1
|
Sivanandham S, Sivanandham R, Xu C, Symmonds J, Sette P, He T, Funderburg N, Abdel-Mohsen M, Landay A, Apetrei C, Pandrea I. Plasma lipidomic alterations during pathogenic SIV infection with and without antiretroviral therapy. Front Immunol 2025; 16:1475160. [PMID: 40129985 PMCID: PMC11931036 DOI: 10.3389/fimmu.2025.1475160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/05/2025] [Indexed: 03/26/2025] Open
Abstract
Introduction Lipid profiles change in human immunodeficiency virus (HIV) infection and correlate with inflammation. Lipidomic alterations are impacted by multiple non-HIV-related behavioral risk factors; thus, use of animal models in which these behavioral factors are controlled may inform on the specific lipid changes induced by simian immunodeficiency virus (SIV) infection and/or antiretroviral therapy (ART). Methods Using ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy, we assessed and compared (ANOVA) longitudinal lipid changes in naïve and ART-treated SIV-infected pigtailed macaques (PTMs). Key parameters of infection (IL-6, TNFa, D-dimer, CRP and CD4+ T cell counts) were correlated (Spearman) with lipid concentrations at critical time points of infection and treatment. Results Sphingomyelins (SM) and lactosylceramides (LCER) increased during acute infection, returning to baseline during chronic infection; Hexosylceramides (HCER) increased throughout infection, being normalized with prolonged ART; Phosphatidylinositols (PI) and lysophosphatidylcholines (LPC) decreased with SIV infection and did not return to normal with ART; Phosphatidylethanolamines (PE), lysophosphatidylethanolamines (LPE) and phosphatidylcholines (PC) were unchanged by SIV infection, yet significantly decreased throughout ART. Specific lipid species (SLS) were also substantially modified by SIV and/or ART in most lipid classes. In conclusion, using a metabolically controlled model, we identified specific lipidomics signatures of SIV infection and/or ART, some of which were similar to people living with HIV (PWH). Many SLS were identical to those involved in development of organ dysfunctions encountered in virally suppressed individuals. Lipid changes also correlated with markers of disease progression, inflammation and coagulation. Discussion Our data suggest that lipidomic profile alterations contribute to residual systemic inflammation and comorbidities seen in HIV/SIV infections and therefore may be used as biomarkers of SIV/HIV comorbidities. Further exploration into the benefits of interventions targeting dyslipidemia is needed for the prevention HIV-related comorbidities.
Collapse
Affiliation(s)
- Sindhuja Sivanandham
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ranjit Sivanandham
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jen Symmonds
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Paola Sette
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tianyu He
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nicholas Funderburg
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| | - Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA, United States
| | - Alan Landay
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Vemparala B, Guedj J, Dixit NM. Advances in the mathematical modeling of posttreatment control of HIV-1. Curr Opin HIV AIDS 2025; 20:92-98. [PMID: 39633541 DOI: 10.1097/coh.0000000000000896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW Several new intervention strategies have shown significant improvements over antiretroviral therapy (ART) in eliciting lasting posttreatment control (PTC) of HIV-1. Advances in mathematical modelling have offered mechanistic insights into PTC and the workings of these interventions. We review these advances. RECENT FINDINGS Broadly neutralizing antibody (bNAb)-based therapies have shown large increases over ART in the frequency and the duration of PTC elicited. Early viral dynamics models of PTC with ART have been advanced to elucidate the underlying mechanisms, including the role of CD8+ T cells. These models characterize PTC as an alternative set-point, with low viral load, and predict routes to achieving it. Large-scale omic datasets have offered new insights into viral and host factors associated with PTC. Correspondingly, new classes of models, including those using learning techniques, have helped exploit these datasets and deduce causal links underlying the associations. Models have also offered insights into therapies that either target the proviral reservoir, modulate immune responses, or both, assessing their translatability. SUMMARY Advances in mathematical modeling have helped better characterize PTC, elucidated and quantified mechanisms with which interventions elicit it, and informed translational efforts.
