1
|
Turina M, Nerva L, Vallino M, Miotti N, Forgia M, Ciuffo M, Falk BW, Ferriol I. Evolution of a novel engineered tripartite viral genome of a torradovirus. Virus Evol 2024; 10:0. [PMID: 39678354 PMCID: PMC11646122 DOI: 10.1093/ve/veae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/05/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Viruses in the Secoviridae include monopartite and bipartite genomes, suggesting the possibility to study members of this family to experimentally address evolutionary transitions resulting in multipartitism. Torradoviruses are bipartite members of the family Secoviridae characterized by a genus-specific 5' open reading frame, named P21, encoded by RNA2. Here, in a study originally intended to verify if P21 can function in trans, we attempted to provide P21 from a third P21-expressing construct under control of the 35S promoter and containing the 5'- and 3'-untranslated regions (UTRs) of wild-type (WT) RNA2. When this construct was combined with an RNA2 with a complete deletion of the P21 coding region we verified that the P21 provided in trans cannot immediately complement the mutant, but occasional systemic infections in a limited number of the inoculated plants display the presence of a tripartite virus with an actively replicating P21-expressing RNA3. Furthermore, in all the systemically infected plants investigated in six distinct experiments, this replicating RNA3 accumulates deletions in a small region inside the original 3'-UTR provided by the cDNA clone. Such tripartite virus, which we obtained through deconstructing the coding potential of the RNA2 in two distinct RNAs, can be transmitted mechanically and by whiteflies, is competent for virion formation, and its RNA3 is encapsidated. It can be mechanically transferred for 11 serial passages without losing its infectivity or showing major genomic rearrangements. Furthermore, mixing equal amounts of WT and tripartite virus inocula in the same leaf resulted in plants systemically infected only with the WT virus, showing that the tripartite virus has lower fitness than the WT. To our knowledge, this is the first example of an engineered tripartite viral genome becoming stable through artificial evolution in vivo, in plants. This tripartite system was also used to derive a stable viral vector to express green fluorescence protein (GFP) systemically in the context of viral infection.
Collapse
Affiliation(s)
- Massimo Turina
- Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Turin 10135, Italy
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman, 11942, Jordan
| | - Luca Nerva
- Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Turin 10135, Italy
| | - Marta Vallino
- Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Turin 10135, Italy
| | - Niccolò Miotti
- Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Turin 10135, Italy
| | - Marco Forgia
- Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Turin 10135, Italy
| | - Marina Ciuffo
- Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Turin 10135, Italy
| | - Bryce W Falk
- Department of Plant Pathology, UC-DAVIS, 1 Shields Ave, Davis, CA, 95616, United States
| | - Inmaculada Ferriol
- Department of Plant Protection, Instituto de Ciencias Agrarias, ICA-CSIC,Calle Serrano 115 DPDO, Madrid, 28006, Spain
| |
Collapse
|
2
|
Burke DS. Origins of the problematic E in SEIR epidemic models. Infect Dis Model 2024; 9:673-679. [PMID: 38638339 PMCID: PMC11024649 DOI: 10.1016/j.idm.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
During the COVID-19 pandemic, over one thousand papers were published on "Susceptible-Exposed-Infectious-Removed" (SEIR) epidemic computational models. The English word "exposed" in its vernacular and public health usage means a state of having been in contact with an infectious individual, but not necessarily infected. In contrast, the term "exposed" in SEIR modeling usage typically stands for a state of already being infected but not yet being infectious to others, a state more properly termed "latently infected." In public health language, "exposed" means possibly infected, yet in SEIR modeling language, "exposed" means already infected. This paper retraces the conceptual and mathematical origins of this terminological disconnect and concludes that epidemic modelers should consider using the "SLIR" notational short-hand (L for Latent) instead of SEIR.
Collapse
Affiliation(s)
- Donald S. Burke
- Distinguished University Professor Emeritus of Health Science and Policy, Department of Epidemiology, School of Public Health, University of Pittsburgh, USA
| |
Collapse
|
3
|
Weiland JJ, Wyatt N, Camelo V, Spanner RE, Hladky LJ, Ramachandran V, Secor GA, Martin FN, Wintermantel WM, Bolton MD. Beet Soil-Borne Virus Is a Helper Virus for the Novel Beta vulgaris Satellite Virus 1A. PHYTOPATHOLOGY 2024; 114:1126-1136. [PMID: 38451582 DOI: 10.1094/phyto-08-23-0299-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Sugar beet (Beta vulgaris) is grown in temperate regions around the world as a source of sucrose used for natural sweetening. Sugar beet is susceptible to a number of viral diseases, but identification of the causal agent(s) under field conditions is often difficult due to mixtures of viruses that may be responsible for disease symptoms. In this study, the application of RNAseq to RNA extracted from diseased sugar beet roots obtained from the field and from greenhouse-reared plants grown in soil infested with the virus disease rhizomania (causal agent beet necrotic yellow vein virus; BNYVV) yielded genome-length sequences from BNYVV, as well as beet soil-borne virus (BSBV). The nucleotide identities of the derived consensus sequence of BSBV RNAs ranged from 99.4 to 96.7% (RNA1), 99.3 to 95.3% (RNA2), and 98.3 to 95.9% (RNA3) compared with published BSBV sequences. Based on the BSBV genome consensus sequence, clones of the genomic RNAs 1, 2, and 3 were obtained to produce RNA copies of the genome through in vitro transcription. Capped RNA produced from the clones was infectious when inoculated into leaves of Chenopodium quinoa and B. vulgaris, and extracts from transcript-infected C. quinoa leaves could infect sugar beet seedling roots through a vortex inoculation method. Subsequent exposure of these infected sugar beet seedling roots to aviruliferous Polymyxa betae, the protist vector of both BNYVV and BSBV, confirmed that BSBV derived from the infectious clones could be transmitted by the vector. Co-inoculation of BSBV synthetic transcripts with transcripts of a cloned putative satellite virus designated Beta vulgaris satellite virus 1A (BvSat1A) resulted in the production of lesions on leaves of C. quinoa similar to those produced by inoculation with BSBV alone. Nevertheless, accumulation of genomic RNA and the encoded protein of the satellite virus in co-inoculated leaves was readily detected on Northern and Western blots, respectively, whereas no accumulation of satellite virus products occurred when satellite virus RNA was inoculated alone. The predicted sequence of the detected protein encoded by BvSat1A bears hallmarks of coat proteins of other satellite viruses, and virions of a size consistent with a satellite virus were observed in samples testing positive for the virus. The results demonstrate that BSBV is a helper virus for the novel satellite virus BvSat1A.
Collapse
Affiliation(s)
- John J Weiland
- U.S. Department of Agriculture-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND
| | - Nathan Wyatt
- U.S. Department of Agriculture-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND
| | - Viviana Camelo
- U.S. Department of Agriculture-Agricultural Research Service, Sam Farr Crop Improvement and Protection Research Center, Salinas, CA
| | - Rebecca E Spanner
- U.S. Department of Agriculture-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND
- Department of Plant Pathology, North Dakota State University, Fargo, ND
| | - Laura Jenkins Hladky
- U.S. Department of Agriculture-Agricultural Research Service, Sam Farr Crop Improvement and Protection Research Center, Salinas, CA
| | - Vanitharani Ramachandran
- U.S. Department of Agriculture-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND
| | - Gary A Secor
- Department of Plant Pathology, North Dakota State University, Fargo, ND
| | - Frank N Martin
- U.S. Department of Agriculture-Agricultural Research Service, Sam Farr Crop Improvement and Protection Research Center, Salinas, CA
| | - William M Wintermantel
- U.S. Department of Agriculture-Agricultural Research Service, Sam Farr Crop Improvement and Protection Research Center, Salinas, CA
| | - Melvin D Bolton
- U.S. Department of Agriculture-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND
- Department of Plant Pathology, North Dakota State University, Fargo, ND
| |
Collapse
|
4
|
Johnson ML, Zwart MP. Robust Approaches to the Quantitative Analysis of Genome Formula Variation in Multipartite and Segmented Viruses. Viruses 2024; 16:270. [PMID: 38400045 PMCID: PMC10892338 DOI: 10.3390/v16020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
When viruses have segmented genomes, the set of frequencies describing the abundance of segments is called the genome formula. The genome formula is often unbalanced and highly variable for both segmented and multipartite viruses. A growing number of studies are quantifying the genome formula to measure its effects on infection and to consider its ecological and evolutionary implications. Different approaches have been reported for analyzing genome formula data, including qualitative description, applying standard statistical tests such as ANOVA, and customized analyses. However, these approaches have different shortcomings, and test assumptions are often unmet, potentially leading to erroneous conclusions. Here, we address these challenges, leading to a threefold contribution. First, we propose a simple metric for analyzing genome formula variation: the genome formula distance. We describe the properties of this metric and provide a framework for understanding metric values. Second, we explain how this metric can be applied for different purposes, including testing for genome-formula differences and comparing observations to a reference genome formula value. Third, we re-analyze published data to illustrate the applications and weigh the evidence for previous conclusions. Our re-analysis of published datasets confirms many previous results but also provides evidence that the genome formula can be carried over from the inoculum to the virus population in a host. The simple procedures we propose contribute to the robust and accessible analysis of genome-formula data.
Collapse
|
5
|
Zhang S, Yang C, Qiu Y, Liao R, Xuan Z, Ren F, Dong Y, Xie X, Han Y, Wu D, Ramos-González PL, Freitas-Astúa J, Yang H, Zhou C, Cao M. Conserved untranslated regions of multipartite viruses: Natural markers of novel viral genomic components and tags of viral evolution. Virus Evol 2024; 10:veae004. [PMID: 38361819 PMCID: PMC10868557 DOI: 10.1093/ve/veae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Viruses with split genomes are classified as being either segmented or multipartite based on whether their genomic segments occur within a single virion or across different virions. Despite variations in number and sequence during evolution, the genomic segments of many viruses are conserved within the untranslated regions (UTRs). In this study, we present a methodology that combines RNA sequencing with iterative BLASTn of UTRs (https://github.com/qq371260/Iterative-blast-v.1.0) to identify new viral genomic segments. Some novel multipartite-like viruses related to the phylum Kitrinoviricota were annotated using sequencing data from field plant samples and public databases. We identified potentially plant-infecting jingmen-related viruses (order Amarillovirales) and jivi-related viruses (order Martellivirales) with at least six genomic components. The number of RNA molecules associated with a genome of the novel viruses in the families Closteroviridae, Kitaviridae, and Virgaviridae within the order Martellivirales reached five. Several of these viruses seem to represent new taxa at the subgenus, genus, and family levels. The diversity of novel genomic components and the multiple duplication of proteins or protein domains within single or multiple genomic components emphasize the evolutionary roles of genetic recombination (horizontal gene transfer), reassortment, and deletion. The relatively conserved UTRs at the genome level might explain the relationships between monopartite and multipartite viruses, as well as how subviral agents such as defective RNAs and satellite viruses can coexist with their helper viruses.
