Xu Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bei Yan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Kejun Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Hao Hu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yangwei Liao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhengxin Ye
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Aimin Deng
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Yuan Wang
- Department of Precision Diagnostic and Therapeutic Technology (FRI), Department of Biomedical Sciences and Tung Biomedical Sciences Centre, Key Laboratory of Biochip Technology and Biotech and Health Centre (SRI), City University of Hong Kong, Hong Kong, China
| | - Zenghui Mao
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China.
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology (FRI), Department of Biomedical Sciences and Tung Biomedical Sciences Centre, Key Laboratory of Biochip Technology and Biotech and Health Centre (SRI), City University of Hong Kong, Hong Kong, China.
| | - Xianjin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
11
|
Jiang M, Zhang GH, Yu Y, Zhao YH, Liu J, Zeng Q, Feng MY, Ye F, Xiong DS, Wang L, Zhang YN, Yu L, Wei JJ, He LB, Zhi W, Du XR, Li NJ, Han CL, Yan HQ, Zhou ZT, Miao YB, Wang W, Liu WX. De novo design of a nanoregulator for the dynamic restoration of ovarian tissue in cryopreservation and transplantation. J Nanobiotechnology 2024; 22:330. [PMID: 38862987 PMCID: PMC11167790 DOI: 10.1186/s12951-024-02602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
The cryopreservation and transplantation of ovarian tissue underscore its paramount importance in safeguarding reproductive capacity and ameliorating reproductive disorders. However, challenges persist in ovarian tissue cryopreservation and transplantation (OTC-T), including the risk of tissue damage and dysfunction. Consequently, there has been a compelling exploration into the realm of nanoregulators to refine and enhance these procedures. This review embarks on a meticulous examination of the intricate anatomical structure of the ovary and its microenvironment, thereby establishing a robust groundwork for the development of nanomodulators. It systematically categorizes nanoregulators and delves deeply into their functions and mechanisms, meticulously tailored for optimizing ovarian tissue cryopreservation and transplantation. Furthermore, the review imparts valuable insights into the practical applications and obstacles encountered in clinical settings associated with OTC-T. Moreover, the review advocates for the utilization of microbially derived nanomodulators as a potent therapeutic intervention in ovarian tissue cryopreservation. The progression of these approaches holds the promise of seamlessly integrating nanoregulators into OTC-T practices, thereby heralding a new era of expansive applications and auspicious prospects in this pivotal domain.
Collapse
Affiliation(s)
- Min Jiang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Guo-Hui Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Yuan Yu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yu-Hong Zhao
- School of Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, 610083, China
| | - Jun Liu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Qin Zeng
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Meng-Yue Feng
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Fei Ye
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Dong-Sheng Xiong
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Li Wang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Ya-Nan Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Ling Yu
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Jia-Jing Wei
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Li-Bing He
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Weiwei Zhi
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Xin-Rong Du
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ning-Jing Li
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Chang-Li Han
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - He-Qiu Yan
- School of Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, 610083, China
| | - Zhuo-Ting Zhou
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| | - Wen Wang
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| | - Wei-Xin Liu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China.
| |
Collapse
|
12
|
Tan J, Li J, Zhou X. The crystallization properties of antifreeze GelMA hydrogel and its application in cryopreservation of tissue-engineered skin constructs. J Biomed Mater Res B Appl Biomater 2024; 112:e35408. [PMID: 38676958 DOI: 10.1002/jbm.b.35408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/16/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
Gelatin methacrylate (GelMA) hydrogels are expected to be ideal skin tissue engineering dressings for a wide range of clinical treatments. Herein, we report the preparation of GelMA or antifreeze GelMA hydrogel sheets with different GelMA concentrations, crosslinking times, and cryoprotectant (CPA) concentrations. The crystallization properties of GelMA or antifreeze GelMA hydrogel sheets were studied by cryomicroscopy and differential scanning calorimetry (DSC). It was found that the growth of ice crystals was slower when GelMA hydrogel concentration was more than 7%. The 10% DMSO-7% GelMA hydrogel sheets crosslinked for 60 min showed no ice crystal formation and growth during cooling and warming. The DSC results showed that the vitrification temperature of the 10% DMSO-7% GelMA hydrogel sheet was -111°C. Furthermore, slow freezing and rapid freezing of fibroblast-laden GelMA or antifreeze GelMA hydrogel sheets, and tissue-engineered skin constructs were studied. The results showed no significant difference in cell survival between slow (88.8% ± 1.51) and rapid (89.2% ± 3.00) freezing of fibroblast-loaded 10% DMSO-7% GelMA hydrogel sheets, and significantly higher than that of 7% GelMA hydrogel sheets (33.4% ± 5.46). The cell viability was higher in tissue-engineered skin constructs after slow freezing (86.34% ± 1.45) than rapid freezing (72.74% ± 1.34). We believe that the combination of antifreeze hydrogels and tissue engineering will facilitate the cryopreservation of tissue engineering constructs.