Collapse
Affiliation(s)
- Bharadwaj Vemparala
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | | | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
3
|
Xiao J, Wang F, Yan H, Wang B, Su B, Lu X, Zhang T. Memory stem CD8 +T cells in HIV/Mtb mono- and co-infection: characteristics, implications, and clinical significance. Front Cell Infect Microbiol 2024; 14:1485825. [PMID: 39720790 PMCID: PMC11666416 DOI: 10.3389/fcimb.2024.1485825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/13/2024] [Indexed: 12/26/2024] Open
Abstract
Human immunodeficiency Virus (HIV) and Mycobacterium tuberculosis (Mtb) co-infection presents a significant public health challenge worldwide. Comprehensive assessment of the immune response in HIV/Mtb co-infection is complex and challenging. CD8+T cells play a pivotal role in the adaptive immune response to both HIV and Mtb. The differentiation of CD8+T cells follow a hierarchical pattern, with varying degrees of exhaustion throughout the process. Memory stem T cells (TSCM cells) is at the apex of the memory T lymphocyte system, which has recently emerged as a promising target in immunotherapy. In this context, we discuss the alterations of CD8+TSCM cells in HIV/Mtb mono- and co-infection, their implications and clinical significance, and potential for improving immunotherapy.
Collapse
Affiliation(s)
- Jing Xiao
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Fuchun Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hongxia Yan
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bo Wang
- Department of Respiratory Medicine, Beijing Fengtai Hospital of Integrated Traditional and Western Medicine, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaofan Lu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Mittal S, Garg AK, Desikan R, Dixit NM. Trade-off between the antiviral and vaccinal effects of antibody therapy in the humoral response to HIV. J R Soc Interface 2024; 21:20240535. [PMID: 39626747 PMCID: PMC11614529 DOI: 10.1098/rsif.2024.0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/05/2024] [Accepted: 10/18/2024] [Indexed: 12/08/2024] Open
Abstract
Antibody therapy for HIV-1 infection exerts two broad effects: a drug-like, antiviral effect, which rapidly lowers the viral load, and a vaccinal effect, which may control the viral load long-term by improving the immune response. Here, we elucidate a trade-off between these two effects as they pertain to the humoral response, which may compromise antibody therapy aimed at eliciting long-term HIV-1 remission. We developed a multi-scale computational model that combined within-host viral dynamics and stochastic simulations of the germinal centre (GC) reaction, enabling simultaneous quantification of the antiviral and vaccinal effects of antibody therapy. The model predicted that increasing antibody dosage or antibody-antigen affinity increased immune complex formation and enhanced GC output. Beyond a point, however, a strong antiviral effect reduced antigen levels substantially, extinguishing GCs and limiting the humoral response. We found signatures of this trade-off in clinical studies. Accounting for the trade-off could be important in optimizing antibody therapy for HIV-1 remission.
Collapse
Affiliation(s)
- Soumya Mittal
- Department of Chemical Engineering, Indian Institute of Science, Bangalore560012, India
| | - Amar K. Garg
- Department of Chemical Engineering, Indian Institute of Science, Bangalore560012, India
| | - Rajat Desikan
- Department of Chemical Engineering, Indian Institute of Science, Bangalore560012, India
| | - Narendra M. Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore560012, India
- Department of Bioengineering, Indian Institute of Science, Bangalore560012, India
| |
Collapse
|
5
|
Vemparala B, Madelain V, Passaes C, Millet A, Avettand-Fenoel V, Djidjou-Demasse R, Dereuddre-Bosquet N, Le Grand R, Rouzioux C, Vaslin B, Sáez-Cirión A, Guedj J, Dixit NM. Antiviral capacity of the early CD8 T-cell response is predictive of natural control of SIV infection: Learning in vivo dynamics using ex vivo data. PLoS Comput Biol 2024; 20:e1012434. [PMID: 39255323 DOI: 10.1371/journal.pcbi.1012434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/20/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024] Open
Abstract
While most individuals suffer progressive disease following HIV infection, a small fraction spontaneously controls the infection. Although CD8 T-cells have been implicated in this natural control, their mechanistic roles are yet to be established. Here, we combined mathematical modeling and analysis of previously published data from 16 SIV-infected macaques, of which 12 were natural controllers, to elucidate the role of CD8 T-cells in natural control. For each macaque, we considered, in addition to the canonical in vivo plasma viral load and SIV DNA data, longitudinal ex vivo measurements of the virus suppressive capacity of CD8 T-cells. Available mathematical models do not allow analysis of such combined in vivo-ex vivo datasets. We explicitly modeled the ex vivo assay, derived analytical approximations that link the ex vivo measurements with the in vivo effector function of CD8-T cells, and integrated them with an in vivo model of virus dynamics, thus developing a new learning framework that enabled the analysis. Our model fit the data well and estimated the recruitment rate and/or maximal killing rate of CD8 T-cells to be up to 2-fold higher in controllers than non-controllers (p = 0.013). Importantly, the cumulative suppressive capacity of CD8 T-cells over the first 4-6 weeks of infection was associated with virus control (Spearman's ρ = -0.51; p = 0.05). Thus, our analysis identified the early cumulative suppressive capacity of CD8 T-cells as a predictor of natural control. Furthermore, simulating a large virtual population, our model quantified the minimum capacity of this early CD8 T-cell response necessary for long-term control. Our study presents new, quantitative insights into the role of CD8 T-cells in the natural control of HIV infection and has implications for remission strategies.
