1
|
Yang T, Yan Y, Liu R, Huang K, Xu R, Chen J, Tu J, Liu S, Kang L, Wang Z, Cao J, Qi J. Engineering Twins within Lattice-Matched Co/CoO Heterostructure Enables Efficient Hydrogen Evolution Reactions. NANO LETTERS 2025; 25:7707-7715. [PMID: 40263710 DOI: 10.1021/acs.nanolett.5c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Twinning, as an effective strain engineering strategy, has demonstrated significant potential in modifying cost-effective transition metal electrocatalysts. However, controllable construction and structure-activity relationships of twinning in electrocatalysts remain formidable challenges. Here, we engineered a lattice-matched Co/CoO heterostructure with enriched twin boundaries through flash Joule heating, where the twins form via lattice matching within homogeneous space groups. XAFS analysis reveals significantly reduced Co coordination numbers in the heterostructure, indicating substantial atomic displacement from the equilibrium positions. The coherent twinning interfaces induce trapped strain, downshifting the d-band center by 0.4 eV and flattening bands near the Fermi level, optimizing the electronic structure for the hydrogen evolution reaction. Consequently, the engineered heterostructure exhibits exceptional performance with an ultralow overpotential of 49 mV at 10 mA cm-2 in alkaline media and remarkable stability over 500 h. Notably, the water splitting can be driven with an ultralow cell voltage of 2.05 V at 1 A cm-2.
Collapse
Affiliation(s)
- Taili Yang
- State Key Laboratory of Precision Welding and Joining of Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| | - Yaotian Yan
- State Key Laboratory of Precision Welding and Joining of Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| | - Ruonan Liu
- State Key Laboratory of Precision Welding and Joining of Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| | - Keke Huang
- State Key Laboratory of Precision Welding and Joining of Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| | - Rongrong Xu
- State Key Laboratory of Precision Welding and Joining of Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| | - Jiping Chen
- State Key Laboratory of Precision Welding and Joining of Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| | - Jinchun Tu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Shude Liu
- Engineering Research Center of Technical Textile, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Ling Kang
- School of Mechanical Engineering, Yonsei University, Seoul 120-749, South Korea
| | - Zixuan Wang
- Institute of Intelligent Ocean Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jian Cao
- State Key Laboratory of Precision Welding and Joining of Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| | - Junlei Qi
- State Key Laboratory of Precision Welding and Joining of Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
2
|
Fan S, Yang G, Jiao Y, Liu Y, Wang J, Yan H, Fu H. Doping Mo Triggers Charge Distribution Optimization and P Vacancy of Ni 2P@Ni 12P 5 Heterojunction for Industrial Electrocatalytic Production of Adipic Acid and H 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2502523. [PMID: 40167494 DOI: 10.1002/adma.202502523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/13/2025] [Indexed: 04/02/2025]
Abstract
Synchronous electrosynthesis of value-added adipic acid (AA) and H2 is extremely crucial for carbon neutrality. However, accomplishing the preparation of AA and H2 at large current density with high selectivity is still challenging. Herein, a robust Mo-doped Ni2P@Ni12P5 heterojunction with more P vacancies on Ni foam is proposed for accomplishing simultaneous electrooxidation of cyclohexanol (CHAOR) to AA and hydrogen evolution reaction (HER) at large current density. Combined X-ray photoelectron spectroscopy, X-ray absorption fine structure, and electron spin resonance confirm that Mo incorporation induces the charge redistribution of Ni2P@Ni12P5, where Mo adjusts electrons from Ni to P, and triggers more P vacancies. Further experimental and theoretical investigations reveal that the d-band center is upshifted, optimizing adsorption energies of water and hydrogen on electron-rich P site for boosting HER activity. Besides, more Ni3+ generated from electron-deficient Ni induced by Mo, alongside more OH* triggered from more P vacancies concurrently promote CHA dehydrogenation and C─C bond cleavage, decreasing energy barrier of CHAOR. Consequently, a two-electrode flow electrolyzer achieves industrial current density (>230 mA cm-2) with 85.7% AA yield, 100% Faradaic efficiency of H2 production. This study showcases an industrial bifunctional electrocatalyst for AA and H2 production with high productivity.
Collapse
Affiliation(s)
- Shengnan Fan
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Ganceng Yang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Yanqing Jiao
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Yue Liu
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Jiaqi Wang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Haijing Yan
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Honggang Fu
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
3
|
Yue K, Lu R, Gao M, Song F, Dai Y, Xia C, Mei B, Dong H, Qi R, Zhang D, Zhang J, Wang Z, Huang F, Xia BY, Yan Y. Polyoxometalated metal-organic framework superstructure for stable water oxidation. Science 2025; 388:430-436. [PMID: 40273253 DOI: 10.1126/science.ads1466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/03/2024] [Accepted: 03/12/2025] [Indexed: 04/26/2025]
Abstract
Stable, nonprecious catalysts are vital for large-scale alkaline water electrolysis. Here, we report a grafted superstructure, MOF@POM, formed by self-assembling a metal-organic framework (MOF) with polyoxometalate (POM). In situ electrochemical transformation converts MOF into active metal (oxy)hydroxides to produce a catalyst with a low overpotential of 178 millivolts at 10 milliamperes per square centimeter in alkaline electrolyte. An anion exchange membrane water electrolyzer incorporating this catalyst achieves 3 amperes per square centimeter at 1.78 volts at 80°C and stable operation at 2 amperes per square centimeter for 5140 hours at room temperature. In situ electrochemical spectroscopy and theoretical studies reveal that the synergistic interactions between metal atoms create a fast electron-transfer channel from catalytic iron and cobalt sites, nickel, and tungsten in the polyoxometalate to the electrode, stabilizing the metal sites and preventing dissolution.
Collapse
Affiliation(s)
- Kaihang Yue
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Ruihu Lu
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Mingbin Gao
- National Engineering Laboratory for Methanol to Olefins, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Fei Song
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Yao Dai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Chenfeng Xia
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Bingbao Mei
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai, China
| | - Ruijuan Qi
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai, China
| | - Daliang Zhang
- Multiscale Porous Materials Center, Institute of Advanced Interdisciplinary Studies and School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Jiangwei Zhang
- College of Energy Material and Chemistry; Inner Mongolia Key Laboratory of Low Carbon Catalysis, Inner Mongolia University, Hohhot, China
| | - Ziyun Wang
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Fuqiang Huang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Bao Yu Xia
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan, China
- Center for Next-Generation Energy Materials and School of Chemical Engineering, Sungkyunkwan University (SKKU), Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, Republic of Korea
| | - Ya Yan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Wang Y, Qin Y, Liu S, Zhao Y, Liu L, Zhang D, Zhao S, Liu J, Wang J, Liu Y, Wu H, Jia B, Qu X, Li H, Qin M. Mesoporous Single-Crystalline Particles as Robust and Efficient Acidic Oxygen Evolution Catalysts. J Am Chem Soc 2025; 147:13345-13355. [PMID: 40196994 DOI: 10.1021/jacs.4c18390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The scarcity of iridium (Ir) limits its widespread use in acidic oxygen evolution reaction (OER). Herein, mesoporous single-crystalline spinel Co3O4 with atomically dispersed low-valence-state Ir has been developed to enable Ir's efficient and stable utilization. The surface Pourbaix diagram suggests that under acidic OER conditions, O* fully covers both Co3O4(111) and (110) surfaces, passivating Co sites but enhancing Co3O4's structural stability, a benefit further improved by Ir doping. Mesopores offer numerous loading sites for Ir single atoms (13.8 wt %), which activate the originally O*-passivated Co3O4(111) surface by creating high-intrinsic-activity Co-Ir bridge sites; meanwhile, Ir and Co leaching rates are reduced to about 1/4 and 1/5, respectively, compared to conventional Ir/Co3O4 catalysts. Our catalyst exhibits a low η10 of 248 mV for over 100 h, showcasing its potential in water electrolysis.
Collapse
Affiliation(s)
- Yong Wang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Yunpu Qin
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Sijia Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongzhi Zhao
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Luan Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Di Zhang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Shangqing Zhao
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Jianfang Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jie Wang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yadong Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Haoyang Wu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Baorui Jia
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 301811, China
| | - Xuanhui Qu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Mingli Qin
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110167, China
| |
Collapse
|
5
|
Yang H, Dong J, Gao X, Ni C, Li Z, Liu Y, Li J, He X, Tan W, Feng L, Tian L. Modulating Built-In Electric Field Via N-Doped Carbon Dots for Robust Oxygen Evolution at Large Current Density. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410399. [PMID: 39817821 DOI: 10.1002/smll.202410399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/20/2024] [Indexed: 01/18/2025]
Abstract
Constructing a built-in electric field (BIEF) within heterostructures has emerged as a compelling strategy for advancing electrocatalytic oxygen evolution reaction (OER) performance. Herein, the p-n type nanosheet array heterojunction Ni2P-NCDs-Co(OH)2-NF are successfully prepared. The variation in interaction affinity between nitrogen within N-doped carbon dots (NCDs) and Ni/Co induces charge redistribution between Co and Ni in the Ni2P-NCDs-Co(OH)2-NF-3 heterostructure, thereby enhancing the intensity of the BIEF, facilitating electron transfer, and markedly improving OER activity. The optimized electrocatalyst, Ni2P-NCDs-Co(OH)2-NF-3, demonstrates a remarkably low overpotential of 389 mV at 500 mA cm-2, alongsides a small Tafel slope of 65 mV dec-1, expansive electrochemical active surface area (ECSA), low impedance, outstanding stability exceeding 425 h at 500 mA cm-2, and a Faradaic efficiency of up to 96%. In situ Raman spectroscopy and density functional theoretical (DFT) calculations elucidate the OER mechanism, revealing that the enhanced BIEF optimizes the adsorption energy of Co3+ to OH- and weakened the desorption energy of oxygen during the reaction. The work ponieeringly employed the NCDs as a regulator of the BIEF, effectively tuning field intensity and achieving superior electrocatalytic OER performance under large current density, thus charting new pathways for the development of high-efficiency oxygen evolution electrocatalysts.
