1
|
Wang Y, Lv Y, Wen Y, Wang J, Hu P, Wu K, Chai B, Gan S, Liu J, Wu Y, Zhu L, Dong N, Tan Y, Wu H, Zhang G, Zhu L, Ren D, Zhang Q, Wang Y, Qian Q, Hu J. GS2 cooperates with IPA1 to control panicle architecture. THE NEW PHYTOLOGIST 2025; 245:2726-2743. [PMID: 39887382 PMCID: PMC11840411 DOI: 10.1111/nph.20412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/06/2025] [Indexed: 02/01/2025]
Abstract
Panicle size and grain number are important agronomic traits that determine grain yield in rice. However, the underlying mechanism regulating panicle size and grain number remains largely unknown. Here, we report that GS2 plays an important role in regulating panicle architecture. The RNAi of GS2™ (target site mutation, TM) produced erect and dense panicle with increased primary and secondary branches and grain number per panicle, whereas the overexpression of GS2™ showed longer panicles and fewer grains than wild-type. GS2 directly binds to the GCCA motif and significantly enhances the transcriptional activation ability through the interaction with IPA1. DEP1 is a common target gene of GS2 and IPA1 in regulating branch number and grain number per panicle. The pyramiding of GS2™ and IPA1™1 (Target site mutation1, TM1) on hybrid rice can significantly increase rice yield. Our findings reveal the novel function of GS2 and the molecular mechanism of GS2/IPA1-DEP1 module in controlling panicle architecture.
Collapse
Affiliation(s)
- Yueying Wang
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Yang Lv
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Yi Wen
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Junge Wang
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Peng Hu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Kaixiong Wu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Bingze Chai
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Shuxian Gan
- Institute of Agricultural Sciences, Xishuangbanna PrefectureJinghongYunnan Province666100China
| | - Jialong Liu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Yue Wu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Lixin Zhu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Nannan Dong
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Yiqing Tan
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Hao Wu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
- Academician Workstation, National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural SciencesSanya572024China
| | - Li Zhu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Deyong Ren
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Qiang Zhang
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
- Academician Workstation, National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural SciencesSanya572024China
| | - Yuexing Wang
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Qian Qian
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
- Academician Workstation, National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural SciencesSanya572024China
| | - Jiang Hu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
- Academician Workstation, National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural SciencesSanya572024China
- Hainan Seed Industry LaboratorySanya572024China
| |
Collapse
|
2
|
Kong X, Peng K, Shan Y, Yun Z, Dalmay T, Duan X, Jiang Y, Qu H, Zhu H. Transcriptional regulation of miR528-PPO module by miR156 targeted SPLs orchestrates chilling response in banana. MOLECULAR HORTICULTURE 2025; 5:2. [PMID: 39789620 PMCID: PMC11720309 DOI: 10.1186/s43897-024-00115-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/28/2024] [Indexed: 01/12/2025]
Abstract
Banana is sensitive to cold stress and often suffers from chilling injury with browning peel and failure to normal ripening. We have previously reported that banana chilling injury is accompanied by a reduction of miR528 accumulation, alleviating the degradation of its target gene MaPPO and raising ROS levels that cause peel browning. Here, we further revealed that the miR528-MaPPO cold-responsive module was regulated by miR156-targeted SPL transcription factors, and the miR156c-MaSPL4 module was also responsive to cold stress in banana. Transient overexpression of miR156c resulted in a more severe chilling phenotype by decreasing the expression of MaSPL4 and miR528. Conversely, the browning was alleviated in STTM-miR156c silencing and OE-MaSPL4 samples. Furthermore, DNA affinity purification sequencing and MaSPL4-overexpressing transcriptome jointly revealed that MaSPL4 may mediate the transcription of genes related to lipid metabolism and antioxidation, in addition to the miR528-MaPPO module, demonstrating MaSPL4 as a master regulator in the fruit cold response network. In summary, our results suggest that the miR156c-MaSPL4 module can mediate the chilling response in banana by regulating the miR528-MaPPO module and multiple other pathways, which provides evidence for the crosstalk between TFs and miRNAs that can be used for the molecular breeding of fruit cold tolerance.
Collapse
Affiliation(s)
- Xiangjin Kong
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kuan Peng
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youxia Shan
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Ze Yun
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongxia Qu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hong Zhu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Tian W, Peng Z, Zhang X, Zheng Y, Wang Y, Feng B, Li Y, He G, Sang X. OsMAPKKKε regulates apical spikelet development by adjusting Reactive Oxygen Species accumulates in Oryza sativa. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112280. [PMID: 39401544 DOI: 10.1016/j.plantsci.2024.112280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/21/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Rice panicle abortion can significantly impact rice yield and food security. Recent research has revealed that panicle abortion is influenced by environmental factors as well as regulated by specific genes. Here we report a novel panicle apical abortion 4 (paa4) mutant with semi-dwarf and panicle apical abortion phenotype, and its abortion occurs when the panicle length is approximately 7 cm. Map-based cloning has identified that PAA4 encodes a Mitogen-activated Protein Kinase Kinase Kinase ε (OsMAPKKKε) protein, and a substitution of G to A in exon 19 of OsMAPKKKε that leads to panicle apical abortion. PAA4 has a higher expression in the spikelet although which expressed in all organs of rice. During panicle growth, excessive Reactive Oxygen Species (ROS) accumulate in the apical panicle of paa4, eventually inducing programmed cell death (PCD). Transcriptome sequencing indicates that PAA4 plays a role in both the generation and elimination of ROS. Therefore, PAA4 might be involved in the balance of ROS at the apical panicle and then affects spikelet development in Oryza sativa.
Collapse
Affiliation(s)
- Weijiang Tian
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Ziwei Peng
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Xin Zhang
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Yumeng Zheng
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Yuanyuan Wang
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Beiqi Feng
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Yangyang Li
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Guanghua He
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Xianchun Sang
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China.
| |
Collapse
|
4
|
Zang J, Yao X, Zhang T, Yang B, Wang Z, Quan S, Zhang Z, Liu J, Chen H, Zhang X, Hou Y. Excess iron accumulation affects maize endosperm development by inhibiting starch synthesis and inducing DNA damage. J Cell Physiol 2024; 239:e31427. [PMID: 39239803 DOI: 10.1002/jcp.31427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Iron (Fe) storage in cereal seeds is the principal source of dietary Fe for humans. In maize (Zea mays), the accumulation of Fe in seeds is known to be negatively correlated with crop yield. Hence, it is essential to understand the underlying mechanism, which is crucial for developing and breeding maize cultivars with high yields and high Fe concentrations in the kernels. Here, through the successful application of in vitro kernel culture, we demonstrated that excess Fe supply in the medium caused the kernel to become collapsed and lighter in color, consistent with those found in yellow strip like 2 (ysl2, a small kernel mutant), implicated a crucial role of Fe concentration in kernel development. Indeed, over-accumulation of Fe in endosperm inhibited the abundance and activity of ADP-glucose pyrophosphorylase (AGPase) and the kernel development defect was alleviated by overexpression of Briittle 2 (Bt2, encoding a small subunit of AGPase) in ysl2 mutant. Imaging and quantitative analyses of reactive oxygen species (ROS) and cell death showed that Fe stress-induced ROS burst and severe DNA damage in endosperm cells. In addition, we have successfully identified candidate genes that are associated with iron homeostasis within the kernel, as well as upstream transcription factors that regulate ZmYSL2 by yeast one-hybrid screening. Collectively, our study will provide insights into the molecular mechanism of Fe accumulation-regulated seed development and promote the future efficient application of Fe element in corn improvement.
Collapse
Affiliation(s)
- Jie Zang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Xueyan Yao
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Tengfei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Boming Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Shuxuan Quan
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Zhaogui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Juan Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiansheng Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yifeng Hou
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| |
Collapse
|
5
|
Coskun D. SPOTLIGHT: TaSPL6-D, a transcriptional repressor of TaHKT1;5-D in bread wheat (Triticum aestivum L.) and a novel target for improving salt tolerance in crops. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154351. [PMID: 39299160 DOI: 10.1016/j.jplph.2024.154351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Affiliation(s)
- Devrim Coskun
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Canada.
| |
Collapse
|
6
|
Wang H, Zhu S, Yang C, Zeng D, Luo C, Dai C, Cheng D, Lv X. Expression and Functional Identification of SPL6/7/9 Genes under Drought Stress in Sugarbeet Seedlings. Int J Mol Sci 2024; 25:8989. [PMID: 39201675 PMCID: PMC11354545 DOI: 10.3390/ijms25168989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Sugar beet is a significant sugar crop in China, primarily cultivated in arid regions of the north. However, drought often affects sugar beet cultivation, leading to reduced yield and quality. Therefore, understanding the impact of drought on sugar beets and studying their drought tolerance is crucial. Previous research has examined the role of SPL (SQUAMOSA promoter-binding protein-like) transcription factors in plant stress response; however, the precise contribution of SPLs to the drought stress response in sugar beets has yet to be elucidated. In this study, we identified and examined the BvSPL6, BvSPL7, and BvSPL9 genes in sugar beets, investigating their performance during the seedling stage under drought stress. We explored their drought resistance characteristics using bioinformatics, quantitative analysis, physiological experiments, and molecular biology experiments. Drought stress and rehydration treatments were applied to sugar beet seedlings, and the expression levels of BvSPL6, BvSPL7, and BvSPL9 genes in leaves were quantitatively analyzed at 11 different time points to evaluate sugar beets' response and tolerance to drought stress. Results indicated that the expression level of the BvSPL6/9 genes in leaves was upregulated during the mid-stage of drought stress and downregulated during the early and late stages. Additionally, the expression level of the BvSPL7 gene gradually increased with the duration of drought stress. Through analyzing changes in physiological indicators during different time periods of drought stress and rehydration treatment, we speculated that the regulation of BvSPL6/7/9 genes is associated with sugar beet drought resistance and their participation in drought stress response. Furthermore, we cloned the CDS sequences of BvSPL6, BvSPL7, and BvSPL9 genes from sugar beets and conducted sequence alignment with the database to validate the results. Subsequently, we constructed overexpression vectors, named 35S::BvSPL6, 35S::BvSPL7, and 35S::BvSPL9, and introduced them into sugar beets using Agrobacterium-mediated methods. Real-time fluorescence quantitative analysis revealed that the expression levels of BvSPL6/7/9 genes in transgenic sugar beets increased by 40% to 80%. The drought resistance of transgenic sugar beets was significantly enhanced compared with the control group.
Collapse
Affiliation(s)
- Hui Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (H.W.); (S.Z.); (C.L.)
| | - Shengyi Zhu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (H.W.); (S.Z.); (C.L.)
| | - Chao Yang
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, China;
| | - Deyong Zeng
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China;
| | - Chengfei Luo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (H.W.); (S.Z.); (C.L.)
| | - Cuihong Dai
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China;
| | - Dayou Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (H.W.); (S.Z.); (C.L.)
| | - Xiaohong Lv
- Heilongjiang Academy of Forestry, Harbin 150001, China;
| |
Collapse
|
7
|
Li H, Hua M, Tariq N, Li X, Zhang Y, Zhang D, Liang W. EPAD1 Orthologs Play a Conserved Role in Pollen Exine Patterning. Int J Mol Sci 2024; 25:8914. [PMID: 39201600 PMCID: PMC11354838 DOI: 10.3390/ijms25168914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
The pollen wall protects pollen during dispersal and is critical for pollination recognition. In the Poaceae family, the pollen exine stereostructure exhibits a high degree of conservation with similar patterns across species. However, there remains controversy regarding the conservation of key factors involved in its formation among various Poaceae species. EPAD1, as a gene specific to the Poaceae family, and its orthologous genes play a conserved role in pollen wall formation in wheat and rice. However, they do not appear to have significant functions in maize. To further confirm the conserved function of EPAD1 in Poaceae, we performed an analysis on four EPAD1 orthologs from two distinct sub-clades within the Poaceae family. The two functional redundant barley EPAD1 genes (HvEPAD1 and HvEPAD2) from the BOP clade, along with the single copy of sorghum (SbEPAD1) and millet (SiEPAD1) from the PACMAD clade were examined. The CRISPR-Cas9-generated mutants all exhibited defects in pollen wall formation, consistent with previous findings on EPAD1 in rice and wheat. Interestingly, in barley, hvepad2 single mutant also showed apical spikelets abortion, aligning with a decreased expression level of HvEPAD1 and HvEPAD2 from the apical to the bottom of the spike. Our finding provides evidence that EPAD1 orthologs contribute to Poaceae specific pollen exine pattern formation via maintaining primexine integrity despite potential variations in copy numbers across different species.