Collapse
Affiliation(s)
- Bharadwaj Vemparala
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | | | - Caroline Passaes
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, Paris, France
- CEA, Université Paris-Saclay, INSERM U1184, Immunology of Viral, Autoimmune, Hematologic and Bacterial Diseases (IMVAHB), IDMIT Department/ IBFJ, Fontenay-aux-Roses, France
| | - Antoine Millet
- INSERM U1016, CNRS UMR8104, Université Paris Cité Institut Cochin, Paris, France
| | | | | | - Nathalie Dereuddre-Bosquet
- CEA, Université Paris-Saclay, INSERM U1184, Immunology of Viral, Autoimmune, Hematologic and Bacterial Diseases (IMVAHB), IDMIT Department/ IBFJ, Fontenay-aux-Roses, France
| | - Roger Le Grand
- CEA, Université Paris-Saclay, INSERM U1184, Immunology of Viral, Autoimmune, Hematologic and Bacterial Diseases (IMVAHB), IDMIT Department/ IBFJ, Fontenay-aux-Roses, France
| | - Christine Rouzioux
- INSERM U1016, CNRS UMR8104, Université Paris Cité Institut Cochin, Paris, France
| | - Bruno Vaslin
- CEA, Université Paris-Saclay, INSERM U1184, Immunology of Viral, Autoimmune, Hematologic and Bacterial Diseases (IMVAHB), IDMIT Department/ IBFJ, Fontenay-aux-Roses, France
| | - Asier Sáez-Cirión
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, Paris, France
| | | | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
6
|
Zaman F, Smith ML, Balagopal A, Durand CM, Redd AD, Tobian AAR. Spatial technologies to evaluate the HIV-1 reservoir and its microenvironment in the lymph node. mBio 2024; 15:e0190924. [PMID: 39058091 PMCID: PMC11324018 DOI: 10.1128/mbio.01909-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
The presence of the HIV-1 reservoir, a group of immune cells that contain intact, integrated, and replication-competent proviruses, is a major challenge to cure HIV-1. HIV-1 reservoir cells are largely unaffected by the cytopathic effects of viruses, antiviral immune responses, or antiretroviral therapy (ART). The HIV-1 reservoir is seeded early during HIV-1 infection and augmented during active viral replication. CD4+ T cells are the primary target for HIV-1 infection, and recent studies suggest that memory T follicular helper cells within the lymph node, more precisely in the B cell follicle, harbor integrated provirus, which contribute to viral rebound upon ART discontinuation. The B cell follicle, more specifically the germinal center, possesses a unique environment because of its distinct property of being partly immune privileged, potentially allowing HIV-1-infected cells within the lymph nodes to be protected from CD8+ T cells. This modified immune response in the germinal center of the follicle is potentially explained by the exclusion of CD8+ T cells and the presence of T regulatory cells at the junction of the follicle and extrafollicular region. The proviral makeup of HIV-1-infected cells is similar in lymph nodes and blood, suggesting trafficking between these compartments. Little is known about the cell-to-cell interactions, microenvironment of HIV-1-infected cells in the follicle, and trafficking between the lymph node follicle and other body compartments. Applying a spatiotemporal approach that integrates genomics, transcriptomics, and proteomics to investigate the HIV-1 reservoir and its neighboring cells in the lymph node has promising potential for informing HIV-1 cure efforts.