Collapse
Affiliation(s)
- Huimin Yang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P. R. China
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Jianguo Dong
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Xuena Gao
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Chunmei Ni
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province, 213164, China
| | - Zhao Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P. R. China
| | - Yuanyuan Liu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P. R. China
| | - Jing Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P. R. China
| | - Xiaoyan He
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Wenyi Tan
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P. R. China
| | - Ligang Feng
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Lin Tian
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P. R. China
| |
Collapse
|
6
|
Hu Y, Chao T, Dou Y, Xiong Y, Liu X, Wang D. Isolated Metal Centers Activate Small Molecule Electrooxidation: Mechanisms and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418504. [PMID: 39865965 DOI: 10.1002/adma.202418504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/24/2024] [Indexed: 01/28/2025]
Abstract
Electrochemical oxidation of small molecules shows great promise to substitute oxygen evolution reaction (OER) or hydrogen oxidation reaction (HOR) to enhance reaction kinetics and reduce energy consumption, as well as produce high-valued chemicals or serve as fuels. For these oxidation reactions, high-valence metal sites generated at oxidative potentials are typically considered as active sites to trigger the oxidation process of small molecules. Isolated atom site catalysts (IASCs) have been developed as an ideal system to precisely regulate the oxidation state and coordination environment of single-metal centers, and thus optimize their catalytic property. The isolated metal sites in IASCs inherently possess a positive oxidation state, and can be more readily produce homogeneous high-valence active sites under oxidative potentials than their nanoparticle counterparts. Meanwhile, IASCs merely possess the isolated metal centers but lack ensemble metal sites, which can alter the adsorption configurations of small molecules as compared with nanoparticle counterparts, and thus induce various reaction pathways and mechanisms to change product selectivity. More importantly, the construction of isolated metal centers is discovered to limit metal d-electron back donation to CO 2p* orbital and reduce the overly strong adsorption of CO on ensemble metal sites, which resolve the CO poisoning problems in most small molecules electro-oxidation reactions and thus improve catalytic stability. Based on these advantages of IASCs in the fields of electrochemical oxidation of small molecules, this review summarizes recent developments and advancements in IASCs in small molecules electro-oxidation reactions, focusing on anodic HOR in fuel cells and OER in electrolytic cells as well as their alternative reactions, such as formic acid/methanol/ethanol/glycerol/urea/5-hydroxymethylfurfural (HMF) oxidation reactions as key reactions. The catalytic merits of different oxidation reactions and the decoding of structure-activity relationships are specifically discussed to guide the precise design and structural regulation of IASCs from the perspective of a comprehensive reaction mechanism. Finally, future prospects and challenges are put forward, aiming to motivate more application possibilities for diverse functional IASCs.
Collapse
Affiliation(s)
- Yanmin Hu
- Center of Advanced Nanocatalysis (CAN), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Tingting Chao
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Yuhai Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Yuli Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Xiangwen Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
7
|
Wang Z, Liang Y, Fang T, Song X, Yang L, Wen L, Wang J, Zhao D, Wang S. Enhancing Oxygen Evolution Catalysis by Tuning the Electronic Structure of NiFe-Layered Double Hydroxides Through Selenization. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:294. [PMID: 39997858 PMCID: PMC11857861 DOI: 10.3390/nano15040294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
Electrocatalytic water splitting is a critical approach for achieving carbon neutrality, playing an essential role in clean energy conversion. However, the slow kinetics of the oxygen evolution reaction (OER) remains a major bottleneck hindering energy conversion efficiency. Although noble metal catalysts (e.g., IrO2 and RuO2) show excellent catalytic activity, their high cost and scarcity limit their applicability in large-scale industrial processes. In this study, we introduce a novel electrocatalyst based on selenized NiFe-layered double hydroxides (NiFe-LDHs), synthesized via a simple hydrothermal method. Its key innovation lies in the selenization process, during which Ni atoms lose electrons to form selenides, while selenium (Se) gains electrons. This leads to a significant increase in the concentration of high-valent metal ions, enhances electronic mobility, and improves the structural stability of the catalyst through the formation of Ni-Se bonds. Experimental results show that selenized NiFe-LDHs exhibit excellent electrocatalytic performance in 1 M KOH alkaline solution. In the oxygen evolution reaction (OER), the catalyst achieved an ultra-low overpotential of 286 mV at a current density of 10 mA cm⁻2, with a Tafel slope of 63.6 mV dec⁻1. After 60 h of continuous testing, the catalyst showed almost no degradation, far outperforming conventional catalysts. These results highlight the potential of NiFe-LDH@selenized catalysts in large-scale industrial water electrolysis applications, providing an effective solution for efficient and sustainable clean energy production.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dongye Zhao
- Key Laboratory of Plateau Oxygen and Living Environment of Xizang Autonomous Region, College of Science, Xizang University, Lhasa 850000, China; (Z.W.); (Y.L.); (T.F.); (X.S.); (L.Y.); (L.W.); (J.W.)
| | - Shifeng Wang
- Key Laboratory of Plateau Oxygen and Living Environment of Xizang Autonomous Region, College of Science, Xizang University, Lhasa 850000, China; (Z.W.); (Y.L.); (T.F.); (X.S.); (L.Y.); (L.W.); (J.W.)
| |
Collapse
|
8
|
Zhang X, Yan M, Chen P, Li J, Li Y, Li H, Liu X, Chen Z, Yang H, Wang S, Wang J, Tang Z, Huang Q, Lei J, Hayat T, Liu Z, Mao L, Duan T, Wang X. Emerging MOFs, COFs, and their derivatives for energy and environmental applications. Innovation (N Y) 2025; 6:100778. [PMID: 39991481 PMCID: PMC11846040 DOI: 10.1016/j.xinn.2024.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/23/2024] [Indexed: 02/25/2025] Open
Abstract
Traditional fossil fuels significantly contribute to energy supply, economic development, and advancements in science and technology. However, prolonged and extensive use of fossil fuels has resulted in increasingly severe environmental pollution. Consequently, it is imperative to develop new, clean, and pollution-free energy sources with high energy density and versatility as substitutes for conventional fossil fuels, although this remains a considerable challenge. Simultaneously, addressing water pollution is a critical concern. The development, design, and optimization of functional nanomaterials are pivotal to advancing new energy solutions and pollutant remediation. Emerging porous framework materials such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), recognized as exemplary crystalline porous materials, exhibit potential in energy and environmental applications due to their high specific surface area, adjustable pore sizes and structures, permanent porosity, and customizable functionalities. This work provides a comprehensive and systematic review of the applications of MOFs, COFs, and their derivatives in emerging energy technologies, including the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, lithium-ion batteries, and environmental pollution remediation such as the carbon dioxide reduction reaction and environmental pollution management. In addition, strategies for performance adjustment and the structure-effect relationships of MOFs, COFs, and their derivatives for these applications are explored. Interaction mechanisms are summarized based on experimental discussions, theoretical calculations, and advanced spectroscopy analyses. The challenges, future prospects, and opportunities for tailoring these materials for energy and environmental applications are presented.
Collapse
Affiliation(s)
- Xinyue Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Minjia Yan
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Pei Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jiaqi Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yuxuan Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hong Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xiaolu Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhongshan Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hui Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Suhua Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Jianjun Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhenwu Tang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Qifei Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiehong Lei
- School of Physics and Astronomy, China West Normal University, Nanchong 637002, China
| | - Tasawar Hayat
- Department of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan
| | - Zhijian Liu
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei 071003, China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Tao Duan
- State Key Laboratory of Environment-friendly Energy Materials, CAEA Innovation Center of Nuclear Environmental Safety Technology, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Xiangke Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
9
|
Wang Z, Qiu T, Jian R, Zhang Y, Feng J, Gong L, Yin S, Li L, Zhu Y, Chen S, Deng J. Valence Band-Tunable NiFe Electrocatalyst Triggered by the Dynamic Mo Exudation and Re-Deposition for Superior High Current Density Oxygen Evolution Reaction. CHEMSUSCHEM 2025; 18:e202401091. [PMID: 39115021 DOI: 10.1002/cssc.202401091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/30/2024] [Indexed: 10/17/2024]
Abstract
Developing energy- and time-efficient strategies to derive high-performance non-precious electrocatalysts for anodic oxygen evolution reaction (OER), especially stably working at industrial-demanding current density, is still a big challenge. In this work, a concise molten salt erosion scenario was devised to rapidly modulate the smooth surface of the commercial NiMo foam substrate into the rough, electronically coupled, and hierarchically porous Ni/Fe/Mo(oxy)hydroxide catalyst layer assembled by the nanosphere array. This self-supported catalyst is super-hydrophilic for the alkaline electrolyte and distinguished by a balanced Mo leaching/surface-readsorption process to tune the metal d band center and electronic perturbation. The altered electronic environment with the favored OER intermediate adsorption behavior attains the outstanding OER activity in terms of a very small overpotential of 230.21 mV at 10 mA cm-2 and an ultra-long stability for 1179.45 h to sustain the initial commercial-level current density of ca. 1000 mA cm-2. This superb performance transcends most of the edge-cutting transition metal peers reported recently and can satisfy the standards of industrial applications. This industrial-compatible synthesis technology holds profound implications for hydrogen production via water splitting and other electrochemical applications.