Collapse
Affiliation(s)
| | - Caixia Yang
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, 21 Huanan Street, Shenyang, Liaoning 110044, China
| | - Yuanjian Qiu
- National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
| | - Ruiling Liao
- National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
| | - Zhiyou Xuan
- National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
| | - Fang Ren
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, 98 Xinghainan Street, Xingcheng, Liaoning 125100, China
| | - Yafeng Dong
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, 98 Xinghainan Street, Xingcheng, Liaoning 125100, China
| | - Xiaoying Xie
- Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian 350002, China
| | - Yanhong Han
- Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian 350002, China
| | - Di Wu
- College of Horticulture and Landscape Architecture, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
| | - Pedro Luis Ramos-González
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico, Av. Cons. Rodrigues Alves 1252, São Paulo SP, 04014-002, Brazil
| | - Juliana Freitas-Astúa
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico, Av. Cons. Rodrigues Alves 1252, São Paulo SP, 04014-002, Brazil
- Embrapa Mandioca e Fruticultura, Rua da Embrapa, Caixa Postal 007, CEP, Cruz das Almas BA, 44380-000, Brazil
| | - Huadong Yang
- Hunan Agricultural University, 1 Nongda Road, Changsha, Hunan 410125, China
| | - Changyong Zhou
- National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
- Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, 40 Putuo Road, Guilin, Guangxi 541010, China
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, 40 Putuo Road, Guilin, Guangxi 541010, China
| | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
| |
Collapse
|
6
|
Dall'Ara M, Guo Y, Poli D, Gilmer D, Ratti C. Analysis of the relative frequencies of the multipartite BNYVV genomic RNAs in different plants and tissues. J Gen Virol 2024; 105. [PMID: 38197877 DOI: 10.1099/jgv.0.001950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Multipartite virus genomes are composed of two or more segments, each packaged into an independent viral particle. A potential advantage of multipartitism is the regulation of gene expression through changes in the segment copy number. Soil-borne beet necrotic yellow vein virus (BNYVV) is a typical example of multipartism, given its high number of genomic positive-sense RNAs (up to five). Here we analyse the relative frequencies of the four genomic RNAs of BNYVV type B during infection of different host plants (Chenopodium quinoa, Beta macrocarpa and Spinacia oleracea) and organs (leaves and roots). By successfully validating a two-step reverse-transcriptase digital droplet PCR protocol, we show that RNA1 and -2 genomic segments always replicate at low and comparable relative frequencies. In contrast, RNA3 and -4 accumulate with variable relative frequencies, resulting in distinct RNA1 : RNA2 : RNA3 : RNA4 ratios, depending on the infected host species and organ.
Collapse
Affiliation(s)
- M Dall'Ara
- DISTAL-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| | - Y Guo
- DISTAL-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| | - D Poli
- DISTAL-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| | - D Gilmer
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, France
| | - C Ratti
- DISTAL-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| |
Collapse
|
7
|
Leeks A, Bono LM, Ampolini EA, Souza LS, Höfler T, Mattson CL, Dye AE, Díaz-Muñoz SL. Open questions in the social lives of viruses. J Evol Biol 2023; 36:1551-1567. [PMID: 37975507 PMCID: PMC11281779 DOI: 10.1111/jeb.14203] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 11/19/2023]
Abstract
Social interactions among viruses occur whenever multiple viral genomes infect the same cells, hosts, or populations of hosts. Viral social interactions range from cooperation to conflict, occur throughout the viral world, and affect every stage of the viral lifecycle. The ubiquity of these social interactions means that they can determine the population dynamics, evolutionary trajectory, and clinical progression of viral infections. At the same time, social interactions in viruses raise new questions for evolutionary theory, providing opportunities to test and extend existing frameworks within social evolution. Many opportunities exist at this interface: Insights into the evolution of viral social interactions have immediate implications for our understanding of the fundamental biology and clinical manifestation of viral diseases. However, these opportunities are currently limited because evolutionary biologists only rarely study social evolution in viruses. Here, we bridge this gap by (1) summarizing the ways in which viruses can interact socially, including consequences for social evolution and evolvability; (2) outlining some open questions raised by viruses that could challenge concepts within social evolution theory; and (3) providing some illustrative examples, data sources, and conceptual questions, for studying the natural history of social viruses.
Collapse
Affiliation(s)
- Asher Leeks
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, USA
| | - Lisa M. Bono
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Elizabeth A. Ampolini
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lucas S. Souza
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Thomas Höfler
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Courtney L. Mattson
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, USA
| | - Anna E. Dye
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Samuel L. Díaz-Muñoz
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, USA
- Genome Center, University of California Davis, Davis, California, USA
| |
Collapse
|
8
|
Pagnoni S, Oufensou S, Balmas V, Bulgari D, Gobbi E, Forgia M, Migheli Q, Turina M. A collection of Trichoderma isolates from natural environments in Sardinia reveals a complex virome that includes negative-sense fungal viruses with unprecedented genome organizations. Virus Evol 2023; 9:vead042. [PMID: 37692893 PMCID: PMC10491862 DOI: 10.1093/ve/vead042] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 09/12/2023] Open
Abstract
Trichoderma genus includes soil-inhabiting fungi that provide important ecosystem services in their interaction with plants and other fungi, as well as biocontrol of fungal plant diseases. A collection of Trichoderma isolates from Sardinia has been previously characterized, but here we selected 113 isolates, representatives of the collection, and characterized their viral components. We carried out high-throughput sequencing of ribosome-depleted total RNA following a bioinformatics pipeline that detects virus-derived RNA-directed RNA polymerases (RdRps) and other conserved viral protein sequences. This pipeline detected seventeen viral RdRps with two of them corresponding to viruses already detected in other regions of the world and the remaining fifteen representing isolates of new putative virus species. Surprisingly, eight of them are from new negative-sense RNA viruses, a first in the genus Trichoderma. Among them is a cogu-like virus, closely related to plant-infecting viruses. Regarding the positive-sense viruses, we report the presence of an 'ormycovirus' belonging to a recently characterized group of bisegmented single-stranded RNA viruses with uncertain phylogenetic assignment. Finally, for the first time, we report a bisegmented member of Mononegavirales which infects fungi. The proteins encoded by the second genomic RNA of this virus were used to re-evaluate several viruses in the Penicillimonavirus and Plasmopamonavirus genera, here shown to be bisegmented and encoding a conserved polypeptide that has structural conservation with the nucleocapsid domain of rhabdoviruses.
Collapse
Affiliation(s)
- Saul Pagnoni
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, via Celoria 2, Milan 20133, Italy
| | - Safa Oufensou
- Department of Agricultural Sciences and NRD—Desertification Research Center, University of Sassari, Viale Italia 39a, Sassari, Sardegna 07100, Italy
| | - Virgilio Balmas
- Department of Agricultural Sciences and NRD—Desertification Research Center, University of Sassari, Viale Italia 39a, Sassari, Sardegna 07100, Italy
| | - Daniela Bulgari
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia 25123, Italy
| | - Emanuela Gobbi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia 25123, Italy
| | - Marco Forgia
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce, 73, Torino 10135, Italy
| | - Quirico Migheli
- Department of Agricultural Sciences and NRD—Desertification Research Center, University of Sassari, Viale Italia 39a, Sassari, Sardegna 07100, Italy
| | - Massimo Turina
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce, 73, Torino 10135, Italy
| |
Collapse
|
9
|
Kennedy GG, Sharpee W, Jacobson AL, Wambugu M, Mware B, Hanley-Bowdoin L. Genome segment ratios change during whitefly transmission of two bipartite cassava mosaic begomoviruses. Sci Rep 2023; 13:10059. [PMID: 37344614 DOI: 10.1038/s41598-023-37278-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023] Open
Abstract
Cassava mosaic disease is caused by a complex of whitefly-transmitted begomoviruses, which often occur in co-infections. These viruses have bipartite genomes consisting of DNA-A and DNA-B that are encapsidated into separate virions. Individual viruses exist in plants and whitefly vectors as populations comprising both genome segments, which can occur at different frequencies. Both segments are required for infection, and must be transmitted for virus spread to occur. Cassava plants infected with African cassava mosaic virus (ACMV) and/or East African cassava mosaic Cameroon virus (EACMCV), in which the ratios of DNA-A:DNA-B titers differed between plants, were used to examine how titers of the segments in a plant relate to their respective probabilities of acquisition by whiteflies and to the titers of each segment acquired and subsequently transmitted by whiteflies. The probabilities of acquiring each segment of ACMV did not reflect their relative titers in the source plant but they did for EACMCV. However, for both viruses, DNA-A:DNA-B ratios acquired by whiteflies differed from those in the source plant and the ratios transmitted by the whitefly did not differ from one - the ratio at which the highest probability of transmitting both segments is expected.
Collapse
Grants
- OISE-1545553 to L.H-B., G.G.K., and A.L.J. National Science Foundation
- OISE-1545553 to L.H-B., G.G.K., and A.L.J. National Science Foundation
- OISE-1545553 to L.H-B., G.G.K., and A.L.J. National Science Foundation
- OISE-1545553 to L.H-B., G.G.K., and A.L.J. National Science Foundation
- OISE-1545553 to L.H-B., G.G.K., and A.L.J. National Science Foundation
- OISE-1545553 to L.H-B., G.G.K., and A.L.J. National Science Foundation
- Hatch Project NCO2784 U.S. Department of Agriculture
Collapse
Affiliation(s)
- George G Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695-7630, USA.
| | - William Sharpee
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695-7630, USA
| | - Alana L Jacobson
- Department of Entomology, Auburn University, Auburn, AL, 36849, USA
| | - Mary Wambugu
- International Livestock Research Institute (BecA), Nairobi, Kenya
| | - Benard Mware
- International Livestock Research Institute (BecA), Nairobi, Kenya
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
10
|
Nigam D, Muthukrishnan E, Flores-López LF, Nigam M, Wamaitha MJ. Comparative Genome Analysis of Old World and New World TYLCV Reveals a Biasness toward Highly Variable Amino Acids in Coat Protein. PLANTS (BASEL, SWITZERLAND) 2023; 12:1995. [PMID: 37653912 PMCID: PMC10223811 DOI: 10.3390/plants12101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 09/02/2023]
Abstract
Begomoviruses, belonging to the family Geminiviridae and the genus Begomovirus, are DNA viruses that are transmitted by whitefly Bemisia tabaci (Gennadius) in a circulative persistent manner. They can easily adapt to new hosts and environments due to their wide host range and global distribution. However, the factors responsible for their adaptability and coevolutionary forces are yet to be explored. Among BGVs, TYLCV exhibits the broadest range of hosts. In this study, we have identified variable and coevolving amino acid sites in the proteins of Tomato yellow leaf curl virus (TYLCV) isolates from Old World (African, Indian, Japanese, and Oceania) and New World (Central and Southern America). We focused on mutations in the coat protein (CP), as it is highly variable and interacts with both vectors and host plants. Our observations indicate that some mutations were accumulating in Old World TYLCV isolates due to positive selection, with the S149N mutation being of particular interest. This mutation is associated with TYLCV isolates that have spread in Europe and Asia and is dominant in 78% of TYLCV isolates. On the other hand, the S149T mutation is restricted to isolates from Saudi Arabia. We further explored the implications of these amino acid changes through structural modeling. The results presented in this study suggest that certain hypervariable regions in the genome of TYLCV are conserved and may be important for adapting to different host environments. These regions could contribute to the mutational robustness of the virus, allowing it to persist in different host populations.
