1
|
Gu N, Sun XY, Li ZQ, Zhu WW, Yang SH, Yin MZ, Li JB, Gan JW, Fei YN, Guedes RNC, Dewer Y, Zhu XY, Li XM, Zhang YN. Identification of Adult Attractants through Functional Analyses of Chemosensory Protein 21 from the Bean Bug Riptortus pedestris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9570-9581. [PMID: 40208196 DOI: 10.1021/acs.jafc.5c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Chemosensory proteins (CSPs) play a key role in olfactory recognition, offering promising avenues for the development of innovative insect pest management strategies. In this study, we investigated RpedCSP21 from the bean bug Riptortus pedestris, a key legume pest species, and first confirmed RpedCSP21 displayed antennal-skewed expression. Fluorescence competitive binding assays, structural modeling, molecular docking, and site-directed mutagenesis revealed that RpedCSP21 exhibits certain binding affinity for five soybean volatiles and one aggregation pheromone. RNA interference (RNAi) successfully silenced the RpedCSP21 gene, resulting in significantly reduced electroantennography (EAG) responses to these ligands compared to control individuals. Behavioral assays in a Y-tube olfactometer further confirmed weakened attraction to the six ligands, consistent with the EAG findings. These results indicate that RpedCSP21 is integral to the chemical perception of R. pedestris. Furthermore, the use of bacteria-expressed dsRNA delivery systems highlights the potential of targeting RpedCSP21 for the development of eco-friendly population management strategies.
Collapse
Affiliation(s)
- Nan Gu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei City Key Laboratory of Green Prevention and Control of Crop Diseases and Pests, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Xin-Yao Sun
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei City Key Laboratory of Green Prevention and Control of Crop Diseases and Pests, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Zhan-Qi Li
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei City Key Laboratory of Green Prevention and Control of Crop Diseases and Pests, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Wen-Wen Zhu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei City Key Laboratory of Green Prevention and Control of Crop Diseases and Pests, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Shu-Han Yang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei City Key Laboratory of Green Prevention and Control of Crop Diseases and Pests, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Mao-Zhu Yin
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Jin-Bu Li
- Suzhou Vocational and Technical College, Suzhou 234000, China
| | - Jia-Wen Gan
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei City Key Laboratory of Green Prevention and Control of Crop Diseases and Pests, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Ya-Ning Fei
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei City Key Laboratory of Green Prevention and Control of Crop Diseases and Pests, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Raul Narciso C Guedes
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Youssef Dewer
- Department of Phytotoxicity Research, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Xiu-Yun Zhu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei City Key Laboratory of Green Prevention and Control of Crop Diseases and Pests, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Xiao-Ming Li
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei City Key Laboratory of Green Prevention and Control of Crop Diseases and Pests, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Ya-Nan Zhang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei City Key Laboratory of Green Prevention and Control of Crop Diseases and Pests, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
2
|
Keesey IW, Doll G, Chakraborty SD, Baschwitz A, Lemoine M, Kaltenpoth M, Svatoš A, Sachse S, Knaden M, Hansson BS. Neuroecology of alcohol risk and reward: Methanol boosts pheromones and courtship success in Drosophila melanogaster. SCIENCE ADVANCES 2025; 11:eadi9683. [PMID: 40173238 PMCID: PMC11963984 DOI: 10.1126/sciadv.adi9683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/27/2025] [Indexed: 04/04/2025]
Abstract
Attraction of Drosophila melanogaster toward by-products of alcoholic fermentation, especially ethanol, has been extensively studied. Previous research has provided several interpretations of this attraction, including potential drug abuse, or a self-medicating coping strategy after mate rejection. We posit that the ecologically adaptive value of alcohol attraction has not been fully explored. Here, we assert a simple yet vital biological rationale for this alcohol preference. Flies display attraction to fruits rich in alcohol, specifically ethanol and methanol, where contact results in a rapid amplification of fatty acid-derived pheromones that enhance courtship success. We also identify olfactory sensory neurons that detect these alcohols, where we reveal roles in both attraction and aversion, and show that valence is balanced around alcohol concentration. Moreover, we demonstrate that methanol can be deadly, and adult flies must therefore accurately weigh the trade-off between benefits and costs for exposure within their naturally fermented and alcohol-rich environments.