Collapse
Affiliation(s)
- Zhichao Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Tiandong Qiu
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China
| | - Rui Jian
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
| | - Yufeng Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Junjie Feng
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Lianxin Gong
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China
| | - Siyi Yin
- Sichuan Institute of Product Quality Supervision and Inspection, Chengdu, 610000, China
| | - Luming Li
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Yachao Zhu
- ICGM, CNRS, Université de Montpellier, 34293, Montpellier, France
| | - Si Chen
- Sichuan Institute of Product Quality Supervision and Inspection, Chengdu, 610000, China
| | - Jie Deng
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
10
|
Guo H, Pan L, Jiang H, Gao M, Wang H, Khan A, Siddiqui NA, Lin J. Interface Engineering of Flower-like Co 2P/WO 3-x/Carbon Cloth Catalysts with Oxygen Vacancies for Efficient Oxygen Evolution Reaction. Chemistry 2025; 31:e202402907. [PMID: 39469782 DOI: 10.1002/chem.202402907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
The Constructing an efficient and low-cost oxygen evolution reaction (OER) electrocatalyst is critical for improving the performance of electrolysis in alkaline water. In this study, a self-supported electrocatalyst of flower-like cobalt phosphide and tungsten oxide (Co2P/WO3-x/CC) was prepared on carbon cloth (CC) surface by hydrothermal reaction with solution immersion etching and phosphorization annealing under H2/Ar atmosphere. This strategy can generate oxygen vacancies (OV), improving the speed of charge transfer between cobalt phosphide (Co2P) and tungsten oxide (WO3-x) components. The catalyst greatly increases the electrochemical active surface area, which is beneficial for efficient oxygen evolution. Electrochemical testing studies show that in 1.0 M KOH solution, Co2P-WO3-x/CC catalyst exhibits good OER activity, with a low overpotential of 254 mV at 10 mA cm-2, a small Tafel slope of 58.32 mV dec-1. The synergistic effect of oxygen vacancies and Co2P with WO3-x can regulate electronic structures, expose more active sites, and cooperatively enhancing the OER activity. This study provides a workable strategy for preparing efficient non-noble metal OER electrocatalysts on engineered interfaces and OV.
Collapse
Affiliation(s)
- Hui Guo
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lu Pan
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Huimin Jiang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Mengyou Gao
- College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao, 266041, PR China
| | - Hong Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Aslam Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nasir A Siddiqui
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jianjian Lin
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
11
|
Shen H, Jiang J, Zhang M, Lu Z, Han J. Homologous Temperature Regulated Hierarchical Nanoporous Structures by Dealloying. SMALL METHODS 2025; 9:e2400729. [PMID: 39097950 DOI: 10.1002/smtd.202400729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Nanoporous metals, fabricated via dealloying, offer versatile applications but are typically limited to unimodal porous structures, which hinders the integration of conflicting pore-size-dependent properties. A strategy is presented that exploits the homologous temperature (TH)-dependent scaling of feature sizes to generate hierarchical porous structures through multistep dealloying at varied TH levels, adjusted by altering dealloying temperatures or the material melting points. This technique facilitates the creation of monolithic architectures of bimodal porous nickel and trimodal porous carbon, each characterized by well-defined, self-similar bicontinuous porosities across distinct length scales. These materials merge extensive surface area with efficient mass transport, showing improved current delivery and rate capabilities as electrodes in electrocatalytic hydrogen production and electrochemical supercapacitors. These results highlight TH as a unifying parameter for precisely tailoring feature sizes of dealloyed nanoporous materials, opening avenues for developing materials with hierarchical structures that enable novel functionalities.
Collapse
Affiliation(s)
- Huiyou Shen
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jing Jiang
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Min Zhang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhen Lu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiuhui Han
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
12
|
Abdullah MI, Fang Y, Wu X, Hu M, Shao J, Tao Y, Wang H. Tackling activity-stability paradox of reconstructed NiIrO x electrocatalysts by bridged W-O moiety. Nat Commun 2024; 15:10587. [PMID: 39632899 PMCID: PMC11618364 DOI: 10.1038/s41467-024-54987-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024] Open
Abstract
One challenge remaining in the development of Ir-based electrocatalyst is the activity-stability paradox during acidic oxygen evolution reaction (OER), especially for the surface reconstructed IrOx catalyst with high efficiency. To address this, a phase selective Ir-based electrocatalyst is constructed by forming bridged W-O moiety in NiIrOx electrocatalyst. Through an electrochemical dealloying process, an nano-porous structure with surface-hydroxylated rutile NiWIrOx electrocatalyst is engineered via Ni as a sacrificial element. Despite low Ir content, NiWIrOx demonstrates a minimal overpotential of 180 mV for the OER at 10 mA·cm-2. It maintains a stable 300 mA·cm-2 current density during an approximately 300 h OER at 1.8 VRHE and shows a stability number of 3.9 × 105 noxygen · nIr-1. The resulting W - O-Ir bridging motif proves pivotal for enhancing the efficacy of OER catalysis by facilitating deprotonation of OER intermediates and promoting a thermodynamically favorable dual-site adsorbent evolution mechanism. Besides, the phase selective insertion of W-O in NiIrOx enabling charge balance through the W-O-Ir bridging motif, effectively counteracting lattice oxygen loss by regulating Ir-O co-valency.
Collapse
Affiliation(s)
| | - Yusheng Fang
- Shenzhen Key Laboratory of New Lithium-ion Batteries and Mesoporous Materials, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaobing Wu
- Shenzhen Key Laboratory of New Lithium-ion Batteries and Mesoporous Materials, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Meiqi Hu
- Shenzhen Key Laboratory of New Lithium-ion Batteries and Mesoporous Materials, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jing Shao
- Shenzhen Key Laboratory of New Lithium-ion Batteries and Mesoporous Materials, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Youkun Tao
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Haijiang Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
13
|
Wang P, Wang P, Wu T, Sun X, Zhang Y. Bimetal Metaphosphate/Molybdenum Oxide Heterostructure Nanowires for Boosting Overall Freshwater/Seawater Splitting at High Current Densities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407892. [PMID: 39348244 PMCID: PMC11600247 DOI: 10.1002/advs.202407892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/22/2024] [Indexed: 10/02/2024]
Abstract
Exploring excellent non-noble bifunctional electrocatalysts for freshwater/seawater splitting at high current densities has attracted extensive interest owing to strong anodic oxidation and severe chloride corrosion challenges. Herein, hierarchical bimetal Ni-Co metaphosphate/molybdenum oxide heterostructure nanowires (NiCoMoPO) are rationally designed and fabricated to efficiently boost oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline freshwater/seawater, where the favorable electronic structure from heterostructures, signified by X-ray absorption spectra, endows NiCoMoPO with the enhanced intrinsic activity, while its hierarchical nanowire structure and heterostructures provide abundant active sites. Additionally, the PO3 - improves the chloride-corrosion resistance and efficiently facilitates the OER kinetics verified by theoretical and experimental studies. Therefore, NiCoMoPO drives 1000 mA cm-2 at low overpotentials of 467 and 442 mV for OER and HER in alkaline freshwater respectively, as well as a small cell voltage of 2.135 V for overall freshwater splitting with robust durability of 300 h. Impressively, due to the strong corrosion resistance, at 500 mA cm-2 of overall seawater splitting, NiCoMoPO maintains almost 2.096 V for 1200 h, indicating promising practical applications. This work sheds light on the rational design and fabrication of outstanding electrocatalysts at high current densities of seawater/freshwater splitting.
Collapse
Affiliation(s)
- Pan Wang
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
- School of Materials and EnergyGuangdong University of TechnologyGuangzhou510006China
| | - Pai Wang
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Tongwei Wu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Xuping Sun
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
- College of Chemistry Chemical Engineering and Materials ScienceShandong Normal UniversityJinan250014China
| | - Yanning Zhang
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| |
Collapse
|
14
|
Mao L, Liu J, Lin R, Xue J, Yang Y, Xu S, Li Q, Qian J. Tailoring the Compositions and Nanostructures of Trimetallic Prussian Blue Analog-Derived Carbides for Water Oxidation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402916. [PMID: 39226210 PMCID: PMC11558108 DOI: 10.1002/advs.202402916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/01/2024] [Indexed: 09/05/2024]
Abstract
The electrochemical splitting of water for hydrogen production faces a major challenge due to its anodic oxygen evolution reaction (OER), necessitating research on the rational design and facile synthesis of OER catalysts to enhance catalytic activity and stability. This study proposes a ligand-induced MOF-on-MOF approach to fabricate various trimetallic MnFeCo-based Prussian blue analog (PBA) nanostructures. The addition of [Fe(CN)6]3- transforms them from cuboids with protruding corners (MnFeCoPBA-I) to core-shell configurations (MnFeCoPBA-II), and finally to hollow structures (MnFeCoPBA-III). After pyrolysis at 800 °C, they are converted into corresponding PBA-derived carbon nanomaterials, featuring uniformly dispersed Mn2Co2C nanoparticles. A comparative analysis demonstrates that the Fe addition enhances catalytic activity, while Mn-doped materials exhibit excellent stability. Specifically, the optimized MnFeCoNC-I-800 demonstrates outstanding OER performance in 1.0 m KOH solution, with an overpotential of 318 mV at 10 mA cm-2, maintaining stability for up to 150 h. Theoretical calculations elucidate synergistic interactions between Fe dopants and the Mn2Co2C matrix, reducing barriers for oxygen intermediates and improving intrinsic OER activity. These findings offer valuable insights into the structure-morphology relationships of MOF precursors, advancing the development of highly active and stable MOF-derived OER catalysts for practical applications.
Collapse
Affiliation(s)
- Lujiao Mao
- Key Laboratory of Carbon Materials of Zhejiang ProvinceCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhouZhejiang325035P. R. China
| | - Jie Liu
- Key Laboratory of Carbon Materials of Zhejiang ProvinceCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhouZhejiang325035P. R. China
| | - Rong Lin
- Key Laboratory of Carbon Materials of Zhejiang ProvinceCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhouZhejiang325035P. R. China
| | - Jinhang Xue
- Key Laboratory of Carbon Materials of Zhejiang ProvinceCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhouZhejiang325035P. R. China
| | - Yuandong Yang
- Key Laboratory of Carbon Materials of Zhejiang ProvinceCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhouZhejiang325035P. R. China
| | - Shaojie Xu
- Key Laboratory of Carbon Materials of Zhejiang ProvinceCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhouZhejiang325035P. R. China
| | - Qipeng Li
- College of Chemistry and Chemical EngineeringZhaotong UniversityZhaotongYunnan657000P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang ProvinceCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhouZhejiang325035P. R. China
| |
Collapse
|
15
|
Han J, Sun J, Chen S, Zhang S, Qi L, Husile A, Guan J. Structure-Activity Relationships in Oxygen Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408139. [PMID: 39344559 DOI: 10.1002/adma.202408139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Oxygen electrocatalysis, as the pivotal circle of many green energy technologies, sets off a worldwide research boom in full swing, while its large kinetic obstacles require remarkable catalysts to break through. Here, based on summarizing reaction mechanisms and in situ characterizations, the structure-activity relationships of oxygen electrocatalysts are emphatically overviewed, including the influence of geometric morphology and chemical structures on the electrocatalytic performances. Subsequently, experimental/theoretical research is combined with device applications to comprehensively summarize the cutting-edge oxygen electrocatalysts according to various material categories. Finally, future challenges are forecasted from the perspective of catalyst development and device applications, favoring researchers to promote the industrialization of oxygen electrocatalysis at an early date.
