1
|
Inverardi N, Serafim MF, Sekar A, Fujino K, Ferreira M, Marzouca A, Nagler E, Muratoglu OK, Oral E. Wear-resistant antibacterial UHMWPE-based implant materials obtained by radiation crosslinking. Biomater Sci 2025; 13:2422-2434. [PMID: 40131351 DOI: 10.1039/d4bm01663g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The crosslinking of ultrahigh molecular weight polyethylenes (UHMWPEs) by irradiation has been employed for decades to enhance the wear resistance of these materials when used as a load-bearing implant component for joint arthroplasty. This surgical procedure can restore the mobility of patients affected by severe arthritis by the implantation of an artificial joint made of an articulating pair and a bearing component. While the surgery is usually successful, one of the most severe complications is peri-prosthetic joint infection (PJI), which can be extremely difficult to treat and eradicate. The use of UHMWPEs as a platform for the local delivery of antibiotics in addition to their structural function could be extremely beneficial for the improvement in the outcome of PJIs. In this study, we investigated whether irradiation can be used to sterilize and crosslink antibiotic-loaded UHMWPEs, and its effect on the drug eluting and antibacterial properties of these materials. We found that the antibiotics gentamicin sulfate and vancomycin hydrochloride were stable in irradiated UHMWPEs and did not hinder crosslinking of the UHMWPE matrix. Effective crosslinking led to optimal wear resistance, which was comparable to that of clinically available UHMWPEs. Sustained drug release was observed for an extended duration (up to six months) and both the drug eluents and eluted material surfaces showed antibacterial activity against Staphylococcus aureus, the most common causative bacterium for PJIs.
Collapse
Affiliation(s)
- Nicoletta Inverardi
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Maria F Serafim
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | - Amita Sekar
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Keita Fujino
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | - Matheus Ferreira
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | - Anthony Marzouca
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | - Emma Nagler
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | - Orhun K Muratoglu
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Ebru Oral
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
2
|
Asik MD, Walsh-Rock E, Inverardi N, Nepple C, Zhao T, Sekar A, Kannambadi DD, Ferreira M, Wannomae KK, Oral E, Muratoglu OK. Enhanced Antibiotic Release and Mechanical Strength in UHMWPE Antibiotic Blends: The Role of Submicron Gentamicin Sulfate Particles. J Bone Joint Surg Am 2025; 107:586-593. [PMID: 39847614 DOI: 10.2106/jbjs.24.00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
BACKGROUND Periprosthetic joint infections (PJIs) are a major complication of total joint replacement surgeries. This study investigated the enhancement of mechanical properties and antibiotic release in ultra-high molecular weight polyethylene (UHMWPE) through the encapsulation of submicron gentamicin sulfate (GS) particles, addressing the critical need for improved implant materials in orthopaedic surgery, particularly in managing PJIs. METHODS The present study involved embedding submicron GS particles into UHMWPE flakes at concentrations of 2% to 10% by weight. These particles were prepared and blended with UHMWPE flakes using a dual asymmetric centrifugal mixer, and the blends were consolidated. The present study compared the mechanical properties and antibiotic release rate of UHMWPE containing submicron, medium (as-received), and large (resolidified) GS particles. RESULTS UHMWPE samples with submicron GS particles exhibited superior mechanical properties, including higher ultimate tensile and Izod impact strengths, compared with samples with larger particles. Additionally, the submicron GS UHMWPE blends demonstrated a markedly higher and more sustained antibiotic release rate. CONCLUSIONS This study highlights the potential of incorporating submicron GS particles into UHMWPE to drastically improve the feasibility of using these therapeutic and functional spacer implants in expanded indications. CLINICAL RELEVANCE By offering improved mechanical strength and effective, prolonged antibiotic release, this innovative material could be used as a spacer implant to reduce the considerably high morbidity and mortality associated with PJIs. This material has the potential to prevent PJIs not only in high-risk revision cases but also in primary total joint arthroplasty procedures.