Collapse
Affiliation(s)
- Huanjun Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.L.); (M.H.); (N.T.); (X.L.); (Y.Z.); (D.Z.)
| | - Miaoyuan Hua
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.L.); (M.H.); (N.T.); (X.L.); (Y.Z.); (D.Z.)
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Naveed Tariq
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.L.); (M.H.); (N.T.); (X.L.); (Y.Z.); (D.Z.)
| | - Xian Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.L.); (M.H.); (N.T.); (X.L.); (Y.Z.); (D.Z.)
| | - Yushi Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.L.); (M.H.); (N.T.); (X.L.); (Y.Z.); (D.Z.)
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.L.); (M.H.); (N.T.); (X.L.); (Y.Z.); (D.Z.)
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.L.); (M.H.); (N.T.); (X.L.); (Y.Z.); (D.Z.)
| |
Collapse
|
8
|
Pastor-Cantizano N, Angelos ER, Ruberti C, Jiang T, Weng X, Reagan BC, Haque T, Juenger TE, Brandizzi F. Programmed cell death regulator BAP2 is required for IRE1-mediated unfolded protein response in Arabidopsis. Nat Commun 2024; 15:5804. [PMID: 38987268 PMCID: PMC11237027 DOI: 10.1038/s41467-024-50105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/29/2024] [Indexed: 07/12/2024] Open
Abstract
Environmental and physiological situations can challenge the balance between protein synthesis and folding capacity of the endoplasmic reticulum (ER) and cause ER stress, a potentially lethal condition. The unfolded protein response (UPR) restores ER homeostasis or actuates programmed cell death (PCD) when ER stress is unresolved. The cell fate determination mechanisms of the UPR are not well understood, especially in plants. Here, we integrate genetics and ER stress profiling with natural variation and quantitative trait locus analysis of 350 natural accessions of the model species Arabidopsis thaliana. Our analyses implicate a single nucleotide polymorphism to the loss of function of the general PCD regulator BON-ASSOCIATED PROTEIN2 (BAP2) in UPR outcomes. We establish that ER stress-induced BAP2 expression is antagonistically regulated by the UPR master regulator, inositol-requiring enzyme 1 (IRE1), and that BAP2 controls adaptive UPR amplitude in ER stress and ignites pro-death mechanisms in conditions of UPR insufficiency.
Collapse
Affiliation(s)
- Noelia Pastor-Cantizano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Burjassot, Spain
| | - Evan R Angelos
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Botany & Plant Sciences Department, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, USA
| | - Cristina Ruberti
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Biosciences, University of Milan, Milano, Italy
| | - Tao Jiang
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Mid-Florida Research and Education Center, University of Florida, Apopka, FL, USA
| | - Xiaoyu Weng
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Brandon C Reagan
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
| | - Taslima Haque
- Department of Integrative Biology, University of Texas, Austin, TX, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA.
- Plant Biology Department, Michigan State University, East Lansing, MI, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
9
|
Ko DK, Brandizzi F. Dynamics of ER stress-induced gene regulation in plants. Nat Rev Genet 2024; 25:513-525. [PMID: 38499769 PMCID: PMC11186725 DOI: 10.1038/s41576-024-00710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
Endoplasmic reticulum (ER) stress is a potentially lethal condition that is induced by the abnormal accumulation of unfolded or misfolded secretory proteins in the ER. In eukaryotes, ER stress is managed by the unfolded protein response (UPR) through a tightly regulated, yet highly dynamic, reprogramming of gene transcription. Although the core principles of the UPR are similar across eukaryotes, unique features of the plant UPR reflect the adaptability of plants to their ever-changing environments and the need to balance the demands of growth and development with the response to environmental stressors. The past decades have seen notable progress in understanding the mechanisms underlying ER stress sensing and signalling transduction pathways, implicating the UPR in the effects of physiological and induced ER stress on plant growth and crop yield. Facilitated by sequencing technologies and advances in genetic and genomic resources, recent efforts have driven the discovery of transcriptional regulators and elucidated the mechanisms that mediate the dynamic and precise gene regulation in response to ER stress at the systems level.
Collapse
Affiliation(s)
- Dae Kwan Ko
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
10
|
Huang Y, Schnurbusch T. The Birth and Death of Floral Organs in Cereal Crops. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:427-458. [PMID: 38424062 DOI: 10.1146/annurev-arplant-060223-041716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Florets of cereal crops are the basic reproductive organs that produce grains for food or feed. The birth of a floret progresses through meristem initiation and floral organ identity specification and maintenance. During these processes, both endogenous and external cues can trigger a premature floral organ death, leading to reproductive failure. Recent advances in different cereal crops have identified both conserved and distinct regulators governing the birth of a floret. However, the molecular underpinnings of floral death are just beginning to be understood. In this review, we first provide a general overview of the current findings in the field of floral development in major cereals and outline different forms of floral deaths, particularly in the Triticeae crops. We then highlight the importance of vascular patterning and photosynthesis in floral development and reproductive success and argue for an expanded knowledge of floral birth-death balance in the context of agroecology.
Collapse
Affiliation(s)
- Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany; ,
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany; ,
- Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
11
|
Wang M, Cheng J, Wu J, Chen J, Liu D, Wang C, Ma S, Guo W, Li G, Di D, Zhang Y, Han D, Kronzucker HJ, Xia G, Shi W. Variation in TaSPL6-D confers salinity tolerance in bread wheat by activating TaHKT1;5-D while preserving yield-related traits. Nat Genet 2024; 56:1257-1269. [PMID: 38802564 DOI: 10.1038/s41588-024-01762-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/19/2024] [Indexed: 05/29/2024]
Abstract
Na+ exclusion from above-ground tissues via the Na+-selective transporter HKT1;5 is a major salt-tolerance mechanism in crops. Using the expression genome-wide association study and yeast-one-hybrid screening, we identified TaSPL6-D, a transcriptional suppressor of TaHKT1;5-D in bread wheat. SPL6 also targeted HKT1;5 in rice and Brachypodium. A 47-bp insertion in the first exon of TaSPL6-D resulted in a truncated peptide, TaSPL6-DIn, disrupting TaHKT1;5-D repression exhibited by TaSPL6-DDel. Overexpressing TaSPL6-DDel, but not TaSPL6-DIn, led to inhibited TaHKT1;5-D expression and increased salt sensitivity. Knockout of TaSPL6-DDel in two wheat genotypes enhanced salinity tolerance, which was attenuated by a further TaHKT1;5-D knockdown. Spike development was preserved in Taspl6-dd mutants but not in Taspl6-aabbdd mutants. TaSPL6-DIn was mainly present in landraces, and molecular-assisted introduction of TaSPL6-DIn from a landrace into a leading wheat cultivar successfully improved yield on saline soils. The SPL6-HKT1;5 module offers a target for the molecular breeding of salt-tolerant crops.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China.
- University of Chinese Academy of Sciences, Beijing, P. R. China.
| | - Jie Cheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, P. R. China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, P. R. China
| | - Jiefei Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Dan Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, P. R. China
| | - Chenyang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, P. R. China
| | - Shengwei Ma
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P. R. China
- Hainan Yazhou Bay Seed Laboratory, Sanya, P. R. China
| | - Weiwei Guo
- Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops, College of Agronomy, Qingdao Agricultural University, Qingdao, P. R. China
| | - Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
| | - Dongwei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
| | - Yumei Zhang
- Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops, College of Agronomy, Qingdao Agricultural University, Qingdao, P. R. China
| | - Dejun Han
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, P. R. China
| | - Herbert J Kronzucker
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, P. R. China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, P. R. China
| |
Collapse
|
12
|
Zhao Y, He J, Liu M, Miao J, Ma C, Feng Y, Qian J, Li H, Bi H, Liu W. The SPL transcription factor TaSPL6 negatively regulates drought stress response in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108264. [PMID: 38091935 DOI: 10.1016/j.plaphy.2023.108264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 02/15/2024]
Abstract
Environmental stresses, such as heat and drought, severely affect plant growth and development, and reduce wheat yield and quality globally. Squamosa promoter binding protein-like (SPL) proteins are plant-specific transcription factors that play a critical role in regulating plant responses to diverse stresses. In this study, we cloned and characterized TaSPL6, a wheat orthologous gene of rice OsSPL6. Three TaSPL6 homoeologs are located on the long arms of chromosomes 4A, 5B, and 5D, respectively, and share more than 98% sequence identity with each other. The TaSPL6 genes were preferentially expressed in roots, and their expression levels were downregulated in wheat seedlings subjected to heat, dehydration, and abscisic acid treatments. Subcellular localization experiments showed that TaSPL6 was localized in the nucleus. Overexpression of TaSPL6-A in wheat resulted in enhanced sensitivity to drought stress. The transgenic lines exhibited higher leaf water loss, malondialdehyde and reactive oxygen species (ROS) content, and lower antioxidant enzyme activities after drought treatment than wild-type plants. Gene silencing of TaSPL6 enhanced the drought tolerance of wheat, as reflected by better growth status. Additionally, RNA-seq and qRT-PCR analyses revealed that TaSPL6-A functions by decreasing the expression of a number of genes involved in stress responses. These findings suggest that TaSPL6 acts as a negative regulator of drought stress responses in plants, which may have major implications for understanding and enhancing crop tolerance to environmental stresses.
Collapse
Affiliation(s)
- Yue Zhao
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jinqiu He
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mengmeng Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jingnan Miao
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chao Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yajun Feng
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiajun Qian
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huanhuan Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huihui Bi
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Wenxuan Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
13
|
Chen Y, Yu X. Endoplasmic reticulum stress-responsive microRNAs are involved in the regulation of abiotic stresses in wheat. PLANT CELL REPORTS 2023; 42:1433-1452. [PMID: 37341828 DOI: 10.1007/s00299-023-03040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
KEY MESSAGE ER stress-responsive miRNAs, tae-miR164, tae-miR2916, and tae-miR396e-5p, are essential in response to abiotic stress. Investigating ER stress-responsive miRNAs is necessary to improve plant tolerance to environmental stress. MicroRNAs (miRNAs) play vital regulatory roles in plant responses to environmental stress. Recently, the endoplasmic reticulum (ER) stress pathway, an essential signalling pathway in plants in response to adverse conditions, has been widely studied in model plants. However, miRNAs associated with ER stress response remain largely unknown. Using high-throughput sequencing, three ER stress-responsive miRNAs, tae-miR164, tae-miR2916, and tae-miR396e-5p were identified, and their target genes were confirmed. These three miRNAs and their target genes actively responded to dithiothreitol, polyethylene glycol, salt, heat, and cold stresses. Furthermore, in some instances, the expression patterns of the miRNAs and their corresponding target genes were contrasting. Knockdown of tae-miR164, tae-miR2916, or tae-miR396e-5p using a barley stripe mosaic virus-based miRNA silencing system substantially enhanced the tolerance of wheat plants to drought, salt, and heat stress. Under conditions involving these stresses, inhibiting the miR164 function by using the short tandem target mimic approach in Arabidopsis thaliana resulted in phenotypes consistent with those of miR164-silenced wheat plants. Correspondingly, overexpression of tae-miR164 in Arabidopsis resulted in a decreased tolerance to drought stress and, to some extent, a decrease in tolerance to salt and high temperature. These results revealed that tae-miR164 plays a negative regulatory role in wheat/Arabidopsis in response to drought, salt, and heat stress. Taken together, our study provides new insights into the regulatory role of ER stress-responsive miRNAs in abiotic stress responses.
Collapse
Affiliation(s)
- Yong Chen
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xing Yu
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, 450003, China.