Collapse
Affiliation(s)
- Jingyi Han
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Jingru Sun
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Siyu Chen
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Siying Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Luoluo Qi
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Anaer Husile
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| |
Collapse
|
16
|
Wang Y, Li Q, Wang M, Ou H, Deng D, Zheng H, Bai Y, Zheng L, Chen ZY, Li W, Fang G, Lei Y. Pumping Electrons from Oxygen-Bridged Cobalt for Low-Charging-Voltage Zn-Air Batteries. NANO LETTERS 2024; 24:13653-13661. [PMID: 39432866 DOI: 10.1021/acs.nanolett.4c03510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Reducing the charging voltage is a prerequisite for improving the chargeability and energy efficiency of Zn-air batteries (ZABs). Herein, Fe3+ pumps electrons from oxygen-bridged cobalt (Fe-O-Co) and induces the accelerated charging kinetics. For the liquid ZABs, a charging voltage of around 1.94 V at 10 mA cm-2 was displayed, which slightly increased 2% after continuous cycles for 180 h. A steady charging voltage of around 1.87 V at 10 mA cm-2 was also exhibited for quasi-solid-state ZABs. Control experiments and characterization show that the interactions between the O2- and Fe3+ sites are relatively weaker than those between the O2- and Co3+ sites. Compared with Mn3+, Zn2+, and Cu2+, Fe3+ effectively pumps electrons from Co sites to generate the active species for the oxygen evolution reaction. Thus, the deprotonation behavior and *OH conversion were improved. This work demonstrates the oxygen electron bridge modulated electron transfer between dual metal sites, contributing to the improvement of low-charging-voltage ZABs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Yan Chen
- School of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | | | | | | |
Collapse
|
17
|
Jamesh MI, Tong H, Santoso SP, Niu W, Kai JJ, Hsieh CW, Cheng KC, Li FF, Han B, Colmenares JC, Hsu HY. Recent advances in developing nanoscale electro-/photocatalysts for hydrogen production: modification strategies, charge-carrier characterizations, and applications. NANOSCALE 2024; 16:18213-18250. [PMID: 39291727 DOI: 10.1039/d4nr01178c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
For clean hydrogen (H2) production, electrocatalysis and photocatalysis are widely regarded as promising technologies to counter the increasing energy crisis. However, developing applicable catalysts with high H2 production performances still poses a challenge. In this review, state-of-the-art nanoscale electrocatalysts for water electrolysis and photocatalysts for water splitting, tailored for different reaction environments, including acidic electrolytes, alkaline electrolytes, pure water, seawater, and hydrohalic acids, are systematically presented. In particular, modification approaches such as doping, morphology control, heterojunction/homojunction construction, as well as the integration of cocatalysts and single atoms for efficient charge transfer and separation are examined. Furthermore, the unique properties of these upgraded catalysts and the mechanisms of promoted H2 production are also analyzed by elucidating the charge carrier dynamics revealed by photophysical and photoelectrochemical characterization methods. Finally, perspectives and outlooks on future developments for H2 production using advanced electrocatalysts and photocatalysts are proposed.
Collapse
Affiliation(s)
- Mohammed-Ibrahim Jamesh
- School of Energy and Environment, Department of Materials Science and Engineering, Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, China.
| | - Haihang Tong
- School of Energy and Environment, Department of Materials Science and Engineering, Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, China.
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, P. R. China
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Kalijudan No. 37, Surabaya 60114, East Java, Indonesia
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| | - Ji-Jung Kai
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, Taiwan
- Department of Food Science, National Ilan University, Shennong Road, Yilan City 26047, Taiwan
| | - Kuan-Chen Cheng
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan.
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Optometry, Asia University, 500 Lioufeng Rd., Wufeng, Taichung, Taiwan, 41354
| | - Fang-Fang Li
- School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Bin Han
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Juan Carlos Colmenares
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01224, Warsaw, Poland
- Engineering Research Institute (In3), Universidad Cooperativa de Colombia, Medellín 50031, Colombia
| | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, China.
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, P. R. China
| |
Collapse
|
18
|
Li H, Chen F, Wu X, Wang D, Ren Y, Li Y. Improved HER/OER Performance of NiS 2/MoS 2 Composite Modified by CeO 2 and LDH. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4876. [PMID: 39410447 PMCID: PMC11478180 DOI: 10.3390/ma17194876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024]
Abstract
In recent years, there has been significant interest in transition-metal sulfides (TMSs) due to their economic affordability and excellent catalytic activity. Nevertheless, it is difficult for TMSs to achieve satisfactory performance due to problems such as low conductivity, limited catalytic activity, and inadequate stability. Therefore, a catalyst with a heterostructure constituted of a nickel-iron-layered double hydroxide, nickel sulfide, molybdenum disulfide, and cerium dioxide was designed. At the current density of 10 mA cm-2 in an alkaline solution, the catalyst exhibits a HER overpotential of 116 mV. In addition, an overpotential of 235 mV@150 mA cm-2 was displayed for OER. The catalyst showed a good retention rate (94.7% for HER, 98.6% for OER) after 160 h stability tests. The excellent electrochemical performance is attributed to the following points: 1. The self-supporting three-dimensional hierarchical structure provides abundant sites, fast ion diffusion channels, and electron transfer paths, and ensures structural stability. 2. The strong interfacial electron interaction between Ni3S2/MoS2 heterojunction and NiFe-LDH improves the OER reaction kinetics. 3. The Ce3+ and oxygen vacancies in CeO2 promote the dissociation of H2O and promote the HER reaction kinetics. This approach paves the way for developing highly efficient electrocatalysts for various electrochemical applications.
Collapse
Affiliation(s)
- Hao Li
- Henan Key Laboratory of Green Building Materials Manufacturing and Intelligent Equipment, Luoyang Institute of Science and Technology, Luoyang 471023, China;
| | - Feng Chen
- School of Environmental and Biological Engineering, Henan University of Engineering, Zhengzhou 451191, China;
| | - Xinyang Wu
- Henan Key Laboratory of High-Temperature Metal Structural and Functional Materials, National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang 471000, China; (X.W.); (D.W.)
| | - Dandan Wang
- Henan Key Laboratory of High-Temperature Metal Structural and Functional Materials, National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang 471000, China; (X.W.); (D.W.)
| | - Yongpeng Ren
- Henan Key Laboratory of High-Temperature Metal Structural and Functional Materials, National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang 471000, China; (X.W.); (D.W.)
- Longmen Laboratory, Luoyang 471000, China
| | - Yaru Li
- Henan Key Laboratory of High-Temperature Metal Structural and Functional Materials, National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang 471000, China; (X.W.); (D.W.)
- Longmen Laboratory, Luoyang 471000, China
| |
Collapse
|
19
|
Li W, Liu Y, Azam A, Liu Y, Yang J, Wang D, Sorrell CC, Zhao C, Li S. Unlocking Efficiency: Minimizing Energy Loss in Electrocatalysts for Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404658. [PMID: 38923073 DOI: 10.1002/adma.202404658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Catalysts play a crucial role in water electrolysis by reducing the energy barriers for hydrogen and oxygen evolution reactions (HER and OER). Research aims to enhance the intrinsic activities of potential catalysts through material selection, microstructure design, and various engineering techniques. However, the energy consumption of catalysts has often been overlooked due to the intricate interplay among catalyst microstructure, dimensionality, catalyst-electrolyte-gas dynamics, surface chemistry, electron transport within electrodes, and electron transfer among electrode components. Efficient catalyst development for high-current-density applications is essential to meet the increasing demand for green hydrogen. This involves transforming catalysts with high intrinsic activities into electrodes capable of sustaining high current densities. This review focuses on current improvement strategies of mass exchange, charge transfer, and reducing electrode resistance to decrease energy consumption. It aims to bridge the gap between laboratory-developed, highly efficient catalysts and industrial applications regarding catalyst structural design, surface chemistry, and catalyst-electrode interplay, outlining the development roadmap of hierarchically structured electrode-based water electrolysis for minimizing energy loss in electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Wenxian Li
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yang Liu
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ashraful Azam
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yichen Liu
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jack Yang
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Danyang Wang
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Charles Christopher Sorrell
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chuan Zhao
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sean Li
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
20
|
Feng JD, Zhang WD, Gu ZG. Covalent Organic Frameworks for Electrocatalysis: Design, Applications, and Perspectives. Chempluschem 2024; 89:e202400069. [PMID: 38955991 DOI: 10.1002/cplu.202400069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Covalent organic frameworks (COFs) are an innovative class of crystalline porous polymers composed of light elements such as C, N, O, etc., linked by covalent bonds. The distinctive properties of COFs, including designable building blocks, large specific surface area, tunable pore size, abundant active sites, and remarkable stability, have led their widespread applications in electrocatalysis. In recent years, COF-based electrocatalysts have made remarkable progress in various electrocatalytic fields, including the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, nitrogen reduction reaction, nitrate reduction reaction, and carbon dioxide reduction reaction. This review begins with an introduction to the design and synthesis strategies employed for COF-based electrocatalysts. These strategies include heteroatom doping, metalation of COF and building monomers, encapsulation of active sites within COF pores, and the development of COF-based derived materials. Subsequently, a systematic overview of the recent advancements in the application of COF-based catalysts in electrocatalysis is presented. Finally, the review discusses the main challenges and outlines possible avenues for the future development of COF-based electrocatalysts.