Collapse
Affiliation(s)
- Mehmet D Asik
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, Massachusetts
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts
| | - Eileen Walsh-Rock
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, Massachusetts
| | - Nicoletta Inverardi
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, Massachusetts
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts
| | - Cecilia Nepple
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, Massachusetts
| | - Timothy Zhao
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, Massachusetts
| | - Amita Sekar
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, Massachusetts
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts
| | | | - Matheus Ferreira
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, Massachusetts
| | - Keith K Wannomae
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, Massachusetts
| | - Ebru Oral
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, Massachusetts
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts
| | - Orhun K Muratoglu
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, Massachusetts
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
3
|
Sekar A, Inverardi N, Lekkala S, Thomson A, Daesety V, Trendafilova D, Tierney P, Collins JE, Muratoglu OK, Oral E. Local Antimicrobial Potential of Bupivacaine and Tolfenamic Acid-Loaded Ultra-High Molecular Weight Polyethylene (UHMWPE) for Orthopedic Infection. Bioengineering (Basel) 2025; 12:173. [PMID: 40001692 PMCID: PMC11851508 DOI: 10.3390/bioengineering12020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Peri-prosthetic joint infection (PJI) is a major post-arthroplasty complication that warrants alternative antibacterial approaches to improve prophylaxis and treatment outcomes. Local administration of analgesics post-surgery is common. Recent studies have demonstrated the antimicrobial potential of analgesics and the feasibility of dual drug-eluting ultra-high molecular weight polyethylene (UHMWPE) for local antibacterial applications. However, the antibacterial mechanism of action is poorly understood, and the translational value of antimicrobial dual drug-loaded UHMWPE has not been evaluated. In this study, we utilized the Laurdan assay and gene expression analysis to demonstrate the antibacterial action of bupivacaine hydrochloride (BP) and tolfenamic acid (TA) against Staphylococcus aureus. Furthermore, we incorporated BP and TA into UHMWPE at different weight concentrations and studied their longitudinal drug release and real-time antibacterial properties. The analgesics showed a significant effect on the bacterial membrane properties comparable to known antibiotics and regulated bacterial gene expression. For the dual drug-loaded UHMWPE, the drug release rate from BP/TA combinations was interestingly not a direct function of the loaded drug weight percent, potentially due to the hydrophobicity of TA and the interactions between the two drugs. Combinations of BP and TA at the higher total drug concentration (10 and 20%) showed a prolonged antibacterial effect against S. aureus, with great potential for prophylactic use.
Collapse
Affiliation(s)
- Amita Sekar
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA; (A.S.)
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Nicoletta Inverardi
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA; (A.S.)
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Sashank Lekkala
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA; (A.S.)
| | - Andrew Thomson
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA; (A.S.)
| | - Vikram Daesety
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA; (A.S.)
| | - Darina Trendafilova
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA; (A.S.)
| | - Peyton Tierney
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA; (A.S.)
| | - Jamie E. Collins
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Orhun K. Muratoglu
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA; (A.S.)
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Ebru Oral
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA; (A.S.)
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Inverardi N, Serafim MF, Marzouca A, Fujino K, Ferreira M, Asik MD, Sekar A, Muratoglu OK, Oral E. Synergistic antibacterial drug elution from UHMWPE for load-bearing implants. J Mater Chem B 2025; 13:2382-2399. [PMID: 39838885 PMCID: PMC11874067 DOI: 10.1039/d4tb02672a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Total joint replacement is a successful procedure for restoring the patient's musculoskeletal mobility and quality of life, but it carries the risk of severe peri-prosthetic joint infections (PJI) and is accompanied by post-operative pain. Cocktails of multiple drugs are often used for prevention/treatment of PJI and for addressing pain. Local drug delivery systems are promising for improving the outcome of the treatment and decreasing the side effects of systemic drugs. To this end, the ultra-high molecular weight polyethylene (UHMWPE) bearing surface of the joint implant is here proposed as a platform for simultaneous release of multiple therapeutics. The combined use of non-antibiotic drugs and antibiotics, and their incorporation into UHMWPE allows to obtain novel antibacterial implant materials. The combined elution of analgesics and antibiotics from UHMWPE is found to be synergistically effective in eradicating Staphylococcus aureus, as the non-antibiotic compound significantly enhances the antibacterial activity of the antibiotic. The drug properties and the employed method for their incorporation into UHMWPE are found to dictate the morphology, thus the mechanical properties of the resulting material. By adopting various fabrication methods, novel formulations showing an enhanced antibacterial activity and outstanding mechanical properties are here proposed to amplify the functionality of polymeric implant materials.