Collapse
Affiliation(s)
- Deepti Nigam
- Institute for Genomics of Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University (TTU), Lubbock, TX 79409, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
| | | | - Luis Fernando Flores-López
- Departamento de Biotecnología y Bioquímica, Centro de Investigacióny de Estudios Avanzados de IPN (CINVESTAV) Unidad Irapuato, Irapuato 368224, Mexico
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar 246174, Uttarakhand, India
| | - Mwathi Jane Wamaitha
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi P.O. Box 14733-00800, Kenya
| |
Collapse
|
11
|
Park H, Denha S, Higgs PG. Evolution of Bipartite and Segmented Viruses from Monopartite Viruses. Viruses 2023; 15:v15051135. [PMID: 37243221 DOI: 10.3390/v15051135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
RNA viruses may be monopartite (all genes on one strand), multipartite (two or more strands packaged separately) or segmented (two or more strands packaged together). In this article, we consider competition between a complete monopartite virus, A, and two defective viruses, D and E, that have complementary genes. We use stochastic models that follow gene translation, RNA replication, virus assembly, and transmission between cells. D and E multiply faster than A when stored in the same host as A or when together in the same host, but they cannot multiply alone. D and E strands are packaged as separate particles unless a mechanism evolves that allows assembly of D + E segmented particles. We show that if defective viruses assemble rapidly into separate particles, the formation of segmented particles is selected against. In this case, D and E spread as parasites of A, and the bipartite D + E combination eliminates A if the transmissibility is high. Alternatively, if defective strands do not assemble rapidly into separate particles, then a mechanism for assembly of segmented particles is selected for. In this case, the segmented virus can eliminate A if transmissibility is high. Conditions of excess protein resources favor bipartite viruses, while conditions of excess RNA resources favor segmented viruses. We study the error threshold behavior that arises when deleterious mutations are introduced. Relative to bipartite and segmented viruses, deleterious mutations favor monopartite viruses. A monopartite virus can give rise to either a bipartite or a segmented virus, but it is unlikely that both will originate from the same virus.
Collapse
Affiliation(s)
- Hyunjin Park
- Department of Physics and Astronomy, McMaster University, 1280 Main St. West, Hamilton, ON L8M 4S1, Canada
| | - Saven Denha
- Department of Physics and Astronomy, McMaster University, 1280 Main St. West, Hamilton, ON L8M 4S1, Canada
| | - Paul G Higgs
- Department of Physics and Astronomy, McMaster University, 1280 Main St. West, Hamilton, ON L8M 4S1, Canada
| |
Collapse
|
12
|
W B Jr M, A S R, P M, F B. Cellular and Natural Viral Engineering in Cognition-Based Evolution. Commun Integr Biol 2023; 16:2196145. [PMID: 37153718 PMCID: PMC10155641 DOI: 10.1080/19420889.2023.2196145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/23/2023] [Indexed: 05/10/2023] Open
Abstract
Neo-Darwinism conceptualizes evolution as the continuous succession of predominately random genetic variations disciplined by natural selection. In that frame, the primary interaction between cells and the virome is relegated to host-parasite dynamics governed by selective influences. Cognition-Based Evolution regards biological and evolutionary development as a reciprocating cognition-based informational interactome for the protection of self-referential cells. To sustain cellular homeorhesis, cognitive cells collaborate to assess the validity of ambiguous biological information. That collective interaction involves coordinate measurement, communication, and active deployment of resources as Natural Cellular Engineering. These coordinated activities drive multicellularity, biological development, and evolutionary change. The virome participates as the vital intercessory among the cellular domains to ensure their shared permanent perpetuation. The interactions between the virome and the cellular domains represent active virocellular cross-communications for the continual exchange of resources. Modular genetic transfers between viruses and cells carry bioactive potentials. Those exchanges are deployed as nonrandom flexible tools among the domains in their continuous confrontation with environmental stresses. This alternative framework fundamentally shifts our perspective on viral-cellular interactions, strengthening established principles of viral symbiogenesis. Pathogenesis can now be properly appraised as one expression of a range of outcomes between cells and viruses within a larger conceptual framework of Natural Viral Engineering as a co-engineering participant with cells. It is proposed that Natural Viral Engineering should be viewed as a co-existent facet of Natural Cellular Engineering within Cognition-Based Evolution.
Collapse
Affiliation(s)
- Miller W B Jr
- Banner Health Systems - Medicine, Paradise Valley, Arizona, AZ, USA
| | - Reber A S
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Marshall P
- Department of Engineering, Evolution 2.0, Oak Park, IL, USA
| | - Baluška F
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| |
Collapse
|
13
|
Leeks A, Young PG, Turner PE, Wild G, West SA. Cheating leads to the evolution of multipartite viruses. PLoS Biol 2023; 21:e3002092. [PMID: 37093882 PMCID: PMC10159356 DOI: 10.1371/journal.pbio.3002092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/04/2023] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
In multipartite viruses, the genome is split into multiple segments, each of which is transmitted via a separate capsid. The existence of multipartite viruses poses a problem, because replication is only possible when all segments are present within the same host. Given this clear cost, why is multipartitism so common in viruses? Most previous hypotheses try to explain how multipartitism could provide an advantage. In so doing, they require scenarios that are unrealistic and that cannot explain viruses with more than 2 multipartite segments. We show theoretically that selection for cheats, which avoid producing a shared gene product, but still benefit from gene products produced by other genomes, can drive the evolution of both multipartite and segmented viruses. We find that multipartitism can evolve via cheating under realistic conditions and does not require unreasonably high coinfection rates or any group-level benefit. Furthermore, the cheating hypothesis is consistent with empirical patterns of cheating and multipartitism across viruses. More broadly, our results show how evolutionary conflict can drive new patterns of genome organisation in viruses and elsewhere.
Collapse
Affiliation(s)
- Asher Leeks
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | | | - Paul Eugene Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, United States of America
| | - Geoff Wild
- Department of Mathematics, The University of Western Ontario, London, Canada
| | | |
Collapse
|
14
|
A New Perspective on the Co-Transmission of Plant Pathogens by Hemipterans. Microorganisms 2023; 11:microorganisms11010156. [PMID: 36677448 PMCID: PMC9865879 DOI: 10.3390/microorganisms11010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Co-infection of plants by pathogens is common in nature, and the interaction of the pathogens can affect the infection outcome. There are diverse ways in which viruses and bacteria are transmitted from infected to healthy plants, but insects are common vectors. The present review aims to highlight key findings of studies evaluating the co-transmission of plant pathogens by insects and identify challenges encountered in these studies. In this review, we evaluated whether similar pathogens might compete during co-transmission; whether the changes in the pathogen titer in the host, in particular associated with the co-infection, could influence its transmission; and finally, we discussed the pros and cons of the different approaches used to study co-transmission. At the end of the review, we highlighted areas of study that need to be addressed. This review shows that despite the recent development of techniques and methods to study the interactions between pathogens and their insect vectors, there are still gaps in the knowledge of pathogen transmission. Additional laboratory and field studies using different pathosystems will help elucidate the role of host co-infection and pathogen co-transmission in the ecology and evolution of infectious diseases.
Collapse
|
15
|
Dubey D, Hoyer JS, Duffy S. Limited role of recombination in the global diversification of begomovirus DNA-B proteins. Virus Res 2023; 323:198959. [PMID: 36209920 PMCID: PMC10194223 DOI: 10.1016/j.virusres.2022.198959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Approximately half of the characterized begomoviruses have bipartite genomes, but the second genomic segment, the DNA-B, is understudied relative to the DNA-A, which is homologous to the entire genome of monopartite begomoviruses. We examined the evolutionary history of the two proteins encoded by the DNA-B, the genes of which make up ∼60% of the DNA-B segment, from all bipartite begomovirus species. Our dataset of 131 movement protein (MP) and nuclear shuttle protein (NSP) sequences confirmed the deep split between Old World (OW) and New World (NW) species, and showed strong support for deep, congruent branches among the OW sequences of the MP and NSP. NW sequences were much less diverse and had poor phylogenetic resolution; over half of nodes in both the NSP and MP NW clades were supported by <50% bootstrap support. This poor resolution hampered our ability to detect incongruent phylogenies between the MP and NSP datasets, and we found no statistical evidence for recombination within our MP and NSP datasets. Finally, we quantified the sequence diversity between the NW and OW proteins, showing that the NW MP has particularly low diversity, suggesting it has been subject to different evolutionary pressures than the NW NSP.
Collapse
Affiliation(s)
- Divya Dubey
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - J Steen Hoyer
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA.
| |
Collapse
|
16
|
Okada K, Tanaka T, Fukuoka S, Oono Y, Mishina K, Oikawa T, Sato K, Kato T, Komatsuda T, Namai K. Two dominant genes in barley ( Hordeum vulgare L.) complementarily encode perfect resistance to Japanese soil-borne wheat mosaic virus. BREEDING SCIENCE 2022; 72:372-382. [PMID: 36776442 PMCID: PMC9895801 DOI: 10.1270/jsbbs.22046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/17/2022] [Indexed: 06/18/2023]
Abstract
Japanese soil-borne wheat mosaic virus (Furovirus) is a damaging pathogen of wheat and barley. This virus can survive in the soil for several decades, so the deployment of resistant cultivars represents the only practical control measure. Here, a genetic analysis has identified two regions of the barley genome-one on chromosome 2H and the other on chromosome 3H-as harboring gene(s) encoding resistance to this virus. The joint presence of both loci, termed Jmv1 and Jmv2, made the plants essentially immune, with resistance being dominant over susceptibility at each locus. Phylogenetic analysis showed that the virus is not closely related to the type Furovirus species Soil-borne wheat mosaic virus. There was a difference between the RNA1- and RNA2-based phylogenies of the virus species in Furovirus implying the independent segregation of the virus subgenomes.
Collapse
Affiliation(s)
- Kaori Okada
- Tochigi Prefectural Agricultural Experiment Station, 1080 Kawaraya-cho, Utsunomiya, Tochigi 320-0002, Japan
| | - Tsuyoshi Tanaka
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Kan-non-dai, Tsukuba, Ibaraki 305-8518, Japan
| | - Shuichi Fukuoka
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Kan-non-dai, Tsukuba, Ibaraki 305-8518, Japan
| | - Youko Oono
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Kan-non-dai, Tsukuba, Ibaraki 305-8518, Japan
| | - Kohei Mishina
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Kan-non-dai, Tsukuba, Ibaraki 305-8518, Japan
| | - Tetsuo Oikawa
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Kan-non-dai, Tsukuba, Ibaraki 305-8518, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | - Tsuneo Kato
- Tochigi Prefectural Agricultural Experiment Station, 1080 Kawaraya-cho, Utsunomiya, Tochigi 320-0002, Japan
| | - Takao Komatsuda
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Kan-non-dai, Tsukuba, Ibaraki 305-8518, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8510, Japan
- Crop Research Institute, Shandong Academy of Agricultural Sciences (SAAS), 202 Gongyebei Road, Licheng District, Ji’nan, 250100 Shandong, China
| | - Kiyoshi Namai
- Tochigi Prefectural Agricultural Experiment Station, 1080 Kawaraya-cho, Utsunomiya, Tochigi 320-0002, Japan
| |
Collapse
|
17
|
Bermúdez-Méndez E, Bronsvoort KF, Zwart MP, van de Water S, Cárdenas-Rey I, Vloet RPM, Koenraadt CJM, Pijlman GP, Kortekaas J, Wichgers Schreur PJ. Incomplete bunyavirus particles can cooperatively support virus infection and spread. PLoS Biol 2022; 20:e3001870. [PMID: 36378688 PMCID: PMC9665397 DOI: 10.1371/journal.pbio.3001870] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Bunyaviruses lack a specific mechanism to ensure the incorporation of a complete set of genome segments into each virion, explaining the generation of incomplete virus particles lacking one or more genome segments. Such incomplete virus particles, which may represent the majority of particles produced, are generally considered to interfere with virus infection and spread. Using the three-segmented arthropod-borne Rift Valley fever virus as a model bunyavirus, we here show that two distinct incomplete virus particle populations unable to spread autonomously are able to efficiently complement each other in both mammalian and insect cells following co-infection. We further show that complementing incomplete virus particles can co-infect mosquitoes, resulting in the reconstitution of infectious virus that is able to disseminate to the mosquito salivary glands. Computational models of infection dynamics predict that incomplete virus particles can positively impact virus spread over a wide range of conditions, with the strongest effect at intermediate multiplicities of infection. Our findings suggest that incomplete particles may play a significant role in within-host spread and between-host transmission, reminiscent of the infection cycle of multipartite viruses.