- Research Center on Rural Water Environment Improvement of Henan Province, Zhengzhou, 450003, China.
| |
Collapse
|
14
|
Li Y, Wang S, Adhikari PB, Liu B, Liu S, Huang Y, Hu G, Notaguchi M, Xu Q. Evolutionary assessment of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in citrus relatives with a specific focus on flowering. MOLECULAR HORTICULTURE 2023; 3:13. [PMID: 37789480 PMCID: PMC10515035 DOI: 10.1186/s43897-023-00061-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/06/2023] [Indexed: 10/05/2023]
Abstract
Phase transition and floral induction in citrus requires several years of juvenility after germination. Such a long period of juvenility has been a major hindrance to its genetic improvement program. Studies have shown that miR156 along with its downstream genes SQUAMOSA PROMOTER BINDING PROTEINS (SBP) and SBP-LIKE (SPL) mediate the phase transition and floral induction process in plants. Our current study has systematically analyzed SPLs in 15 different citrus-related species, systematically annotated them based on their close homology to their respective Arabidopsis orthologs, and confirmed the functional attributes of the selected members in floral precocity. The majority of the species harbored 15 SPLs. Their cis-element assessment suggested the involvement of the SPLs in diverse developmental and physiological processes in response to different biotic and abiotic cues. Among all, SPL5, SPL9, and SPL11 stood out as consistently differentially expressed SPLs in the adult and young tissues of different citrus-related species. Independent overexpression of their F. hindsii orthologs (FhSPL5, FhSPL9, and FhSPL11) brought an enhanced expression of endogenous FLOWERING LOCUS T leading to the significantly precocious flowering in transgenic Arabidopsis lines. Future study of the genes in the citrus plant itself is expected to conclude the assessments made in the current study.
Collapse
Affiliation(s)
- Yawei Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, 430000, China
| | - Shuting Wang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, 430000, China
| | - Prakash Babu Adhikari
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, 430000, China.
| | - Bing Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, 430000, China
| | - Shengjun Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, 430000, China
| | - Yue Huang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, 430000, China
| | - Gang Hu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, 430000, China
| | - Michitaka Notaguchi
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, 430000, China
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, 430000, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
15
|
Zhang W, Huang H, Zhou Y, Zhu K, Wu Y, Xu Y, Wang W, Zhang H, Gu J, Xiong F, Wang Z, Liu L, Yang J. Brassinosteroids mediate moderate soil-drying to alleviate spikelet degeneration under high temperature during meiosis of rice. PLANT, CELL & ENVIRONMENT 2023; 46:1340-1362. [PMID: 36097648 DOI: 10.1111/pce.14436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
This study tested the hypothesis that brassinosteroids (BRs) mediate moderate soil-drying (MD) to alleviate spikelet degeneration under high temperature (HT) stress during meiosis of rice (Oryza sativa L.). A rice cultivar was pot-grown and subjected to normal temperature (NT) and HT treatments during meiosis, and two irrigation regimes including well-watered (WW) and MD were imposed to the plants simultaneously. The MD effectively alleviated the spikelet degeneration and yield loss under HT stress mainly via improving root activity and canopy and panicle traits including higher photosynthetic capacity, tricarboxylic acid cycle activity, and antioxidant capacity than WW. These parameters were regulated by BRs levels in plants. The decrease in BRs levels at HT was due mainly to the enhanced BRs decomposition, and the MD could rescue the BRs deficiency at HT via enhancing BRs biosynthesis and impeding decomposition. The connection between BRs and HT was verified by using rice BRs-deficient mutants, transgenic rice lines, and chemical regulators. Similar results were obtained in the open-air field experiment. The results suggest that BRs can mediate the MD to alleviate spikelet degeneration under HT stress during meiosis mainly via enhancing root activity, canopy traits, and young panicle traits of rice.
Collapse
Affiliation(s)
- Weiyang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Hanghang Huang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yujiao Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Kuanyu Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yunfei Wu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yunji Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| | - Weilu Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Junfei Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Fei Xiong
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Lijun Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
16
|
Liu Y, Lv Y, Wei A, Guo M, Li Y, Wang J, Wang X, Bao Y. Unfolded protein response in balancing plant growth and stress tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1019414. [PMID: 36275569 PMCID: PMC9585285 DOI: 10.3389/fpls.2022.1019414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
The ER (endoplasmic reticulum) is the largest membrane-bound multifunctional organelle in eukaryotic cells, serving particularly important in protein synthesis, modification, folding and transport. UPR (unfolded protein response) is one of the systematized strategies that eukaryotic cells employ for responding to ER stress, a condition represents the processing capability of ER is overwhelmed and stressed. UPR is usually triggered when the protein folding capacity of ER is overloaded, and indeed, mounting studies were focused on the stress responding side of UPR. In plants, beyond stress response, accumulating evidence suggests that UPR is essential for growth and development, and more importantly, the necessity of UPR in this regard requires its endogenous basal activation even without stress. Then plants must have to fine tune the activation level of UPR pathway for balancing growth and stress response. In this review, we summarized the recent progresses in plant UPR, centering on its role in controlling plant reproduction and root growth, and lay out some outstanding questions to be addressed in the future.
Collapse
Affiliation(s)
- Yao Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yonglun Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - An Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Mujin Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanjie Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaojiao Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhua Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Bao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Dai D, Zhang H, He L, Chen J, Du C, Liang M, Zhang M, Wang H, Ma L. Panicle Apical Abortion 7 Regulates Panicle Development in Rice ( Oryza sativa L.). Int J Mol Sci 2022; 23:9487. [PMID: 36012754 PMCID: PMC9409353 DOI: 10.3390/ijms23169487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The number of grains per panicle significantly contributes to rice yield, but the regulatory mechanism remains largely unknown. Here, we reported a loss-of-function mutant, panicle apical abortion 7 (paa7), which exhibited panicle abortion and degeneration of spikelets on the apical panicles during the late stage of young panicle development in rice. High accumulations of H2O2 in paa7 caused programmed cell death (PCD) accompanied by nuclear DNA fragmentation in the apical spikelets. Map-based cloning revealed that the 3 bp "AGC" insertion and 4 bp "TCTC" deletion mutation of paa7 were located in the 3'-UTR regions of LOC_Os07g47330, which was confirmed through complementary assays and overexpressed lines. Interestingly, LOC_Os07g47330 is known as FRIZZY PANICLE (FZP). Thus, PAA7 could be a novel allele of FZP. Moreover, the severe damage for panicle phenotype in paa7/lax2 double mutant indicated that PAA7 could crosstalk with Lax Panicle 2 (LAX2). These findings suggest that PAA7 regulates the development of apical spikelets and interacts with LAX2 to regulate panicle development in rice.
Collapse
Affiliation(s)
- Dongqing Dai
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Huali Zhang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Lei He
- Institute of Food Crops, Key Laboratory of Jiangsu Province for Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Junyu Chen
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Chengxing Du
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Minmin Liang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Meng Zhang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Huimei Wang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Liangyong Ma
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| |
Collapse
|
18
|
Rodrigues MC, Morais JAV, Ganassin R, Oliveira GRT, Costa FC, Morais AAC, Silveira AP, Silva VCM, Longo JPF, Muehlmann LA. An Overview on Immunogenic Cell Death in Cancer Biology and Therapy. Pharmaceutics 2022; 14:pharmaceutics14081564. [PMID: 36015189 PMCID: PMC9413301 DOI: 10.3390/pharmaceutics14081564] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022] Open
Abstract
Immunogenic cell death (ICD) is a modality of regulated cell death that is sufficient to promote an adaptive immune response against antigens of the dying cell in an immunocompetent host. An important characteristic of ICD is the release and exposure of damage-associated molecular patterns, which are potent endogenous immune adjuvants. As the induction of ICD can be achieved with conventional cytotoxic agents, it represents a potential approach for the immunotherapy of cancer. Here, different aspects of ICD in cancer biology and treatment are reviewed.
Collapse
Affiliation(s)
- Mosar Corrêa Rodrigues
- Faculty of Ceilandia, University of Brasilia, Brasilia 72220-275, Brazil; (M.C.R.); (J.A.V.M.); (R.G.); (G.R.T.O.); (F.C.C.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
| | - José Athayde Vasconcelos Morais
- Faculty of Ceilandia, University of Brasilia, Brasilia 72220-275, Brazil; (M.C.R.); (J.A.V.M.); (R.G.); (G.R.T.O.); (F.C.C.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
| | - Rayane Ganassin
- Faculty of Ceilandia, University of Brasilia, Brasilia 72220-275, Brazil; (M.C.R.); (J.A.V.M.); (R.G.); (G.R.T.O.); (F.C.C.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
| | - Giulia Rosa Tavares Oliveira
- Faculty of Ceilandia, University of Brasilia, Brasilia 72220-275, Brazil; (M.C.R.); (J.A.V.M.); (R.G.); (G.R.T.O.); (F.C.C.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
| | - Fabiana Chagas Costa
- Faculty of Ceilandia, University of Brasilia, Brasilia 72220-275, Brazil; (M.C.R.); (J.A.V.M.); (R.G.); (G.R.T.O.); (F.C.C.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
| | - Amanda Alencar Cabral Morais
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
| | - Ariane Pandolfo Silveira
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
| | - Victor Carlos Mello Silva
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
| | - João Paulo Figueiró Longo
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
| | - Luis Alexandre Muehlmann
- Faculty of Ceilandia, University of Brasilia, Brasilia 72220-275, Brazil; (M.C.R.); (J.A.V.M.); (R.G.); (G.R.T.O.); (F.C.C.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
- Correspondence:
| |
Collapse
|
19
|
Ali A, Wu T, Xu Z, Riaz A, Alqudah AM, Iqbal MZ, Zhang H, Liao Y, Chen X, Liu Y, Mujtaba T, Zhou H, Wang W, Xu P, Wu X. Phytohormones and Transcriptome Analyses Revealed the Dynamics Involved in Spikelet Abortion and Inflorescence Development in Rice. Int J Mol Sci 2022; 23:7887. [PMID: 35887236 PMCID: PMC9324563 DOI: 10.3390/ijms23147887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
Panicle degeneration, sometimes known as abortion, causes heavy losses in grain yield. However, the mechanism of naturally occurring panicle abortion is still elusive. In a previous study, we characterized a mutant, apical panicle abortion1331 (apa1331), exhibiting abortion in apical spikelets starting from the 6 cm stage of panicle development. In this study, we have quantified the five phytohormones, gibberellins (GA), auxins (IAA), abscisic acid (ABA), cytokinins (CTK), and brassinosteroids (BR), in the lower, middle, and upper parts of apa1331 and compared these with those exhibited in its wild type (WT). In apa331, the lower and middle parts of the panicle showed contrasting concentrations of all studied phytohormones, but highly significant changes in IAA and ABA, compared to the upper part of the panicle. A comparative transcriptome of apa1331 and WT apical spikelets was performed to explore genes causing the physiological basis of spikelet abortion. The differential expression analysis revealed a significant downregulation and upregulation of 1587 and 978 genes, respectively. Hierarchical clustering of differentially expressed genes (DEGs) revealed the correlation of gene ontology (GO) terms associated with antioxidant activity, peroxidase activity, and oxidoreductase activity. KEGG pathway analysis using parametric gene set enrichment analysis (PGSEA) revealed the downregulation of the biological processes, including cell wall polysaccharides and fatty acids derivatives, in apa1331 compared to its WT. Based on fold change (FC) value and high variation in expression during late inflorescence, early inflorescence, and antherdevelopment, we predicted a list of novel genes, which presumably can be the potential targets of inflorescence development. Our study not only provides novel insights into the role of the physiological dynamics involved in panicle abortion, but also highlights the potential targets involved in reproductive development.