Collapse
Affiliation(s)
- Nicoletta Inverardi
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Maria F Serafim
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | - Anthony Marzouca
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | - Keita Fujino
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | - Matheus Ferreira
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | - Mehmet D Asik
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Amita Sekar
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Orhun K Muratoglu
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Ebru Oral
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
5
|
Robinson KJ, Voelcker NH, Thissen H. Clinical challenges and opportunities related to the biological responses experienced by indwelling and implantable bioelectronic medical devices. Acta Biomater 2025; 193:49-64. [PMID: 39675496 DOI: 10.1016/j.actbio.2024.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Implantable electrodes have been utilized for decades to stimulate, sense, or monitor a broad range of biological processes, with examples ranging from glucose monitoring devices to cochlear implants. While the underlying science related to the application of electrodes is a mature field, preclinical and clinical studies have demonstrated that there are still significant challenges in vivo associated with a lack of control over tissue-material interfacial interactions, especially over longer time frames. Herein we discuss the current challenges and opportunities for implantable electrodes and the associated bioelectronic interfaces across the clinical landscape with a focus on emerging technologies and the obstacles of biofouling, microbial colonization, and the foreign body response. Overcoming these challenges is predicted to open the door for a new generation of implantable medical devices and significant associated clinical impact. STATEMENT OF SIGNIFICANCE: Implantable electrodes have been utilised for decades to stimulate, sense, or monitor a broad range of biological processes, with examples ranging from glucose monitoring devices to cochlear implants. Next-generation bioelectronic implantable medical devices promise an explosion of new applications that have until this point in time been impossible to achieve. However, there are several persistent biological challenges hindering the realisation of these new applications. We present a clinical perspective on how these biological challenges have shaped the device market and clinical trial landscape. Specifically, we present statistical breakdowns of current device applications and discuss biofouling, the foreign body response, and microbial colonisation as the main factors that need to be addressed before a new generation of devices can be explored.
Collapse
Affiliation(s)
- Kye J Robinson
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia.
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Helmut Thissen
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| |
Collapse
|
6
|
Methling R, Greiter M, Al‐Zawity J, Müller M, Schönherr H, Kuckling D. Salt-Responsive Switchable Block Copolymer Brushes with Antibacterial and Antifouling Properties. Macromol Biosci 2025; 25:e2400261. [PMID: 39601460 PMCID: PMC11727821 DOI: 10.1002/mabi.202400261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/14/2024] [Indexed: 11/29/2024]
Abstract
A strategy for multifunctional biosurfaces exploiting multiblock copolymers and the antipolyelectrolyte effect is reported. Combining a polyzwitterionic/antifouling and a polycationic/antibacterial block with a central anchoring block for attachment to titanium oxide surfaces affords surface coatings that exhibit antifouling properties against proteins and allow for surface regeneration by clearing adhering proteins by employing a salt washing step. The surfaces also kill bacteria by contact killing, which is aided by a nonfouling block. The synthesis of block copolymers of 4-vinyl pyridine (VP), dimethyl 4-vinylbenzyl phosphonate (DMVBP), and 4-vinylbenzyltrimethyl ammonium chloride (TMA) is achieved on the multigram scale via RAFT polymerization with good end group retention and narrow dispersities. By polymer analogous reactions, poly(4-vinyl pyridinium propane sulfonate-block-4-vinylbenzyl phosphonic acid-block-4-vinylbenzyl trimethylammonium chloride) (P(VSP64-b-PA14-b-TMA64)) is obtained. The antifouling properties against the model protein pepsin and the salt-induced surface regeneration are shown in surface plasmon resonance (SPR) experiments, while independently the antibacterial and antifouling properties of coated titanium substrates are successfully tested in preliminary microbiological assays against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). This strategy may contribute to the development of long-term effective antibacterial implant surface coatings to suppress biomedical device-associated infections.