Collapse
Affiliation(s)
- Erick Bermúdez-Méndez
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands
| | - Kirsten F. Bronsvoort
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Mark P. Zwart
- Department of Microbial Ecology, The Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Sandra van de Water
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Ingrid Cárdenas-Rey
- Department of Bacteriology, Host-Pathogen Interactions and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Rianka P. M. Vloet
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | | | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jeroen Kortekaas
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands
| | - Paul J. Wichgers Schreur
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- * E-mail:
| |
Collapse
|
18
|
Colmant AMG, Charrel RN, Coutard B. Jingmenviruses: Ubiquitous, understudied, segmented flavi-like viruses. Front Microbiol 2022; 13:997058. [PMID: 36299728 PMCID: PMC9589506 DOI: 10.3389/fmicb.2022.997058] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022] Open
Abstract
Jingmenviruses are a group of viruses identified recently, in 2014, and currently classified by the International Committee on Taxonomy of Viruses as unclassified Flaviviridae. These viruses closely related to flaviviruses are unique due to the segmented nature of their genome. The prototype jingmenvirus, Jingmen tick virus (JMTV), was discovered in Rhipicephalus microplus ticks collected from China in 2010. Jingmenviruses genomes are composed of four to five segments, encoding for up to seven structural proteins and two non-structural proteins, both of which display strong similarities with flaviviral non-structural proteins (NS2B/NS3 and NS5). Jingmenviruses are currently separated into two phylogenetic clades. One clade includes tick- and vertebrate-associated jingmenviruses, which have been detected in ticks and mosquitoes, as well as in humans, cattle, monkeys, bats, rodents, sheep, and tortoises. In addition to these molecular and serological detections, over a hundred human patients tested positive for jingmenviruses after developing febrile illness and flu-like symptoms in China and Serbia. The second phylogenetic clade includes insect-associated jingmenvirus sequences, which have been detected in a wide range of insect species, as well as in crustaceans, plants, and fungi. In addition to being found in various types of hosts, jingmenviruses are endemic, as they have been detected in a wide range of environments, all over the world. Taken together, all of these elements show that jingmenviruses correspond exactly to the definition of emerging viruses at risk of causing a pandemic, since they are already endemic, have a close association with arthropods, are found in animals in close contact with humans, and have caused sporadic cases of febrile illness in multiple patients. Despite these arguments, the vast majority of published data is from metagenomics studies and many aspects of jingmenvirus replication remain to be elucidated, such as their tropism, cycle of transmission, structure, and mechanisms of replication and restriction or epidemiology. It is therefore crucial to prioritize jingmenvirus research in the years to come, to be prepared for their emergence as human or veterinary pathogens.
Collapse
|
19
|
Nonconcomitant host-to-host transmission of multipartite virus genome segments may lead to complete genome reconstitution. Proc Natl Acad Sci U S A 2022; 119:e2201453119. [PMID: 35914138 PMCID: PMC9371732 DOI: 10.1073/pnas.2201453119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Because multipartite viruses package their genome segments in different viral particles, they face a potentially huge cost if the entire genomic information, i.e., all genome segments, needs to be present concomitantly for the infection to function. Previous work with the octapartite faba bean necrotic stunt virus (FBNSV; family Nanoviridae, genus Nanovirus) showed that this issue can be resolved at the within-host level through a supracellular functioning; all viral segments do not need to be present within the same host cell but may complement each other through intercellular trafficking of their products (protein or messenger RNA [mRNA]). Here, we report on whether FBNSV can as well decrease the genomic integrity cost during between-host transmission. Using viable infections lacking nonessential virus segments, we show that full-genome infections can be reconstituted and function through separate acquisition and/or inoculation of complementary sets of genome segments in recipient hosts. This separate acquisition/inoculation can occur either through the transmission of different segment sets by different individual aphid vectors or by the sequential acquisition by the same aphid of complementary sets of segments from different hosts. The possibility of a separate between-host transmission of different genome segments thus offers a way to at least partially resolve the genomic maintenance problem faced by multipartite viruses.
Collapse
|
20
|
Manrubia S. The simple emergence of complex molecular function. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200422. [PMID: 35599566 DOI: 10.1098/rsta.2020.0422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
At odds with a traditional view of molecular evolution that seeks a descent-with-modification relationship between functional sequences, new functions can emerge de novo with relative ease. At early times of molecular evolution, random polymers could have sufficed for the appearance of incipient chemical activity, while the cellular environment harbours a myriad of proto-functional molecules. The emergence of function is facilitated by several mechanisms intrinsic to molecular organization, such as redundant mapping of sequences into structures, phenotypic plasticity, modularity or cooperative associations between genomic sequences. It is the availability of niches in the molecular ecology that filters new potentially functional proposals. New phenotypes and subsequent levels of molecular complexity could be attained through combinatorial explorations of currently available molecular variants. Natural selection does the rest. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.
Collapse
Affiliation(s)
- Susanna Manrubia
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Systems Biology Department, National Biotechnology Centre (CSIC), c/Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
21
|
Gallet R, Di Mattia J, Ravel S, Zeddam JL, Vitalis R, Michalakis Y, Blanc S. Gene copy number variations at the within-host population level modulate gene expression in a multipartite virus. Virus Evol 2022; 8:veac058. [PMID: 35799884 PMCID: PMC9255600 DOI: 10.1093/ve/veac058] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 11/12/2022] Open
Abstract
Multipartite viruses have a segmented genome, with each segment encapsidated separately. In all multipartite virus species for which the question has been addressed, the distinct segments reproducibly accumulate at a specific and host-dependent relative frequency, defined as the 'genome formula'. Here, we test the hypothesis that the multipartite genome organization facilitates the regulation of gene expression via changes of the genome formula and thus via gene copy number variations. In a first experiment, the faba bean necrotic stunt virus (FBNSV), whose genome is composed of eight DNA segments each encoding a single gene, was inoculated into faba bean or alfalfa host plants, and the relative concentrations of the DNA segments and their corresponding messenger RNAs (mRNAs) were monitored. In each of the two host species, our analysis consistently showed that the genome formula variations modulate gene expression, the concentration of each genome segment linearly and positively correlating to that of its cognate mRNA but not of the others. In a second experiment, twenty parallel FBNSV lines were transferred from faba bean to alfalfa plants. Upon host switching, the transcription rate of some genome segments changes, but the genome formula is modified in a way that compensates for these changes and maintains a similar ratio between the various viral mRNAs. Interestingly, a deep-sequencing analysis of these twenty FBNSV lineages demonstrated that the host-related genome formula shift operates independently of DNA-segment sequence mutation. Together, our results indicate that nanoviruses are plastic genetic systems, able to transiently adjust gene expression at the population level in changing environments, by modulating the copy number but not the sequence of each of their genes.
Collapse
Affiliation(s)
- Romain Gallet
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
- CBGP, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - Jérémy Di Mattia
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - Sébastien Ravel
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - Jean-Louis Zeddam
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - Renaud Vitalis
- CBGP, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | | | - Stéphane Blanc
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
- MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
22
|
Rodríguez-Verástegui LL, Ramírez-Zavaleta CY, Capilla-Hernández MF, Gregorio-Jorge J. Viruses Infecting Trees and Herbs That Produce Edible Fleshy Fruits with a Prominent Value in the Global Market: An Evolutionary Perspective. PLANTS (BASEL, SWITZERLAND) 2022; 11:203. [PMID: 35050091 PMCID: PMC8778216 DOI: 10.3390/plants11020203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 05/12/2023]
Abstract
Trees and herbs that produce fruits represent the most valuable agricultural food commodities in the world. However, the yield of these crops is not fully achieved due to biotic factors such as bacteria, fungi, and viruses. Viruses are capable of causing alterations in plant growth and development, thereby impacting the yield of their hosts significantly. In this work, we first compiled the world's most comprehensive list of known edible fruits that fits our definition. Then, plant viruses infecting those trees and herbs that produce fruits with commercial importance in the global market were identified. The identified plant viruses belong to 30 families, most of them containing single-stranded RNA genomes. Importantly, we show the overall picture of the host range for some virus families following an evolutionary approach. Further, the current knowledge about plant-virus interactions, focusing on the main disorders they cause, as well as yield losses, is summarized. Additionally, since accurate diagnosis methods are of pivotal importance for viral diseases control, the current and emerging technologies for the detection of these plant pathogens are described. Finally, the most promising strategies employed to control viral diseases in the field are presented, focusing on solutions that are long-lasting.
Collapse
Affiliation(s)
| | - Candy Yuriria Ramírez-Zavaleta
- Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, San Pedro Xalcaltzinco 90180, Mexico; (C.Y.R.-Z.); (M.F.C.-H.)
| | - María Fernanda Capilla-Hernández
- Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, San Pedro Xalcaltzinco 90180, Mexico; (C.Y.R.-Z.); (M.F.C.-H.)
| | - Josefat Gregorio-Jorge
- Consejo Nacional de Ciencia y Tecnología, Universidad Politécnica de Tlaxcala, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Ciudad de Mexico 03940, Mexico
| |
Collapse
|
23
|
Ouattara A, Tiendrébéogo F, Becker N, Urbino C, Thébaud G, Hoareau M, Allibert A, Chiroleu F, Vernerey MS, Traoré EV, Barro N, Traoré O, Lefeuvre P, Lett JM. Synergy between an emerging monopartite begomovirus and a DNA-B component. Sci Rep 2022; 12:695. [PMID: 35027584 PMCID: PMC8758689 DOI: 10.1038/s41598-021-03957-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022] Open
Abstract
In recent decades, a legion of monopartite begomoviruses transmitted by the whitefly Bemisia tabaci has emerged as serious threats to vegetable crops in Africa. Recent studies in Burkina Faso (West Africa) reported the predominance of pepper yellow vein Mali virus (PepYVMLV) and its frequent association with a previously unknown DNA-B component. To understand the role of this DNA-B component in the emergence of PepYVMLV, we assessed biological traits related to virulence, virus accumulation, location in the tissue and transmission. We demonstrate that the DNA-B component is not required for systemic movement and symptom development of PepYVMLV (non-strict association), but that its association produces more severe symptoms including growth arrest and plant death. The increased virulence is associated with a higher viral DNA accumulation in plant tissues, an increase in the number of contaminated nuclei of the phloem parenchyma and in the transmission rate by B. tabaci. Our results suggest that the association of a DNA-B component with the otherwise monopartite PepYVMLV is a key factor of its emergence.