Collapse
Affiliation(s)
- Fatima Zaman
- Department of
Pathology, Johns Hopkins University School of
Medicine, Baltimore,
Maryland, USA
| | - Melissa L. Smith
- Department of
Biochemistry and Molecular Genetics, University of Louisville School of
Medicine, Louisville,
Kentucky, USA
| | - Ashwin Balagopal
- Division of Infectious
Diseases, Department of Medicine, Johns Hopkins
University, Baltimore,
Maryland, USA
| | - Christine M. Durand
- Division of Infectious
Diseases, Department of Medicine, Johns Hopkins
University, Baltimore,
Maryland, USA
| | - Andrew D. Redd
- Division of Infectious
Diseases, Department of Medicine, Johns Hopkins
University, Baltimore,
Maryland, USA
- Laboratory of
Immunoregulation, National Institute of Allergy and Infectious Diseases,
National Institutes of Health,
Bethesda, Maryland, USA
- Institute of
Infectious Disease and Molecular Medicine, University of Cape
Town, Cape Town,
South Africa
| | - Aaron A. R. Tobian
- Department of
Pathology, Johns Hopkins University School of
Medicine, Baltimore,
Maryland, USA
- Division of Infectious
Diseases, Department of Medicine, Johns Hopkins
University, Baltimore,
Maryland, USA
| |
Collapse
|
7
|
Georgakis S, Orfanakis M, Brenna C, Burgermeister S, Del Rio Estrada PM, González-Navarro M, Torres-Ruiz F, Reyes-Terán G, Avila-Rios S, Luna-Villalobos YA, Chén OY, Pantaleo G, Koup RA, Petrovas C. Follicular Immune Landscaping Reveals a Distinct Profile of FOXP3 hiCD4 hi T Cells in Treated Compared to Untreated HIV. Vaccines (Basel) 2024; 12:912. [PMID: 39204036 PMCID: PMC11359267 DOI: 10.3390/vaccines12080912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Follicular helper CD4hi T cells (TFH) are a major cellular pool for the maintenance of the HIV reservoir. Therefore, the delineation of the follicular (F)/germinal center (GC) immune landscape will significantly advance our understanding of HIV pathogenesis. We have applied multiplex confocal imaging, in combination with the relevant computational tools, to investigate F/GC in situ immune dynamics in viremic (vir-HIV), antiretroviral-treated (cART HIV) People Living With HIV (PLWH) and compare them to reactive, non-infected controls. Lymph nodes (LNs) from viremic and cART PLWH could be further grouped based on their TFH cell densities in high-TFH and low-TFH subgroups. These subgroups were also characterized by different in situ distributions of PD1hi TFH cells. Furthermore, a significant accumulation of follicular FOXP3hiCD4hi T cells, which were characterized by a low scattering in situ distribution profile and strongly correlated with the cell density of CD8hi T cells, was found in the cART-HIV low-TFH group. An inverse correlation between plasma viral load and LN GrzBhiCD8hi T and CD16hiCD15lo cells was found. Our data reveal the complex GC immune landscaping in HIV infection and suggest that follicular FOXP3hiCD4hi T cells could be negative regulators of TFH cell prevalence in cART-HIV.
Collapse
Affiliation(s)
- Spiros Georgakis
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, Rue du Bugnon 25, CH-1011 Lausanne, Switzerland (M.O.)
| | - Michail Orfanakis
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, Rue du Bugnon 25, CH-1011 Lausanne, Switzerland (M.O.)
| | - Cloe Brenna
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, Rue du Bugnon 25, CH-1011 Lausanne, Switzerland (M.O.)
| | - Simon Burgermeister
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, Rue du Bugnon 25, CH-1011 Lausanne, Switzerland (M.O.)
| | - Perla M. Del Rio Estrada
- Centro de Investigacion en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico (M.G.-N.)