Collapse
Affiliation(s)
- Rafael Methling
- Department of ChemistryPaderborn UniversityWarburger Str. 10033098PaderbornGermany
| | - Michael Greiter
- Physical Chemistry IResearch Center of Micro and Nanochemistry and (Bio)Technology (Cμ)University of SiegenAdolf‐Reichwein‐Str. 257076SiegenGermany
| | - Jiwar Al‐Zawity
- Physical Chemistry IResearch Center of Micro and Nanochemistry and (Bio)Technology (Cμ)University of SiegenAdolf‐Reichwein‐Str. 257076SiegenGermany
| | - Mareike Müller
- Physical Chemistry IResearch Center of Micro and Nanochemistry and (Bio)Technology (Cμ)University of SiegenAdolf‐Reichwein‐Str. 257076SiegenGermany
| | - Holger Schönherr
- Physical Chemistry IResearch Center of Micro and Nanochemistry and (Bio)Technology (Cμ)University of SiegenAdolf‐Reichwein‐Str. 257076SiegenGermany
| | - Dirk Kuckling
- Department of ChemistryPaderborn UniversityWarburger Str. 10033098PaderbornGermany
| |
Collapse
|
7
|
Sekar A, Fan Y, Tierney P, McCanne M, Jones P, Malick F, Kannambadi D, Wannomae KK, Inverardi N, Muratoglu OK, Oral E. Investigating the Translational Value of Periprosthetic Joint Infection Models to Determine the Risk and Severity of Staphylococcal Biofilms. ACS Infect Dis 2024; 10:4156-4166. [PMID: 39630924 DOI: 10.1021/acsinfecdis.4c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
With the advent of antibiotic-eluting polymeric materials for targeting recalcitrant infections, using preclinical models to study biofilms are crucial for improving the treatment efficacy in periprosthetic joint infections. The stratification of risk and severity of infections is needed to develop an effective clinical dosing framework with better treatment outcomes. We use in vivo and in vitro implant-associated infection models to demonstrate that methicillin-sensitive and resistant Staphylococcus aureus (MSSA and MRSA) have model-dependent distinct implant and peri-implant tissue colonization patterns. The maturity of biofilms and the location (implant vs tissue) were found to influence the antibiotic susceptibility evolution profiles of MSSA and MRSA, and the models could capture the differing host-microbe interactions in vivo. Gene expression studies revealed the molecular heterogeneity of colonizing bacterial populations. The comparison and stratification of the risk and severity of infection across different preclinical models provided in this study can guide clinical dosing to prevent or treat PJI effectively.
Collapse
Affiliation(s)
- Amita Sekar
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yingfang Fan
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Peyton Tierney
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Madeline McCanne
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Parker Jones
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Fawaz Malick
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Devika Kannambadi
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Keith K Wannomae
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Nicoletta Inverardi
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Orhun K Muratoglu
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ebru Oral
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
8
|
Lin H, Gao Z, Shan T, Asilebieke A, Guo R, Kan YC, Li C, Xu Y, Chu JJ. A review on the promising antibacterial agents in bone cement-From past to current insights. J Orthop Surg Res 2024; 19:673. [PMID: 39428491 PMCID: PMC11492595 DOI: 10.1186/s13018-024-05143-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024] Open
Abstract
Antibacterial bone cements (ABCs), such as antibiotic-loaded bone cements (ALBCs), have been widely utilized in clinical treatments. Currently, bone cements loaded with vancomycin, gentamicin, tobramycin, or clindamycin are approved by the US Food and Drug Administration. However, traditional ALBCs exhibit drawbacks like burst release and bacterial resistance. Therefore, there is a demand for the development of antibacterial bone cements containing novel agents to address these defects. In this review, we provide an overview and prospect of the new antibacterial agents that can be used or have the potential to be applied in bone cement, including metallic antibacterial agents, pH-switchable antibacterial agents, cationic polymers, N-halamines, non-leaching acrylic monomers, antimicrobial peptides and enzymes. Additionally, we have conducted a preliminary assessment of the feasibility of bone cement containing N-halamine, which has demonstrated good antibacterial activities. The conclusion of this review is that the research and utilization of bone cement containing novel antibacterial agents contribute to addressing the limitations of ALBCs. Therefore, it is necessary to continue expanding the research and use of bone cement incorporating novel antibacterial agents. This review offers a novel perspectives for designing ABCs and treating bone infections.
Collapse
Affiliation(s)
- Hao Lin
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China
- Department of Orthopedics, Hefei BOE Hospital, Teaching Hospital of Shanghai University Medical College, Hefei, 230013, Anhui, China
| | - Zhe Gao
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China
| | - Tao Shan
- Department of Orthopedics, The First People's Hospital of Hefei, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China
| | - Ayakuzi Asilebieke
- Department of Pharmaceutical Science and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Rui Guo
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China
| | - Yu-Chen Kan
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China
| | - Chun Li
- Department of Orthopedics, The First People's Hospital of Hefei, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China.
| | - Yang Xu
- Department of Pharmaceutical Science and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
| | - Jian-Jun Chu
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China.