Collapse
Affiliation(s)
- Alassane Ouattara
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de l'Environnement et de Recherches Agricoles (INERA), 01 BP 476, Ouagadougou 01, Burkina Faso
- CIRAD, UMR PVBMT, 97410, St Pierre, La Réunion, France
- Université de La Réunion, UMR PVBMT, 97410, Saint-Pierre, La Réunion, France
- Université Joseph Ki-Zerbo, 03 BP 7021, Ouagadougou 03, Burkina Faso
- Laboratoire Mixte International Patho-Bios, IRD-INERA, 01 BP 476, Ouagadougou 01, Burkina Faso
| | - Fidèle Tiendrébéogo
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de l'Environnement et de Recherches Agricoles (INERA), 01 BP 476, Ouagadougou 01, Burkina Faso
- Laboratoire Mixte International Patho-Bios, IRD-INERA, 01 BP 476, Ouagadougou 01, Burkina Faso
| | - Nathalie Becker
- UMR Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005, Paris, France
| | - Cica Urbino
- CIRAD, UMR PHIM, 34090, Montpellier, France
- PHIM Plant Health Institute, INRAE, Univ Montpellier, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Gaël Thébaud
- PHIM Plant Health Institute, INRAE, Univ Montpellier, CIRAD, Institut Agro, IRD, Montpellier, France
| | | | | | | | - Marie-Stéphanie Vernerey
- PHIM Plant Health Institute, INRAE, Univ Montpellier, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Edgar Valentin Traoré
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de l'Environnement et de Recherches Agricoles (INERA), 01 BP 476, Ouagadougou 01, Burkina Faso
- Laboratoire Mixte International Patho-Bios, IRD-INERA, 01 BP 476, Ouagadougou 01, Burkina Faso
| | - Nicolas Barro
- Université Joseph Ki-Zerbo, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Oumar Traoré
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de l'Environnement et de Recherches Agricoles (INERA), 01 BP 476, Ouagadougou 01, Burkina Faso
- Laboratoire National de Biosécurité (LNB), 06 BP 10798, Ouagadougou 06, Burkina Faso
| | | | | |
Collapse
|
24
|
Pasin F, Daròs JA, Tzanetakis IE. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6534904. [PMID: 35195244 PMCID: PMC9249622 DOI: 10.1093/femsre/fuac011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Potyviridae, the largest family of known RNA viruses (realm Riboviria), belongs to the picorna-like supergroup and has important agricultural and ecological impacts. Potyvirid genomes are translated into polyproteins, which are in turn hydrolyzed to release mature products. Recent sequencing efforts revealed an unprecedented number of potyvirids with a rich variability in gene content and genomic layouts. Here, we review the heterogeneity of non-core modules that expand the structural and functional diversity of the potyvirid proteomes. We provide a family-wide classification of P1 proteinases into the functional Types A and B, and discuss pretty interesting sweet potato potyviral ORF (PISPO), putative zinc fingers, and alkylation B (AlkB)—non-core modules found within P1 cistrons. The atypical inosine triphosphate pyrophosphatase (ITPase/HAM1), as well as the pseudo tobacco mosaic virus-like coat protein (TMV-like CP) are discussed alongside homologs of unrelated virus taxa. Family-wide abundance of the multitasking helper component proteinase (HC-pro) is revised. Functional connections between non-core modules are highlighted to support host niche adaptation and immune evasion as main drivers of the Potyviridae evolutionary radiation. Potential biotechnological and synthetic biology applications of potyvirid leader proteinases and non-core modules are finally explored.
Collapse
Affiliation(s)
- Fabio Pasin
- Corresponding author: Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), UPV Building 8E, Ingeniero Fausto Elio, 46011 Valencia, Spain. E-mail:
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), 46011 Valencia, Spain
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, 72701 Fayetteville, AR, USA
| |
Collapse
|
25
|
Škorić D, Černi S, Ćurković-Perica M, Ježić M, Krajačić M, Šeruga Musić M. Legacy of Plant Virology in Croatia-From Virus Identification to Molecular Epidemiology, Evolution, Genomics and Beyond. Viruses 2021; 13:2339. [PMID: 34960609 PMCID: PMC8707422 DOI: 10.3390/v13122339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
This paper showcases the development of plant virology in Croatia at the University of Zagreb, Faculty of Science, from its beginning in the 1950s until today, more than 70 years later. The main achievements of the previous and current group members are highlighted according to various research topics and fields. Expectedly, some of those accomplishments remained within the field of plant virology, but others make part of a much-extended research spectrum exploring subviral pathogens, prokaryotic plant pathogens, fungi and their viruses, as well as their interactions within ecosystems. Thus, the legacy of plant virology in Croatia continues to contribute to the state of the art of microbiology far beyond virology. Research problems pertinent for directing the future research endeavors are also proposed in this review.
Collapse
Affiliation(s)
- Dijana Škorić
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (S.Č.); (M.Ć.-P.); (M.J.); (M.K.); (M.Š.M.)
| | | | | | | | | | | |
Collapse
|
26
|
Solé R, Sardanyés J, Elena SF. Phase transitions in virology. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:115901. [PMID: 34584031 DOI: 10.1088/1361-6633/ac2ab0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Viruses have established relationships with almost every other living organism on Earth and at all levels of biological organization: from other viruses up to entire ecosystems. In most cases, they peacefully coexist with their hosts, but in most relevant cases, they parasitize them and induce diseases and pandemics, such as the AIDS and the most recent avian influenza and COVID-19 pandemic events, causing a huge impact on health, society, and economy. Viruses play an essential role in shaping the eco-evolutionary dynamics of their hosts, and have been also involved in some of the major evolutionary innovations either by working as vectors of genetic information or by being themselves coopted by the host into their genomes. Viruses can be studied at different levels of biological organization, from the molecular mechanisms of genome replication, gene expression and encapsidation, to global pandemics. All these levels are different and yet connected through the presence of threshold conditions allowing for the formation of a capsid, the loss of genetic information or epidemic spreading. These thresholds, as occurs with temperature separating phases in a liquid, define sharp qualitative types of behaviour. Thesephase transitionsare very well known in physics. They have been studied by means of simple, but powerful models able to capture their essential properties, allowing us to better understand them. Can the physics of phase transitions be an inspiration for our understanding of viral dynamics at different scales? Here we review well-known mathematical models of transition phenomena in virology. We suggest that the advantages of abstract, simplified pictures used in physics are also the key to properly understanding the origins and evolution of complexity in viruses. By means of several examples, we explore this multilevel landscape and how minimal models provide deep insights into a diverse array of problems. The relevance of these transitions in connecting dynamical patterns across scales and their evolutionary and clinical implications are outlined.
Collapse
Affiliation(s)
- Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra-PRBB, Dr Aiguader 80, 08003 Barcelona, Spain
- Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Passeig Maritim de la Barceloneta 37, 08003 Barcelona, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM 87501, United States of America
| | - Josep Sardanyés
- Centre de Recerca Matemàtica (CRM), Edifici C, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Dynamical Systems and Computational Virology, CSIC Associated Unit, Institute for Integrative Systems Biology (I2SysBio)-CRM, Spain
| | - Santiago F Elena
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM 87501, United States of America
- Evolutionary Systems Virology Lab (I2SysBio), CSIC-Universitat de València, Catedrático Agustín Escardino 9, Paterna, 46980 València, Spain
| |
Collapse
|
27
|
Abstract
Despite tight genetic compression, viral genomes are often organized into functional gene clusters, a modular structure that might favor their evolvability. This has greatly facilitated biotechnological developments such as the recombinant adeno-associated virus (AAV) systems for gene therapy. Following this lead, we endeavored to engineer the related insect parvovirus Junonia coenia densovirus (JcDV) to create addressable vectors for insect pest biocontrol. To enable safer manipulation of capsid mutants, we translocated the nonstructural (ns) gene cluster outside the viral genome. To our dismay, this yielded a virtually nonreplicable clone. We linked the replication defect to an unexpected modularity breach, as ns translocation truncated the overlapping 3' untranslated region (UTR) of the capsid transcript (vp). We found that the native vp 3' UTR is necessary for high-level VP production but that decreased expression does not adversely impact the expression of NS proteins, which are known replication effectors. As nonsense vp mutations recapitulate the replication defect, VP proteins appear to be directly implicated in the replication process. Our findings suggest intricate replication-encapsidation couplings that favor the maintenance of genetic integrity. We discuss possible connections with an intriguing cis-packaging phenomenon previously observed in parvoviruses whereby capsids preferentially package the genome from which they were expressed. IMPORTANCE Densoviruses could be used as biological control agents to manage insect pests. Such applications require an in-depth biological understanding and associated molecular tools. However, the genomes of these viruses remain difficult to manipulate due to poorly tractable secondary structures at their extremities. We devised a construction strategy that enables precise and efficient molecular modifications. Using this approach, we endeavored to create a split clone of Junonia coenia densovirus (JcDV) that can be used to safely study the impact of capsid mutations on host specificity. Our original construct proved to be nonfunctional. Fixing this defect led us to uncover that capsid proteins and their correct expression are essential for continued rolling-hairpin replication. This points to an intriguing link between replication and packaging, which might be shared with related viruses. This serendipitous discovery illustrates the power of synthetic biology approaches to advance our knowledge of biological systems.
Collapse
|
28
|
Abstract
Multipartite virus genomes are composed of several segments, each packaged in a distinct viral particle. Although this puzzling genome architecture is found in ∼17% of known viral species, its distribution among hosts or among distinct types of genome-composing nucleic acid remains poorly understood. No convincing advantage of multipartitism has been identified, yet the maintenance of genomic integrity appears problematic. Here we review recent studies shedding light on these issues. Multipartite viruses rapidly modify the copy number of each segment/gene from one host species to another, a putative benefit if host switches are common. One multipartite virus functions in a multicellular way: The segments do not all need to be present in the same cell and can functionally complement across cells, maintaining genome integrity within hosts. The genomic integrity maintenance during host-to-host transmission needs further elucidation. These features challenge several virology foundations and could apply to other multicomponent viral systems.
Collapse
Affiliation(s)
- Yannis Michalakis
- Maladies Infectieuses et Vecteurs Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université Montpellier, 34394 Montpellier, France;
| | - Stéphane Blanc
- Unité Mixte de Recherche-Biologie et Génétique des Interactions Plante-Parasite (UMR BGPI), Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier SupAgro, Université Montpellier, 34398 Montpellier, France;
| |
Collapse
|
29
|
Abstract
Despite their simplicity, viruses exhibit certain types of social interactions. Situations in which a given virus achieves higher fitness in combination with other members of the viral population have been described at the level of transmission, replication, suppression of host immune responses, and host killing, enabling the evolution of viral cooperation. Although cellular coinfection with multiple viral particles is the typical playground for these interactions, cooperation between viruses infecting different cells is also established through cellular and viral-encoded communication systems. In general, the stability of cooperation is compromised by cheater genotypes, as best exemplified by defective interfering particles. As predicted by social evolution theory, cheater invasion can be avoided when cooperators interact preferentially with other cooperators, a situation that is promoted in spatially structured populations. Processes such as transmission bottlenecks, organ compartmentalization, localized spread of infection foci, superinfection exclusion, and even discrete intracellular replication centers promote multilevel spatial structuring in viruses. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas and Universitat de València, 46980 Paterna, València, Spain;
| |
Collapse
|
30
|
Xavier CAD, Godinho MT, Mar TB, Ferro CG, Sande OFL, Silva JC, Ramos-Sobrinho R, Nascimento RN, Assunção I, Lima GSA, Lima ATM, Murilo Zerbini F. Evolutionary dynamics of bipartite begomoviruses revealed by complete genome analysis. Mol Ecol 2021; 30:3747-3767. [PMID: 34021651 DOI: 10.1111/mec.15997] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022]
Abstract
Several key evolutionary events marked the evolution of geminiviruses, culminating with the emergence of divided (bipartite) genomes represented by viruses classified in the genus Begomovirus. This genus represents the most abundant group of multipartite viruses, contributing significantly to the observed abundance of multipartite species in the virosphere. Although aspects related to virus-host interactions and evolutionary dynamics have been extensively studied, the bipartite nature of these viruses has been little explored in evolutionary studies. Here, we performed a parallel evolutionary analysis of the DNA-A and DNA-B segments of New World begomoviruses. A total of 239 full-length DNA-B sequences obtained in this study, combined with 292 DNA-A and 76 DNA-B sequences retrieved from GenBank, were analysed. The results indicate that the DNA-A and DNA-B respond differentially to evolutionary processes, with the DNA-B being more permissive to variation and more prone to recombination than the DNA-A. Although a clear geographic segregation was observed for both segments, differences in the genetic structure between DNA-A and DNA-B were also observed, with cognate segments belonging to distinct genetic clusters. DNA-B coding regions evolve under the same selection pressures than DNA-A coding regions. Together, our results indicate an interplay between reassortment and recombination acting at different levels across distinct subpopulations and segments.