Collapse
Affiliation(s)
- Jing-Dong Feng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Wen-Da Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| |
Collapse
|
21
|
Sun B, Zhang W, Zheng M, Meng J, Liu L, Ma G, Yao Q, Wang M. Leaf-like Multiphase Metal Phosphides as Bifunctional Oxygen Electrocatalysts toward Rechargeable Zinc-Air Batteries. Inorg Chem 2024; 63:18162-18172. [PMID: 39298745 DOI: 10.1021/acs.inorgchem.4c03022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Developing a bifunctional oxygen electrocatalyst is crucial to improve the reversibility and cycle life of a rechargeable zinc-air battery (RZAB). Here, transition metal phosphides (TMPs) with a leaf-like hierarchical structure and multiphase composition can be synthesized by the "alloying-dealloying-phosphating" strategy. The as-prepared P-NiCo(1:1) electrode takes advantage of its internal dense nanoholes and synergistic effects induced by NiCoP-containing polyphase to reveal multifunctional catalysis, such as OER and ORR. In combination of these advantages, P-NiCo(1:1) exhibits an extremely low OER overpotential of 220 mV at 10 mA cm-2, a higher half-wave potential of 0.79 V for ORR, and a smaller potential difference (ΔE) of 0.66 V. The liquid RZAB with P-NiCo(1:1) as a cathodic bifunctional catalyst delivers a higher open-circuit voltage (OCV), a larger power density of 175 mW cm-2, and longer cycling life for more than 180 h. Even when applied in solid-state flexible RZABs, the lightweight module could start high-power devices. With theoretical confirmation, the major phase NiCoP of P-NiCo(1:1) is helpful to increase the density of states, regulate the d-band center, and decrease the energy barrier to 2.13 eV, which are significantly superior to those of Co2P and Ni2P. It is believable that the synthetic strategy and activity-promoting mechanism acquired from this research can offer a guide to designing a promising rechargeable zinc-air battery system.
Collapse
Affiliation(s)
- Boshan Sun
- State Key Laboratory of Dynamic Measurement Technology & School of Materials Science and Engineering & School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
| | - Wenping Zhang
- State Key Laboratory of Dynamic Measurement Technology & School of Materials Science and Engineering & School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
| | - Miaomiao Zheng
- State Key Laboratory of Dynamic Measurement Technology & School of Materials Science and Engineering & School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
| | - Jianfang Meng
- State Key Laboratory of Dynamic Measurement Technology & School of Materials Science and Engineering & School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
| | - Lei Liu
- State Key Laboratory of Dynamic Measurement Technology & School of Materials Science and Engineering & School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
| | - Guanshui Ma
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Qifeng Yao
- Suzhou Industrial Park Allfirst Gas Equipment Co., Ltd., Suzhou 215000, China
| | - Mei Wang
- State Key Laboratory of Dynamic Measurement Technology & School of Materials Science and Engineering & School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
| |
Collapse
|
22
|
Feng Z, He Y, Cui Y, Qu Y, Ding G, Chen X, Sui C, Wei Q, Wang Z, Jiang Q. Efficient Tandem Electrocatalytic Nitrate Reduction to Ammonia on Bimodal Nanoporous Ag/Ag-Co across Broad Nitrate Concentrations. NANO LETTERS 2024; 24:11929-11936. [PMID: 39264715 DOI: 10.1021/acs.nanolett.4c03218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Electrocatalytic nitrate (NO3-) reduction reaction (NO3-RR) represents a promising strategy for both wastewater treatment and ammonia (NH3) synthesis. However, it is difficult to achieve efficient NO3-RR on a single-component catalyst due to NO3-RR involving multiple reaction steps that rely on distinct catalyst properties. Here we report a facile alloying/dealloying-driven phase-separation strategy to construct a bimodal nanoporous Ag/Ag-Co tandem catalyst that exhibits a remarkable NO3-RR performance in a broad NO3- concentration range from 5 to 500 mM. In 10 and 50 mM NO3- electrolytes, the NH3 yield rates reach 3.4 and 25.1 mg h-1 mgcat.-1 with corresponding NH3 Faradaic efficiencies of 94.0% and 97.1%, respectively, outperforming most of the reported catalysts under the same NO3- concentration. The experimental results and density functional theory calculations demonstrate that Ag ligaments preferentially reduce NO3- to NO2-, while bimetallic Ag-Co ligaments catalyze the reduction of NO2- to NH3.
Collapse
Affiliation(s)
- Zixuan Feng
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Yuexuan He
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Yuhuan Cui
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yanbin Qu
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Guopeng Ding
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Xue Chen
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Chunyu Sui
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Qianling Wei
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Zhili Wang
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
23
|
Sun P, Gracia-Espino E, Tan F, Zhang H, Kong Q, Hu G, Wågberg T. Treasure-bowl style bifunctional site in cerium-tungsten hetero-clusters for superior solar-driven hydrogen production. MATERIALS HORIZONS 2024; 11:3892-3902. [PMID: 38807553 DOI: 10.1039/d4mh00111g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Electrochemical water splitting powered by renewable energy sources hold potential for clean hydrogen production. However, there is still persistent challenges such as low solar-to-hydrogen conversion efficiency and sluggish oxygen evolution reactions. Here, we address the poor kinetics by studying and strengthening the coupling between Ce and W, and concurrently establishing Ce-W bi-atomic clusters on P,N-doped carbon (WN/WC-CeO2-x@PNC) with a "treasure-bowl" style. The bifunctional active sites are established using a novel and effective self-sacrificial strategy involving in situ induced defect formation. In addition, by altering the coupling of the W(d)-N(p) and W(d)-Ce(f) orbitals in the WN/WC-CeO2-x supramolecular clusters, we are able to disrupt the linear relationship between the binding energies of reaction intermediates, a key to obtain high catalytic performance for transition metals. Through the confinement of the WN/WC-CeO2-x composite hetero-clusters within the sub-nanometre spaces of hollow nano-bowl-shaped carbon reactors, a stable and efficient hydrogen production via water electrolysis could be achieved. When assembled together with a solar GaAs triple junction solar cell, a solar-to-hydrogen conversion efficiency of 18.92% in alkaline media could be realized. We show that the key to establish noble metal free catalysts with high efficiency lies in the fine-tuning of the metal-metal interface, forming regions with near optimal adsorption energies for the reaction intermediates participating in water electrolysis.
Collapse
Affiliation(s)
- Pengliang Sun
- Donghai Laboratory, Zhoushan 316021, China.
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | | | - Fang Tan
- Donghai Laboratory, Zhoushan 316021, China.
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Hua Zhang
- Donghai Laboratory, Zhoushan 316021, China.
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Qingquan Kong
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Guangzhi Hu
- Donghai Laboratory, Zhoushan 316021, China.
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Thomas Wågberg
- Department of Physics, Umeå University, Umeå S-90187, Sweden.
- Wallenberg Initiative Material Science for Sustainability, Department of Physics, Umeå University, Umeå S-901 87, Sweden
| |
Collapse
|
24
|
Zhou CA, Ma K, Zhuang Z, Ran M, Shu G, Wang C, Song L, Zheng L, Yue H, Wang D. Tuning the Local Environment of Pt Species at CNT@MO 2-x (M = Sn and Ce) Heterointerfaces for Boosted Alkaline Hydrogen Evolution. J Am Chem Soc 2024; 146:21453-21465. [PMID: 39052434 DOI: 10.1021/jacs.4c04189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
As the most promising hydrogen evolution reaction (HER) electrocatalysts, platinum (Pt)-based catalysts still struggle with sluggish kinetics and expensive costs in alkaline media. Herein, we accelerate the alkaline hydrogen evolution kinetics by optimizing the local environment of Pt species and metal oxide heterointerfaces. The well-dispersed PtRu bimetallic clusters with adjacent MO2-x (M = Sn and Ce) on carbon nanotubes (PtRu/CNT@MO2-x) are demonstrated to be a potential electrocatalyst for alkaline HER, exhibiting an overpotential of only 75 mV at 100 mA cm-2 in 1 M KOH. The excellent mass activity of 12.3 mA μg-1Pt+Ru and specific activity of 32.0 mA cm-2ECSA at an overpotential of 70 mV are 56 and 64 times higher than those of commercial Pt/C. Experimental and theoretical investigations reveal that the heterointerfaces between Pt clusters and MO2-x can simultaneously promote H2O adsorption and activation, while the modification with Ru further optimizes H adsorption and H2O dissociation energy barriers. Then, the matching kinetics between the accelerated elementary steps achieved superb hydrogen generation in alkaline media. This work provides new insight into catalytic local environment design to simultaneously optimize the elementary steps for obtaining ideal alkaline HER performance.