| |
Collapse
|
9
|
Inverardi N, Lekkala S, Serafim MF, Sekar A, Wannomae KK, Micheli B, Bedair H, Muratoglu OK, Oral E. Diffusion doping of analgesics into UHMWPE for prophylactic pain management. J Mater Chem B 2024; 12:10332-10345. [PMID: 39192832 DOI: 10.1039/d4tb01050g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Pain management after total joint arthroplasty is often addressed by systemic delivery of opioids. Local delivery of non-opioid analgesic drugs directly in the joint space from the UHMWPE component of the prosthesis would be highly beneficial to increase the efficacy of the drugs, decreasing the overall side effects and the risk of opioid addiction. It has been shown that effective concentrations of local analgesics can be achieved by eluting from analgesic-blended UHMWPE; however, this approach is limited by the decrease in mechanical properties resulting from the extent of phase separation of the blended drugs from the polymeric matrix. Here we hypothesized that mechanical properties could be maintained by incorporating analgesics into solid form UHMWPE by diffusion as an alternative method. Lidocaine or bupivacaine were diffused in solid form UHMWPE with or without radiation crosslinking. The loaded drug content, the spatial distribution of the drugs and their chemical stability after doping were characterized by FTIR and NMR spectroscopy, respectively. Drug release kinetics, tensile mechanical properties and wear rates were assessed. The results showed that diffusion doping could be used as a promising method to obtain a therapeutic implant material without compromising its mechanical and structural integrity.
Collapse
Affiliation(s)
- Nicoletta Inverardi
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | - Sashank Lekkala
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Maria F Serafim
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Amita Sekar
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | - Keith K Wannomae
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Brad Micheli
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Hany Bedair
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | - Orhun K Muratoglu
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | - Ebru Oral
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02114, USA.
| |
Collapse
|
10
|
Pritchett JW. Polyurethane: An Old Material for a New Generation of Antibiotic Spacer Implants. Arthroplast Today 2024; 29:101409. [PMID: 39206055 PMCID: PMC11350246 DOI: 10.1016/j.artd.2024.101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/21/2024] [Accepted: 04/28/2024] [Indexed: 09/04/2024] Open
Abstract
Background Polyurethane tibial and acetabular inserts that release high concentrations of antibiotics were used with debridement and implant retention to treat prosthetic joint infections. The hypothesis was that a low-friction, antibiotic-releasing bearing could provide a simpler, safer, and more patient-accepted treatment for infection using antibiotic cement and intravenous antibiotics. Methods Patients (n = 106) with culture-positive infections received antibiotic inserts. Vancomycin and tobramycin were mixed into the polyurethane polymer at 7% by weight. Contraindications to debridement antibiotics and implant retention were a sinus tract, loose prostheses, and/or the wound could not be closed. Measurable outcomes were success in controlling infection, complications, patient acceptable symptomatic state, and need for revision surgery. Antibiotic levels were measured in joint fluid and blood; laboratory mechanical wear tests were performed; and results were compared to bone cement and polyethylene containing antibiotics. Results Antibiotic-infused spacers sustained joint fluid antibiotic levels 8-12 times the therapeutic level and produced low serum levels with no toxicities. Mechanical testing showed low wear and retained mechanical integrity. All patients achieved complication-free remission of infection at a follow-up of 5-26 years. All patients had Harris hip and Knee Society scores above 85, and 68% achieved patient acceptable symptomatic state. Conclusions All patients achieved remission of infection, fewer complications compared to revision using antibiotic bone cement, no antibiotic toxicity or adverse drug reactions, and 68% achieved patient acceptance. The antibiotic polyurethane inserts provided antibacterial efficacy comparable with currently used bone cement spacers, and their wear rate was approximately 20 times lower than bone cement as an articulation.
Collapse
|
11
|
Wan Z, Gao Y, Wang Y, Zhang X, Gao X, Zhou T, Zhang Z, Li Z, Lin Y, Wang B, Chen K, Wang Y, Duan C, Yuan Z. High-purity butoxydibutylborane catalysts enable the low-exothermic polymerization of PMMA bone cement with enhanced biocompatibility and osseointegration. J Mater Chem B 2024; 12:8911-8918. [PMID: 39145600 DOI: 10.1039/d4tb00967c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Polymethyl methacrylate (PMMA) based biomaterials have been widely utilized in clinics. However, currently, PMMA catalyzed by benzoyl peroxide (BPO) exhibits disquieting disadvantages including an exothermic polymerization reaction and a lack of bioactivity. Here, we first designed three industrial-scale synthesis methods for high-purity butoxydibutylborane (BODBB), achieving purity levels greater than 95% (maximum: 97.6%) and ensuring excellent fire safety. By utilizing BODBB as a catalyst, the highest polymerization temperature of PMMA bone cement (PMMA-BODBB) reached only 36.05 °C, ensuring that no thermal damage occurred after implantation. Compared to PMMA catalyzed by BPO and partially oxidized tributylborane (TBBO, catalyst of Super Bond C&B), PMMA-BODBB exhibited superior cell adhesion, proliferation, and osteogenesis, attributed to the reduced release of free radicals and toxic monomer, and moderate bioactive boron release. After injection into a 5 mm defect in the rat cranial bone, PMMA-BODBB demonstrated the highest level of osteointegration. This work not only presents an industrial-scale synthesis of high-purity BODBB, but also offers an innovative PMMA biomaterial system with intrinsic biocompatibility and osseointegration, paving the way for the next generation of PMMA-based biomaterials with broader applications.