Collapse
Affiliation(s)
- César A D Xavier
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Márcio T Godinho
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Talita B Mar
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Camila G Ferro
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Osvaldo F L Sande
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - José C Silva
- Dep. de Bioquímica e Biologia Molecular/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Roberto Ramos-Sobrinho
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Renato N Nascimento
- Centro de Ciências Agrárias/Fitossanidade, Universidade Federal de Alagoas, Rio Largo, Alagoas, Brazil
| | - Iraildes Assunção
- Centro de Ciências Agrárias/Fitossanidade, Universidade Federal de Alagoas, Rio Largo, Alagoas, Brazil
| | - Gaus S A Lima
- Centro de Ciências Agrárias/Fitossanidade, Universidade Federal de Alagoas, Rio Largo, Alagoas, Brazil
| | - Alison T M Lima
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - F Murilo Zerbini
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
31
|
Bermúdez-Méndez E, Katrukha EA, Spruit CM, Kortekaas J, Wichgers Schreur PJ. Visualizing the ribonucleoprotein content of single bunyavirus virions reveals more efficient genome packaging in the arthropod host. Commun Biol 2021; 4:345. [PMID: 33753850 PMCID: PMC7985392 DOI: 10.1038/s42003-021-01821-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/09/2021] [Indexed: 01/31/2023] Open
Abstract
Bunyaviruses have a genome that is divided over multiple segments. Genome segmentation complicates the generation of progeny virus, since each newly formed virus particle should preferably contain a full set of genome segments in order to disseminate efficiently within and between hosts. Here, we combine immunofluorescence and fluorescence in situ hybridization techniques to simultaneously visualize bunyavirus progeny virions and their genomic content at single-molecule resolution in the context of singly infected cells. Using Rift Valley fever virus and Schmallenberg virus as prototype tri-segmented bunyaviruses, we show that bunyavirus genome packaging is influenced by the intracellular viral genome content of individual cells, which results in greatly variable packaging efficiencies within a cell population. We further show that bunyavirus genome packaging is more efficient in insect cells compared to mammalian cells and provide new insights on the possibility that incomplete particles may contribute to bunyavirus spread as well.
Collapse
Affiliation(s)
- Erick Bermúdez-Méndez
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Cindy M Spruit
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jeroen Kortekaas
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
32
|
Zwart MP, Blanc S, Johnson M, Manrubia S, Michalakis Y, Sofonea MT. Unresolved advantages of multipartitism in spatially structured environments. Virus Evol 2021; 7:veab004. [PMID: 33614160 PMCID: PMC7882214 DOI: 10.1093/ve/veab004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Multipartite viruses have segmented genomes and package each of their genome segments individually into distinct virus particles. Multipartitism is common among plant viruses, but why this apparently costly genome organization and packaging has evolved remains unclear. Recently Zhang and colleagues developed network epidemiology models to study the epidemic spread of multipartite viruses and their distribution over plant and animal hosts (Phys. Rev. Lett. 2019, 123, 138101). In this short commentary, we call into question the relevance of these results because of key model assumptions. First, the model of plant hosts assumes virus transmission only occurs between adjacent plants. This assumption overlooks the basic but imperative fact that most multipartite viruses are transmitted over variable distances by mobile animal vectors, rendering the model results irrelevant to differences between plant and animal hosts. Second, when not all genome segments of a multipartite virus are transmitted to a host, the model assumes an incessant latent infection occurs. This is a bold assumption for which there is no evidence to date, making the relevance of these results to understanding multipartitism questionable.
Collapse
Affiliation(s)
- Mark P Zwart
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Postbus 50, Wageningen 6700 AB, The Netherlands
| | - Stéphane Blanc
- BGPI, INRA, CIRAD, Montpellier SupAgro, Univ Montpellier, Montpellier 34398, France
| | - Marcelle Johnson
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Postbus 50, Wageningen 6700 AB, The Netherlands
| | - Susanna Manrubia
- National Centre for Biotechnology (CSIC), C/Darwin no 3, Campus de Cantoblanco, Madrid 28049, Spain
| | - Yannis Michalakis
- UMR MIVEGEC 5290, Université de Montpellier-CNRS-IRD, Montpellier 34394, France.,Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier 34394, France
| | - Mircea T Sofonea
- UMR MIVEGEC 5290, Université de Montpellier-CNRS-IRD, Montpellier 34394, France.,Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier 34394, France
| |
Collapse
|
33
|
Jeger MJ. The Epidemiology of Plant Virus Disease: Towards a New Synthesis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1768. [PMID: 33327457 PMCID: PMC7764944 DOI: 10.3390/plants9121768] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Epidemiology is the science of how disease develops in populations, with applications in human, animal and plant diseases. For plant diseases, epidemiology has developed as a quantitative science with the aims of describing, understanding and predicting epidemics, and intervening to mitigate their consequences in plant populations. Although the central focus of epidemiology is at the population level, it is often necessary to recognise the system hierarchies present by scaling down to the individual plant/cellular level and scaling up to the community/landscape level. This is particularly important for diseases caused by plant viruses, which in most cases are transmitted by arthropod vectors. This leads to range of virus-plant, virus-vector and vector-plant interactions giving a distinctive character to plant virus epidemiology (whilst recognising that some fungal, oomycete and bacterial pathogens are also vector-borne). These interactions have epidemiological, ecological and evolutionary consequences with implications for agronomic practices, pest and disease management, host resistance deployment, and the health of wild plant communities. Over the last two decades, there have been attempts to bring together these differing standpoints into a new synthesis, although this is more apparent for evolutionary and ecological approaches, perhaps reflecting the greater emphasis on shorter often annual time scales in epidemiological studies. It is argued here that incorporating an epidemiological perspective, specifically quantitative, into this developing synthesis will lead to new directions in plant virus research and disease management. This synthesis can serve to further consolidate and transform epidemiology as a key element in plant virus research.
Collapse
Affiliation(s)
- Michael J Jeger
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, UK
| |
Collapse
|
34
|
Zwart MP, Elena SF. Modeling multipartite virus evolution: the genome formula facilitates rapid adaptation to heterogeneous environments †. Virus Evol 2020; 6:veaa022. [PMID: 32405432 PMCID: PMC7206449 DOI: 10.1093/ve/veaa022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Multipartite viruses have two or more genome segments, and package different segments into different particle types. Although multipartition is thought to have a cost for virus transmission, its benefits are not clear. Recent experimental work has shown that the equilibrium frequency of viral genome segments, the setpoint genome formula (SGF), can be unbalanced and host-species dependent. These observations have reinvigorated the hypothesis that changes in genome-segment frequencies can lead to changes in virus-gene expression that might be adaptive. Here we explore this hypothesis by developing models of bipartite virus infection, leading to a threefold contribution. First, we show that the SGF depends on the cellular multiplicity of infection (MOI), when the requirements for infection clash with optimizing the SGF for virus-particle yield per cell. Second, we find that convergence on the SGF is very rapid, often occurring within a few cellular rounds of infection. Low and intermediate MOIs lead to faster convergence on the SGF. For low MOIs, this effect occurs because of the requirements for infection, whereas for intermediate MOIs this effect is also due to the high levels of variation generated in the genome formula (GF). Third, we explored the conditions under which a bipartite virus could outcompete a monopartite one. As the heterogeneity between environments and specificity of gene-expression requirements for each environment increased, the bipartite virus was more likely to outcompete the monopartite virus. Under some conditions, changes in the GF helped to exclude the monopartite competitor, highlighting the versatility of the GF. Our results show the inextricable relationship between MOI and the SGF, and suggest that under some conditions, the cost of multipartition can be outweighed by its benefits for the rapid tuning of viral gene expression.
Collapse
Affiliation(s)
- Mark P Zwart
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Postbus 50, 6700 AB, Wageningen, The Netherlands
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, Valéncia 46980, Spain.,The Santa Fe Institute, Santa Fe, 1399 Hyde Park Road, NM 87501, USA
| |
Collapse
|
35
|
Di Mattia J, Vernerey MS, Yvon M, Pirolles E, Villegas M, Gaafar Y, Ziebell H, Michalakis Y, Zeddam JL, Blanc S. Route of a Multipartite Nanovirus across the Body of Its Aphid Vector. J Virol 2020; 94:e01998-19. [PMID: 32102876 PMCID: PMC7163135 DOI: 10.1128/jvi.01998-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/16/2020] [Indexed: 01/20/2023] Open
Abstract
Vector transmission plays a primary role in the life cycle of viruses, and insects are the most common vectors. An important mode of vector transmission, reported only for plant viruses, is circulative nonpropagative transmission whereby the virus cycles within the body of its insect vector, from gut to salivary glands and saliva, without replicating. This mode of transmission has been extensively studied in the viral families Luteoviridae and Geminiviridae and is also reported for Nanoviridae The biology of viruses within these three families is different, and whether the viruses have evolved similar molecular/cellular virus-vector interactions is unclear. In particular, nanoviruses have a multipartite genome organization, and how the distinct genome segments encapsidated individually transit through the insect body is unknown. Here, using a combination of fluorescent in situ hybridization and immunofluorescence, we monitor distinct proteins and genome segments of the nanovirus Faba bean necrotic stunt virus (FBNSV) during transcytosis through the gut and salivary gland cells of its aphid vector Acyrthosiphon pisum FBNSV specifically transits through cells of the anterior midgut and principal salivary gland cells, a route similar to that of geminiviruses but distinct from that of luteoviruses. Our results further demonstrate that a large number of virus particles enter every single susceptible cell so that distinct genome segments always remain together. Finally, we confirm that the success of nanovirus-vector interaction depends on a nonstructural helper component, the viral protein nuclear shuttle protein (NSP), which is shown to be mandatory for viral accumulation within gut cells.IMPORTANCE An intriguing mode of vector transmission described only for plant viruses is circulative nonpropagative transmission, whereby the virus passes through the gut and salivary glands of the insect vector without replicating. Three plant virus families are transmitted this way, but details of the molecular/cellular mechanisms of the virus-vector interaction are missing. This is striking for nanoviruses that are believed to interact with aphid vectors in ways similar to those of luteoviruses or geminiviruses but for which empirical evidence is scarce. We here confirm that nanoviruses follow a within-vector route similar to that of geminiviruses but distinct from that of luteoviruses. We show that they produce a nonstructural protein mandatory for viral entry into gut cells, a unique phenomenon for this mode of transmission. Finally, noting that nanoviruses are multipartite viruses, we demonstrate that a large number of viral particles penetrate susceptible cells of the vector, allowing distinct genome segments to remain together.