Collapse
Affiliation(s)
- Chang-An Zhou
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Kui Ma
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Meiling Ran
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Guoqiang Shu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chao Wang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Lei Song
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hairong Yue
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Liu W, Ding X, Cheng J, Jing J, Li T, Huang X, Xie P, Lin X, Ding H, Kuang Y, Zhou D, Sun X. Inhibiting Dissolution of Active Sites in 80 °C Alkaline Water Electrolysis by Oxyanion Engineering. Angew Chem Int Ed Engl 2024; 63:e202406082. [PMID: 38807303 DOI: 10.1002/anie.202406082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Abstract
Commercial alkaline water electrolysers typically operate at 80 °C to minimize energy consumption. However, NiFe-based catalysts, considered as one of the most promising candidates for anode, encounter the bottleneck of high solubility at such temperatures. Herein, we discover that the dissolution of NiFe layered double hydroxides (NiFe-LDH) during operation not only leads to degradation of anode itself, but also deactivates cathode for water splitting, resulting in decay of overall electrocatalytic performance. Aiming to suppress the dissolution, we employed oxyanions as inhibitors in electrolyte. The added phosphates to the electrolyte inhibit the loss of NiFe-LDH active sites at 400 mA cm-2 to 1/3 of the original amount, thus reducing the rate of performance decay by 25-fold. Furthermore, the usage of borates, sulfates, and carbonates yields similar results, demonstrating the reliability and universality of the active site dissolution inhibitor, and its role in elevated water electrolysis.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoqian Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jingjin Cheng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jianlei Jing
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tianshui Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xin Huang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Pengpeng Xie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xichang Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hanlin Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yun Kuang
- Ocean Hydrogen Energy R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, P. R. China
| | - Daojin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
26
|
Liu Q, Mu X, Kang F, Xie S, Yan CH, Tang Y. Simultaneous Interface Engineering and Phase Tuning of CeO 2-Decorated Catalysts for Boosted Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402726. [PMID: 38651509 DOI: 10.1002/smll.202402726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Indexed: 04/25/2024]
Abstract
Heterogeneous catalysts have attracted extensive attention among various emerging catalysts for their exceptional oxygen evolution reaction (OER) capabilities, outperforming their single-component counterparts. Nonetheless, the synthesis of heterogeneous materials with predictable, precise, and facile control remains a formidable challenge. Herein, a novel strategy involving the decoration of catalysts with CeO2 is introduced to concurrently engineer heterogeneous interfaces and adjust phase composition, thereby enhancing OER performance. Theoretical calculations suggest that the presence of ceria reduces the free energy barrier for the conversion of nitrides into metals. Supporting this, the experimental findings reveal that the incorporation of rare earth oxides enables the controlled phase transition from nitride into metal, with the proportion adjustable by varying the amount of added rare earth. Thanks to the role of CeO2 decoration in promoting the reaction kinetics and fostering the formation of the genuine active phase, the optimized Ni3FeN/Ni3Fe/CeO2-5% nanoparticles heterostructure catalyst exhibits outstanding OER activity, achieving an overpotential of just 249 mV at 10 mA cm-2. This approach offers fresh perspectives for the conception of highly efficient heterogeneous OER catalysts, contributing a strategic avenue for advanced catalytic design in the field of energy conversion.
Collapse
Affiliation(s)
- Qingyi Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xijiao Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Fuyun Kang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Shiyu Xie
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030, P. R. China
| |
Collapse
|
27
|
Liu Y, Shi H, Dai TY, Zeng SP, Han GF, Wang TH, Wen Z, Lang XY, Jiang Q. In Situ Engineering Multifunctional Active Sites of Ruthenium-Nickel Alloys for pH-Universal Ampere-Level Current-Density Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311509. [PMID: 38587968 DOI: 10.1002/smll.202311509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/17/2024] [Indexed: 04/10/2024]
Abstract
Developing robust non-platinum electrocatalysts with multifunctional active sites for pH-universal hydrogen evolution reaction (HER) is crucial for scalable hydrogen production through electrochemical water splitting. Here ultra-small ruthenium-nickel alloy nanoparticles steadily anchored on reduced graphene oxide papers (Ru-Ni/rGOPs) as versatile electrocatalytic materials for acidic and alkaline HER are reported. These Ru-Ni alloy nanoparticles serve as pH self-adaptive electroactive species by making use of in situ surface reconstruction, where surface Ni atoms are hydroxylated to produce bifunctional active sites of Ru-Ni(OH)2 for alkaline HER, and selectively etched to form monometallic Ru active sites for acidic HER, respectively. Owing to the presence of Ru-Ni(OH)2 multi-site surface, which not only accelerates water dissociation to generate reactive hydrogen intermediates but also facilitates their recombination into hydrogen molecules, the self-supported Ru90Ni10/rGOP hybrid electrode only takes overpotential of as low as ≈106 mV to deliver current density of 1000 mA cm-2, and maintains exceptional stability for over 1000 h in 1 m KOH. While in 0.5 m H2SO4, the Ru90Ni10/rGOP hybrid electrode exhibits acidic HER catalytic behavior comparable to commercially available Pt/C catalyst due to the formation of monometallic Ru shell. These electrochemical behaviors outperform some of the best Ru-based catalysts and make it attractive alternative to Pt-based catalysts toward highly efficient HER.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Hang Shi
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Tian-Yi Dai
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Shu-Pei Zeng
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Gao-Feng Han
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Tong-Hui Wang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Zi Wen
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Xing-You Lang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| |
Collapse
|
28
|
Li W, Gou W, Zhang L, Zhong M, Ren S, Yu G, Wang C, Chen W, Lu X. Manipulating electron redistribution between iridium and Co 6Mo 6C bridging with a carbon layer leads to a significantly enhanced overall water splitting performance at industrial-level current density. Chem Sci 2024; 15:11890-11901. [PMID: 39092098 PMCID: PMC11290449 DOI: 10.1039/d4sc02840f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/23/2024] [Indexed: 08/04/2024] Open
Abstract
Nowadays, alkaline water electrocatalysis is regarded as an economical and highly effective approach for large-scale hydrogen production. Highly active electrocatalysts functioning under large current density are urgently required for practical industrial applications. In this work, we present a meticulously designed methodology to anchor Ir nanoparticles on Co6Mo6C nanofibers (Co6Mo6C-Ir NFs) bridging with nitrogen-doped carbon as efficient bifunctional electrocatalysts with both excellent hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) activity and stability in alkaline media. With a low Ir content of 5.9 wt%, Co6Mo6C-Ir NFs require the overpotentials of only 348 and 316 mV at 1 A cm-2 for the HER and OER, respectively, and both maintain stability for at least 500 h at ampere-level current density. Consequently, an alkaline electrolyzer based on Co6Mo6C-Ir NFs only needs a voltage of 1.5 V to drive 10 mA cm-2 and possesses excellent durability for 500 h at 1 A cm-2. Density functional theory calculations reveal that the introduction of Ir nanoparticles is pivotal for the enhanced electrocatalytic activity of Co6Mo6C-Ir NFs. The induced interfacial electron redistribution between Ir and Co6Mo6C bridging with nitrogen-doped carbon dramatically modulates the electron structure and activates inert atoms to generate more highly active sites for electrocatalysis. Moreover, the optimized electronic structure is more conducive to the balance of the adsorption and desorption energies of reaction intermediates, thus significantly promoting the HER, OER and overall water splitting performance.
Collapse
Affiliation(s)
- Weimo Li
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Wenqiong Gou
- Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Academy of Carbon Neutrality of Fujian Normal University, Fujian Normal University Fuzhou 350007 China
| | - Linfeng Zhang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Mengxiao Zhong
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Siyu Ren
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Guangtao Yu
- Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Academy of Carbon Neutrality of Fujian Normal University, Fujian Normal University Fuzhou 350007 China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Wei Chen
- Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Academy of Carbon Neutrality of Fujian Normal University, Fujian Normal University Fuzhou 350007 China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University Changchun 130012 P. R. China
| |
Collapse
|
29
|
Liu X, Huo S, Xu X, Wang X, Zhang W, Chen Y, Wang C, JiahaoXie, Liu X, Chang H, Zou J. Carbon nanotube-encapsulated Co/Co 3Fe 7 heterojunctions as a highly-efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. J Colloid Interface Sci 2024; 666:296-306. [PMID: 38603873 DOI: 10.1016/j.jcis.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
In oxygen electrocatalysis, how to rationally design low-cost catalysts with reasonable structure and long-term stability is a crucial issue. Here, an in-situ growth strategy is used to construct a shaped structure encapsulating a uniformly-dispersed Co/Co3Fe7 heterojunction in nitrogen-doped carbon nanotubes (Co/Co3Fe7@NCNTs). Hollow CoFe layered-double-hydroxide prisms act as sacrifices for in-situ growth of Co/Co3Fe7 nanoparticles, which also catalyze the growth of bamboo-like NCNTs. Tubular structure not only accelerates the charge transfer through the interactions between Co and Co3Fe7, but also limits the aggregation of the particles, thereby promoting the 4e- oxygen reduction/evolution reactions (ORR/OER) kinetics and stabilizing the bifunctional activity. Co/Co3Fe7@NCNTs-800 (pyrolyzed at 800 °C) shows exceptional ORR activity (half-wave potential of 0.89 V) and methanol tolerance. Meanwhile, Co/Co3Fe7@NCNTs-800 shows a small OER overpotential of 280 mV, which increases by only 9 mV after 1000 cyclic voltammetry (CV) cycles. The outstanding bifunctionality (potential gap of 0.62 V) is ascribed to the electronic structure modulation at the Co/Co3Fe7 heterointerface. Notably, it also has a high performance as an air-cathode for rechargeable zinc-air battery, showing high power density (165 mW cm-2) and specific capacity (770.5 m Ah kg-1). This work provides a new reference for promoting the development of alloy catalysts with heterogeneous interfaces.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Sichen Huo
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Xiaoqin Xu
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Xinyu Wang
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Wanyu Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yanjie Chen
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Cheng Wang
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Guangdong University of Technology, Guangzhou 510006, China.
| | - JiahaoXie
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Xueting Liu
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Haiyang Chang
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinlong Zou
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
30
|
Gao X, Chen Y, Wang Y, Zhao L, Zhao X, Du J, Wu H, Chen A. Next-Generation Green Hydrogen: Progress and Perspective from Electricity, Catalyst to Electrolyte in Electrocatalytic Water Splitting. NANO-MICRO LETTERS 2024; 16:237. [PMID: 38967856 PMCID: PMC11226619 DOI: 10.1007/s40820-024-01424-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/22/2024] [Indexed: 07/06/2024]
Abstract
Green hydrogen from electrolysis of water has attracted widespread attention as a renewable power source. Among several hydrogen production methods, it has become the most promising technology. However, there is no large-scale renewable hydrogen production system currently that can compete with conventional fossil fuel hydrogen production. Renewable energy electrocatalytic water splitting is an ideal production technology with environmental cleanliness protection and good hydrogen purity, which meet the requirements of future development. This review summarizes and introduces the current status of hydrogen production by water splitting from three aspects: electricity, catalyst and electrolyte. In particular, the present situation and the latest progress of the key sources of power, catalytic materials and electrolyzers for electrocatalytic water splitting are introduced. Finally, the problems of hydrogen generation from electrolytic water splitting and directions of next-generation green hydrogen in the future are discussed and outlooked. It is expected that this review will have an important impact on the field of hydrogen production from water.
