1
|
Sow SO, Tapia MD, Haidara FC, Diallo F, Han X, Chen J, Shi L, Yang Q, Yu B, Hu Y, Yuan L, Liu G, Grappi S, Monti M, Viviani S, Ji M, Zhou C. Safety, reactogenicity, and immunogenicity of ZR-202-CoV and ZR-202a-CoV recombinant vaccines compared with Comirnaty Ⓡ: A randomized, observer-blind, controlled, phase 1 study. Int J Infect Dis 2024; 148:107237. [PMID: 39270925 DOI: 10.1016/j.ijid.2024.107237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
OBJECTIVES ZR-202-CoV and ZR-202a-CoV are novel recombinant vaccines containing 25 µg of the prototype (Wuhan strain) or B.1.351 strain (Beta variant) SARS-CoV-2 S-protein expressed in CHO cells, respectively, adjuvanted with Al(OH)3 and CpG-ODN. We assessed their safety and immunogenicity in this Phase I, randomized, observer-blind, controlled study in Mali. DESIGN Sixty healthy 18-55-year-old adults randomized 1:1:1 received two doses of ZR-202-CoV, ZR-202a-CoV, or ComirnatyⓇ 28 days apart. Primary outcome measures were solicited and unsolicited adverse events (AEs) including AESI (Adverse Events of Special Interest); secondary outcome was immunogenicity measured as SARS-CoV-2 specific neutralizing antibodies. Participants were followed up for 1 year. RESULTS Injection site pain and headache were the most frequent solicited local and systemic AEs, respectively. No unsolicited AEs or SAEs related to vaccination were reported during the study period. Although most participants had detectable neutralizing antibodies at baseline robust immune responses were observed in all vaccine groups after the first dose with no further increase after the second dose. Cross-neutralizing antibody responses against Beta, Delta, and Omicron BA.5 variants were similar in magnitude after ZR-202-CoV, ZR-202a-CoV and ComirnatyⓇ. CONCLUSIONS Similar reactogenicity and immunogenicity profiles of ZR-202-CoV, ZR-202a-CoV and ComirnatyⓇ support further clinical investigation in a wider population.
Collapse
MESH Headings
- Humans
- COVID-19 Vaccines/adverse effects
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Male
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Middle Aged
- COVID-19/prevention & control
- COVID-19/immunology
- Adult
- Female
- Antibodies, Viral/blood
- Young Adult
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Adolescent
- Immunogenicity, Vaccine
- Spike Glycoprotein, Coronavirus/immunology
- Adjuvants, Immunologic/adverse effects
- Adjuvants, Immunologic/administration & dosage
- Single-Blind Method
- Vaccines, Subunit
Collapse
Affiliation(s)
- Samba O Sow
- Center for Vaccine Development-Mali, Bamako, Mali
| | - Milagritos D Tapia
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Xi Han
- Shanghai Zerun Biotechnology, Shanghai, China
| | | | - Lei Shi
- Walvax Biotechnology, Yunnan, China
| | - Qing Yang
- Shanghai Zerun Biotechnology, Shanghai, China
| | - Bangwei Yu
- Shanghai Zerun Biotechnology, Shanghai, China
| | - Yalin Hu
- Shanghai Zerun Biotechnology, Shanghai, China
| | - Lin Yuan
- Walvax Biotechnology, Yunnan, China
| | - Ge Liu
- Shanghai Zerun Biotechnology, Shanghai, China
| | | | | | | | - Min Ji
- Shanghai Zerun Biotechnology, Shanghai, China
| | | |
Collapse
|
2
|
Lim RJ, Qiu X, Alberto E, Capeding MR, Carlos J, Leong RN, Gutierrez JL, Trillana M, Liu Y, Mojares Z. Safety and immunogenicity of PIKA-adjuvanted recombinant SARS-CoV-2 spike protein subunit vaccine as a booster against SARS-CoV-2: a phase II, open-label, randomized, double-blinded study. Clin Exp Vaccine Res 2024; 13:329-337. [PMID: 39525672 PMCID: PMC11543791 DOI: 10.7774/cevr.2024.13.4.329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose This study evaluated the safety and immunogenicity of the PIKA-adjuvanted recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein subunit vaccine as a booster dose for healthy adults who had previously received two or more doses of an inactivated coronavirus disease 2019 (COVID-19) vaccine. Materials and