Collapse
Affiliation(s)
- Jia Tan
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| | - Jiahui Li
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| | - Xinli Zhou
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| |
Collapse
|
13
|
Ye Z, Tai Y, Han Z, Liu S, Etheridge ML, Pasek-Allen JL, Shastry C, Liu Y, Li Z, Chen C, Wang Z, Bischof JC, Nam J, Yin Y. Engineering Magnetic Nanoclusters for Highly Efficient Heating in Radio-Frequency Nanowarming. NANO LETTERS 2024; 24:4588-4594. [PMID: 38587406 DOI: 10.1021/acs.nanolett.4c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Effective thawing of cryopreserved samples requires rapid and uniform heating. This is achievable through nanowarming, an approach that heats magnetic nanoparticles by using alternating magnetic fields. Here we demonstrate the synthesis and surface modification of magnetic nanoclusters for efficient nanowarming. Magnetite (Fe3O4) nanoclusters with an optimal diameter of 58 nm exhibit a high specific absorption rate of 1499 W/g Fe under an alternating magnetic field at 43 kA/m and 413 kHz, more than twice that of commercial iron oxide cores used in prior nanowarming studies. Surface modification with a permeable resorcinol-formaldehyde resin (RFR) polymer layer significantly enhances their colloidal stability in complex cryoprotective solutions, while maintaining their excellent heating capacity. The Fe3O4@RFR nanoparticles achieved a high average heating rate of 175 °C/min in cryopreserved samples at a concentration of 10 mg Fe/mL and were successfully applied in nanowarming porcine iliac arteries, highlighting their potential for enhancing the efficacy of cryopreservation.
Collapse
Affiliation(s)
- Zuyang Ye
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Youyi Tai
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| | - Zonghu Han
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sangmo Liu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Michael L Etheridge
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jacqueline L Pasek-Allen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Chaitanya Shastry
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yun Liu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Chen Chen
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zhongxiang Wang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jin Nam
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
14
|
Han H, Zhan T, Guo N, Cui M, Xu Y. Cryopreservation of organoids: Strategies, innovation, and future prospects. Biotechnol J 2024; 19:e2300543. [PMID: 38403430 DOI: 10.1002/biot.202300543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/27/2024]
Abstract
Organoid technology has demonstrated unique advantages in multidisciplinary fields such as disease research, tumor drug sensitivity, clinical immunity, drug toxicology, and regenerative medicine. It will become the most promising research tool in translational research. However, the long preparation time of organoids and the lack of high-quality cryopreservation methods limit the further application of organoids. Although the high-quality cryopreservation of small-volume biological samples such as cells and embryos has been successfully achieved, the existing cryopreservation methods for organoids still face many bottlenecks. In recent years, with the development of materials science, cryobiology, and interdisciplinary research, many new materials and methods have been applied to cryopreservation. Several new cryopreservation methods have emerged, such as cryoprotectants (CPAs) of natural origin, ice-controlled biomaterials, and rapid rewarming methods. The introduction of these technologies has expanded the research scope of cryopreservation of organoids, provided new approaches and methods for cryopreservation of organoids, and is expected to break through the current technical bottleneck of cryopreservation of organoids. This paper reviews the progress of cryopreservation of organoids in recent years from three aspects: damage factors of cryopreservation of organoids, new protective agents and loading methods, and new technologies of cryopreservation and rewarming.