Collapse
Affiliation(s)
- Ian W. Keesey
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Georg Doll
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Sudeshna Das Chakraborty
- Max Planck Institute for Chemical Ecology, Research Group Olfactory Coding, Hans-Knöll-Straße 8, D-07745 Jena, Germany
- European Neuroscience Institute (ENI), Neural Computation and Behavior, Grisebachstraße 5, 37077 Göttingen, Germany
| | - Amelie Baschwitz
- Max Planck Institute for Chemical Ecology, Research Group Olfactory Coding, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Marion Lemoine
- Max Planck Institute for Chemical Ecology, Department of Insect Symbiosis, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Martin Kaltenpoth
- Max Planck Institute for Chemical Ecology, Department of Insect Symbiosis, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Aleš Svatoš
- Max Planck Institute for Chemical Ecology, Mass Spectrometry/Proteomics Research Group, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Silke Sachse
- Max Planck Institute for Chemical Ecology, Research Group Olfactory Coding, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Markus Knaden
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Bill S. Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
3
|
Galagovsky D, Depetris-Chauvin A, Kunert G, Knaden M, Hansson BS. Shaping the environment - Drosophila suzukii larvae construct their own niche. iScience 2024; 27:111341. [PMID: 39687005 PMCID: PMC11647167 DOI: 10.1016/j.isci.2024.111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/24/2024] [Accepted: 11/05/2024] [Indexed: 12/18/2024] Open
Abstract
In holometabolous insects, the choice of oviposition substrate by the adult needs to be coordinated with the developmental needs of the larva. Drosophila suzukii female flies possess an enlarged serrated ovipositor, which has enabled them to conquer the ripening fruit as an oviposition niche. They insert their eggs through the skin of priced small fruits. However, this specialization seems to clash with the nutritional needs for larval development since ripening fruits have a low protein content and are high in sugars. In this work, we studied how D. suzukii larvae develop in and interact with the blueberry. We show that despite its hardness and composition, D. suzukii's first instar larvae are able to use the ripening fruit by engaging in niche construction. They display unique physical and behavioral characteristics that allow them to process the hard-ripening fruit and provoke an improvement in its composition that better suits larval nutritional needs.
Collapse
Affiliation(s)
- Diego Galagovsky
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
| | - Ana Depetris-Chauvin
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
| | - Grit Kunert
- Max Planck Institute for Chemical Ecology, Department for Biochemistry, Jena, Germany
| | - Markus Knaden
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
| | - Bill S. Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
| |
Collapse
|
4
|
Boff S, Olberz S, Gülsoy İG, Preuß M, Raizer J, Ayasse M. Conventional agriculture affects sex communication and impacts local population size in a wild bee. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176319. [PMID: 39293767 DOI: 10.1016/j.scitotenv.2024.176319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Man-made agricultural stressors have been identified to compromise the reproductive dynamics of bee populations within agricultural environments. With the aid of bee hotels, we explored the influence of conventional and organic farming systems on local population size and body traits of the mason bee, Osmia bicornis, in southern Germany. We further used a chemical ecology approach and bioassays to test whether farming management influence male pre-copulatory behaviors. We observed a positive relationship between the extent of organic agriculture in the landscape and both overall brood cell production and nesting frequency. Moreover, farming systems were found to influence body traits, with bees from organic sites being smaller in size and having a different cuticular hydrocarbon composition compared with those at conventional sites. Bioassays revealed that males were more sexually attracted to freeze-killed females from conventional sites compared with those from organic sites. Intriguingly, treating females from organic fields with synthetic semiochemicals enhanced their sexual attraction to levels comparable with females from conventional sites. Our findings shed light on the intricate interplay between farming practices and the reproductive behaviors of wild mason bees, emphasizing the need for a comprehensive understanding of these dynamics for effective conservation and management strategies.