Methods The study was a phase II multicenter, double-blinded, comparator-controlled, randomized trial. Participants were randomly assigned to receive either the PIKA COVID-19 vaccine booster dose or an inactivated COVID-19 vaccine (Sinovac, China). Safety was assessed based on adverse events, while immunogenicity was measured by neutralizing antibodies against SARS-CoV-2 and serum immunoglobulin G (IgG) levels. Data on safety and immunogenicity were collected in the short-term (within 14 days after the booster dose) and long-term (from 90 to 365 days after the booster dose). Results The PIKA-adjuvanted vaccine demonstrated a significant increase in neutralizing antibodies against the Omicron variant (geometric mean ratio [GMR]=2.0 on day 7, p-value <0.001; GMR=2.7 on day 14, p-value <0.001) and the wild type SARS-CoV-2 virus (GMR=2.3 on day 7, p-value <0.001; GMR=2.8 on day 14, p-value<0.001) in the early post-vaccination period when compared to the inactivated vaccine. Additionally, the PIKA COVID-19 vaccine showed higher seroconversion rates for neutralizing antibodies against both variants during the first 14 days post-vaccination. However, there were no significant differences in neutralizing antibody levels between the two vaccines from day 90 to day 360 post-vaccination. Serum IgG antibody levels for the PIKA COVID-19 vaccine were also higher throughout the study period. The incidence of adverse events was slightly higher in the PIKA COVID-19 group, with the most common events being pain at the injection site and headache. All adverse events were mild or moderate, with no reports of severe or life-threatening adverse events in either group. Conclusion The PIKA COVID-19 vaccine, when administered as a booster dose, showed promising short- and long-term immunogenicity with no emergent safety issues identified. The booster dose of the PIKA COVID-19 vaccine elicited a robust immune response against various SARS-CoV-2 variants and provided some seroprotection for up to 360 days (ClinicalTrials.gov registration number: NCT05463419).
Collapse
Affiliation(s)
- Renan James Lim
- YS Biopharma Co. Ltd., Bonifacio Global City, Taguig, Philippines
| | | | - Edison Alberto
- Clinical Research Center, Health Index Multispecialty Clinic, Imus, Philippines
| | | | - Josefina Carlos
- Research Center, University of the East Ramon Magsaysay Memorial Medical Center Inc., Quezon City, Philippines
| | | | | | | | - Yuan Liu
- YS Biopharma (China) Co. Ltd., Beijing, China
| | | |
Collapse
|
3
|
Mandviwala AS, Huckriede ALW, Arankalle VA, Patil HP. Mucosal delivery of a prefusogenic-F, glycoprotein, and matrix proteins-based virus-like particle respiratory syncytial virus vaccine induces protective immunity as evidenced by challenge studies in mice. Virology 2024; 598:110194. [PMID: 39096774 DOI: 10.1016/j.virol.2024.110194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
RSV infection remains a serious threat to the children all over the world, especially, in the low-middle income countries. Vaccine delivery via the mucosa holds great potential for inducing local immune responses in the respiratory tract. Previously, we reported the development of highly immunogenic RSV virus-like-particles (RSV-VLPs) based on the conformationally stable prefusogenic-F protein (preFg), glycoprotein and matrix protein. Here, to explore whether mucosal delivery of RSV-VLPs is an effective strategy to induce RSV-specific mucosal and systemic immunity, RSV-VLPs were administered via the nasal, sublingual and pulmonary routes to BALB/c mice. The results demonstrate that immunization with the VLPs via the mucosal routes induced minimal mucosal response and yet facilitated modest levels of serum IgG antibodies, enhanced T cell responses and the expression of the lung-homing marker CXCR3 on splenocytes. Immunization with VLPs via all three mucosal routes provided protection against RSV challenge with no signs of RSV induced pathology.