Collapse
Affiliation(s)
- Hengxin Han
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| | - Taijie Zhan
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| | - Ning Guo
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| | - Mengdong Cui
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| | - Yi Xu
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| |
Collapse
|
15
|
Qin X, Chen Z, Shen L, Liu H, Ouyang X, Zhao G. Core-Shell Microfiber Encapsulation Enables Glycerol-Free Cryopreservation of RBCs with High Hematocrit. NANO-MICRO LETTERS 2023; 16:3. [PMID: 37930493 PMCID: PMC10628128 DOI: 10.1007/s40820-023-01213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023]
Abstract
Cryopreservation of red blood cells (RBCs) provides great potential benefits for providing transfusion timely in emergencies. High concentrations of glycerol (20% or 40%) are used for RBC cryopreservation in current clinical practice, which results in cytotoxicity and osmotic injuries that must be carefully controlled. However, existing studies on the low-glycerol cryopreservation of RBCs still suffer from the bottleneck of low hematocrit levels, which require relatively large storage space and an extra concentration process before transfusion, making it inconvenient (time-consuming, and also may cause injury and sample lose) for clinical applications. To this end, we develop a novel method for the glycerol-free cryopreservation of human RBCs with a high final hematocrit by using trehalose as the sole cryoprotectant to dehydrate RBCs and using core-shell alginate hydrogel microfibers to enhance heat transfer during cryopreservation. Different from previous studies, we achieve the cryopreservation of human RBCs at high hematocrit (> 40%) with high recovery (up to 95%). Additionally, the washed RBCs post-cryopreserved are proved to maintain their morphology, mechanics, and functional properties. This may provide a nontoxic, high-efficiency, and glycerol-free approach for RBC cryopreservation, along with potential clinical transfusion benefits.
Collapse
Affiliation(s)
- Xianhui Qin
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Zhongrong Chen
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Lingxiao Shen
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Huilan Liu
- Department of Blood Transfusion, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China.
| | - Xilin Ouyang
- The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100089, People's Republic of China.
| | - Gang Zhao
- Department of Blood Transfusion, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China.
| |
Collapse
|
16
|
Somoskői B, Bordás L, Uno F, Kispál D, Müller L, Török D, Cseh S. Effects of different cryopreservation methods on canine isolated preantral follicles. Anim Reprod Sci 2023; 258:107361. [PMID: 37890201 DOI: 10.1016/j.anireprosci.2023.107361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
The aim of the present study was to compare the survival and developmental rate of canine isolated preantral follicles (PAFs) after cryopreservation with different methods (closed vs open vitrification). Follicles were isolated from ovaries randomly divided into three groups: fresh control, OPS (open pulled straw) vitrified and cryotube (CT) vitrified. Post-thaw viability of follicles and oocytes was assessed. Fresh and vitrified/thawed PAFs were cultured in 20 µl drops of FSH-supplemented medium for 10 days. Follicular growth, survival rate, estradiol production and ovulation rate were examined. CT method resulted in lower rate of live cells (58.7%) and oocytes (38.8%) than that of fresh ones (83.6% and 64%, respectively) and OPS (80.3% and 79.3%, respectively). Survival rate was similar to fresh follicles in OPS group (98.5% and 95.4%, respectively), while CT decreased the survival to 81.2%. Fresh follicles showed continuous growth, while CT follicles stopped to increase their size after 2 day. In the OPS vitrified follicles, this halting occurred between Day5 and Day10. Fresh follicles showed the highest estradiol production (range: 26.9 - 266.2 pg/ml). Comparing the two vitrified groups, lower estradiol concentration range was measured in the CT group (7.8-48.7 pg/ml vs. 15.4-89.6 pg/ml). Ovulation rate in each group was lowest in the OPS group (1.7% vs 7% and 8.9% in fesh and CT, respectively). Our data show that OPS vitrification provides superior survival rate, in vitro growth and hormonal production to CT. To our knowledge, these are the first results on comparing different cryopreservation protocols on canine isolated preantral follicles.