Collapse
Affiliation(s)
- Xueqing Gao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Yutong Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Yujun Wang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Luyao Zhao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Xingyuan Zhao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Juan Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Haixia Wu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China.
| |
Collapse
|
31
|
Ahmad A, Nairan A, Feng Z, Zheng R, Bai Y, Khan U, Gao J. Unlocking the Potential of High Entropy Alloys in Electrochemical Water Splitting: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311929. [PMID: 38396229 DOI: 10.1002/smll.202311929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/04/2024] [Indexed: 02/25/2024]
Abstract
The global pursuit of sustainable energy is focused on producing hydrogen through electrocatalysis driven by renewable energy. Recently, High entropy alloys (HEAs) have taken the spotlight in electrolysis due to their intriguing cocktail effect, broad design space, customizable electronic structure, and entropy stabilization effect. The tunability and complexity of HEAs allow a diverse range of active sites, optimizing adsorption strength and activity for electrochemical water splitting. This review comprehensively covers contemporary advancements in synthesis technique, design framework, and physio-chemical evaluation approaches for HEA-based electrocatalysts. Additionally, it explores design principles and strategies aimed at optimizing the catalytic activity, stability, and effectiveness of HEAs in hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water splitting. Through an in-depth investigation of these aspects, the complexity inherent in constituent element interactions, reaction processes, and active sites associated with HEAs is aimed to unravel. Eventually, an outlook regarding challenges and impending difficulties and an outline of the future direction of HEA in electrocatalysis is provided. The thorough knowledge offered in this review will assist in formulating and designing catalysts based on HEAs for the next generation of electrochemistry-related applications.
Collapse
Affiliation(s)
- Abrar Ahmad
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Adeela Nairan
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhuo Feng
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruiming Zheng
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yelin Bai
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Usman Khan
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Junkuo Gao
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
32
|
Fan X, Zhang C, Chen Z, Liu T, Yang G, Hou S, Zhu C, Liu J, Xu J, Qiao F, Cui Y. Tungsten-Iron-Ruthenium Ternary Alloy Immobilized into the Inner Nickel Foam for High-Current-Density Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310829. [PMID: 38258407 DOI: 10.1002/smll.202310829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/09/2024] [Indexed: 01/24/2024]
Abstract
The pursuit of highly-active and stable catalysts in anodic oxygen evolution reaction (OER) is desirable for high-current-density water electrolysis toward industrial hydrogen production. Herein, a straightforward yet feasible method to prepare WFeRu ternary alloying catalyst on nickel foam is demonstrated, whereby the foreign W, Fe, and Ru metal atoms diffuse into the Ni foam resulting in the formation of inner immobilized ternary alloy. Thanks to the synergistic impact of foreign metal atoms and structural robustness of inner immobilized alloying catalyst, the well-designed WFeRu@NF self-standing anode exhibits superior OER activities. It only requires overpotentials of 245 and 346 mV to attain current densities of 20 and 500 mA cm-2, respectively. Moreover, the as-prepared ternary alloying catalyst also exhibits a long-term stability at a high-current-density of 500 mA cm-2 for over 45 h, evidencing the inner-immobilization strategy is promising for the development of highly active and stable metal-based catalysts for high-density-current water oxidation process.
Collapse
Affiliation(s)
- Xiyue Fan
- NEST Lab, Department of Chemistry, College of Sciences, Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. China
- i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Chunyu Zhang
- i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Zhigang Chen
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, P. R. China
| | - Tong Liu
- i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Guang Yang
- i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Shuang Hou
- i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Chengfeng Zhu
- i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Jinxun Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jiaqiang Xu
- NEST Lab, Department of Chemistry, College of Sciences, Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. China
| | - Fen Qiao
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Yi Cui
- i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| |
Collapse
|
33
|
Sun P, Zheng X, Chen A, Zheng G, Wu Y, Long M, Zhang Q, Chen Y. Constructing Amorphous-Crystalline Interfacial Bifunctional Site Island-Sea Synergy by Morphology Engineering Boosts Alkaline Seawater Hydrogen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309927. [PMID: 38498774 PMCID: PMC11199995 DOI: 10.1002/advs.202309927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/17/2024] [Indexed: 03/20/2024]
Abstract
The development of efficient and durable non-precious hydrogen evolution reaction (HER) catalysts for scaling up alkaline water/seawater electrolysis is highly desirable but challenging. Amorphous-crystalline (A-C) heterostructures have garnered attention due to their unusual atomic arrangements at hetero-interfaces, highly exposed active sites, and excellent stability. Here, a heterogeneous synthesis strategy for constructing A-C non-homogeneous interfacial centers of electrocatalysts on nanocages is presented. Isolated PdCo clusters on nanoscale islands in conjunction with Co3S4 A-C, functioning as a bifunctional site "island-sea" synergy, enable the dynamic confinement design of metal active atoms, resulting in excellent HER catalytic activity and durability. The hierarchical structure of hollow porous nanocages and nanoclusters, along with their large surface area and multi-dimensional A-C boundaries and defects, provides the catalyst with abundant active centers. Theoretical calculations demonstrate that the combination of PdCo and Co3S4 regulates the redistribution of interface electrons effectively, promoting the sluggish water-dissociation kinetics at the cluster Co sites. Additionally, PdCo-Co3S4 heterostructure nanocages exhibit outstanding HER activity in alkaline seawater and long-term stability for 100 h, which can be powered by commercial silicon solar cells. This finding significantly advances the development of alkaline seawater electrolysis for large-scale hydrogen production.
Collapse
Affiliation(s)
- Pengliang Sun
- State Key Laboratory of Pollution Control and Resource ReuseSchool of Environmental Science and EngineeringTongji UniversityShanghai200092P. R. China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource ReuseSchool of Environmental Science and EngineeringTongji UniversityShanghai200092P. R. China
- Shanghai Institute of Pollution Control and Ecological SecurityShanghai200092P. R. China
| | - Anran Chen
- School of Materials and EnergyYunnan UniversityKunming650091P. R. China
| | - Guanghong Zheng
- State Key Laboratory of Pollution Control and Resource ReuseSchool of Environmental Science and EngineeringTongji UniversityShanghai200092P. R. China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource ReuseSchool of Environmental Science and EngineeringTongji UniversityShanghai200092P. R. China
| | - Min Long
- State Key Laboratory of Pollution Control and Resource ReuseSchool of Environmental Science and EngineeringTongji UniversityShanghai200092P. R. China
| | - Qingran Zhang
- State Key Laboratory of Pollution Control and Resource ReuseSchool of Environmental Science and EngineeringTongji UniversityShanghai200092P. R. China
- Shanghai Institute of Pollution Control and Ecological SecurityShanghai200092P. R. China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource ReuseSchool of Environmental Science and EngineeringTongji UniversityShanghai200092P. R. China
- Shanghai Institute of Pollution Control and Ecological SecurityShanghai200092P. R. China
| |
Collapse
|
34
|
Chang R, Li H, Tian X, Yang Y, Dong T, Wang Z, Lai J, Feng S, Wang L. In Situ, Rapid Synthesis of Carbon-Loaded High Density and Ultrasmall High Entropy Oxide Nanoparticles as Efficient Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309937. [PMID: 38178644 DOI: 10.1002/smll.202309937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/15/2023] [Indexed: 01/06/2024]
Abstract
High entropy materials offer almost unlimited catalytic possibilities due to their variable composition, unique structure, and excellent electrocatalytic performance. However, due to the strong tendency of nanoparticles to coarsen and agglomerate, it is still a challenge to synthesize nanoparticles using simple methods to precisely control the morphology and size of the nanoparticles in large quantities, and their large-scale application is limited by high costs and low yields. Herein, a series of high-entropy oxides (HEOs) nanoparticles with high-density and ultrasmall size (<5 nm) loaded on carbon nanosheets with large quantities are prepared by Joule-heating treatment of gel precursors in a short period of time (≈60 s). Among them, the prepared (FeCoNiRuMn)3O4-x catalyst shows the best electrocatalytic activity for oxygen evolution reaction, with low overpotentials (230 mV @10 mA cm-2, 270 mV @100 mA cm-2), small Tafel slope (39.4 mV dec-1), and excellent stability without significant decay at 100 mA cm-2 after 100 h. The excellent performance of (FeCoNiRuMn)3O4-x can be attributed to the synergistic effect of multiple elements and the inherent structural stability of high entropy systems. This study provides a more comprehensive design idea for the preparation of efficient and stable high entropy catalysts.
Collapse
Affiliation(s)
- Rui Chang
- Key Laboratory of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Hongdong Li
- Key Laboratory of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiaofeng Tian
- Key Laboratory of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yu Yang
- Key Laboratory of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Tian Dong
- Key Laboratory of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zhenhui Wang
- Key Laboratory of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jianping Lai
- Key Laboratory of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Shouhua Feng
- Key Laboratory of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
35
|
Mao Y, Yang X, Dong K, Sheng T, Yuan Q. Fe,Co co-implanted dendritic CeO 2/CeF 3 heterostructure@MXene nanocomposites as structurally stable electrocatalysts with ultralow overpotential for the alkaline oxygen evolution reaction. J Colloid Interface Sci 2024; 662:208-217. [PMID: 38350344 DOI: 10.1016/j.jcis.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/15/2024]
Abstract
Exploring low-cost, high-activity, and structurally stable nonprecious metal electrocatalysts for sluggish oxygen evolution reaction (OER) is paramount for water electrolysis. Herein, we successfully prepare a novel Fe,Co-CeO2/CeF3@MXene heterostructure with Fe-Co dual active sites and oxygen vacancies for alkaline OER using an energy-free consumption co-deposition method. Impressively, Fe,Co-CeO2/CeF3@MXene achieves an ultralow overpotential of 192 mV and a long-term stability of 110 h at 10 mA cm-2 without structural changes, thereby outperforming the commercial IrO2 (345 mV). In addition, Fe,Co-CeO2/CeF3@MXene exhibits much superior activity (271 mV) and durability to IrO2 (385 mV) in the real seawater OER. Wind- and solar energy-assisted water electrolysis devices show their promising prospects for sustainable green hydrogen production. Characterization techniques and theoretical calculations reveal that the Fe,Co co-implanted CeO2/CeF3 heterostructure effectively degrades the energy barrier of the OER and optimizes the adsorption strength of *OH, *O, and *OOH intermediates. It exhibits the dual coupling mechanism of the adsorbed evolution and lattice oxygen mechanisms, which synergistically improves the OER performance. This work provides a facile and efficacious strategy for synthesizing a new class of heterostructures to achieve significant enhancement in the activity and stability of OER catalysts.