Collapse
Affiliation(s)
- Asif Ali
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (A.A.); (T.W.); (Z.X.); (H.Z.); (Y.L.); (X.C.); (Y.L.); (H.Z.); (W.W.)
| | - Tingkai Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (A.A.); (T.W.); (Z.X.); (H.Z.); (Y.L.); (X.C.); (Y.L.); (H.Z.); (W.W.)
| | - Zhengjun Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (A.A.); (T.W.); (Z.X.); (H.Z.); (Y.L.); (X.C.); (Y.L.); (H.Z.); (W.W.)
| | - Asad Riaz
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Ahmad M. Alqudah
- Department of Agroecology, Aarhus University at Falkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark;
| | - Muhammad Zafar Iqbal
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
| | - Hongyu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (A.A.); (T.W.); (Z.X.); (H.Z.); (Y.L.); (X.C.); (Y.L.); (H.Z.); (W.W.)
| | - Yongxiang Liao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (A.A.); (T.W.); (Z.X.); (H.Z.); (Y.L.); (X.C.); (Y.L.); (H.Z.); (W.W.)
| | - Xiaoqiong Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (A.A.); (T.W.); (Z.X.); (H.Z.); (Y.L.); (X.C.); (Y.L.); (H.Z.); (W.W.)
| | - Yutong Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (A.A.); (T.W.); (Z.X.); (H.Z.); (Y.L.); (X.C.); (Y.L.); (H.Z.); (W.W.)
| | - Tahir Mujtaba
- Department of Biotechnology, School of Natural Sciences and Engineering, University of Verona, 37134 Verona, Italy;
| | - Hao Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (A.A.); (T.W.); (Z.X.); (H.Z.); (Y.L.); (X.C.); (Y.L.); (H.Z.); (W.W.)
| | - Wenming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (A.A.); (T.W.); (Z.X.); (H.Z.); (Y.L.); (X.C.); (Y.L.); (H.Z.); (W.W.)
| | - Peizhou Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (A.A.); (T.W.); (Z.X.); (H.Z.); (Y.L.); (X.C.); (Y.L.); (H.Z.); (W.W.)
| | - Xianjun Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (A.A.); (T.W.); (Z.X.); (H.Z.); (Y.L.); (X.C.); (Y.L.); (H.Z.); (W.W.)
| |
Collapse
|
20
|
Yao S, Kang J, Guo G, Yang Z, Huang Y, Lan Y, Zhou T, Wang L, Wei C, Xu Z, Li Y. The key micronutrient copper orchestrates broad-spectrum virus resistance in rice. SCIENCE ADVANCES 2022; 8:eabm0660. [PMID: 35776788 PMCID: PMC10883364 DOI: 10.1126/sciadv.abm0660] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Copper is a critical regulator of plant growth and development. However, the mechanisms by which copper responds to virus invasion are unclear. We previously showed that SPL9-mediated transcriptional activation of miR528 adds a previously unidentified regulatory layer to the established ARGONAUTE (AGO18)-miR528-L-ascorbate oxidase (AO) antiviral defense. Here, we report that rice promotes copper accumulation in shoots by inducing copper transporter genes, including HMA5 and COPT, to counteract viral infection. Copper suppresses the transcriptional activation of miR528 by inhibiting the protein level of SPL9, thus alleviating miR528-mediated cleavage of AO transcripts to strengthen the antiviral response. Loss-of-function mutations in HMA5, COPT1, and COPT5 caused a significant reduction in copper accumulation and plant viral resistance because of the increased SPL9-mediated miR528 transcription. Gain in viral susceptibility was mitigated when SPL9 was mutated in the hma5 mutant background. Our study elucidates the molecular mechanisms and regulatory networks of copper homeostasis and the SPL9-miR528-AO antiviral pathway.
Collapse
Affiliation(s)
- Shengze Yao
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jinrui Kang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ge Guo
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhirui Yang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yu Huang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Lan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Tong Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Liying Wang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Chunhong Wei
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhihong Xu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Kumar J, Kumar A, Sen Gupta D, Kumar S, DePauw RM. Reverse genetic approaches for breeding nutrient-rich and climate-resilient cereal and food legume crops. Heredity (Edinb) 2022; 128:473-496. [PMID: 35249099 PMCID: PMC9178024 DOI: 10.1038/s41437-022-00513-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
In the last decade, advancements in genomics tools and techniques have led to the discovery of many genes. Most of these genes still need to be characterized for their associated function and therefore, such genes remain underutilized for breeding the next generation of improved crop varieties. The recent developments in different reverse genetic approaches have made it possible to identify the function of genes controlling nutritional, biochemical, and metabolic traits imparting drought, heat, cold, salinity tolerance as well as diseases and insect-pests. This article focuses on reviewing the current status and prospects of using reverse genetic approaches to breed nutrient-rich and climate resilient cereal and food legume crops.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India.
| | - Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sachin Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250 004, India
| | - Ron M DePauw
- Advancing Wheat Technologies, 118 Strathcona Rd SW, Calgary, AB, T3H 1P3, Canada
| |
Collapse
|
22
|
Pei Y, Deng Y, Zhang H, Zhang Z, Liu J, Chen Z, Cai D, Li K, Du Y, Zang J, Xin P, Chu J, Chen Y, Zhao L, Liu J, Chen H. EAR APICAL DEGENERATION1 regulates maize ear development by maintaining malate supply for apical inflorescence. THE PLANT CELL 2022; 34:2222-2241. [PMID: 35294020 PMCID: PMC9134072 DOI: 10.1093/plcell/koac093] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/12/2022] [Indexed: 05/12/2023]
Abstract
Ear length (EL) is a key trait that contributes greatly to grain yield in maize (Zea mays). While numerous quantitative trait loci for EL have been identified, few causal genes have been studied in detail. Here we report the characterization of ear apical degeneration1 (ead1) exhibiting strikingly shorter ears and the map-based cloning of the casual gene EAD1. EAD1 is preferentially expressed in the xylem of immature ears and encodes an aluminum-activated malate transporter localizing to the plasma membrane. We show that EAD1 is a malate efflux transporter and loss of EAD1 leads to lower malate contents in the apical part of developing inflorescences. Exogenous injections of malate rescued the shortened ears of ead1. These results demonstrate that EAD1 plays essential roles in regulating maize ear development by delivering malate through xylem vessels to the apical part of the immature ear. Overexpression of EAD1 led to greater EL and kernel number per row and the EAD1 genotype showed a positive association with EL in two different genetic segregating populations. Our work elucidates the critical role of EAD1 in malate-mediated female inflorescence development and provides a promising genetic resource for enhancing maize grain yield.
Collapse
Affiliation(s)
| | | | - Huairen Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaogui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhibin Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Darun Cai
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Kai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yimo Du
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jie Zang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Peiyong Xin
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhang Chen
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Juan Liu
- Author for correspondence: (H.C.); (J.L.)
| | | |
Collapse
|
23
|
Hu P, Tan Y, Wen Y, Fang Y, Wang Y, Wu H, Wang J, Wu K, Chai B, Zhu L, Zhang G, Gao Z, Ren D, Zeng D, Shen L, Xue D, Qian Q, Hu J. LMPA Regulates Lesion Mimic Leaf and Panicle Development Through ROS-Induced PCD in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:875038. [PMID: 35586211 PMCID: PMC9108926 DOI: 10.3389/fpls.2022.875038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Leaf and panicle are important nutrient and yield organs in rice, respectively. Although several genes controlling lesion mimic leaf and panicle abortion have been identified, a few studies have reported the involvement of a single gene in the production of both the traits. In this study, we characterized a panicle abortion mutant, lesion mimic leaf and panicle apical abortion (lmpa), which exhibits lesions on the leaf and causes degeneration of apical spikelets. Molecular cloning revealed that LMPA encodes a proton pump ATPase protein that is localized in the plasma membrane and is highly expressed in leaves and panicles. The analysis of promoter activity showed that the insertion of a fragment in the promoter of lmpa caused a decrease in the transcription level. Cellular and histochemistry analysis indicated that the ROS accumulated and cell death occurred in lmpa. Moreover, physiological experiments revealed that lmpa was more sensitive to high temperatures and salt stress conditions. These results provide a better understanding of the role of LMPA in panicle development and lesion mimic formation by regulating ROS homeostasis.
Collapse
Affiliation(s)
- Peng Hu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yiqing Tan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yi Wen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Rice Research Institute of Shenyang Agricultural University/Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Shenyang, China
| | - Yunxia Fang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yueying Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Hao Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Junge Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Kaixiong Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Bingze Chai
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Lan Shen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qian Qian
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
24
|
Zhao W, Meng X, Xu J, Liu Z, Hu Y, Li B, Chen J, Cao B. Integrated mRNA and Small RNA Sequencing Reveals microRNAs Associated With Xylem Development in Dalbergia odorifera. Front Genet 2022; 13:883422. [PMID: 35547261 PMCID: PMC9081728 DOI: 10.3389/fgene.2022.883422] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Dalbergia odorifera is a rare and precious rosewood specie, whose wood is a very high-quality material for valuable furniture and carving crafts. However, limited information is available about the process of wood formation in D. odorifera. To determine genes that might be closely associated with the xylem differentiation process, we analyzed the differentially expressed genes (DEGs) and microRNAs (miRNAs) from specific xylem tissues of D. odorifera by RNA sequencing (RNA-seq) and small RNA sequencing (small RNA-seq). In total, we obtained 134,221,955 clean reads from RNA-seq and 90,940,761 clean reads from small RNA-seq. By comparing the transition zone (Dotz) and sapwood (Dosw) samples, a total of 395 DEGs were identified. Further analysis revealed that DEGs encoded for WRKY transcription factors (eight genes), lignin synthesis (PER47, COMT, CCR2), cell wall composition (UXS2), gibberellin synthesis (KAO2, GA20OX1), jasmonic acid synthesis (OPR2, CYP74A), and synthesis of flavonoids (PAL2) and terpenoids (CYP71A1). Subsequently, a preliminary analysis by small RNA-seq showed that the expressions of 14 miRNAs (such as miR168a-5p, miR167f-5p, miR167h-5p, miR167e, miR390a, miR156g, novel_52, and novel_9) were significantly different between Dotz and Dosw. Further analysis revealed that the target genes of these differentially expressed miRNAs were enriched in the GO terms "amino acid binding," "cellulase activity," and "DNA beta-glucosyltransferase activity". Further, KEGG pathway annotation showed significant enrichment in "fatty acid elongation" and "biosynthesis of unsaturated fatty acids". These processes might be participating in the xylem differentiation of D. odorifera. Next, expression correlation analysis showed that nine differentially expressed miRNAs were significantly negatively associated with 21 target genes, which encoded for proteins such as pyrH, SPL6, SPL12, GCS1, and ARF8. Overall, this is the first study on miRNAs and their potential functions in the xylem development of D. odorifera, which provides a stepping stone for a detailed functional investigation of D. odorifera miRNAs.
Collapse
Affiliation(s)
- Wenxiu Zhao
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Xiangxu Meng
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Jiahong Xu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Zijia Liu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Yangyang Hu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Bingyu Li
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Jinhui Chen
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Bing Cao
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| |
Collapse
|
25
|
He NY, Chen LS, Sun AZ, Zhao Y, Yin SN, Guo FQ. A nitric oxide burst at the shoot apex triggers a heat-responsive pathway in Arabidopsis. NATURE PLANTS 2022; 8:434-450. [PMID: 35437002 DOI: 10.1038/s41477-022-01135-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
When confronted with heat stress, plants depend on the timely activation of cellular defences to survive by perceiving the rising temperature. However, how plants sense heat at the whole-plant level has remained unanswered. Here we demonstrate that shoot apical nitric oxide (NO) bursting under heat stress as a signal triggers cellular heat responses at the whole-plant level on the basis of our studies mainly using live-imaging of transgenic plants harbouring pHsfA2::LUC, micrografting, NO accumulation mutants and liquid chromatography-tandem mass spectrometry analysis in Arabidopsis. Furthermore, we validate that S-nitrosylation of the trihelix transcription factor GT-1 by S-nitrosoglutathione promotes its binding to NO-responsive elements in the HsfA2 promoter and that loss of function of GT-1 disrupts the activation of HsfA2 and heat tolerance, revealing that GT-1 is the long-sought mediator linking signal perception to the activation of cellular heat responses. These findings uncover a heat-responsive mechanism that determines the timing and execution of cellular heat responses at the whole-plant level.