Collapse
Affiliation(s)
- Samuel Boff
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany.
| | - Sara Olberz
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - İrem G Gülsoy
- Department of Molecular Biology and Genetics, İhsan Doğramacı Bilkent University, Ankara, Turkey
| | - Marvin Preuß
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Josué Raizer
- Entomology and Biodiversity Conservation Program, Federal University of Grande Dourados, Dourados, Brazil
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| |
Collapse
|
5
|
Kwadha CA, Rehermann G, Tasso D, Fellous S, Bengtsson M, Wallin EA, Flöhr A, Witzgall P, Becher PG. Sex Pheromone Mediates Resource Partitioning Between Drosophila melanogaster and D. suzukii. Evol Appl 2024; 17:e70042. [PMID: 39534538 PMCID: PMC11555161 DOI: 10.1111/eva.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/19/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The spotted-wing drosophila, Drosophila suzukii and the cosmopolitan vinegar fly D. melanogaster feed on soft fruit and berries and widely overlap in geographic range. The presence of D. melanogaster reduces egg-laying in D. suzukii, possibly because D. melanogaster outcompetes D. suzukii larvae feeding in the same fruit substrate. Flies use pheromones to communicate for mating, but pheromones also serve a role in reproductive isolation between related species. We asked whether a D. melanogaster pheromone also modulates oviposition behaviour in D. suzukii. A dual-choice oviposition assay confirms that D. suzukii lays fewer eggs on blueberries exposed to D. melanogaster flies and further shows that female flies have a stronger effect than male flies. This was corroborated by treating berries with synthetic pheromones. Avoidance of D. suzukii oviposition is mediated by the female D. melanogaster pheromone (Z)-4-undecenal (Z4-11Al). Significantly fewer eggs were laid on berries treated with synthetic Z4-11Al. In comparison, the male pheromone (Z)-11-octadecenyl acetate (cVA) had no effect on D. suzukii oviposition. Z4-11Al is a highly volatile compound that is perceived via olfaction and it is accordingly behaviourally active at a distance from the source. D. suzukii is known to engage in mutual niche construction with the yeast Hanseniaspora uvarum, which strongly attracts flies. Adding Z4-11Al to fermenting H. uvarum significantly decreased D. suzukii flight attraction in a laboratory wind tunnel and a field trapping assay. That a D. melanogaster pheromone regulates oviposition in D. suzukii demonstrates that heterospecific pheromone communication contributes to reproductive isolation and resource partitioning in cognate species. Stimulo-deterrent diversion or push-pull methods, building on combined use of attractant and deterrent compounds, have shown promise for control of D. suzukii. A pheromone that specifically reduces D. suzukii attraction and oviposition adds to the toolbox for D. suzukii integrated management.
Collapse
Affiliation(s)
- Charles A. Kwadha
- Department Plant Protection Biology, Chemical Ecology GroupSwedish University of Agricultural SciencesAlnarpSweden
| | - Guillermo Rehermann
- Department Plant Protection Biology, Chemical Ecology GroupSwedish University of Agricultural SciencesAlnarpSweden
| | - Deni Tasso
- Department Plant Protection Biology, Chemical Ecology GroupSwedish University of Agricultural SciencesAlnarpSweden
| | - Simon Fellous
- CBGP, INRAE, CIRADInstitute Agro, IRD, University MontpellierMontpellierFrance
| | - Marie Bengtsson
- Department Plant Protection Biology, Chemical Ecology GroupSwedish University of Agricultural SciencesAlnarpSweden
| | - Erika A. Wallin
- Department Natural Science, Design and Sustainable DevelopmentMid Sweden UniversitySundsvallSweden
| | - Adam Flöhr
- Department Biosystems and TechnologySwedish University of Agricultural SciencesLommaSweden
| | - Peter Witzgall
- Department Plant Protection Biology, Chemical Ecology GroupSwedish University of Agricultural SciencesAlnarpSweden
| | - Paul G. Becher
- Department Plant Protection Biology, Chemical Ecology GroupSwedish University of Agricultural SciencesAlnarpSweden
| |
Collapse
|
6
|