Collapse
Affiliation(s)
- Jérémy Di Mattia
- UMR BGPI, INRAE, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Michel Yvon
- UMR BGPI, INRAE, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Elodie Pirolles
- UMR BGPI, INRAE, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Mathilde Villegas
- UMR BGPI, INRAE, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | | | | | - Jean-Louis Zeddam
- UMR BGPI, INRAE, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- UMR IPME, IRD, CIRAD, Université de Montpellier, Montpellier, France
| | - Stéphane Blanc
- UMR BGPI, INRAE, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| |
Collapse
|
36
|
Li P, Wang S, Zhang L, Qiu D, Zhou X, Guo L. A tripartite ssDNA mycovirus from a plant pathogenic fungus is infectious as cloned DNA and purified virions. SCIENCE ADVANCES 2020; 6:eaay9634. [PMID: 32284975 PMCID: PMC7138691 DOI: 10.1126/sciadv.aay9634] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/09/2020] [Indexed: 05/27/2023]
Abstract
Here, we describe a tripartite circular single-stranded (ss) DNA mycovirus, named Fusarium graminearum gemytripvirus 1 (FgGMTV1). The genome of FgGMTV1 comprises three circular ssDNA segments (DNA-A, DNA-B, and DNA-C). Sequence alignments and phylogenetic analyses showed that FgGMTV1 is nested within the family Genomoviridae. We also constructed the first infectious DNA clones of a DNA mycovirus. Our results show that DNA-A and DNA-B are mutually interdependent for their replication and are associated with severely reduced colony growth and hypovirulence. DNA-C relies on DNA-A and DNA-B for replication and is necessary for the recovery of abnormal fungal phenotypes. DNA-C also enhances the accumulation of viral DNA in infected fungi and permits stable colonization and easy transmission via conidia. This is the first multipartite DNA virus isolated from a fungus. Our phylogenetic analyses also suggest that the multipartite genome of FgGMTV1 may have evolved from a monopartite genome of an ancient genomovirus.
Collapse
|
37
|
Amoa-Bosompem M, Kobayashi D, Murota K, Faizah AN, Itokawa K, Fujita R, Osei JHN, Agbosu E, Pratt D, Kimura S, Kwofie KD, Ohashi M, Bonney JHK, Dadzie S, Sasaki T, Ohta N, Isawa H, Sawabe K, Iwanaga S. Entomological Assessment of the Status and Risk of Mosquito-borne Arboviral Transmission in Ghana. Viruses 2020; 12:v12020147. [PMID: 32012771 PMCID: PMC7077231 DOI: 10.3390/v12020147] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/16/2020] [Accepted: 01/26/2020] [Indexed: 01/16/2023] Open
Abstract
Entomological surveillance is one of the tools used in monitoring and controlling vector-borne diseases. However, the use of entomological surveillance for arboviral infection vector control is often dependent on finding infected individuals. Although this method may suffice in highly endemic areas, it is not as effective in controlling the spread of diseases in low endemic and non-endemic areas. In this study, we examined the efficiency of using entomological markers to assess the status and risk of arbovirus infection in Ghana, which is considered a non-endemic country, by combining mosquito surveillance with virus isolation and detection. This study reports the presence of cryptic species of mosquitoes in Ghana, demonstrating the need to combine morphological identification and molecular techniques in mosquito surveillance. Furthermore, although no medically important viruses were detected, the importance of insect-specific viruses in understanding virus evolution and arbovirus transmission is discussed. This study reports the first mutualistic relationship between dengue virus and the double-stranded RNA Aedes aegypti totivirus. Finally, this study discusses the complexity of the virome of Aedes and Culex mosquitoes and its implication for arbovirus transmission.
Collapse
Affiliation(s)
- Michael Amoa-Bosompem
- Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (M.A.-B.); (S.K.); (K.D.K.); (M.O.)
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (D.K.); (A.N.F.); (T.S.); (K.S.)
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (J.H.N.O.); (S.D.)
| | - Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (D.K.); (A.N.F.); (T.S.); (K.S.)
| | - Katsunori Murota
- Kyushu Research Station, National Institute of Animal Health, NARO, 2702 Chuzan, Kagoshima 891-0105, Japan;
| | - Astri Nur Faizah
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (D.K.); (A.N.F.); (T.S.); (K.S.)
- Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kentaro Itokawa
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan;
| | - Ryosuke Fujita
- Laboratory of Sanitary Entomology, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| | - Joseph Harold Nyarko Osei
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (J.H.N.O.); (S.D.)
| | - Esinam Agbosu
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (E.A.); (D.P.); (J.H.K.B.)
| | - Deborah Pratt
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (E.A.); (D.P.); (J.H.K.B.)
| | - Shohei Kimura
- Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (M.A.-B.); (S.K.); (K.D.K.); (M.O.)
| | - Kofi Dadzie Kwofie
- Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (M.A.-B.); (S.K.); (K.D.K.); (M.O.)
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (J.H.N.O.); (S.D.)
| | - Mitsuko Ohashi
- Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (M.A.-B.); (S.K.); (K.D.K.); (M.O.)
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (J.H.N.O.); (S.D.)
| | - Joseph H. Kofi Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (E.A.); (D.P.); (J.H.K.B.)
| | - Samuel Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (J.H.N.O.); (S.D.)
| | - Toshinori Sasaki
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (D.K.); (A.N.F.); (T.S.); (K.S.)
| | - Nobuo Ohta
- Faculty of Health Science, Suzuka University of Medical Science, 1001-1 Kishioka-cyo, Suzuka-shi, Mie 510-0293, Japan;
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (D.K.); (A.N.F.); (T.S.); (K.S.)
- Correspondence: (H.I.); (S.I.); Tel.: +81-3-5285-1111 (H.I.); +81-3-5803-5191 (S.I.)
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (D.K.); (A.N.F.); (T.S.); (K.S.)
| | - Shiroh Iwanaga
- Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (M.A.-B.); (S.K.); (K.D.K.); (M.O.)
- Correspondence: (H.I.); (S.I.); Tel.: +81-3-5285-1111 (H.I.); +81-3-5803-5191 (S.I.)
| |
Collapse
|
38
|
Kaján GL, Doszpoly A, Tarján ZL, Vidovszky MZ, Papp T. Virus-Host Coevolution with a Focus on Animal and Human DNA Viruses. J Mol Evol 2019; 88:41-56. [PMID: 31599342 PMCID: PMC6943099 DOI: 10.1007/s00239-019-09913-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/23/2019] [Indexed: 01/21/2023]
Abstract
Viruses have been infecting their host cells since the dawn of life, and this extremely long-term coevolution gave rise to some surprising consequences for the entire tree of life. It is hypothesised that viruses might have contributed to the formation of the first cellular life form, or that even the eukaryotic cell nucleus originates from an infection by a coated virus. The continuous struggle between viruses and their hosts to maintain at least a constant fitness level led to the development of an unceasing arms race, where weapons are often shuttled between the participants. In this literature review we try to give a short insight into some general consequences or traits of virus–host coevolution, and after this we zoom in to the viral clades of adenoviruses, herpesviruses, nucleo-cytoplasmic large DNA viruses, polyomaviruses and, finally, circoviruses.
Collapse
Affiliation(s)
- Győző L Kaján
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary.
| | - Andor Doszpoly
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary
| | - Zoltán László Tarján
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary
| | - Márton Z Vidovszky
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary
| | - Tibor Papp
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary
| |
Collapse
|
39
|
Zhang YJ, Wu ZX, Holme P, Yang KC. Advantage of Being Multicomponent and Spatial: Multipartite Viruses Colonize Structured Populations with Lower Thresholds. PHYSICAL REVIEW LETTERS 2019; 123:138101. [PMID: 31697512 DOI: 10.1103/physrevlett.123.138101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Indexed: 06/10/2023]
Abstract
Multipartite viruses have a genome divided into different disconnected viral particles. A majority of multipartite viruses infect plants; very few target animals. To understand why, we use a simple, network-based susceptible-latent-infectious-recovered model. We show both analytically and numerically that, provided that the average degree of the contact network exceeds a critical value, even in the absence of an explicit microscopic advantage, multipartite viruses have a lower threshold to colonizing network-structured populations compared to a well-mixed population. We further corroborate this finding on two-dimensional lattice networks, which better represent the typical contact structures of plants.
Collapse
Affiliation(s)
- Yi-Jiao Zhang
- Institute of Computational Physics and Complex Systems, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhi-Xi Wu
- Institute of Computational Physics and Complex Systems, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Petter Holme
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Kai-Cheng Yang
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana 47408, USA
| |
Collapse
|
40
|
Lefeuvre P, Martin DP, Elena SF, Shepherd DN, Roumagnac P, Varsani A. Evolution and ecology of plant viruses. Nat Rev Microbiol 2019; 17:632-644. [PMID: 31312033 DOI: 10.1038/s41579-019-0232-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
The discovery of the first non-cellular infectious agent, later determined to be tobacco mosaic virus, paved the way for the field of virology. In the ensuing decades, research focused on discovering and eliminating viral threats to plant and animal health. However, recent conceptual and methodological revolutions have made it clear that viruses are not merely agents of destruction but essential components of global ecosystems. As plants make up over 80% of the biomass on Earth, plant viruses likely have a larger impact on ecosystem stability and function than viruses of other kingdoms. Besides preventing overgrowth of genetically homogeneous plant populations such as crop plants, some plant viruses might also promote the adaptation of their hosts to changing environments. However, estimates of the extent and frequencies of such mutualistic interactions remain controversial. In this Review, we focus on the origins of plant viruses and the evolution of interactions between these viruses and both their hosts and transmission vectors. We also identify currently unknown aspects of plant virus ecology and evolution that are of practical importance and that should be resolvable in the near future through viral metagenomics.
Collapse
Affiliation(s)
| | - Darren P Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-UV, Paterna, València, Spain.,The Santa Fe Institute, Santa Fe, NM, USA
| | | | - Philippe Roumagnac
- CIRAD, UMR BGPI, Montpellier, France.,BGPI, CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA. .,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
41
|
Abstract
Many organisms disperse in groups, yet this process is understudied in viruses. Recent work, however, has uncovered different types of collective infectious units, all of which lead to the joint delivery of multiple viral genome copies to target cells, favoring co-infections. Collective spread of viruses can occur through widely different mechanisms, including virion aggregation driven by specific extracellular components, cloaking inside lipid vesicles, encasement in protein matrices, or binding to cell surfaces. Cell-to-cell viral spread, which allows the transmission of individual virions in a confined environment, is yet another mode of clustered virus dissemination. Nevertheless, the selective advantages of dispersing in groups remain poorly understood in most cases. Collective dispersal might have emerged as a means of sharing efficacious viral transmission vehicles. Alternatively, increasing the cellular multiplicity of infection may confer certain short-term benefits to viruses, such as overwhelming antiviral responses, avoiding early stochastic loss of viral components required for initiating infection, or complementing genetic defects present in different viral genomes. However, increasing infection multiplicity may also entail long-term costs, such as mutation accumulation and the evolution of defective particles or other types of cheater viruses. These costs and benefits, in turn, should depend on the genetic relatedness among collective infectious unit members. Establishing the genetic basis of collective viral dispersal and performing controlled experiments to pinpoint fitness effects at different spatial and temporal scales should help us clarify the implications of these spread modes for viral fitness, pathogenicity, and evolution.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, C/Catedrático Agustín Escardino 9, Paterna, València, Spain
| | - María-Isabel Thoulouze
- Institut Pasteur, Structural Virology Unit, Biofilm & Viral Transmission Group, Paris, France
| |
Collapse
|
42
|
Catalán P, Elena SF, Cuesta JA, Manrubia S. Parsimonious Scenario for the Emergence of Viroid-Like Replicons De Novo. Viruses 2019; 11:v11050425. [PMID: 31075860 PMCID: PMC6563258 DOI: 10.3390/v11050425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/12/2023] Open
Abstract
Viroids are small, non-coding, circular RNA molecules that infect plants. Different hypotheses for their evolutionary origin have been put forward, such as an early emergence in a precellular RNA World or several de novo independent evolutionary origins in plants. Here, we discuss the plausibility of de novo emergence of viroid-like replicons by giving theoretical support to the likelihood of different steps along a parsimonious evolutionary pathway. While Avsunviroidae-like structures are relatively easy to obtain through evolution of a population of random RNA sequences of fixed length, rod-like structures typical of Pospiviroidae are difficult to fix. Using different quantitative approaches, we evaluated the likelihood that RNA sequences fold into a rod-like structure and bear specific sequence motifs facilitating interactions with other molecules, e.g., RNA polymerases, RNases, and ligases. By means of numerical simulations, we show that circular RNA replicons analogous to Pospiviroidae emerge if evolution is seeded with minimal circular RNAs that grow through the gradual addition of nucleotides. Further, these rod-like replicons often maintain their structure if independent functional modules are acquired that impose selective constraints. The evolutionary scenario we propose here is consistent with the structural and biochemical properties of viroids described to date.