Collapse
Affiliation(s)
- Ahmedali S Mandviwala
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Anke L W Huckriede
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vidya A Arankalle
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Harshad P Patil
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India.
| |
Collapse
|
4
|
Garg R, Liu Q, Van Kessel J, Asavajaru A, Uhlemann EM, Joessel M, Hamonic G, Khatooni Z, Kroeker A, Lew J, Scruten E, Pennington P, Deck W, Prysliak T, Nickol M, Apel F, Courant T, Kelvin AA, Van Kessel A, Collin N, Gerdts V, Köster W, Falzarano D, Racine T, Banerjee A. Efficacy of a stable broadly protective subunit vaccine platform against SARS-CoV-2 variants of concern. Vaccine 2024; 42:125980. [PMID: 38769033 DOI: 10.1016/j.vaccine.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
The emergence and ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the need for rapid vaccine development platforms that can be updated to counteract emerging variants of currently circulating and future emerging coronaviruses. Here we report the development of a "train model" subunit vaccine platform that contains a SARS-CoV-2 Wuhan S1 protein (the "engine") linked to a series of flexible receptor binding domains (RBDs; the "cars") derived from SARS-CoV-2 variants of concern (VOCs). We demonstrate that these linked subunit vaccines when combined with Sepivac SWE™, a squalene in water emulsion (SWE) adjuvant, are immunogenic in Syrian hamsters and subsequently provide protection from infection with SARS-CoV-2 VOCs Omicron (BA.1), Delta, and Beta. Importantly, the bivalent and trivalent vaccine candidates offered protection against some heterologous SARS-CoV-2 VOCs that were not included in the vaccine design, demonstrating the potential for broad protection against a range of different VOCs. Furthermore, these formulated vaccine candidates were stable at 2-8 °C for up to 13 months post-formulation, highlighting their utility in low-resource settings. Indeed, our vaccine platform will enable the development of safe and broadly protective vaccines against emerging betacoronaviruses that pose a significant health risk for humans and agricultural animals.
Collapse
Affiliation(s)
- Ravendra Garg
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Qiang Liu
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada
| | - Jill Van Kessel
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Akarin Asavajaru
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Eva-Maria Uhlemann
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Morgane Joessel
- Vaccine Formulation Institute (VFI), Plan-Les-Ouates, Switzerland
| | - Glenn Hamonic
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Zahed Khatooni
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Andrea Kroeker
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Jocelyne Lew
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Erin Scruten
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Paul Pennington
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - William Deck
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Tracy Prysliak
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Michaela Nickol
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Falko Apel
- Vaccine Formulation Institute (VFI), Plan-Les-Ouates, Switzerland
| | - Thomas Courant
- Vaccine Formulation Institute (VFI), Plan-Les-Ouates, Switzerland
| | - Alyson A Kelvin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Andrew Van Kessel
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Nicolas Collin
- Vaccine Formulation Institute (VFI), Plan-Les-Ouates, Switzerland
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Wolfgang Köster
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Trina Racine
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
5
|
Titball RW, Bernstein DI, Fanget NVJ, Hall RA, Longet S, MacAry PA, Rupp RE, van Gils M, von Messling V, Walker DH, Barrett ADT. Progress with COVID vaccine development and implementation. NPJ Vaccines 2024; 9:69. [PMID: 38561358 PMCID: PMC10985065 DOI: 10.1038/s41541-024-00867-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Affiliation(s)
| | - David I Bernstein
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | | | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Stephanie Longet
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| | - Paul A MacAry
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Richard E Rupp
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Marit van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - David H Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alan D T Barrett