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mauricio González-Navarro
- Centro de Investigacion en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico (M.G.-N.)
| | - Fernanda Torres-Ruiz
- Centro de Investigacion en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico (M.G.-N.)
| | - Gustavo Reyes-Terán
- Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Secretaría de Salud de México, Mexico City 14610, Mexico
| | - Santiago Avila-Rios
- Centro de Investigacion en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico (M.G.-N.)
| | - Yara Andrea Luna-Villalobos
- Centro de Investigacion en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico (M.G.-N.)
| | - Oliver Y. Chén
- Department of Laboratory Medicine and Pathology, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, CH-1011 Lausanne, Switzerland
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Constantinos Petrovas
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, Rue du Bugnon 25, CH-1011 Lausanne, Switzerland (M.O.)
| |
Collapse
|
8
|
Vemparala B, Chowdhury S, Guedj J, Dixit NM. Modelling HIV-1 control and remission. NPJ Syst Biol Appl 2024; 10:84. [PMID: 39117718 PMCID: PMC11310323 DOI: 10.1038/s41540-024-00407-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Remarkable advances are being made in developing interventions for eliciting long-term remission of HIV-1 infection. The success of these interventions will obviate the need for lifelong antiretroviral therapy, the current standard-of-care, and benefit the millions living today with HIV-1. Mathematical modelling has made significant contributions to these efforts. It has helped elucidate the possible mechanistic origins of natural and post-treatment control, deduced potential pathways of the loss of such control, quantified the effects of interventions, and developed frameworks for their rational optimization. Yet, several important questions remain, posing challenges to the translation of these promising interventions. Here, we survey the recent advances in the mathematical modelling of HIV-1 control and remission, highlight their contributions, and discuss potential avenues for future developments.
Collapse
Affiliation(s)
- Bharadwaj Vemparala
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Shreya Chowdhury
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Jérémie Guedj
- Université Paris Cité, IAME, INSERM, F-75018, Paris, France
| | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India.
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
9
|
Phan T, Conway JM, Pagane N, Kreig J, Sambaturu N, Iyaniwura S, Li JZ, Ribeiro RM, Ke R, Perelson AS. Understanding early HIV-1 rebound dynamics following antiretroviral therapy interruption: The importance of effector cell expansion. PLoS Pathog 2024; 20:e1012236. [PMID: 39074163 PMCID: PMC11309407 DOI: 10.1371/journal.ppat.1012236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/08/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
Most people living with HIV-1 experience rapid viral rebound once antiretroviral therapy is interrupted; however, a small fraction remain in viral remission for an extended duration. Understanding the factors that determine whether viral rebound is likely after treatment interruption can enable the development of optimal treatment regimens and therapeutic interventions to potentially achieve a functional cure for HIV-1. We built upon the theoretical framework proposed by Conway and Perelson to construct dynamic models of virus-immune interactions to study factors that influence viral rebound dynamics. We evaluated these models using viral load data from 24 individuals following antiretroviral therapy interruption. The best-performing model accurately captures the heterogeneity of viral dynamics and highlights the importance of the effector cell expansion rate. Our results show that post-treatment controllers and non-controllers can be distinguished based on the effector cell expansion rate in our models. Furthermore, these results demonstrate the potential of using dynamic models incorporating an effector cell response to understand early viral rebound dynamics post-antiretroviral therapy interruption.
Collapse
Affiliation(s)
- Tin Phan
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Jessica M. Conway
- Department of Mathematics, Pennsylvania State University, College Township, Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, College Township, Pennsylvania, United States of America
| | - Nicole Pagane
- Program in Computational and Systems Biology, Massachusetts Institute of Technology; Cambridge, Massachusetts, United States of America
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, Massachusetts, United States of America
| | - Jasmine Kreig
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Narmada Sambaturu
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Sarafa Iyaniwura
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Jonathan Z. Li
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Ruian Ke
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
10
|
Symmonds J, Gaufin T, Xu C, Raehtz KD, Ribeiro RM, Pandrea I, Apetrei C. Making a Monkey out of Human Immunodeficiency Virus/Simian Immunodeficiency Virus Pathogenesis: Immune Cell Depletion Experiments as a Tool to Understand the Immune Correlates of Protection and Pathogenicity in HIV Infection. Viruses 2024; 16:972. [PMID: 38932264 PMCID: PMC11209256 DOI: 10.3390/v16060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the underlying mechanisms of HIV pathogenesis is critical for designing successful HIV vaccines and cure strategies. However, achieving this goal is complicated by the virus's direct interactions with immune cells, the induction of persistent reservoirs in the immune system cells, and multiple strategies developed by the virus for immune evasion. Meanwhile, HIV and SIV infections induce a pandysfunction of the immune cell populations, making it difficult to untangle the various concurrent mechanisms of HIV pathogenesis. Over the years, one of the most successful approaches for dissecting the immune correlates of protection in HIV/SIV infection has been the in vivo depletion of various immune cell populations and assessment of the impact of these depletions on the outcome of infection in non-human primate models. Here, we present a detailed analysis of the strategies and results of manipulating SIV pathogenesis through in vivo depletions of key immune cells populations. Although each of these methods has its limitations, they have all contributed to our understanding of key pathogenic pathways in HIV/SIV infection.