Collapse
Affiliation(s)
- Zhuo Wan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, P. R. China
| | - Yike Gao
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, P. R. China
| | - Yingbo Wang
- Department of Oral and Maxillofacial Surgery, The First Clinical Division, The Third Clinical Division, and The Fifth Clinical Division, Peking University School of Stomatology, 100020 Beijing, P. R. China.
| | - Xianghao Zhang
- Department of Oral and Maxillofacial Surgery, The First Clinical Division, The Third Clinical Division, and The Fifth Clinical Division, Peking University School of Stomatology, 100020 Beijing, P. R. China.
| | - Xiyin Gao
- Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Tuanfeng Zhou
- Department of Oral and Maxillofacial Surgery, The First Clinical Division, The Third Clinical Division, and The Fifth Clinical Division, Peking University School of Stomatology, 100020 Beijing, P. R. China.
| | - Zhishan Zhang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Zijian Li
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Yunfei Lin
- Department of Orthopaedic Surgery, Peking University First Hospital, Beijing 100034, P. R. China
| | - Bing Wang
- Department of Orthopaedic Surgery, Peking University First Hospital, Beijing 100034, P. R. China
| | - Kun Chen
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, P. R. China
| | - Yang Wang
- Department of Oral and Maxillofacial Surgery, The First Clinical Division, The Third Clinical Division, and The Fifth Clinical Division, Peking University School of Stomatology, 100020 Beijing, P. R. China.
| | - Chenggang Duan
- Department of Oral and Maxillofacial Surgery, The First Clinical Division, The Third Clinical Division, and The Fifth Clinical Division, Peking University School of Stomatology, 100020 Beijing, P. R. China.
| | - Zuoying Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, P. R. China
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, P. R. China.
| |
Collapse
|
12
|
Chen P, Chen B, Liu N, Lin X, Wei X, Yu B, Teng X, Lin F. Global research trends of antibiotic-loaded bone cement: A bibliometric and visualized study. Heliyon 2024; 10:e36720. [PMID: 39263064 PMCID: PMC11387344 DOI: 10.1016/j.heliyon.2024.e36720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
Objective Antibiotic-loaded bone cement (ALBC) plays an indispensable role in the treatment of infectious diseases of bone and joint. Here, we intended to analyze the research status, hot spots and frontiers in the field of ALBC, and to provide reference for future research ideas. Methods The related English literature in the field of ALBC in the Web of Science Core Collection database was retrieved from January 1, 2009 to July 11, 2023. VOSviewer was used to extract the information of research constituents or bibliometric items such as authors, institutions, countries, and journals. CiteSpace was used to perform cluster analysis and frontier analysis of key words in ALBC research field. Results A total of 1091 literatures related to ALBC research were retrieved, and the annual number of publications showed a steady upward trend in the past 15 years. The high-yield countries and regions are mainly represented by the United States, China (including Taiwan, China) and several European countries, such as Germany, England, Spain, Italy, the Netherlands, etc. The top three institutions with the highest number of publications were Shanghai Jiao Tong University, Chang Gung University and Chang Gung Memorial Hospital in China. Four of the top 10 influential scholars come from Germany, namely Konstantinos Anagnostakos, Volker Alt, Andrej Trampuz, and Bernd Fink. The top 10 high-yield journals had an average of 25 articles per journal and an average of 618.9 citations. The top 3 high-yield journals were Journal of Arthroplasty (57 articles, 1213 citations), Clinical Orthopaedics and Related Research (35 articles, 1119 times cited), and Journal of Orthopaedic Research (29 papers, 488 times cited). The keywords with high frequency were infection (266 times), vancomycin (239 times), bone-cement (219 times), gentamicin (216 times), antibiotics (168 times), osteomyelitis (163 times), etc. The clustering knowledge map of high-frequency keywords could be divided into 4 categories: (1) elution, release, mechanical and antibacterial properties of ALBC; (2) Application of ALBC in revision of prosthetic joint infections (PJIs); (3) Antibiotic types and application forms of ALBC; (4) Application of ALBC in the treatment of osteomyelitis. The keywords with the strongest citation bursts analysis revealed a core ("replacement/arthroplasty") and two stages of development in the field of ALBC research. The first stage (2009-2018) focused more on ALBC drug delivery, release, and infection prevention, while the second stage (2018-2023) mainly focused on ALBC drug elution, mechanical properties, and PJIs revision. Starting from 2018, the keyword with the strongest citation bursts had shifted from "acrylic bone cement" to "periprosthetic joint infection". Conclusion ALBC research is steadily on the rise. Arthroplasty related applications continue to be the core of ALBC research. The research hotspot and trend are mainly the application in the prevention and treatment of bone and joint infectious diseases and the elution, release, mechanical and antibacterial properties of ALBC.