- Sealy Institute for Vaccine Sciences and Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
6
|
Lemmer Y, Chapman R, Abolnik C, Smith T, Schäfer G, Hermanus T, du Preez I, Goosen K, Sepotokele KM, Gers S, Suliman T, Preiser W, Shaw ML, Roth R, Truyts A, Chipangura J, Magwaza M, Mahanjana O, Moore PL, O'Kennedy MM. Protective efficacy of a plant-produced beta variant rSARS-CoV-2 VLP vaccine in golden Syrian hamsters. Vaccine 2024; 42:738-744. [PMID: 38238112 DOI: 10.1016/j.vaccine.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024]
Abstract
In the quest for heightened protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, we engineered a prototype vaccine utilizing the plant expression system of Nicotiana benthamiana, to produce a recombinant SARS-CoV-2 virus-like particle (VLP) vaccine presenting the S-protein from the Beta (B.1.351) variant of concern (VOC). This innovative vaccine, formulated with either a squalene oil-in-water emulsion or a synthetic CpG oligodeoxynucleotide adjuvant, demonstrated efficacy in a golden Syrian Hamster challenge model. The Beta VLP vaccine induced a robust humoral immune response, with serum exhibiting neutralization not only against SARS-CoV-2 Beta but also cross-neutralizing Delta and Omicron pseudoviruses. Protective efficacy was demonstrated, evidenced by reduced viral RNA copies and mitigated weight loss and lung damage compared to controls. This compelling data instills confidence in the creation of a versatile platform for the local manufacturing of potential pan-sarbecovirus vaccines, against evolving viral threats.
Collapse
Affiliation(s)
- Yolandy Lemmer
- Council for Scientific and Industrial Research (CSIR) Next Generation Health, Pretoria, South Africa; Department of Biochemistry, Genetics and Microbiology, University of Pretoria, South Africa.
| | - Ros Chapman
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Celia Abolnik
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria (UP), South Africa
| | - Tanja Smith
- Council for Scientific and Industrial Research (CSIR) Next Generation Health, Pretoria, South Africa; Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria (UP), South Africa
| | - Georgia Schäfer
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa; International Centre for Genetic Engineering and Biotechnology, Observatory, Cape Town, South Africa; Wellcome Trust Centre for Infectious Disease Research in Africa, University of Cape Town, South Africa
| | - Tandile Hermanus
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Ilse du Preez
- Council for Scientific and Industrial Research (CSIR) Next Generation Health, Pretoria, South Africa
| | - Kruger Goosen
- La-Bio Research Animal Laboratory (a Division of Disease Control Africa), 33 Eland Street, Koedoespoort Industrial, Pretoria, South Africa
| | - Kamogelo M Sepotokele
- Council for Scientific and Industrial Research (CSIR) Next Generation Health, Pretoria, South Africa; Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria (UP), South Africa
| | | | - Tasnim Suliman
- Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| | - Wolfgang Preiser
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, Cape Town, South Africa
| | - Megan L Shaw
- Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa; Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, Cape Town, South Africa
| | - Robyn Roth
- Council for Scientific and Industrial Research (CSIR) Next Generation Health, Pretoria, South Africa
| | - Alma Truyts
- Council for Scientific and Industrial Research (CSIR) Next Generation Health, Pretoria, South Africa; Department of Biochemistry, Genetics and Microbiology, University of Pretoria, South Africa
| | - John Chipangura
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Martin Magwaza
- Tautomer Pty Ltd., Woodmead North Office, 54 Maxwell Drive, Block B, Ground Floor Woodmead, 2191 Gauteng, South Africa
| | - Osborn Mahanjana
- 3Sixty Biopharmaceuticals Pty Ltd., 23 Impala Road, Block B, Chislehurston, Sandton, Gauteng 2196, South Africa
| | - Penny L Moore
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Martha M O'Kennedy
- Council for Scientific and Industrial Research (CSIR) Next Generation Health, Pretoria, South Africa; Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria (UP), South Africa
| |
Collapse
|
7
|