Collapse
Affiliation(s)
- Jen Symmonds
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thaidra Gaufin
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kevin D. Raehtz
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
11
|
Mainou E, Berendam SJ, Obregon-Perko V, Uffman EA, Phan CT, Shaw GM, Bar KJ, Kumar MR, Fray EJ, Siliciano JM, Siliciano RF, Silvestri G, Permar SR, Fouda GG, McCarthy J, Chahroudi A, Chan C, Conway JM. Comparative analysis of within-host dynamics of acute infection and viral rebound dynamics in postnatally SHIV-infected ART-treated infant rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595130. [PMID: 38826467 PMCID: PMC11142125 DOI: 10.1101/2024.05.21.595130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Viral dynamics of acute HIV infection and HIV rebound following suspension of antiretroviral therapy may be qualitatively similar but must differ given, for one, development of adaptive immune responses. Understanding the differences of acute HIV infection and viral rebound dynamics in pediatric populations may provide insights into the mechanisms of viral control with potential implications for vaccine design and the development of effective targeted therapeutics for infants and children. Mathematical models have been a crucial tool to elucidate the complex processes driving viral infections within the host. Traditionally, acute HIV infection has been modeled with a standard model of viral dynamics initially developed to explore viral decay during treatment, while viral rebound has necessitated extensions of that standard model to incorporate explicit immune responses. Previous efforts to fit these models to viral load data have underscored differences between the two infection stages, such as increased viral clearance rate and increased death rate of infected cells during rebound. However, these findings have been predicated on viral load measurements from disparate adult individuals. In this study, we aim to bridge this gap, in infants, by comparing the dynamics of acute infection and viral rebound within the same individuals by leveraging an infant nonhuman primate Simian/Human Immunodeficiency Virus (SHIV) infection model. Ten infant Rhesus macaques (RMs) orally challenged with SHIV.C.CH505 375H dCT and given ART at 8 weeks post-infection. These infants were then monitored for up to 60 months post-infection with serial viral load and immune measurements. We use the HIV standard viral dynamics model fitted to viral load measurements in a nonlinear mixed effects framework. We find that the primary difference between acute infection and rebound is the increased death rate of infected cells during rebound. We use these findings to generate hypotheses on the effects of adaptive immune responses. We leverage these findings to formulate hypotheses to elucidate the observed results and provide arguments to support the notion that delayed viral rebound is characterized by a stronger CD8+ T cell response.
Collapse
Affiliation(s)
- Ellie Mainou
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | | | | | - Emilie A Uffman
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Caroline T Phan
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - George M Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katharine J Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mithra R Kumar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily J Fray
- Department of Biochemistry and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janet M Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guido Silvestri
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | | | - Janice McCarthy
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Jessica M Conway
- Department of Mathematics, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
12
|
Phan T, Conway JM, Pagane N, Kreig J, Sambaturu N, Iyaniwura S, Li JZ, Ribeiro RM, Ke R, Perelson AS. Understanding early HIV-1 rebound dynamics following antiretroviral therapy interruption: The importance of effector cell expansion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592318. [PMID: 38746144 PMCID: PMC11092759 DOI: 10.1101/2024.05.03.592318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Most people living with HIV-1 experience rapid viral rebound once antiretroviral therapy is interrupted; however, a small fraction remain in viral remission for an extended duration. Understanding the factors that determine whether viral rebound is likely after treatment interruption can enable the development of optimal treatment regimens and therapeutic interventions to potentially achieve a functional cure for HIV-1. We built upon the theoretical framework proposed by Conway and Perelson to construct dynamic models of virus-immune interactions to study factors that influence viral rebound dynamics. We evaluated these models using viral load data from 24 individuals following antiretroviral therapy interruption. The best-performing model accurately captures the heterogeneity of viral dynamics and highlights the importance of the effector cell expansion rate. Our results show that post-treatment controllers and non-controllers can be distinguished based on the effector cell expansion rate in our models. Furthermore, these results demonstrate the potential of using dynamic models incorporating an effector cell response to understand early viral rebound dynamics post-antiretroviral therapy interruption.