Doubovetzky N, Kohlmeier P, Bal S, Billeter JC. Cryptic female choice in response to male pheromones in Drosophila melanogaster. Curr Biol 2024; 34:4539-4546.e3. [PMID: 39260361 DOI: 10.1016/j.cub.2024.07.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 07/26/2024] [Indexed: 09/13/2024]
Abstract
Females control the paternity of their offspring by selectively mating with males they perceive to be of high quality. In species where females mate with multiple males in succession, females may bias offspring paternity by favoring the sperm of one male over another, a process known as cryptic female choice.1 While evidence of cryptic female choice exists in multiple taxa, the mechanisms underlying this process have remained difficult to unravel.2 Understanding cryptic female choice requires demonstration of a female-driven post-mating bias in sperm use and paternity and a causal link between this bias and male cues.3 In this study, we present evidence of cryptic female choice in female Drosophila melanogaster. Through experiments utilizing transgenic males expressing fluorescent sperm, we observed that exposure to attractive males between matings prompts females to expel the ejaculate of their initial mate more rapidly than in the presence of less attractive males. While doing so, females exhibit a bias in sperm storage against their first mate, thereby favoring the paternity of their subsequent mate. Our findings reveal that females adjust the timing of ejaculate expulsion in response to male pheromones in their environment, specifically heptanal and 11-cis-vaccenyl acetate, which are sensed by females through specific odorant receptors. We provide a cryptic female choice mechanism allowing a female to modulate the share of paternity of her first mate depending on the sensing of the quality of potential mates in her environment. These findings showcase that paternity can be influenced by events beyond copulation.
Collapse
Affiliation(s)
- Nicolas Doubovetzky
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9474AG, the Netherlands
| | - Philip Kohlmeier
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9474AG, the Netherlands
| | - Sanne Bal
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9474AG, the Netherlands
| | - Jean-Christophe Billeter
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9474AG, the Netherlands.
| |
Collapse
|
7
|
Ferveur JF, Cortot J, Moussian B, Everaerts C. Population Density Affects Drosophila Male Pheromones in Laboratory-Acclimated and Natural Lines. J Chem Ecol 2024; 50:536-548. [PMID: 39186176 DOI: 10.1007/s10886-024-01540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
In large groups of vertebrates and invertebrates, aggregation can affect biological characters such as gene expression, physiological, immunological and behavioral responses. The insect cuticle is covered with hydrocarbons (cuticular hydrocarbons; CHCs) which reduce dehydration and increase protection against xenobiotics. Drosophila melanogaster and D. simulans flies also use some of their CHCs as contact pheromones. In these two sibling species, males also produce the volatile pheromone 11-cis-Vaccenyl acetate (cVa). To investigate the effect of insect density on the production of CHCs and cVa we compared the level of these male pheromones in groups of different sizes. These compounds were measured in six lines acclimated for many generations in our laboratory - four wild-type and one CHC mutant D. melanogaster lines plus one D. simulans line. Increasing the group size substantially changed pheromone amounts only in the four D. melanogaster wild-type lines. To evaluate the role of laboratory acclimation in this effect, we measured density-dependent pheromonal production in 21 lines caught in nature after 1, 12 and 25 generations in the laboratory. These lines showed varied effects which rarely persisted across generations. Although increasing group size often affected pheromone production in laboratory-established and freshly-caught D. melanogaster lines, this effect was not linear, suggesting complex determinants.
Collapse
Affiliation(s)
- Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, Dijon, 21000, France.