Coria LM, Rodriguez JM, Demaria A, Bruno LA, Medrano MR, Castro CP, Castro EF, Del Priore SA, Hernando Insua AC, Kaufmann IG, Saposnik LM, Stone WB, Prado L, Notaro US, Amweg AN, Diaz PU, Avaro M, Ortega H, Ceballos A, Krum V, Zurvarra FM, Sidabra JE, Drehe I, Baqué JA, Li Causi M, De Nichilo AV, Payes CJ, Southard T, Vega JC, Auguste AJ, Álvarez DE, Flo JM, Pasquevich KA, Cassataro J. A Gamma-adapted subunit vaccine induces broadly neutralizing antibodies against SARS-CoV-2 variants and protects mice from infection. Nat Commun 2024; 15:997. [PMID: 38307851 PMCID: PMC10837449 DOI: 10.1038/s41467-024-45180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 01/17/2024] [Indexed: 02/04/2024] Open
Abstract
In the context of continuous emergence of SARS-CoV-2 variants of concern (VOCs), one strategy to prevent the severe outcomes of COVID-19 is developing safe and effective broad-spectrum vaccines. Here, we present preclinical studies of a RBD vaccine derived from the Gamma SARS-CoV-2 variant adjuvanted with Alum. The Gamma-adapted RBD vaccine is more immunogenic than the Ancestral RBD vaccine in terms of inducing broader neutralizing antibodies. The Gamma RBD presents more immunogenic B-cell restricted epitopes and induces a higher proportion of specific-B cells and plasmablasts than the Ancestral RBD version. The Gamma-adapted vaccine induces antigen specific T cell immune responses and confers protection against Ancestral and Omicron BA.5 SARS-CoV-2 challenge in mice. Moreover, the Gamma RBD vaccine induces higher and broader neutralizing antibody activity than homologous booster vaccination in mice previously primed with different SARS-CoV-2 vaccine platforms. Our study indicates that the adjuvanted Gamma RBD vaccine is highly immunogenic and a broad-spectrum vaccine candidate.
Collapse
Affiliation(s)
- Lorena M Coria
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina.
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina.
| | - Juan Manuel Rodriguez
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
- Fundación Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Agostina Demaria
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Laura A Bruno
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Mayra Rios Medrano
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Celeste Pueblas Castro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Eliana F Castro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Sabrina A Del Priore
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Andres C Hernando Insua
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
- Fundación Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Ingrid G Kaufmann
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Lucas M Saposnik
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - William B Stone
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Lineia Prado
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Ulises S Notaro
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Ayelen N Amweg
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Pablo U Diaz
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Martin Avaro
- Servicio Virosis Respiratorias, Laboratorio de Referencia de Influenza, SARS-CoV-2 y otros Virus Respiratorios, Centro Nacional de Influenza de OPS/OMS, Departamento de Virología, Instituto Nacional de Enfermedades Infecciosas - ANLIS "Dr. Carlos G. Malbrán". Ciudad Autónoma de Buenos Aires, Buenos Aires, C1282AFF, Argentina
| | - Hugo Ortega
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Ana Ceballos
- Facultad de Medicina UBA, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, INBIRS-CONICET, Buenos Aires, Argentina
| | - Valeria Krum
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Francisco M Zurvarra
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
- Fundación Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Johanna E Sidabra
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Ignacio Drehe
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Jonathan A Baqué
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Mariana Li Causi
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Analia V De Nichilo
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
- Fundación Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Cristian J Payes
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Teresa Southard
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Julio C Vega
- Laboratorio Pablo Cassará - I+D+i, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1408GBV, Argentina
| | - Albert J Auguste
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Diego E Álvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Juan M Flo
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Karina A Pasquevich
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina.