Collapse
Affiliation(s)
- Tin Phan
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Jessica M Conway
- Department of Mathematics, Pennsylvania State University, College Township, PA, USA
- Department of Biology, Pennsylvania State University, College Township, PA, USA
| | - Nicole Pagane
- Program in Computational and Systems Biology, Massachusetts Institute of Technology; Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, USA
| | - Jasmine Kreig
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Narmada Sambaturu
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Sarafa Iyaniwura
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Jonathan Z Li
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruy M Ribeiro
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Ruian Ke
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
13
|
Ciupe SM, Conway JM. Incorporating Intracellular Processes in Virus Dynamics Models. Microorganisms 2024; 12:900. [PMID: 38792730 PMCID: PMC11124127 DOI: 10.3390/microorganisms12050900] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
In-host models have been essential for understanding the dynamics of virus infection inside an infected individual. When used together with biological data, they provide insight into viral life cycle, intracellular and cellular virus-host interactions, and the role, efficacy, and mode of action of therapeutics. In this review, we present the standard model of virus dynamics and highlight situations where added model complexity accounting for intracellular processes is needed. We present several examples from acute and chronic viral infections where such inclusion in explicit and implicit manner has led to improvement in parameter estimates, unification of conclusions, guidance for targeted therapeutics, and crossover among model systems. We also discuss trade-offs between model realism and predictive power and highlight the need of increased data collection at finer scale of resolution to better validate complex models.
Collapse
Affiliation(s)
- Stanca M. Ciupe
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Jessica M. Conway
- Department of Mathematics and Center for Infectious Disease Dynamics, Penn State University, State College, PA 16802, USA
| |
Collapse
|
14
|
Sutton MS, Bucsan AN, Lehman CC, Kamath M, Pokkali S, Magnani DM, Seder R, Darrah PA, Roederer M. Antibody-mediated depletion of select leukocyte subsets in blood and tissue of nonhuman primates. Front Immunol 2024; 15:1359679. [PMID: 38529287 PMCID: PMC10961357 DOI: 10.3389/fimmu.2024.1359679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
Understanding the immunological control of pathogens requires a detailed evaluation of the mechanistic contributions of individual cell types within the immune system. While knockout mouse models that lack certain cell types have been used to help define the role of those cells, the biological and physiological characteristics of mice do not necessarily recapitulate that of a human. To overcome some of these differences, studies often look towards nonhuman primates (NHPs) due to their close phylogenetic relationship to humans. To evaluate the immunological role of select cell types, the NHP model provides distinct advantages since NHP more closely mirror the disease manifestations and immunological characteristics of humans. However, many of the experimental manipulations routinely used in mice (e.g., gene knock-out) cannot be used with the NHP model. As an alternative, the in vivo infusion of monoclonal antibodies that target surface proteins on specific cells to either functionally inhibit or deplete cells can be a useful tool. Such depleting antibodies have been used in NHP studies to address immunological mechanisms of action. In these studies, the extent of depletion has generally been reported for blood, but not thoroughly assessed in tissues. Here, we evaluated four depleting regimens that primarily target T cells in NHP: anti-CD4, anti-CD8α, anti-CD8β, and immunotoxin-conjugated anti-CD3. We evaluated these treatments in healthy unvaccinated and IV BCG-vaccinated NHP to measure the extent that vaccine-elicited T cells - which may be activated, increased in number, or resident in specific tissues - are depleted compared to resting populations in unvaccinated NHPs. We report quantitative measurements of in vivo depletion at multiple tissue sites providing insight into the range of cell types depleted by a given mAb. While we found substantial depletion of target cell types in blood and tissue of many animals, residual cells remained, often residing within tissue. Notably, we find that animal-to-animal variation is substantial and consequently studies that use these reagents should be powered accordingly.
Collapse
Affiliation(s)
- Matthew S. Sutton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Allison N. Bucsan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Chelsea C. Lehman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Megha Kamath
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Supriya Pokkali
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Diogo M. Magnani
- Nonhuman Primate Reagent Resource, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Robert Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Patricia A. Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|