Collapse
Affiliation(s)
- Bence Somoskői
- Department of Obstetrics and Food Animal Clinic, University of Veterinary Medicine, H-1078 Istvan str. 2, Budapest, Hungary.
| | - Lilla Bordás
- Department of Obstetrics and Food Animal Clinic, University of Veterinary Medicine, H-1078 Istvan str. 2, Budapest, Hungary.
| | - Fusa Uno
- Department of Obstetrics and Food Animal Clinic, University of Veterinary Medicine, H-1078 Istvan str. 2, Budapest, Hungary.
| | - Dóra Kispál
- Department of Obstetrics and Food Animal Clinic, University of Veterinary Medicine, H-1078 Istvan str. 2, Budapest, Hungary.
| | - Linda Müller
- Department of Obstetrics and Food Animal Clinic, University of Veterinary Medicine, H-1078 Istvan str. 2, Budapest, Hungary.
| | - Dóra Török
- Department of Obstetrics and Food Animal Clinic, University of Veterinary Medicine, H-1078 Istvan str. 2, Budapest, Hungary.
| | - Sándor Cseh
- Department of Obstetrics and Food Animal Clinic, University of Veterinary Medicine, H-1078 Istvan str. 2, Budapest, Hungary.
| |
Collapse
|
17
|
Wang X, Wang E, Zhao G. Advanced cryopreservation engineering strategies: the critical step to utilize stem cell products. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:28. [PMID: 37528321 PMCID: PMC10393932 DOI: 10.1186/s13619-023-00173-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
With the rapid development of stem cell-related therapies and regenerative medicine, the clinical application of stem cell products is on the rise. However, ensuring the effectiveness of these products after storage and transportation remains a challenge in the transformation to clinical trials. Cryopreservation technology allows for the long-term storage of cells while ensuring viability, making it a top priority for stem cell preservation. The field of cryopreservation-related engineering technologies is thriving, and this review provides an overview of the background and basic principles of cryopreservation. It then delves into the main bioengineering technologies and strategies used in cryopreservation, including photothermal and electromagnetic rewarming, microencapsulation, and synergetic ice inhibition. Finally, the current challenges and future prospects in the field of efficient cryopreservation of stem cells are summarized and discussed.
Collapse
Affiliation(s)
- Xiaohu Wang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, China
| | - Enyu Wang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, China
| | - Gang Zhao
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
18
|
Trapphoff T, Dieterle S. Cryopreservation of Ovarian and Testicular Tissue and the Influence on Epigenetic Pattern. Int J Mol Sci 2023; 24:11061. [PMID: 37446239 DOI: 10.3390/ijms241311061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian tissue cryopreservation (OTC) or testicular tissue cryopreservation (TTC) are effective and often the only options for fertility preservation in female or male patients due to oncological, medical, or social aspects. While TTC and resumption of spermatogenesis, either in vivo or in vitro, has still be considered an experimental approach in humans, OTC and autotransplantation has been applied increasingly to preserve fertility, with more than 200 live births worldwide. However, the cryopreservation of reproductive cells followed by the resumption of gametogenesis, either in vivo or in vitro, may interfere with sensitive and highly regulated cellular processes. In particular, the epigenetic profile, which includes not just reversible modifications of the DNA itself but also post-translational histone modifications, small non-coding RNAs, gene expression and availability, and storage of related proteins or transcripts, have to be considered in this context. Due to complex reprogramming and maintenance mechanisms of the epigenome in germ cells, growing embryos, and offspring, OTC and TTC are carried out at very critical moments early in the life cycle. Given this background, the safety of OTC and TTC, taking into account the epigenetic profile, has to be clarified. Cryopreservation of mature germ cells (including metaphase II oocytes and mature spermatozoa collected via ejaculation or more invasively after testicular biopsy) or embryos has been used successfully for many years in medically assisted reproduction (MAR). However, tissue freezing followed by in vitro or in vivo gametogenesis has become more attractive in the past, while few human studies have analysed the epigenetic effects, with most data deriving from animal studies. In this review, we highlight the potential influence of the cryopreservation of immature germ cells and subsequent in vivo or in vitro growth and differentiation on the epigenetic profile (including DNA methylation, post-translational histone modifications, and the abundance and availability of relevant transcripts and proteins) in humans and animals.
Collapse
Affiliation(s)
| | - Stefan Dieterle
- Dortmund Fertility Centre, 44135 Dortmund, Germany
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Witten/Herdecke University, 44135 Dortmund, Germany
| |
Collapse
|