| | - Jérôme Cortot
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, Dijon, 21000, France
| | - Bernard Moussian
- Interfaculty Institute for Cell Biology, Animal Genetics, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Claude Everaerts
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, Dijon, 21000, France
| |
Collapse
|
8
|
Yun M, Kim DH, Ha TS, Lee KM, Park E, Knaden M, Hansson BS, Kim YJ. Male cuticular pheromones stimulate removal of the mating plug and promote re-mating through pC1 neurons in Drosophila females. eLife 2024; 13:RP96013. [PMID: 39255004 PMCID: PMC11386958 DOI: 10.7554/elife.96013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
In birds and insects, the female uptakes sperm for a specific duration post-copulation known as the ejaculate holding period (EHP) before expelling unused sperm and the mating plug through sperm ejection. In this study, we found that Drosophila melanogaster females shortens the EHP when incubated with males or mated females shortly after the first mating. This phenomenon, which we termed male-induced EHP shortening (MIES), requires Or47b+ olfactory and ppk23+ gustatory neurons, activated by 2-methyltetracosane and 7-tricosene, respectively. These odorants raise cAMP levels in pC1 neurons, responsible for processing male courtship cues and regulating female mating receptivity. Elevated cAMP levels in pC1 neurons reduce EHP and reinstate their responsiveness to male courtship cues, promoting re-mating with faster sperm ejection. This study established MIES as a genetically tractable model of sexual plasticity with a conserved neural mechanism.
Collapse
Affiliation(s)
- Minsik Yun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Do-Hyoung Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Tal Soo Ha
- Department of Biomedical Science, College of Natural Science, Daegu University, Gyeongsan, Republic of Korea
| | - Kang-Min Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Eungyu Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
9
|
Zhang R, Ng R, Wu ST, Su CY. Targeted deletion of olfactory receptors in D. melanogaster via CRISPR/Cas9-mediated LexA knock-in. J Neurogenet 2024; 38:122-133. [PMID: 39529229 PMCID: PMC11617259 DOI: 10.1080/01677063.2024.2426014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The study of olfaction in Drosophila melanogaster has greatly benefited from genetic reagents such as olfactory receptor mutant lines and GAL4 reporter lines. The CRISPR/Cas9 gene-editing system has been increasingly used to create null receptor mutants or replace coding regions with GAL4 reporters. To further expand this toolkit for manipulating fly olfactory receptor neurons (ORNs), we generated null alleles for 11 different olfactory receptors by using CRISPR/Cas9 to knock in LexA drivers, including multiple lines for receptors which have thus far lacked knock-in mutants. The targeted neuronal types represent a broad range of antennal ORNs from all four morphological sensillum classes. Additionally, we confirmed their loss-of-function phenotypes, assessed receptor haploinsufficiency, and evaluated the specificity of the LexA knock-in drivers. These receptor mutant lines have been deposited at the Bloomington Drosophila Stock Center for use by the broader scientific community.
Collapse
Affiliation(s)
- Runqi Zhang
- Department of Neurobiology, University of California San Diego, La Jolla, USA
| | - Renny Ng
- Department of Neurobiology, University of California San Diego, La Jolla, USA
| | - Shiuan-Tze Wu
- Department of Neurobiology, University of California San Diego, La Jolla, USA
| | - Chih-Ying Su
- Department of Neurobiology, University of California San Diego, La Jolla, USA
| |
Collapse
|
10
|
Wu Y, Wang Q, Yang W, Zhang S, Mao CX, He N, Zhou S, Zhou C, Liu W. The cluster digging behavior of larvae confers trophic benefits to fitness in insects. INSECT SCIENCE 2024; 31:870-884. [PMID: 38161191 DOI: 10.1111/1744-7917.13307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024]
Abstract
Collective behaviors efficiently impart benefits to a diversity of species ranging from bacteria to humans. Fly larvae tend to cluster and form coordinated digging groups under crowded conditions, yet understanding the rules governing this behavior is in its infancy. We primarily took advantage of the Drosophila model to investigate cooperative foraging behavior. Here, we report that Drosophila-related species and the black soldier fly have evolved a conserved strategy of cluster digging in food foraging. Subsequently, we investigated relative factors, including larval stage, population density, and food stiffness and quality, that affect the cluster digging behavior. Remarkably, oxygen supply through the posterior breathing spiracles is necessary for the organization of digging clusters. More importantly, we theoretically devise a mathematical model to accurately calculate how the cluster digging behavior expands food resources by diving depth, cross-section area, and food volume. We found that cluster digging behavior approximately increases 2.2 fold depth, 1.7-fold cross-section area, and 1.9 fold volume than control groups, respectively. Amplification of food sources significantly facilitates survival, larval development, and reproductive success of Drosophila challenged with competition for limited food resources, thereby conferring trophic benefits to fitness in insects. Overall, our findings highlight that the cluster digging behavior is a pivotal behavior for their adaptation to food scarcity, advancing a better understanding of how this cooperative behavior confers fitness benefits in the animal kingdom.