Collapse
Affiliation(s)
- Ning-Yu He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Li-Sha Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ai-Zhen Sun
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yao Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shui-Ning Yin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Fang-Qing Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
26
|
Zong J, Wang L, Zhu L, Bian L, Zhang B, Chen X, Huang G, Zhang X, Fan J, Cao L, Coupland G, Liang W, Zhang D, Yuan Z. A rice single cell transcriptomic atlas defines the developmental trajectories of rice floret and inflorescence meristems. THE NEW PHYTOLOGIST 2022; 234:494-512. [PMID: 35118670 DOI: 10.1111/nph.18008] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Rice inflorescence development determines yield and relies on the activity of axillary meristems (AMs); however, high-resolution analysis of its early development is lacking. Here, we have used high-throughput single-cell RNA sequencing to profile 37 571 rice inflorescence cells and constructed a genome-scale gene expression resource covering the inflorescence-to-floret transition during early reproductive development. The differentiation trajectories of florets and AMs were reconstructed, and discrete cell types and groups of regulators in the highly heterogeneous young inflorescence were identified and then validated by in situ hybridization and with fluorescent marker lines. Our data demonstrate that a WOX transcription factor, DWARF TILLER1, regulates flower meristem activity, and provide evidence for the role of auxin in rice inflorescence branching by exploring the expression and biological role of the auxin importer OsAUX1. Our comprehensive transcriptomic atlas of early rice inflorescence development, supported by genetic evidence, provides single-cell-level insights into AM differentiation and floret development.
Collapse
Affiliation(s)
- Jie Zong
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lu Zhu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lianle Bian
- NovelBio Bio-Pharm Technology Co. Ltd, Shanghai, 201114, China
| | - Bo Zhang
- NovelBio Bio-Pharm Technology Co. Ltd, Shanghai, 201114, China
| | - Xiaofei Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guoqiang Huang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuelian Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junyi Fan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liming Cao
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agriculture Sciences, Shanghai, 201403, China
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Cologne, D50829, Germany
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Zheng Yuan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
27
|
Li L, Shi F, Wang G, Guan Y, Zhang Y, Chen M, Chang J, Yang G, He G, Wang Y, Li Y. Conservation and Divergence of SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE ( SPL) Gene Family between Wheat and Rice. Int J Mol Sci 2022; 23:2099. [PMID: 35216210 PMCID: PMC8874652 DOI: 10.3390/ijms23042099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022] Open
Abstract
The SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) gene family affects plant architecture, panicle structure, and grain development, representing key genes for crop improvements. The objective of the present study is to utilize the well characterized SPLs' functions in rice to facilitate the functional genomics of TaSPL genes. To achieve these goals, we combined several approaches, including genome-wide analysis of TaSPLs, comparative genomic analysis, expression profiling, and functional study of TaSPL3 in rice. We established the orthologous relationships of 56 TaSPL genes with the corresponding OsSPLs, laying a foundation for the comparison of known SPL functions between wheat and rice. Some TaSPLs exhibited different spatial-temporal expression patterns when compared to their rice orthologs, thus implicating functional divergence. TaSPL2/6/8/10 were identified to respond to different abiotic stresses through the combination of RNA-seq and qPCR expression analysis. Additionally, ectopic expression of TaSPL3 in rice promotes heading dates, affects leaf and stem development, and leads to smaller panicles and decreased yields per panicle. In conclusion, our work provides useful information toward cataloging of the functions of TaSPLs, emphasized the conservation and divergence between TaSPLs and OsSPLs, and identified the important SPL genes for wheat improvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.L.); (F.S.); (G.W.); (Y.G.); (Y.Z.); (M.C.); (J.C.); (G.Y.) ; (G.H.)
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.L.); (F.S.); (G.W.); (Y.G.); (Y.Z.); (M.C.); (J.C.); (G.Y.) ; (G.H.)
| |
Collapse
|
28
|
Endoplasmic Reticulum Stress and Unfolded Protein Response Signaling in Plants. Int J Mol Sci 2022; 23:ijms23020828. [PMID: 35055014 PMCID: PMC8775474 DOI: 10.3390/ijms23020828] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
Plants are sensitive to a variety of stresses that cause various diseases throughout their life cycle. However, they have the ability to cope with these stresses using different defense mechanisms. The endoplasmic reticulum (ER) is an important subcellular organelle, primarily recognized as a checkpoint for protein folding. It plays an essential role in ensuring the proper folding and maturation of newly secreted and transmembrane proteins. Different processes are activated when around one-third of newly synthesized proteins enter the ER in the eukaryote cells, such as glycosylation, folding, and/or the assembling of these proteins into protein complexes. However, protein folding in the ER is an error-prone process whereby various stresses easily interfere, leading to the accumulation of unfolded/misfolded proteins and causing ER stress. The unfolded protein response (UPR) is a process that involves sensing ER stress. Many strategies have been developed to reduce ER stress, such as UPR, ER-associated degradation (ERAD), and autophagy. Here, we discuss the ER, ER stress, UPR signaling and various strategies for reducing ER stress in plants. In addition, the UPR signaling in plant development and different stresses have been discussed.
Collapse
|
29
|
A putative SUBTILISIN-LIKE SERINE PROTEASE 1 (SUBSrP1) regulates anther cuticle biosynthesis and panicle development in rice. J Adv Res 2022; 42:273-287. [PMID: 36513418 PMCID: PMC9788943 DOI: 10.1016/j.jare.2022.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Panicle abortion is a severe physiological defect and causes a reduction in grain yield. OBJECTIVES In this study, we aim to provide the characterization and functional analysis of a mutant apa1331 (apical panicle abortion1331). METHODS The isolated mutant from an EMS-mutagenized population was subjected to SSR analysis and Mutmap assay for candidate gene mapping. We performed phenotypic analysis, anthers cross-sections morphology, wax and cutin profiling, biochemical assays and phylogenetic analysis for characterization and evaluation of apa1331. We used CRISPR/Cas9 disruption for functional validation of its candidate gene. Furthermore, comparative RNA-seq and relative expression analysis were performed to get further insights into mechanistic role of the candidate gene. RESULTS The anthers from the apical spikelets of apa1331 were degenerated, pollen-less and showed defects in cuticle formation. Transverse sections of apa1331 anthers showed defects in post-meiotic microspore development at stage 8-9. Gas Chromatography showed a significant reduction of wax and cutin in anthers of apa1331 compared to Wildtype (WT). Quantification of H2O2 and MDA has indicated the excessive ROS (reactive oxygen species) in apa1331. Trypan blue staining and TUNEL assay revealed cell death and excessive DNA fragmentation in apa1331. Map-based cloning and Mutmap analysis revealed that LOC_Os04g40720, encoding a putative SUBTILISIN-LIKE SERINE PROTEASE (OsSUBSrP1), harbored an SNP (A > G) in apa1331. Phenotypic defects were only seen in apical spikelets due to highest expression of OsSUBSrP1 in upper panicle portion. CRISPR-mediated knock-out lines of OsSUBSrP1 displayed spikelet abortion comparable to apa1331. Global gene expression analysis revealed a significant downregulation of wax and cutin biosynthesis genes. CONCLUSIONS Our study reports the novel role of SUBSrP1 in anther cuticle biosynthesis by ROS-mediated programmed cell death in rice.
Collapse
|
30
|
Hu J, Huang L, Chen G, Liu H, Zhang Y, Zhang R, Zhang S, Liu J, Hu Q, Hu F, Wang W, Ding Y. The Elite Alleles of OsSPL4 Regulate Grain Size and Increase Grain Yield in Rice. RICE (NEW YORK, N.Y.) 2021; 14:90. [PMID: 34727228 PMCID: PMC8563897 DOI: 10.1186/s12284-021-00531-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/16/2021] [Indexed: 05/18/2023]
Abstract
Grain weight and grain number, the two important yield traits, are mainly determined by grain size and panicle architecture in rice. Herein, we report the identification and functional analysis of OsSPL4 in panicle and grain development of rice. Using CRISPR/Cas9 system, two elite alleles of OsSPL4 were obtained, which exhibited an increasing number of grains per panicle and grain size, resulting in increase of rice yield. Cytological analysis showed that OsSPL4 could regulate spikelet development by promoting cell division. The results of RNA-seq and qRT-PCR validations also demonstrated that several MADS-box and cell-cycle genes were up-regulated in the mutation lines. Co-expression network revealed that many yield-related genes were involved in the regulation network of OsSPL4. In addition, OsSPL4 could be cleaved by the osa-miR156 in vivo, and the OsmiR156-OsSPL4 module might regulate the grain size in rice. Further analysis indicated that the large-grain allele of OsSPL4 in indica rice might introgress from aus varieties under artificial selection. Taken together, our findings suggested that OsSPL4 could be as a key regulator of grain size by acting on cell division control and provided a strategy for panicle architecture and grain size modification for yield improvement in rice.
Collapse
Affiliation(s)
- Jihong Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Liyu Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Guanglong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hui Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yesheng Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- BGI-Baoshan, Baoshan, 678004, Yunnan, China
| | - Ru Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shilai Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Jintao Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Qingyi Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Fengyi Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China.
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Yi Ding
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
31
|
Bai S, Hong J, Li L, Su S, Li Z, Wang W, Zhang F, Liang W, Zhang D. Dissection of the Genetic Basis of Rice Panicle Architecture Using a Genome-wide Association Study. RICE (NEW YORK, N.Y.) 2021; 14:77. [PMID: 34487253 PMCID: PMC8421479 DOI: 10.1186/s12284-021-00520-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/26/2021] [Indexed: 05/26/2023]
Abstract
Panicle architecture is one of the major factors influencing productivity of rice crops. The regulatory mechanisms underlying this complex trait are still unclear and genetic resources for rice breeders to improve panicle architecture are limited. Here, we have performed a genome-wide association study (GWAS) to analyze and identify genetic determinants underlying three panicle architecture traits. A population of 340 rice accessions from the 3000 Rice Genomes Project was phenotyped for panicle length, primary panicle number and secondary branch number over two years; GWAS was performed across the whole panel, and also across the japonica and indica sub-panels. A total of 153 quantitative trait loci (QTLs) were detected, of which 5 were associated with multiple traits, 8 were unique to either indica or japonica sub-panels, while 37 QTLs were stable across both years. Using haplotype and expression analysis, we reveal that genetic variations in the OsSPL18 promoter significantly affect gene expression and correlate with panicle length phenotypes. Three new candidate genes with putative roles in determining panicle length were also identified. Haplotype analysis of OsGRRP and LOC_Os03g03480 revealed high association with panicle length variation. Gene expression of DSM2, involved in abscisic acid biosynthesis, was up-regulated in long panicle accessions. Our results provide valuable information and resources for further unravelling the genetic basis determining rice panicle architecture. Identified candidate genes and molecular markers can be used in marker-assisted selection to improve rice panicle architecture through molecular breeding.
Collapse
Affiliation(s)
- Shaoxing Bai
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Hong
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Su Su
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhikang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Institute for Innovative Breeding, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wensheng Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Fengli Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- School of Agriculture, Food, and Wine, University of Adelaide, Adelaide, SA, 5064, Australia.
| |
Collapse
|
32
|
Yang F, Xiong M, Huang M, Li Z, Wang Z, Zhu H, Chen R, Lu L, Cheng Q, Wang Y, Tang J, Zhuang H, Li Y. Panicle Apical Abortion 3 Controls Panicle Development and Seed Size in Rice. RICE (NEW YORK, N.Y.) 2021; 14:68. [PMID: 34264425 PMCID: PMC8282854 DOI: 10.1186/s12284-021-00509-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND In rice, panicle apical abortion is a common phenomenon that usually results in a decreased number of branches and grains per panicle, and consequently a reduced grain yield. A better understanding of the molecular mechanism of panicle abortion is thus critical for maintaining and increasing rice production. RESULTS We reported a new rice mutant panicle apical abortion 3 (paa3), which exhibited severe abortion of spikelet development on the upper part of the branches as well as decreased grain size over the whole panicle. Using mapping-based clone, the PAA3 was characterized as the LOC_ Os04g56160 gene, encoding an H+-ATPase. The PAA3 was expressed highly in the stem and panicle, and its protein was localized in the plasma membrane. Our data further showed that PAA3 played an important role in maintaining normal panicle development by participating in the removal of reactive oxygen species (ROS) in rice. CONCLUSIONS Our studies suggested that PAA3 might function to remove ROS, the accumulation of which leads to programmed cell death, and ultimately panicle apical abortion and decreased seed size in the paa3 panicle.