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina.
| |
Collapse
|
8
|
Sandoval X, Domínguez R, Recinos D, Zelaya S, Cativo P, Docena GH. Safety and immunogenicity of different booster vaccination schemes for COVID-19 used in El Salvador. Clin Exp Vaccine Res 2024; 13:35-41. [PMID: 38362366 PMCID: PMC10864880 DOI: 10.7774/cevr.2024.13.1.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Accepted: 10/20/2023] [Indexed: 02/17/2024] Open
Abstract
Purpose The effectiveness of coronavirus disease 2019 (COVID-19) vaccination schemes and the combination of vaccines of various platforms for administering booster doses is still being studied since it will depend on the population's response to vaccines. We aimed to evaluate the safety, protection, and immunogenicity of the Salvadorean population's third dose booster COVID-19 vaccine and the potential benefit of homologous vs. heterologous regimens. Materials and Methods This is an analytical observational cohort study in a population aged 18 to 65 years that was primarily vaccinated with AstraZeneca, Sinovac, or Pfizer/BioNTech. Volunteers were recruited (n=223) and followed up for 3 months after receiving the 3rd vaccine (BNT162b2) as a booster. Adverse reactions were monitored, serum anti-spike immunoglobulin G (IgG) was assessed by chemiluminescence, and a polymerase chain reaction was carried out when subjects developed clinical signs. Results The cohorts finally included 199 participants, and we observed only mild adverse effects in all cohorts. A significant increase in specific IgG levels was found after the booster dose in all cohorts. The heterologous scheme with Sinovac showed the greatest increase in antibody titer, and a decrease was observed in all participants after 3 months. During the follow-up period, 30 participants showed symptomatology compatible with COVID-19, but only four were laboratory-confirmed and they showed mild clinical signs. Conclusion These findings indicate that the booster doses used were safe and promoted an immediate increase in immunogenicity, which decreased over time. The heterologous regimen showed stronger immunogenicity compared to the messenger RNA-based homologous scheme.
Collapse
Affiliation(s)
- Xochitl Sandoval
- Instituto Nacional de Salud de El Salvador, San Salvador, El Salvador
| | - Rhina Domínguez
- Instituto Nacional de Salud de El Salvador, San Salvador, El Salvador
| | - Delmy Recinos
- Instituto Nacional de Salud de El Salvador, San Salvador, El Salvador
| | - Susana Zelaya
- Instituto Nacional de Salud de El Salvador, San Salvador, El Salvador
| | - Patricia Cativo
- Facultad de Medicina, Universidad Dr. José Matías Delgado, San Salvador, El Salvador
| | - Guillermo Horacio Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos, CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
9
|
Lim HJ, Lee JY, Baek YH, Park MY, Youm DJ, Kim I, Kim MJ, Choi J, Sohn YH, Park JE, Yang YJ. Evaluation of Multiplex Rapid Antigen Tests for the Simultaneous Detection of SARS-CoV-2 and Influenza A/B Viruses. Biomedicines 2023; 11:3267. [PMID: 38137488 PMCID: PMC10741453 DOI: 10.3390/biomedicines11123267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Single-target rapid antigen tests (RATs) are commonly used to detect highly transmissible respiratory viruses (RVs), such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses. The simultaneous detection of RVs presenting overlapping symptoms is vital in making appropriate decisions about treatment, isolation, and resource utilization; however, few studies have evaluated multiplex RATs for SARS-CoV-2 and other RVs. We assessed the diagnostic performance of multiplex RATs targeting both the SARS-CoV-2 and influenza A/B viruses with the GenBody Influenza/COVID-19 Ag Triple, InstaView COVID-19/Flu Ag Combo (InstaView), STANDARDTM Q COVID-19 Ag Test, and STANDARDTM Q Influenza A/B Test kits using 974 nasopharyngeal swab samples. The cycle threshold values obtained from the real-time reverse transcription polymerase chain reaction results showed higher sensitivity (72.7-100%) when the values were below, rather than above, the cut-off values. The InstaView kit exhibited significantly higher positivity rates (80.21% for SARS-CoV-2, 61.75% for influenza A, and 46.15% for influenza B) and cut-off values (25.57 for SARS-CoV-2, 21.19 for influenza A, and 22.35 for influenza B) than the other two kits, and was able to detect SARS-CoV-2 Omicron subvariants. Therefore, the InstaView kit is the best choice for routine screening for both SARS-CoV-2 and influenza A/B in local communities.