Collapse
Affiliation(s)
- Peisheng Chen
- Department of Orthopedics, Fuzhou Second General Hospital, School of Clinical Medicine, Fujian Medical University, Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopedic Trauma, Fuzhou, 350007, Fujian, People's Republic of China
| | - Bin Chen
- Department of Orthopedics, Fuzhou Second General Hospital, School of Clinical Medicine, Fujian Medical University, Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopedic Trauma, Fuzhou, 350007, Fujian, People's Republic of China
| | - Nannan Liu
- Department of Orthopedics Institute, Fuzhou Second General Hospital, Fuzhou, 350007, Fujian, People's Republic of China
| | - Xiaofeng Lin
- Department of Orthopedics, Fuzhou Second General Hospital, School of Clinical Medicine, Fujian Medical University, Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopedic Trauma, Fuzhou, 350007, Fujian, People's Republic of China
| | - Xiaojuan Wei
- Department of Pharmacy, Fuzhou Second General Hospital, Fuzhou, 350007, Fujian, People's Republic of China
| | - Bin Yu
- Division of Orthopedics & Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xing Teng
- Department of Orthopedic Trauma, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, People's Republic of China
| | - Fengfei Lin
- Department of Orthopedics, Fuzhou Second General Hospital, School of Clinical Medicine, Fujian Medical University, Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopedic Trauma, Fuzhou, 350007, Fujian, People's Republic of China
| |
Collapse
|
13
|
Sekar A, Fan Y, Tierney P, McCanne M, Jones P, Malick F, Kannambadi D, Wannomae KK, Inverardi N, Muratoglu O, Oral E. Investigating the translational value of Periprosthetic Joint Infection (PJI) models to determine the risk and severity of Staphylococcal biofilms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591689. [PMID: 38746179 PMCID: PMC11092509 DOI: 10.1101/2024.04.29.591689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
With the advent of antibiotic-eluting polymeric materials for targeting recalcitrant infections, using preclinical models to study biofilm is crucial for improving the treatment efficacy in periprosthetic joint infections. The stratification of risk and severity of infections is needed to develop an effective clinical dosing framework with better outcomes. Here, using in-vivo and in-vitro implant-associated infection models, we demonstrate that methicillin-sensitive and resistant Staphylococcus aureus (MSSA and MRSA) have model-dependent distinct implant and peri-implant tissue colonization patterns. The maturity of biofilms and the location (implant vs tissue) were found to influence the antibiotic susceptibility evolution profiles of MSSA and MRSA and the models could capture the differing host-microbe interactions in vivo. Gene expression studies revealed the molecular heterogeneity of colonizing bacterial populations. The comparison and stratification of the risk and severity of infection across different preclinical models provided in this study can guide clinical dosing to effectively prevent or treat PJI.
Collapse
Affiliation(s)
- Amita Sekar
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston USA
| | - Yingfang Fan
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston USA
| | - Peyton Tierney
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Madeline McCanne
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Parker Jones
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Fawaz Malick
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Devika Kannambadi
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Keith K Wannomae
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Nicoletta Inverardi
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston USA
| | - Orhun Muratoglu
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston USA
| | - Ebru Oral
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston USA
| |
Collapse
|
14
|
Xu Y, Lin H, Gao Z, Guo R, Kan YC, Han LY, Bu WH, Wang Z, Asilebieke A, Han LX, Li C, He F, Chu JJ. Injectable isoniazid-loaded bone cement based on hydrazone bonds achieving long-term release and decent mechanical properties. J Mater Chem B 2024; 12:4389-4397. [PMID: 38623831 DOI: 10.1039/d3tb02661b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
A robust and easily manufactured high-strength and long-term release hydrazone-based isoniazid acrylic (HIA) bone cement is reported. The mechanical strength of HIA bone cement is similar to that of normal polymethyl methacrylate (PMMA) bone cement, far surpassing that of traditional isoniazid-containing antibiotic-loaded bone cement (INH bone cement). Isoniazid is connected to the bone cement through bioorthogonal hydrazone chemistry, and it possesses release properties superior to those of INH bone cement, allowing for the sustained release of isoniazid for up to 12 weeks. In vivo and in vitro studies also indicate that HIA cement exhibits better biocompatibility than INH bone cement. The results of this study not only signify progress in the realm of antimicrobial bone cement for addressing bone tuberculosis but also enhance our capacity to create and comprehend high-performing antimicrobial bone cement.