Collapse
Affiliation(s)
- Yunwei Mao
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| | - Xiaotong Yang
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| | - Kaiyu Dong
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| | - Tian Sheng
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.
| | - Qiang Yuan
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China.
| |
Collapse
|
36
|
Yang G, Song Y, Han S, Xue ZZ, Liu DX, Wang A, Wang G. In Situ-Generated Hollow CoFe-LDH/Co-MOF Heterostructure Nanorod Arrays for Oxygen Evolution Reaction. Inorg Chem 2024; 63:5634-5641. [PMID: 38467138 DOI: 10.1021/acs.inorgchem.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Assembling a heterostructure is an effective strategy for enhancing the electrocatalytic activity of hybrid materials. Herein, CoFe-layered double hydroxide and Co-metal-organic framework (CoFe-LDH/Co-MOF) hollow heterostructure nanorod arrays are synthesized. First, [Co(DIPL)(H3BTC)(H2O)2]n [named as Co-MOF, DIPL = 2,6-di(pyrid-4-yl)-4-phenylpyridine, H3BTC = 1,3,5-benzenetricarboxylic acid] crystalline materials with a uniform hollow structure were prepared on the nickel foam. The CoFe-LDH/Co-MOF composite perfectly inherits the original hollow nanorod array morphology after the subsequent electrodeposition process. Optimized CoFe-LDH/Co-MOF hollow heterostructure nanorod arrays display excellent performance in oxygen evolution reaction (OER) with ultralow overpotentials of 215 mV to deliver current densities of 10 mA cm-2 and maintain the electrocatalytic activity for a duration as long as 220 h, ranking it one of the non-noble metal-based electrocatalysts for OER. Density functional theory calculations validate the reduction in free energy for the rate-determining step by the synergistic effect of Co-MOF and CoFe-LDH, with the increased charge density and noticeable electron transfer at the Co-O site, which highlights the capability of Co-MOF to finely adjust the electronic structure and facilitate the creation of active sites. This work establishes an experimental and theoretical basis for promoting efficient water splitting through the design of heterostructures in catalysts.
Collapse
Affiliation(s)
- Guoying Yang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Yijin Song
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Songde Han
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Zhen-Zhen Xue
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - De-Xuan Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Ani Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Guoming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| |
Collapse
|
37
|
Lu Z, Ke X, Zhao Z, Huang J, Liu C, Wang J, Xu R, Mei Y, Huang G. Fabrication of NiCo Bimetallic MOF Films on 3D Foam with Assistance of Atomic Layer Deposition for Non-Invasive Lactic Acid Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14218-14228. [PMID: 38466323 DOI: 10.1021/acsami.4c01573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Lactic acid (LA) is an important downstream product of glycolysis in living cells and is abundant in our body fluids, which are strongly associated with diseases. The development of enzyme-free LA sensors with high sensitivity and low consumption remains a challenge. 2D metal-organic frameworks (MOFs) are considered to be promising electrochemical sensing materials and have attracted much attention in recent years. Compared to monometallic MOFs, the construction of bimetallic MOFs (BMOFs) can obtain a larger specific surface area, thereby increasing the exposed active site. 3D petal-like NixCoy MOF films on nickel foams (NixCoy BMOF@Ni foams) are successfully prepared by combining atomic layer deposition-assisted technology and hydrothermal strategy. The established NixCoy BMOF@Ni foams demonstrate noticeable LA sensing activity, and the study is carried out on behalf of the Ni1Co5 BMOF@Ni foam, which has a sensitivity of up to 9030 μA mM-1 cm-2 with a linear range of 0.01-2.2 mM and the detection limit is as low as 0.16 μM. Additionally, the composite has excellent stability and repeatability for the detection of LA under a natural air environment with high accuracy and reliability. Density functional theory calculation is applied to study the reaction process between composites and LA, and the result suggests that the active site in the NiCo BMOF film favors the adsorption of LA relative to the active site of monometallic MOF film, resulting in improved performance. The developed composite has a great potential for the application of noninvasive LA biosensors.
Collapse
Affiliation(s)
- Zihan Lu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, PR China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, PR China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, PR China
- Shanghai Center of Biomedicine Development, Zhangjiang Hi-Tech Park, Shanghai 201203, PR China
| | - Xinyi Ke
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, PR China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, PR China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, PR China
| | - Zhe Zhao
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, PR China
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, PR China
| | - Jiayuan Huang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, PR China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, PR China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, PR China
| | - Chang Liu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, PR China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, PR China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, PR China
| | - Jinlong Wang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, PR China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, PR China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, PR China
| | - Ruoyan Xu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, PR China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, PR China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, PR China
| | - Yongfeng Mei
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, PR China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, PR China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, PR China
| | - Gaoshan Huang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, PR China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, PR China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, PR China
| |
Collapse
|
38
|
Yao H, Wang P, Zhu M, Shi XR. Recent progress in hierarchical nanostructures for Ni-based industrial-level OER catalysts. Dalton Trans 2024; 53:2442-2449. [PMID: 38229516 DOI: 10.1039/d3dt03820c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Exploring efficient and low-cost oxygen evolution reaction (OER) electrocatalysts reaching the industrial level current density is crucial for hydrogen production via water electrolysis. In this feature article, we summarize the recent progress in hierarchical nanostructures for the industrial-level OER. The contents mainly concern (i) the design of a hierarchical structure; (ii) a Ni-based hierarchical structure for the industrial current density OER; and (iii) the surface reconstruction of the hierarchical structure during the OER process. The work provides valuable guidance and insights for the manufacture of hierarchical nanomaterials and devices for industrial applications.
Collapse
Affiliation(s)
- Haiyu Yao
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Peijie Wang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Min Zhu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Xue-Rong Shi
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
- National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal, Institute of Coal Chemistry, Chinese Academy of Sciences, China
| |
Collapse
|
39
|
Xu H, Guo T, Lei X, Guo S, Liu Q, Lu J, Zhang T. Enhancing Electrocatalytic Water Oxidation of NiFe-LDH Nanosheets via Bismuth-Induced Electronic Structure Engineering. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58784-58793. [PMID: 38084743 DOI: 10.1021/acsami.3c15403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The design and synthesis of high-efficiency electrocatalysts are of great practical significance in electrocatalytic water splitting, specifically in accelerating the slow oxygen evolution reaction (OER). Herein, a self-supported bismuth-doped NiFe layered double hydroxide (LDH) nanosheet array for water splitting was successfully constructed on nickel foam by a one-step hydrothermal strategy. Benefiting from the abundant active sites of two-dimensional nanosheets and electronic effect of Bi-doped NiFe LDH, the optimal Bi0.2NiFe LDH electrocatalyst exhibits excellent OER performance in basic media. It only requires an overpotential of 255 mV to drive 50 mA cm-2 and a low Tafel slope of 57.49 mV dec-1. The calculation of density functional theory (DFT) further shows that the incorporation of Bi into NiFe LDH could obviously overcome the step of H2O adsorption during OER progress. This work provides a simple and effective strategy for improving the electrocatalytic performance of NiFe LDHs, which is of great practical significance.
Collapse
Affiliation(s)
- Haitao Xu
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723001, China
| | - Ting Guo
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723001, China
| | - Xiaoyun Lei
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723001, China
| | - Shaobo Guo
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723001, China
| | - Quan Liu
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723001, China
| | - Jiufu Lu
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723001, China
| | - Tianlei Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723001, China
| |
Collapse
|
40
|
He S, Wang K, Li B, Du H, Du Z, Wang T, Li S, Ai W, Huang W. The Secret of Nanoarrays toward Efficient Electrochemical Water Splitting: A Vision of Self-Dynamic Electrolyte. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307017. [PMID: 37821238 DOI: 10.1002/adma.202307017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Nanoarray electrocatalysts with unique advantage of facilitating gas bubble detachment have garnered significant interest in gas evolution reactions (GERs). Existing research is largely based on a static hypothesis, assuming that buoyancy is the only driving force for the release of bubbles during GERs. However, this hypothesis overlooks the effect of the self-dynamic electrolyte flow, which is induced by the release of mature bubbles and helps destabilize and release the smaller, immature bubbles nearby. Herein, the enhancing effect of self-dynamic electrolyte flow on nanoarray structures is examined. Phase-field simulations demonstrate that the flow field of electrode with arrayed surface focuses shear force directly onto the gas bubble for efficient detachment, due to the flow could pass through voids and channels to bypass the shielding effect. The flow field therefore has a more substantial impact on the arrayed surface than the nanoscale smooth surface in terms of reducing the critical bubble size. To validate this, superaerophobic ferrous-nickel sulfide nanoarrays are fabricated and employed for water splitting, which display improved efficiency for GERs. This study contributes to understanding the influence of self-dynamic electrolyte on GERs and emphasizes that it should be considered when designing and evaluating nanoarray electrocatalysts.
Collapse
Affiliation(s)
- Song He
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Ke Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Boxin Li
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Hongfang Du
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou, 350117, China
| | - Zhuzhu Du
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Tingfeng Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Siyu Li
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Wei Ai
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou, 350117, China
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|