Collapse
Affiliation(s)
- Yujie Wu
- School of Plant Protection, Anhui Agricultural University; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qiang Wang
- School of Teacher Education, Nanjing Xiaozhuang University, Nanjing, China
| | - Weikang Yang
- School of Plant Protection, Anhui Agricultural University; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei, China
| | - Sheng Zhang
- School of Plant Protection, Anhui Agricultural University; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei, China
| | - Chuan-Xi Mao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Science, Hubei University, Wuhan, China
| | - Nana He
- School of Plant Protection, Anhui Agricultural University; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei, China
| | - Shaojie Zhou
- School of Plant Protection, Anhui Agricultural University; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei, China
| | - Chuanming Zhou
- School of Plant Protection, Anhui Agricultural University; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei, China
| | - Wei Liu
- School of Plant Protection, Anhui Agricultural University; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei, China
| |
Collapse
|
11
|
Akiki P, Delamotte P, Poidevin M, van Dijk EL, Petit AJR, Le Rouzic A, Mery F, Marion-Poll F, Montagne J. Male manipulation impinges on social-dependent tumor suppression in Drosophila melanogaster females. Sci Rep 2024; 14:6411. [PMID: 38494531 PMCID: PMC10944827 DOI: 10.1038/s41598-024-57003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024] Open
Abstract
Physiological status can influence social behavior, which in turn can affect physiology and health. Previously, we reported that tumor growth in Drosophila virgin females depends on the social context, but did not investigate the underlying physiological mechanisms. Here, we sought to characterize the signal perceived between tumorous flies, ultimately discovering that the tumor suppressive effect varies depending on reproductive status. Firstly, we show that the tumor suppressive effect is neither dependent on remnant pheromone-like products nor on the microbiota. Transcriptome analysis of the heads of these tumorous flies reveals social-dependent gene-expression changes related to nervous-system activity, suggesting that a cognitive-like relay might mediate the tumor suppressive effect. The transcriptome also reveals changes in the expression of genes related to mating behavior. Surprisingly, we observed that this social-dependent tumor-suppressive effect is lost in fertilized females. After mating, Drosophila females change their behavior-favoring offspring survival-in response to peptides transferred via the male ejaculate, a phenomenon called "male manipulation". Remarkably, the social-dependent tumor suppressive effect is restored in females mated by sex-peptide deficient males. Since male manipulation has likely been selected to favor male gene transmission, our findings indicate that this evolutionary trait impedes social-dependent tumor growth slowdown.