Collapse
Affiliation(s)
- Ho-Jae Lim
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea
| | - Ji-Yoon Lee
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
| | - Young-Hyun Baek
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
| | - Min-Young Park
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
| | - Dong-Jae Youm
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
| | - Inhee Kim
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
| | - Min-Jin Kim
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
| | - Jongmun Choi
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
| | - Yong-Hak Sohn
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
| | - Jung-Eun Park
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea
| | - Yong-Jin Yang
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (H.-J.L.); (J.-Y.L.); (Y.-H.B.); (M.-Y.P.); (D.-J.Y.); (I.K.); (M.-J.K.); (J.C.); (Y.-H.S.)
| |
Collapse
|
10
|
Feng GW, Wang ZF, He P, Lan QY, Ni L, Yang YZ, Wang CF, Cui TT, Huang LL, Yan YQ, Jiang ZW, Yang Q, Yu BW, Han X, Chen JJ, Yang SY, Yuan L, Zhou LY, Liu G, Li K, Huang Z, Zhao JC, Hu ZY, Xie ZQ. Safety, tolerability, and immunogenicity of a CpG/Alum adjuvanted SARS-CoV-2 recombinant protein vaccine (ZR202-CoV) in healthy adults: Preliminary report of a phase 1, randomized, double-blind, placebo-controlled, dose-escalation trial. Hum Vaccin Immunother 2023; 19:2262635. [PMID: 37881130 PMCID: PMC10644802 DOI: 10.1080/21645515.2023.2262635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023] Open
Abstract
This was a phase 1 dose-escalation study of ZR202-CoV, a recombinant protein vaccine candidate containing a pre-fusion format of the spike (S)-protein (S-trimer) combined with the dual-adjuvant system of Alum/CpG. A total of 230 participants were screened and 72 healthy adults aged 18-59 years were enrolled and randomized to receive two doses at a 28-day interval of three different ZR202-CoV formulations or normal saline. We assessed the safety for 28 days after each vaccination and collected blood samples for immunogenicity evaluation. All formulations of ZR202-CoV were well-tolerated, with no observed solicited adverse events ≥ Grade 3 within 7 days after vaccination. No unsolicited adverse events ≥ Grade 3, or serious adverse events related to vaccination occurred as determined by the investigator. After the first dose, detectable immune responses were observed in all subjects. All subjects that received ZR202-CoV seroconverted at 14 days after the second dose by S-binding IgG antibody, pseudovirus and live-virus based neutralizing antibody assays. S-binding response (GMCs: 2708.7 ~ 4050.0 BAU/mL) and neutralizing activity by pseudovirus (GMCs: 363.1 ~ 627.0 IU/mL) and live virus SARS-CoV-2 (GMT: 101.7 ~ 175.0) peaked at 14 days after the second dose of ZR202-CoV. The magnitudes of immune responses compared favorably with COVID-19 vaccines with reported protective efficacy.
Collapse
Affiliation(s)
- Guang-Wei Feng
- Vaccine Clinical Research Center, Henan Provincial Center for Disease Control and Prevention, Zhenzhou, HA, China
| | - Zhong-Fang Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, GD, China
- Division of Drug and Vaccine Research, Guangzhou Laboratory, Bioland, Guangzhou, GD, China
| | - Peng He
- Department of Hepatitis and Enterovirus Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Qin-Ying Lan
- R&D Department, Shanghai Zerun Biotechnology Co. Ltd, Shanghai, China
| | - Ling Ni
- School of Medicine, Tsinghua University, Beijing, China
| | - Ya-Zheng Yang
- School of Medicine, Tsinghua University, Beijing, China
| | - Chen-Fei Wang
- Department of Hepatitis and Enterovirus Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Ting-Ting Cui
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, GD, China
| | - Li-Li Huang
- Vaccine Clinical Research Center, Henan Provincial Center for Disease Control and Prevention, Zhenzhou, HA, China
| | - Yong-Qiang Yan