Collapse
Affiliation(s)
- Pablo Catalán
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Paterna, 46980 València, Spain.
- The Santa Fe Institute, Santa Fe, NM 87501, USA.
| | - José A Cuesta
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.
- Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Spain.
- Instituto de Biocomputación y Física de Sistemas Complejos (BiFi), Universidad de Zaragoza, 50018 Zaragoza, Spain.
- Institute of Financial Big Data (IFiBiD), Universidad Carlos III de Madrid⁻Banco de Santander, 28903 Getafe, Spain.
| | - Susanna Manrubia
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.
- National Biotechnology Centre (CSIC), 28049 Madrid, Spain.
| |
Collapse
|
43
|
Sicard A, Pirolles E, Gallet R, Vernerey MS, Yvon M, Urbino C, Peterschmitt M, Gutierrez S, Michalakis Y, Blanc S. A multicellular way of life for a multipartite virus. eLife 2019; 8:43599. [PMID: 30857590 PMCID: PMC6414197 DOI: 10.7554/elife.43599] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/26/2019] [Indexed: 11/13/2022] Open
Abstract
A founding paradigm in virology is that the spatial unit of the viral replication cycle is an individual cell. Multipartite viruses have a segmented genome where each segment is encapsidated separately. In this situation the viral genome is not recapitulated in a single virus particle but in the viral population. How multipartite viruses manage to efficiently infect individual cells with all segments, thus with the whole genome information, is a long-standing but perhaps deceptive mystery. By localizing and quantifying the genome segments of a nanovirus in host plant tissues we show that they rarely co-occur within individual cells. We further demonstrate that distinct segments accumulate independently in different cells and that the viral system is functional through complementation across cells. Our observation deviates from the classical conceptual framework in virology and opens an alternative possibility (at least for nanoviruses) where the infection can operate at a level above the individual cell level, defining a viral multicellular way of life.
Collapse
Affiliation(s)
- Anne Sicard
- BGPI, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Elodie Pirolles
- BGPI, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Romain Gallet
- BGPI, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Michel Yvon
- BGPI, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Cica Urbino
- BGPI, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France.,CIRAD, BGPI, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Michel Peterschmitt
- BGPI, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France.,CIRAD, BGPI, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Serafin Gutierrez
- BGPI, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Stéphane Blanc
- BGPI, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| |
Collapse
|
44
|
Valdano E, Manrubia S, Gómez S, Arenas A. Endemicity and prevalence of multipartite viruses under heterogeneous between-host transmission. PLoS Comput Biol 2019; 15:e1006876. [PMID: 30883545 PMCID: PMC6438571 DOI: 10.1371/journal.pcbi.1006876] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 03/28/2019] [Accepted: 02/17/2019] [Indexed: 01/29/2023] Open
Abstract
Multipartite viruses replicate through a puzzling evolutionary strategy. Their genome is segmented into two or more parts, and encapsidated in separate particles that appear to propagate independently. Completing the replication cycle, however, requires the full genome, so that a systemic infection of a host requires the concurrent presence of several particles. This represents an apparent evolutionary drawback of multipartitism, while its advantages remain unclear. A transition from monopartite to multipartite viral forms has been described in vitro under conditions of high multiplicity of infection, suggesting that cooperation between defective mutants is a plausible evolutionary pathway towards multipartitism. However, it is unknown how the putative advantages that multipartitism might enjoy at the microscopic level affect its epidemiology, or if an explicit advantange is needed to explain its ecological persistence. In order to disentangle which mechanisms might contribute to the rise and fixation of multipartitism, we here investigate the interaction between viral spreading dynamics and host population structure. We set up a compartmental model of the spread of a virus in its different forms and explore its epidemiology using both analytical and numerical techniques. We uncover that the impact of host contact structure on spreading dynamics entails a rich phenomenology of ecological relationships that includes cooperation, competition, and commensality. Furthermore, we find out that multipartitism might rise to fixation even in the absence of explicit microscopic advantages. Multipartitism allows the virus to colonize environments that could not be invaded by the monopartite form, while homogeneous contacts between hosts facilitate its spread. We conjecture that these features might have led to an increase in the diversity and prevalence of multipartite viral forms concomitantly with the expansion of agricultural practices.
Collapse
Affiliation(s)
- Eugenio Valdano
- Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain
| | - Susanna Manrubia
- National Centre for Biotechnology (CSIC), Madrid, Spain
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
| | - Sergio Gómez
- Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain
| | - Alex Arenas
- Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
45
|
Affiliation(s)
| | - Stéphane Blanc
- BGPI, INRA, CIRAD, Montpellier SupAgro, Univ Montpellier, Montpellier, France.
| |
Collapse
|
46
|
Population bottlenecks in multicomponent viruses: first forays into the uncharted territory of genome-formula drift. Curr Opin Virol 2018; 33:184-190. [DOI: 10.1016/j.coviro.2018.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 11/23/2022]
|
47
|
dos Santos M, Ghoul M, West SA. Pleiotropy, cooperation, and the social evolution of genetic architecture. PLoS Biol 2018; 16:e2006671. [PMID: 30359363 PMCID: PMC6219813 DOI: 10.1371/journal.pbio.2006671] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/06/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
Pleiotropy has been suggested as a novel mechanism for stabilising cooperation in bacteria and other microbes. The hypothesis is that linking cooperation with a trait that provides a personal (private) benefit can outweigh the cost of cooperation in situations when cooperation would not be favoured by mechanisms such as kin selection. We analysed the theoretical plausibility of this hypothesis, with analytical models and individual-based simulations. We found that (1) pleiotropy does not stabilise cooperation, unless the cooperative and private traits are linked via a genetic architecture that cannot evolve (mutational constraint); (2) if the genetic architecture is constrained in this way, then pleiotropy favours any type of trait and not especially cooperation; (3) if the genetic architecture can evolve, then pleiotropy does not favour cooperation; and (4) there are several alternative explanations for why traits may be linked, and causality can even be predicted in the opposite direction, with cooperation favouring pleiotropy. Our results suggest that pleiotropy could only explain cooperation under restrictive conditions and instead show how social evolution can shape the genetic architecture.
Collapse
Affiliation(s)
| | - Melanie Ghoul
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Stuart A. West
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
48
|
Varsani A, Lefeuvre P, Roumagnac P, Martin D. Notes on recombination and reassortment in multipartite/segmented viruses. Curr Opin Virol 2018; 33:156-166. [PMID: 30237098 DOI: 10.1016/j.coviro.2018.08.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/07/2018] [Accepted: 08/28/2018] [Indexed: 11/29/2022]
Abstract
Besides evolving through nucleotide substitution, viruses frequently also evolve by genetic recombination which can occur when related viral variants co-infect the same cells. Viruses with segmented or multipartite genomes can additionally evolve via the reassortment of genomic components. Various computational techniques are now available for identifying and characterizing recombination and reassortment. While these techniques have revealed both that all well studied segmented and multipartite virus species show some capacity for reassortment, and that recombination is common in many multipartite species, they have indicated that recombination is either rare or does not occur in species with segmented genomes. Reassortment and recombination can make it very difficult to study segmented/multipartite viruses using metagenomics-based approaches. Notable challenges include, both the accurate identification and assignment of genomic components to individual genomes, and the differentiation between natural 'real' recombination events and artifactual 'fake' recombination events arising from the inaccurate de novo assembly of genome component sequences determined using short read sequencing.
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA; Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| | | | - Philippe Roumagnac
- CIRAD, BGPI, Montpellier, France; BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Darren Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine. University of Cape Town, Observatory, 7925, South Africa
| |
Collapse
|
49
|
Gilmer D, Ratti C, Michel F. Long-distance movement of helical multipartite phytoviruses: keep connected or die? Curr Opin Virol 2018; 33:120-128. [PMID: 30199788 DOI: 10.1016/j.coviro.2018.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/26/2018] [Accepted: 07/29/2018] [Indexed: 12/28/2022]
Abstract
All living organisms have to preserve genome integrity to ensure the survival of progeny generations. Viruses, though often regarded as 'non living', protect their nucleic acids from biotic and abiotic stresses, ranging from nuclease action to radiation-induced adducts. When the viral genome is split into multiple segments, preservation of at least one copy of each segment is required. While segmented and monopartite viruses use an all-in-one strategy, multipartite viruses have to address in the cell at least one of each viral particle in which the split positive stranded RNA genome is individually packaged. Here, we review and discuss the biology of multipartite helical RNA phytoviruses to outline our current hypothesis on a coordinated genomic RNA network RNP complex that preserves an all-in-one strategy and genome integrity.
Collapse
Affiliation(s)
- David Gilmer
- Université de Strasbourg, CNRS, IBMP UPR 2357, F-67000 Strasbourg, France
| | - Claudio Ratti
- Università di Bologna, Dipartimento di Scienze e Tecnologie Agroambientali, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Fabrice Michel
- Université de Strasbourg, CNRS, IBMP UPR 2357, F-67000 Strasbourg, France.
| |
Collapse
|
50
|
Limited role of spatial self-structuring in emergent trade-offs during pathogen evolution. Sci Rep 2018; 8:12476. [PMID: 30127509 PMCID: PMC6102235 DOI: 10.1038/s41598-018-30945-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/04/2018] [Indexed: 01/04/2023] Open
Abstract
Pathogen transmission and virulence are main evolutionary variables broadly assumed to be linked through trade-offs. In well-mixed populations, these trade-offs are often ascribed to physiological restrictions, while populations with spatial self-structuring might evolve emergent trade-offs. Here, we reexamine a spatially-explicit, SIR model of the latter kind proposed by Ballegooijen and Boerlijst with the aim of characterising the mechanisms causing the emergence of the trade-off and its structural robustness. Using invadability criteria, we establish the conditions under which an evolutionary feedback between transmission and virulence mediated by pattern formation can poise the system to a critical boundary separating a disordered state (without emergent trade-off) from a self-structured phase (where the trade-off emerges), and analytically calculate the functional shape of the boundary in a certain approximation. Beyond evolutionary parameters, the success of an invasion depends on the size and spatial structure of the invading and invaded populations. Spatial self-structuring is often destroyed when hosts are mobile, changing the evolutionary dynamics to those of a well-mixed population. In a metapopulation scenario, the systematic extinction of the pathogen in the disordered phase may counteract the disruptive effect of host mobility, favour pattern formation and therefore recover the emergent trade-off.
Collapse
|