Collapse
Affiliation(s)
- Perla Akiki
- Institut for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, CEA, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Pierre Delamotte
- Institut for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, CEA, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Mickael Poidevin
- Institut for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, CEA, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Erwin L van Dijk
- Institut for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, CEA, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Apolline J R Petit
- UMR EGCE, CNRS, Université Paris-Saclay, 91190, Gif-sur-Yvette, IRD, France
| | - Arnaud Le Rouzic
- UMR EGCE, CNRS, Université Paris-Saclay, 91190, Gif-sur-Yvette, IRD, France
| | - Frederic Mery
- UMR EGCE, CNRS, Université Paris-Saclay, 91190, Gif-sur-Yvette, IRD, France
- Laboratoire Biométrie Et Biologie Evolutive, UMR 5558, CNRS, Université Claude Bernard Lyon 1, 69622, Villeurbanne Cedex, France
| | - Frederic Marion-Poll
- UMR EGCE, CNRS, Université Paris-Saclay, 91190, Gif-sur-Yvette, IRD, France
- Université Paris-Saclay, AgroParisTech, 91123, Palaiseau Cedex, France
| | - Jacques Montagne
- Institut for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, CEA, Université Paris-Saclay, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
12
|
Liu Y, Zhang S, Cao S, Jacquin-Joly E, Zhou Q, Liu Y, Wang G. An odorant receptor mediates the avoidance of Plutella xylostella against parasitoid. BMC Biol 2024; 22:61. [PMID: 38475722 DOI: 10.1186/s12915-024-01862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Ecosystems are brimming with myriad compounds, including some at very low concentrations that are indispensable for insect survival and reproduction. Screening strategies for identifying active compounds are typically based on bioassay-guided approaches. RESULTS Here, we selected two candidate odorant receptors from a major pest of cruciferous plants-the diamondback moth Plutella xylostella-as targets to screen for active semiochemicals. One of these ORs, PxylOR16, exhibited a specific, sensitive response to heptanal, with both larvae and adult P. xylostella displaying heptanal avoidance behavior. Gene knockout studies based on CRISPR/Cas9 experimentally confirmed that PxylOR16 mediates this avoidance. Intriguingly, rather than being involved in P. xylostella-host plant interaction, we discovered that P. xylostella recognizes heptanal from the cuticular volatiles of the parasitoid wasp Cotesia vestalis, possibly to avoid parasitization. CONCLUSIONS Our study thus showcases how the deorphanization of odorant receptors can drive discoveries about their complex functions in mediating insect survival. We also demonstrate that the use of odorant receptors as a screening platform could be efficient in identifying new behavioral regulators for application in pest management.
Collapse
Affiliation(s)
- Yipeng Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Sai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Emmanuelle Jacquin-Joly
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, UPEC, UniversitéParis Cité, 78026, Versailles, IRD, France
| | - Qiong Zhou
- College of Life Sciences, Hunan Normal University, Changsha, 410006, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
13
|
Venkateswaran V, Alali I, Unni AP, Weißflog J, Halitschke R, Hansson BS, Knaden M. Carbonyl products of ozone oxidation of volatile organic compounds can modulate olfactory choice behavior in insects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122542. [PMID: 37717892 DOI: 10.1016/j.envpol.2023.122542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Insects are a diverse group of organisms that provide important ecosystem services like pollination, pest control, and decomposition and rely on olfaction to perform these services. In the Anthropocene, increasing concentrations of oxidant pollutants such as ozone have been shown to corrupt odor-driven behavior in insects by chemically degrading e.g. flower signals or insect pheromones. The degradation, however, does not only result in a loss of signals, but also in a potential enrichment of oxidation products, predominantly small carbonyls. Whether and how these oxidation products affect insect olfactory perception remains unclear. We examined the effects of ozone-generated small carbonyls on the olfactory behavior of the vinegar fly Drosophila melanogaster. We compiled a broad collection of neurophysiologically relevant odorants for the fly from databases and literature and predicted the formation of the types of stable small carbonyl products resulting from the odorant's oxidation by ozone. Based on these predictions, we evaluated the olfactory detection and behavioral impact of the ten most frequently predicted carbonyl products in the fly using single sensillum recordings (SSRs) and behavioral tests. Our results demonstrate that the fly's olfactory system can detect the oxidation products, which then elicit either attractive or neutral behavioral responses, rather than repulsion. However, certain products alter behavioral choices to an attractive odor source of balsamic vinegar. Our findings suggest that the enrichment of small carbonyl oxidation products due to increased ozone levels can affect olfactory guided insect behavior. Our study underscores the implications for odor-guided foraging in insects and the essential ecosystem services they offer under carbonyl enriched environments.
Collapse
Affiliation(s)
- Vignesh Venkateswaran
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany; Next Generation Insect Chemical Ecology,Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany
| | - Ibrahim Alali
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany
| | - Anjana P Unni
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany
| | - Jerrit Weißflog
- Mass Spectrometry and Metabolomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany
| | - Rayko Halitschke
- Mass Spectrometry and Metabolomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany; Next Generation Insect Chemical Ecology,Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany; Next Generation Insect Chemical Ecology,Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany.
| |
Collapse
|