Collapse
Affiliation(s)
- Fayu Yang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Mao Xiong
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Mingjiang Huang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Zhongcheng Li
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Ziyi Wang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Honghui Zhu
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Rui Chen
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Lu Lu
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Qinglan Cheng
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yan Wang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Jun Tang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Hui Zhuang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yunfeng Li
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
33
|
Rice RBH1 Encoding A Pectate Lyase is Critical for Apical Panicle Development. PLANTS 2021; 10:plants10020271. [PMID: 33573206 PMCID: PMC7912155 DOI: 10.3390/plants10020271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022]
Abstract
Panicle morphology is one of the main determinants of the rice yield. Panicle abortion, a typical panicle morphological defect results in yield reduction due to defective spikelet development. To further elucidate the molecular mechanism of panicle abortion in rice, a rice panicle bald head 1 (rbh1) mutant with transfer DNA (T-DNA) insertion showing severely aborted apical spikelets during panicle development was identified and characterized. The rbh1-1 mutant showed obviously altered cell morphology and structure in the degenerated spikelet. Molecular genetic studies revealed that RBH1 encodes a pectate lyase protein. Pectate lyase-specific activity of Rice panicle Bald Head 1 (RBH1) protein assay using polygalacturonic acid (PGA) as substrates illustrated that the enzyme retained a significant capacity to degrade PGA. In addition, immunohistochemical analysis showed that the degradation of pectin is inhibited in the rbh1-1 mutant. Further analysis revealed that a significant increase in reactive oxygen species (ROS) level was found in degenerated rbh1-1 spikelets. Taken together, our findings suggest that RBH1 is required for the formation of panicle and for preventing panicle abortion.
Collapse
|
34
|
Sun JL, Li JY, Wang MJ, Song ZT, Liu JX. Protein Quality Control in Plant Organelles: Current Progress and Future Perspectives. MOLECULAR PLANT 2021; 14:95-114. [PMID: 33137518 DOI: 10.1016/j.molp.2020.10.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/09/2020] [Accepted: 10/28/2020] [Indexed: 05/20/2023]
Abstract
The endoplasmic reticulum, chloroplasts, and mitochondria are major plant organelles for protein synthesis, photosynthesis, metabolism, and energy production. Protein homeostasis in these organelles, maintained by a balance between protein synthesis and degradation, is essential for cell functions during plant growth, development, and stress resistance. Nucleus-encoded chloroplast- and mitochondrion-targeted proteins and ER-resident proteins are imported from the cytosol and undergo modification and maturation within their respective organelles. Protein folding is an error-prone process that is influenced by both developmental signals and environmental cues; a number of mechanisms have evolved to ensure efficient import and proper folding and maturation of proteins in plant organelles. Misfolded or damaged proteins with nonnative conformations are subject to degradation via complementary or competing pathways: intraorganelle proteases, the organelle-associated ubiquitin-proteasome system, and the selective autophagy of partial or entire organelles. When proteins in nonnative conformations accumulate, the organelle-specific unfolded protein response operates to restore protein homeostasis by reducing protein folding demand, increasing protein folding capacity, and enhancing components involved in proteasome-associated protein degradation and autophagy. This review summarizes recent progress on the understanding of protein quality control in the ER, chloroplasts, and mitochondria in plants, with a focus on common mechanisms shared by these organelles during protein homeostasis.
Collapse
Affiliation(s)
- Jing-Liang Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Jin-Yu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Mei-Jing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Ze-Ting Song
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
35
|
Zhou D, Shen W, Cui Y, Liu Y, Zheng X, Li Y, Wu M, Fang S, Liu C, Tang M, Yi Y, Zhao M, Chen L. APICAL SPIKELET ABORTION (ASA) Controls Apical Panicle Development in Rice by Regulating Salicylic Acid Biosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:636877. [PMID: 33719311 PMCID: PMC7947001 DOI: 10.3389/fpls.2021.636877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/22/2021] [Indexed: 05/11/2023]
Abstract
Panicle degradation causes severe yield reduction in rice. There are two main types of panicle degradation: apical spikelet abortion and basal degeneration. In this study, we isolated and characterized the apical panicle abortion mutant apical spikelet abortion (asa), which exhibits degeneration and defects in the apical spikelets. This mutant had a pleiotropic phenotype, characterized by reduced plant height, increased tiller number, and decreased pollen fertility. Map-based cloning revealed that OsASA encodes a boric acid channel protein that showed the highest expression in the inflorescence, peduncle, and anther. RNA-seq analysis of the asa mutant vs wild-type (WT) plants revealed that biological processes related to reactive oxygen species (ROS) homeostasis and salicylic acid (SA) metabolism were significantly affected. Furthermore, the asa mutants had an increased SA level and H2O2 accumulation in the young panicles compared to the WT plants. Moreover, the SA level and the expression of OsPAL3, OsPAL4, and OsPAL6 genes (related to SA biosynthesis) were significantly increased under boron-deficient conditions in the asa mutant and in OsASA-knockout plants. Collectively, these results suggest that the boron distribution maintained by OsASA is required for normal panicle development in a process that involves modulating ROS homeostasis and SA biosynthesis.
Collapse
Affiliation(s)
- Dan Zhou
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Weifeng Shen
- Rice Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Yuchao Cui
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yuqin Liu
- Rice Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Xijun Zheng
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yan Li
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Minliang Wu
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shanru Fang
- Rice Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Chunhong Liu
- Rice Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Ming Tang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwestern, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yin Yi
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwestern, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Mingfu Zhao
- Rice Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
- *Correspondence: Mingfu Zhao,
| | - Liang Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
- Liang Chen,
| |
Collapse
|
36
|
Ko DK, Brandizzi F. A temporal hierarchy underpins the transcription factor-DNA interactome of the maize UPR. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:254-270. [PMID: 33098715 PMCID: PMC7942231 DOI: 10.1111/tpj.15044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 05/10/2023]
Abstract
Adverse environmental conditions reduce crop productivity and often increase the load of unfolded or misfolded proteins in the endoplasmic reticulum (ER). This potentially lethal condition, known as ER stress, is buffered by the unfolded protein response (UPR), a set of signaling pathways designed to either recover ER functionality or ignite programmed cell death. Despite the biological significance of the UPR to the life of the organism, the regulatory transcriptional landscape underpinning ER stress management is largely unmapped, especially in crops. To fill this significant knowledge gap, we performed a large-scale systems-level analysis of the protein-DNA interaction (PDI) network in maize (Zea mays). Using 23 promoter fragments of six UPR marker genes in a high-throughput enhanced yeast one-hybrid assay, we identified a highly interconnected network of 262 transcription factors (TFs) associated with significant biological traits and 831 PDIs underlying the UPR. We established a temporal hierarchy of TF binding to gene promoters within the same family as well as across different families of TFs. Cistrome analysis revealed the dynamic activities of a variety of cis-regulatory elements (CREs) in ER stress-responsive gene promoters. By integrating the cistrome results into a TF network analysis, we mapped a subnetwork of TFs associated with a CRE that may contribute to UPR management. Finally, we validated the role of a predicted network hub gene using the Arabidopsis system. The PDIs, TF networks, and CREs identified in our work are foundational resources for understanding transcription-regulatory mechanisms in the stress responses and crop improvement.
Collapse
Affiliation(s)
- Dae Kwan Ko
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824
- Correspondence:
| |
Collapse
|
37
|
Wang X, Li L, Sun X, Xu J, Ouyang L, Bian J, Chen X, Li W, Peng X, Hu L, Cai Y, Zhou D, He X, Fu J, Fu H, He H, Zhu C. Fine Mapping of a Novel Major Quantitative Trait Locus, qPAA7, That Controls Panicle Apical Abortion in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:683329. [PMID: 34305980 PMCID: PMC8293750 DOI: 10.3389/fpls.2021.683329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/09/2021] [Indexed: 05/17/2023]
Abstract
The panicle apical abortion (PAA) causes severe yield losses in rice production, but details about its development and molecular basis remain elusive. Here, we detected PAA quantitative trait loci (QTLs) in three environments using a set of chromosome segment substitution lines (CSSLs) that was constructed with indica Changhui121 as the recurrent parent and japonica Koshihikari as the donor parent. First, we identified a novel major effector quantitative trait locus, qPAA7, and selected a severe PAA line, CSSL176, which had the highest PAA rate among CSSLs having Koshihikari segments at this locus. Next, an F2 population was constructed from a cross between CSS176 and CH121. Using F2 to make recombinantion analysis, qPAA7 was mapped to an 73.8-kb interval in chromosome 7. Among nine candidate genes within this interval, there isn't any known genes affecting PAA. According to the gene annotation, gene expression profile and alignment of genomic DNA, LOC_Os07g41220 and LOC_Os07g41280 were predicted as putative candidate genes of qPAA7. Our study provides a foundation for cloning and functional characterization of the target gene from this locus.
Collapse
|
38
|
Yan Y, Wei M, Li Y, Tao H, Wu H, Chen Z, Li C, Xu JH. MiR529a controls plant height, tiller number, panicle architecture and grain size by regulating SPL target genes in rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110728. [PMID: 33288029 DOI: 10.1016/j.plantsci.2020.110728] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 05/02/2023]
Abstract
Rice is one of the most important food crops in the world. Breeding high-yield, multi-resistant and high-quality varieties has always been the goal of rice breeding. Rice tiller, panicle architecture and grain size are the constituent factors of yield, which are regulated by both genetic and environmental factors, including miRNAs, transcription factors, and downstream target genes. Previous studies have shown that SPL (SQUAMOSA PROMOTER BINDING-LIKE) transcription factors can control rice tiller, panicle architecture and grain size, which were regulated by miR156, miR529 and miR535. In this study, we obtained miR529a target mimicry (miR529a-MIMIC) transgenic plants to investigate plant phenotypes, physiological and molecular characteristics together with miR529a overexpression (miR529a-OE) and wild type (WT) to explore the function of miR529a and its SPL target genes in rice. We found that OsSPL2, OsSPL17 and OsSPL18 at seedling stage were regulated by miR529a, but there had complicated mechanism to control plant height. OsSPL2, OsSPL16, OsSPL17 and SPL18 at tillering stage were regulated by miR529a to control plant height and tiller number. And panicle architecture and grain size were controlled by miR529a through altering the expression of all five target genes OsSPL2, OsSPL7, OsSPL14, OsSPL16, OsSPL17 and OsSPL18. Our study suggested that miR529a might control rice growth and development by regulating different SPL target genes at different stages, which could provide a new method to improve rice yield by regulating miR529a and its SPL target genes.
Collapse
Affiliation(s)
- Yan Yan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Mingxiao Wei
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Yu Li
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Hua Tao
- Henan Agricultural Radio and Television School, Zhengzhou, 450008, China
| | - Haoyu Wu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Zhufeng Chen
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Can Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Jian-Hong Xu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
39
|
Hu L, Chen W, Yang W, Li X, Zhang C, Zhang X, Zheng L, Zhu X, Yin J, Qin P, Wang Y, Ma B, Li S, Yuan H, Tu B. OsSPL9 Regulates Grain Number and Grain Yield in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:682018. [PMID: 34149783 PMCID: PMC8207197 DOI: 10.3389/fpls.2021.682018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/30/2021] [Indexed: 05/19/2023]
Abstract
Rice grain yield consists of several key components, including tiller number, grain number per panicle (GNP), and grain weight. Among them, GNP is mainly determined by panicle branches and spikelet formation. In this study, we identified a gene affecting GNP and grain yield, OsSPL9, which encodes SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) family proteins. The mutation of OsSPL9 significantly reduced secondary branches and GNP. OsSPL9 was highly expressed in the early developing young panicles, consistent with its function of regulating panicle development. By combining expression analysis and dual-luciferase assays, we further confirmed that OsSPL9 directly activates the expression of RCN1 (rice TERMINAL FLOWER 1/CENTRORADIALIS homolog) in the early developing young panicle to regulate the panicle branches and GNP. Haplotype analysis showed that Hap3 and Hap4 of OsSPL9 might be favorable haplotypes contributing to high GNP in rice. These results provide new insights on high grain number breeding in rice.