- Vaccine Program Office, Xiangcheng County Center for Disease Control and Prevention, Xiangcheng, HA, China
| | - Zhi-Wei Jiang
- Statistics and Decision Sicence, Beijing Key Tech Statistical Consulting Co. Ltd, Beijing, China
| | - Qing Yang
- R&D Department, Shanghai Zerun Biotechnology Co. Ltd, Shanghai, China
| | - Bang-Wei Yu
- R&D Department, Shanghai Zerun Biotechnology Co. Ltd, Shanghai, China
| | - Xi Han
- R&D Department, Shanghai Zerun Biotechnology Co. Ltd, Shanghai, China
| | - Jing-Jing Chen
- R&D Department, Walvax Biotechnology Co. Ltd, Kunming, Yunnan, China
| | - Shu-Yuan Yang
- R&D Department, Walvax Biotechnology Co. Ltd, Kunming, Yunnan, China
| | - Lin Yuan
- R&D Department, Walvax Biotechnology Co. Ltd, Kunming, Yunnan, China
| | - Ling-Yun Zhou
- R&D Department, Shanghai Zerun Biotechnology Co. Ltd, Shanghai, China
| | - Ge Liu
- R&D Department, Shanghai Zerun Biotechnology Co. Ltd, Shanghai, China
| | - Ke Li
- R&D Department, Shanghai Zerun Biotechnology Co. Ltd, Shanghai, China
| | - Zhen Huang
- R&D Department, Walvax Biotechnology Co. Ltd, Kunming, Yunnan, China
| | - Jin-Cun Zhao
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, GD, China
- Division of Drug and Vaccine Research, Guangzhou Laboratory, Bioland, Guangzhou, GD, China
| | - Zhong-Yu Hu
- Department of Hepatitis and Enterovirus Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Zhi-Qiang Xie
- Vaccine Clinical Research Center, Henan Provincial Center for Disease Control and Prevention, Zhenzhou, HA, China
| |
Collapse
|
11
|
Huang J, Hou S, An J, Zhou C. In-depth characterization of protein N-glycosylation for a COVID-19 variant-design vaccine spike protein. Anal Bioanal Chem 2023; 415:1455-1464. [PMID: 36698045 PMCID: PMC9878482 DOI: 10.1007/s00216-023-04533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/25/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023]
Abstract
COVID-19 is caused by SARS-CoV-2 infection and remains one of the biggest pandemics around the world since 2019. Vaccination has proved to be an effective way of preventing SARS-CoV-2 infection and alleviating the hospitalization burden. Among different forms of COVID-19 vaccine design, the spike protein of SARS-CoV-2 virus is widely used as a candidate vaccine antigen. As a surface protein on the virus envelop, the spike was reported to be heavily N-glycosylated and glycosylation had a great impact on its immunogenicity and efficacy. Besides, N-glycosylation might vary greatly on different expression systems and sequence variant designs. Therefore, comprehensive analysis of spike N-glycosylation is of great significance for better vaccine understanding and quality control. In this study, full characterization of N-glycosylation was performed for a Chinese Hamster Ovary (CHO) cell expressed variant-designed spike protein. The spike protein featured the latest six-proline substitution design together with the incorporation of a combination of mutation sites. Trypsin and Glu-C digestion coupled with PNGase F strategies were adopted, and effective LC-MS/MS methods were applied to analyze samples. As a result, a total of 19 N-glycosites were identified in the recombinant pike protein at intact N-glycopeptide level. Quantitative analysis of released glycan by LC-MS/MS was also performed, and 31 high-abundance N-glycans were identified. Sequencing analysis of glycan was further provided to assist glycan structure confirmation. Moreover, all of the analyses were performed on three consecutive manufactured batches and the glycosylation results on both glycosite and glycans showed good batch-to-batch consistency. Thus, the reported analytical strategy and N-glycosylation information may well facilitate studies on SARS-CoV-2 spike protein analysis and quality studies.
Collapse
Affiliation(s)
| | - Shouzeng Hou
- Shanghai Zerun Biotech Co., Ltd, Shanghai, China
| | - Jiao An
- Shanghai Zerun Biotech Co., Ltd, Shanghai, China
| | | |
Collapse
|