Collapse
Affiliation(s)
- Li Hu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- College of Agriculture, Forestry and Health, The Open University of Sichuan, Chengdu, China
| | - Weilan Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wen Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Cheng Zhang
- Liaoning Rice Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Xiaoyu Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ling Zheng
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Peng Qin
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuping Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Bingtian Ma
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shigui Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hua Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Hua Yuan,
| | - Bin Tu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Bin Tu,
| |
Collapse
|
40
|
Jiang M, He Y, Chen X, Zhang X, Guo Y, Yang S, Huang J, Traw MB. CRISPR-based assessment of genomic structure in the conserved SQUAMOSA promoter-binding-like gene clusters in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1301-1314. [PMID: 32996244 DOI: 10.1111/tpj.15001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/14/2020] [Accepted: 09/03/2020] [Indexed: 05/07/2023]
Abstract
Although SQUAMOSA promoter-binding-like (SPL) transcription factors are important regulators of development in rice (Oryza sativa), prior assessments of the SPL family have been limited to single genes. A functional comparison across the full gene family in standardized genetic backgrounds has not been reported previously. Here, we demonstrate that the SPL gene family in rice is enriched due to the most recent whole genome duplication (WGD). Notably, 10 of 19 rice SPL genes (52%) cluster in four units that have persisted for at least 50 million years. We show that SPL gene grouping and retention following WGD is widespread in angiosperms, suggesting the conservatism and importance of this gene arrangement. We used Cas9 editing to generate transformation lines for all 19 SPL genes in a common set of backgrounds, and found that knockouts of 14 SPL genes exhibited defects in plant height, 10 exhibited defects in panicle size, and nine had altered grain lengths. We observed subfunctionalization of genes in the paleoduplicated pairs, but little evidence of neofunctionalization. Expression of OsSPL3 was negatively correlated with that of its closest neighbor in its synteny group, OsSPL4, and its sister paired gene, OsSPL12, in the opposing group. Nucleotide diversity was lower in eight of the nine singleton genes in domesticated rice, relative to wild rice, whereas the reverse was true for the paired genes. Together, these results provide functional information on eight previously unexamined OsSPL family members and suggest that paleoduplicate pair redundancy benefits plant survival and innovation.
Collapse
Affiliation(s)
- Mengmeng Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Ying He
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiaonan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiaohui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yanru Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Ju Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - M Brian Traw
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
41
|
Liang Y, Jiang C, Liu Y, Gao Y, Lu J, Aiwaili P, Fei Z, Jiang CZ, Hong B, Ma C, Gao J. Auxin Regulates Sucrose Transport to Repress Petal Abscission in Rose ( Rosa hybrida). THE PLANT CELL 2020; 32:3485-3499. [PMID: 32843436 PMCID: PMC7610287 DOI: 10.1105/tpc.19.00695] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 07/09/2020] [Accepted: 08/23/2020] [Indexed: 05/21/2023]
Abstract
Developmental transitions in plants require adequate carbon resources, and organ abscission often occurs due to competition for carbohydrates/assimilates. Physiological studies have indicated that organ abscission may be activated by Suc deprivation; however, an underlying regulatory mechanism that links Suc transport to organ shedding has yet to be identified. Here, we report that transport of Suc and the phytohormone auxin to petals through the phloem of the abscission zone (AZ) decreases during petal abscission in rose (Rosa hybrida), and that auxin regulates Suc transport into the petals. Expression of the Suc transporter RhSUC2 decreased in the AZ during rose petal abscission. Similarly, silencing of RhSUC2 reduced the Suc content in the petals and promotes petal abscission. We established that the auxin signaling protein RhARF7 binds to the promoter of RhSUC2, and that silencing of RhARF7 reduces petal Suc contents and promotes petal abscission. Overexpression of RhSUC2 in the petal AZ restored accelerated petal abscission caused by RhARF7 silencing. Moreover, treatment of rose petals with auxin and Suc delayed ethylene-induced abscission, whereas silencing of RhARF7 and RhSUC2 accelerated ethylene-induced petal abscission. Our results demonstrate that auxin modulates Suc transport during petal abscission, and that this process is regulated by a RhARF7-RhSUC2 module in the AZ.
Collapse
Affiliation(s)
- Yue Liang
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chuyan Jiang
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yang Liu
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yuerong Gao
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jingyun Lu
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Palinuer Aiwaili
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhangjun Fei
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Ithaca, New York 14853
- Boyce Thompson Institute, Ithaca, New York 14853
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, California 95616
- Department of Plant Sciences, University of California at Davis, Davis, California 95616
| | - Bo Hong
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chao Ma
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Junping Gao
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
42
|
Gao H, Zhang L, Zhang KL, Yang L, Ma YY, Xu ZQ. Tobacco NtabSPL6-2 can enhance local and systemic resistances of Arabidopsis thaliana to bacterial and fungal pathogens. JOURNAL OF PLANT PHYSIOLOGY 2020; 253:153263. [PMID: 32836021 DOI: 10.1016/j.jplph.2020.153263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
NtabSPL6-2 of Nicotiana tabacum was introduced into Arabidopsis by Agrobacterium-mediated floral-dip method. Compared to wild-type Col-0 plants, the arrangement of cauline leaves in NtabSPL6-2 transgenic plants was converted into opposite from simple and alternate, and the margin of rosette leaves was serrated. NtabSPL6-2 transgenic plants possessed a significantly greater fresh weight. Subcellular localization by fusion with GFP confirmed that the encoded product of NtabSPL6-2 existed in the nucleus. The leaves of NtabSPL6-2 transgenic plants exhibited an enhanced capacity to restrain the bacterial reproduction after infection by Pseudomonas syringae, accompanied by higher expression of the pathogenesis-related gene PR1 in the infiltrated leaves, indicating NtabSPL6-2 could improve the defense response of Arabidopsis to P. syringae at the local sites. Similarly, it was confirmed that NtabSPL6-2 could enhance the systemic acquired resistance of Arabidopsis in response to P. syringae. In addition, the area of necrotic plaque appearing on the transgenic leaves inoculated with Botrytis cinerea was smaller and accompanied by an upregulation of PR1 and PR5, indicating NtabSPL6-2 transgenic leaves were less susceptible to the fungal pathogen. Moreover, there was less accumulation of reactive oxygen species (H2O2 and O2-) and malondialdehyde in the local infected sites of transgenic plants, whereas the wild-type Col-0 plants were more oxidatively injured after infestation by B. cinerea.
Collapse
Affiliation(s)
- Hang Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Li Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Kai-Li Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Liu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Ye-Ye Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Zi-Qin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China.
| |
Collapse
|
43
|
Zhai R, Ye S, Zhu G, Lu Y, Ye J, Yu F, Chu Q, Zhang X. Identification and integrated analysis of glyphosate stress-responsive microRNAs, lncRNAs, and mRNAs in rice using genome-wide high-throughput sequencing. BMC Genomics 2020; 21:238. [PMID: 32183693 PMCID: PMC7076996 DOI: 10.1186/s12864-020-6637-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glyphosate has become the most widely used herbicide in the world. Therefore, the development of new varieties of glyphosate-tolerant crops is a research focus of seed companies and researchers. The glyphosate stress-responsive genes were used for the development of genetically modified crops, while only the EPSPS gene has been used currently in the study on glyphosate-tolerance in rice. Therefore, it is essential and crucial to intensify the exploration of glyphosate stress-responsive genes, to not only acquire other glyphosate stress-responsive genes with clean intellectual property rights but also obtain non-transgenic glyphosate-tolerant rice varieties. This study is expected to elucidate the responses of miRNAs, lncRNAs, and mRNAs to glyphosate applications and the potential regulatory mechanisms in response to glyphosate stress in rice. RESULTS Leaves of the non-transgenic glyphosate-tolerant germplasm CA21 sprayed with 2 mg·ml- 1 glyphosate (GLY) and CA21 plants with no spray (CK) were collected for high-throughput sequencing analysis. A total of 1197 DEGs, 131 DELs, and 52 DEMs were identified in the GLY samples in relation to CK samples. Genes were significantly enriched for various biological processes involved in detoxification of plant response to stress. A total of 385 known miRNAs from 59 miRNA families and 94 novel miRNAs were identified. Degradome analysis led to the identification of 32 target genes, of which, the squamosa promoter-binding-like protein 12 (SPL12) was identified as a target of osa-miR156a_L + 1. The lncRNA-miRNA-mRNA regulatory network consisted of osa-miR156a_L + 1, two transcripts of SPL12 (LOC_Os06g49010.3 and LOC_Os06g49010.5), and 13 lncRNAs (e.g., MSTRG.244.1 and MSTRG.16577.1). CONCLUSION Large-scale expression changes in coding and noncoding RNA were observed in rice mainly due to its response to glyphosate. SPL12, osa-miR156, and lncRNAs (e.g., MSTRG.244.1 and MSTRG.16577.1) could be a novel ceRNA mechanism in response to glyphosate in rice by regulating transcription and metal ions binding. These findings provide a theoretical basis for breeding glyphosate-tolerant rice varieties and for further research on the biogenesis of glyphosate- tolerance in rice.
Collapse
Affiliation(s)
- Rongrong Zhai
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Road, Hangzhou, 310021 Zhejiang China
| | - Shenghai Ye
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Road, Hangzhou, 310021 Zhejiang China
| | - Guofu Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Road, Hangzhou, 310021 Zhejiang China
| | - Yanting Lu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Road, Hangzhou, 310021 Zhejiang China
| | - Jing Ye
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Road, Hangzhou, 310021 Zhejiang China
| | - Faming Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Road, Hangzhou, 310021 Zhejiang China
| | | | - Xiaoming Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Road, Hangzhou, 310021 Zhejiang China
| |
Collapse
|
44
|
Zhang HX, Feng XH, Ali M, Jin JH, Wei AM, Khattak AM, Gong ZH. Identification of Pepper CaSBP08 Gene in Defense Response Against Phytophthora capsici Infection. FRONTIERS IN PLANT SCIENCE 2020; 11:183. [PMID: 32174944 PMCID: PMC7054287 DOI: 10.3389/fpls.2020.00183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/07/2020] [Indexed: 05/24/2023]
Abstract
Little information is available on the role of Squamosa promoter binding protein (SBP)-box genes in pepper plants. This family of genes is known to have transcription characteristics specific to plants and to regulate plant growth, development, stress responses, and signal transduction. To investigate their specific effects in pepper (Capsicum annuum), we screened pepper SBP-box family genes (CaSBP genes) for Phytophthora capsici (P. capsici) resistance genes using virus-induced gene silencing. CaSBP08, CaSBP11, CaSBP12, and CaSBP13, which are associated with plant defense responses against P. capsici, were obtained from among fifteen identified CaSBP genes. The function of CaSBP08 was identified in pepper defense response against P. capsici infection in particular. CaSBP08 protein was localized to the nucleus. Silencing of CaSBP08 enhanced resistance to P. capsici infection. Following P. capsici inoculation, the malondialdehyde content, peroxidase activity, and disease index percentage of the CaSBP08-silenced plants decreased compared to the control. Additionally, the expression levels of other defense-related genes, especially those of CaBPR1 and CaSAR8.2, were more strongly induced in CaSBP08-silenced plants than in the control. However, CaSBP08 overexpression in Nicotiana benthamiana enhanced susceptibility to P. capsici infection. This work provides a foundation for the further research on the role of CaSBP genes in plant defense responses against P. capsici infection.
Collapse
Affiliation(s)
- Huai-Xia Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Xiao-Hui Feng
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Jing-Hao Jin
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Ai-Min Wei
- Tianjin Vegetable Research Center, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | | | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
45
|
Zhang HX, Zhu WC, Feng XH, Jin JH, Wei AM, Gong ZH. Transcription Factor CaSBP12 Negatively Regulates Salt Stress Tolerance in Pepper ( Capsicum annuum L.). Int J Mol Sci 2020; 21:E444. [PMID: 31936712 PMCID: PMC7013666 DOI: 10.3390/ijms21020444] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/14/2023] Open
Abstract
SBP-box (Squamosa-promoter binding protein) genes are a type of plant-specific transcription factor and play important roles in plant growth, signal transduction, and stress response. However, little is known about the role of pepper SBP-box transcription factor genes in response to abiotic stress. Here, one of the pepper SBP-box gene, CaSBP12, was selected and isolated from pepper genome database in our previous study. The CaSBP12 gene was induced under salt stress. Silencing the CaSBP12 gene enhanced pepper plant tolerance to salt stress. The accumulation of reactive oxygen species (ROS) of the detached leaves of CaSBP12-silenced plants was significantly lower than that of control plants. Besides, the Na+, malondialdehyde content, and conductivity were significantly increased in control plants than that in the CaSBP12-silenced plants. In addition, the CaSBP12 over-expressed Nicotiana benthamiana plants were more susceptible to salt stress with higher damage severity index percentage and accumulation of ROS as compared to the wild-type. These results indicated that CaSBP12 negatively regulates salt stress tolerance in pepper may relate to ROS signaling cascades.
Collapse
Affiliation(s)
- Huai-Xia Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (H.-X.Z.); (X.-H.F.); (J.-H.J.)
| | - Wen-Chao Zhu
- Guizhou Institute of Pepper, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China;
| | - Xiao-Hui Feng
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (H.-X.Z.); (X.-H.F.); (J.-H.J.)
| | - Jing-Hao Jin
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (H.-X.Z.); (X.-H.F.); (J.-H.J.)
| | - Ai-Min Wei
- Tianjin Vegetable Research Center, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China;
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (H.-X.Z.); (X.-H.F.); (J.-H.J.)
| |
Collapse
|
46
|
Zafar SA, Patil SB, Uzair M, Fang J, Zhao J, Guo T, Yuan S, Uzair M, Luo Q, Shi J, Schreiber L, Li X. DEGENERATED PANICLE AND PARTIAL STERILITY 1 (DPS1) encodes a cystathionine β-synthase domain containing protein required for anther cuticle and panicle development in rice. THE NEW PHYTOLOGIST 2020; 225:356-375. [PMID: 31433495 DOI: 10.1111/nph.16133] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/13/2019] [Indexed: 05/25/2023]
Abstract
Degeneration of apical spikelets and reduced panicle fertility are common reasons for low seed-setting rate in rice (Oryza sativa). However, little is known about the underlying molecular mechanisms. Here, we report a novel degenerated panicle and partial sterility 1 (dps1) mutant that showed panicle apical degeneration and reduced fertility in middle spikelets. dps1 plants were characterized by small whitish anthers with altered cuticle morphology and absence of pollen grains. Amounts of cuticular wax and cutin were significantly reduced in dps1 anthers. Panicles of dps1 plants showed an accumulation of reactive oxygen species (ROS), lower antioxidant activity, and increased programmed cell death. Map-based cloning revealed that DPS1 encodes a mitochondrial-localized protein containing a cystathionine β-synthase domain that showed the highest expression in panicles and anthers. DPS1 physically interacted with mitochondrial thioredoxin proteins Trx1 and Trx20, and it participated in ROS scavenging. Global gene expression analysis in dps1 revealed that biological processes related to fatty acid metabolism and ROS homeostasis were significantly affected, and the expression of key genes involved in wax and cutin biosynthesis were downregulated. These results suggest that DPS1 plays a vital role in regulating ROS homeostasis, anther cuticle formation, and panicle development in rice.
Collapse
Affiliation(s)
- Syed Adeel Zafar
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Suyash B Patil
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Muhammad Uzair
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingjing Fang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tingting Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Muhammad Uzair
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Luo
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, D-53115, Germany
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
47
|
Hong ZH, Qing T, Schubert D, Kleinmanns JA, Liu JX. BLISTER-regulated vegetative growth is dependent on the protein kinase domain of ER stress modulator IRE1A in Arabidopsis thaliana. PLoS Genet 2019; 15:e1008563. [PMID: 31869326 PMCID: PMC6946172 DOI: 10.1371/journal.pgen.1008563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 01/07/2020] [Accepted: 12/12/2019] [Indexed: 11/19/2022] Open
Abstract
The unfolded protein response (UPR) is required for protein homeostasis in the endoplasmic reticulum (ER) when plants are challenged by adverse environmental conditions. Inositol-requiring enzyme 1 (IRE1), the bifunctional protein kinase / ribonuclease, is an important UPR regulator in plants mediating cytoplasmic splicing of the mRNA encoding the transcription factor bZIP60. This activates the UPR signaling pathway and regulates canonical UPR genes. However, how the protein activity of IRE1 is controlled during plant growth and development is largely unknown. In the present study, we demonstrate that the nuclear and Golgi-localized protein BLISTER (BLI) negatively controls the activity of IRE1A/IRE1B under normal growth condition in Arabidopsis. Loss-of-function mutation of BLI results in chronic up-regulation of a set of both canonical UPR genes and non-canonical UPR downstream genes, leading to cell death and growth retardation. Genetic analysis indicates that BLI-regulated vegetative growth phenotype is dependent on IRE1A/IRE1B but not their canonical splicing target bZIP60. Genetic complementation with mutation analysis suggests that the D570/K572 residues in the ATP-binding pocket and N780 residue in the RNase domain of IRE1A are required for the activation of canonical UPR gene expression, in contrast, the D570/K572 residues and D590 residue in the protein kinase domain of IRE1A are important for the induction of non-canonical UPR downstream genes in the BLI mutant background, which correlates with the shoot growth phenotype. Hence, our results reveal the important role of IRE1A in plant growth and development, and BLI negatively controls IRE1A’s function under normal growth condition in plants. When unfolded or misfolded proteins are accumulated in the ER, a much conserved response, called the unfolded protein response (UPR), is elicited to lighten the load of unfolded proteins in the ER by bringing the protein-folding and degradation capacities into alignment with the protein folding demands. However, over-activation of the UPR pathways under normal growth conditions affects plant growth and development. The bifunctional protein kinase / ribonuclease protein IRE1 is important for UPR gene regulation, but how IRE1’ protein activity is tightly controlled in plants is currently unknown. Here we report that BLISTER (BLI) negatively controls the IRE1’s function under normal growth condition in Arabidopsis. Through genetic analysis, our results also provide novel insights into how the protein kinase domain and ribonuclease domain contribute to the function of IRE1A in downstream gene expression.
Collapse
Affiliation(s)
- Zheng-Hui Hong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Tao Qing
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Daniel Schubert
- Plant Developmental Epigenetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Epigenetics of Plants, Freie Universität Berlin, Berlin, Germany
| | - Julia Anna Kleinmanns
- Plant Developmental Epigenetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- * E-mail: (JAK); (JXL)
| | - Jian-Xiang Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (JAK); (JXL)
| |
Collapse
|
48
|
OsSPL10, a SBP-Box Gene, Plays a Dual Role in Salt Tolerance and Trichome Formation in Rice ( Oryza sativa L.). G3-GENES GENOMES GENETICS 2019; 9:4107-4114. [PMID: 31611344 PMCID: PMC6893181 DOI: 10.1534/g3.119.400700] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Salinity is one of the major abiotic stress factors limiting rice production. Glabrousness is a trait of agronomic importance in rice (Oryza sativa L.). We previously found a single-gene recessive mutant sst, which displayed increased salt tolerance and glabrous leaf and glume without trichomes, and identified an SBP-box gene OsSPL10 as the candidate of the SST gene. In this study, OsSPL10-knockout and OsSPL10-overexpression mutants were created to check the function of the gene. The knockout mutants exhibited enhanced salt tolerance and glabrous leaves and glumes as expected, while the overexpression mutants showed opposite phenotypes, in which both salt sensitivity and trichome density on leaf and glume were increased. These results clearly confirmed that OsSPL10 is SST, and suggested that OsSPL10 controls the initiation rather than the elongation of trichomes. In addition, expression analysis indicated that OsSPL10 was preferentially expressed in young panicle and stem, and protein OsSPL10 was localized in nucleus. Taken together, OsSPL10 negatively controls salt tolerance but positively controls trichome formation in rice.
Collapse
|
49
|
Viana VE, Pegoraro C, Busanello C, Costa de Oliveira A. Mutagenesis in Rice: The Basis for Breeding a New Super Plant. FRONTIERS IN PLANT SCIENCE 2019; 10:1326. [PMID: 31781133 PMCID: PMC6857675 DOI: 10.3389/fpls.2019.01326] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/24/2019] [Indexed: 05/28/2023]
Abstract
The high selection pressure applied in rice breeding since its domestication thousands of years ago has caused a narrowing in its genetic variability. Obtaining new rice cultivars therefore becomes a major challenge for breeders and developing strategies to increase the genetic variability has demanded the attention of several research groups. Understanding mutations and their applications have paved the way for advances in the elucidation of a genetic, physiological, and biochemical basis of rice traits. Creating variability through mutations has therefore grown to be among the most important tools to improve rice. The small genome size of rice has enabled a faster release of higher quality sequence drafts as compared to other crops. The move from structural to functional genomics is possible due to an array of mutant databases, highlighting mutagenesis as an important player in this progress. Furthermore, due to the synteny among the Poaceae, other grasses can also benefit from these findings. Successful gene modifications have been obtained by random and targeted mutations. Furthermore, following mutation induction pathways, techniques have been applied to identify mutations and the molecular control of DNA damage repair mechanisms in the rice genome. This review highlights findings in generating rice genome resources showing strategies applied for variability increasing, detection and genetic mechanisms of DNA damage repair.
Collapse
Affiliation(s)
| | | | | | - Antonio Costa de Oliveira
- Centro de Genômica e Fitomelhoramento, Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Rio Grande do Sul, Brazil
| |
Collapse
|
50
|
Liu Q, Su Y, Zhu Y, Peng K, Hong B, Wang R, Gaballah M, Xiao L. Manipulating osa-MIR156f Expression by D18 Promoter to Regulate Plant Architecture and Yield Traits both in Seasonal and Ratooning Rice. Biol Proced Online 2019; 21:21. [PMID: 31700499 PMCID: PMC6827258 DOI: 10.1186/s12575-019-0110-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/21/2019] [Indexed: 01/11/2023] Open
Abstract
Background Rice (Oryza sativa L.) feeds more than half of the world's population. Ratooning rice is an economical alternative to the second seasonal rice, thus increasing the yield of ratooning rice is highly important. Results Here we report an applicable transgenic line constructed through the manipulation of osa-MIR156f expression in rice shoot using the OsGA3ox2 (D18) promoter. In seasonal rice, the D18-11 transgenic line showed moderate height and more effective tillers with normal panicle. In ratooning rice, axillary buds outgrew from the basal node of the D18-11 transgenic line before the harvest of seasonal rice. More effective tillers produced by the outgrowth of axillary buds contributed to the plant architecture improvement and yield increase. Additionally, it was found that osa-miR156f down-regulated the expression of tillering regulators, such as TEOSINTE BRANCHED1 (TB1) and LAX PANICLE 1 (LAX1). The expression of DWARF10, DWARF27 and DWARF53, three genes being involved in the biosynthesis and signaling of strigolactone (SL), decreased in the stem of the D18-11 transgenic line. Conclusion Our results indicated that the manipulation of osa-MIR156f expression may have application significance in rice genetic breeding. This study developed a novel strategy to regulate plant architecture and grain yield potential both in the seasonal and ratooning rice.
Collapse
Affiliation(s)
- Qing Liu
- 1Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128 China
| | - Yi Su
- 1Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128 China.,2Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128 China
| | - Yunhua Zhu
- 3Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Keqin Peng
- 1Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128 China
| | - Bin Hong
- 1Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128 China
| | - Ruozhong Wang
- 1Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128 China.,2Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128 China
| | - Mahmoud Gaballah
- 4Rice Research and Training Center, Field Crops Research Institute, Agriculture Research Center, Giza, 33717 Egypt
| | - Langtao Xiao
- 1Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128 China.,2Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128 China
| |
Collapse
|