Collapse
Affiliation(s)
- Yang Xu
- Department of Pharmaceutical Science and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Hao Lin
- Department of Orthopedics, Hefei BOE Hospital, Teaching Hospital of Shanghai University Medical College, Hefei, Anhui 230013, China.
| | - Zhe Gao
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China.
| | - Rui Guo
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China.
| | - Yu-Chen Kan
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China.
| | - Lu-Yang Han
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China.
| | - Wen-Han Bu
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China.
| | - Zhi Wang
- Department of Orthopedics, Hefei BOE Hospital, Teaching Hospital of Shanghai University Medical College, Hefei, Anhui 230013, China.
| | - Ayakuzi Asilebieke
- Department of Pharmaceutical Science and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Long-Xu Han
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China.
| | - Chuang Li
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui 230000, China
| | - Fang He
- Department of Orthopedics, Hefei BOE Hospital, Teaching Hospital of Shanghai University Medical College, Hefei, Anhui 230013, China.
| | - Jian-Jun Chu
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China.
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui 230000, China
| |
Collapse
|
15
|
Lekkala S, Inverardi N, Grindy SC, Hugard S, Muratoglu OK, Oral E. Irradiation Behavior of Analgesic and Nonsteroidal Anti-Inflammatory Drug-Loaded UHMWPE for Joint Replacement. Biomacromolecules 2024; 25:2312-2322. [PMID: 38456765 DOI: 10.1021/acs.biomac.3c01179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Local delivery of pain medication can be a beneficial strategy to address pain management after joint replacement, as it can decrease systemic opioid usage, leading to less side and long-term effects. In this study, we used ultrahigh molecular weight polyethylene (UHMWPE), commonly employed as a bearing material for joint implants, to deliver a wide set of analgesics and the nonsteroidal anti-inflammatory drug tolfenamic acid. We blended the drugs with UHMWPE and processed the blend by compression molding and sterilization by low-dose gamma irradiation. We studied the chemical stability of the eluted drugs, drug elution, tensile properties, and wear resistance of the polymer blends before and after sterilization. The incorporation of bupivacaine hydrochloride and tolfenamic acid in UHMWPE resulted in either single- or dual-drug loaded materials that can be sterilized by gamma irradiation. These compositions were found to be promising for the development of clinically relevant drug-eluting implants for joint replacement.
Collapse
Affiliation(s)
- Sashank Lekkala
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Nicoletta Inverardi
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Scott C Grindy
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Shannon Hugard
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Orhun K Muratoglu
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Ebru Oral
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
16
|
Lekkala S, Inverardi N, Yuh J, Wannomae KK, Tierney P, Sekar A, Muratoglu OK, Oral E. Antibiotic-Loaded Ultrahigh Molecular Weight Polyethylenes. Macromol Biosci 2024; 24:e2300389. [PMID: 38095273 PMCID: PMC11018474 DOI: 10.1002/mabi.202300389] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/20/2023] [Indexed: 01/09/2024]
Abstract
The occurrence of periprosthetic joint infections (PJI) after total joint replacement constitutes a great burden for the patients and the healthcare system. Antibiotic-loaded polymethylmethacrylate (PMMA) bone cement is often used in temporary spacers during antibiotic treatment. PMMA is not a load-bearing solution and needs to be replaced by a functional implant. Elution from the ultrahigh molecular weight polyethylene (UHMWPE) bearing surface for drug delivery can combine functionality with the release of clinically relevant doses of antibiotics. In this study, the feasibility of incorporating a range of antibiotics into UHMWPE is investigated. Drug stability is assessed by thermo-gravimetric analysis and nuclear magnetic resonance spectroscopy. Drug-loaded UHMWPEs are prepared by compression molding, using eight antibiotics at different loading. The predicted intra-articular concentrations of drugs eluted from UHMWPE are above minimum inhibitory concentration for at least 3 weeks against Staphylococci, which are the major causative bacteria for PJI. The antibacterial efficacy is confirmed for samples covering 2% of a representative knee implant in vitro over 72 h, showing that a small fraction of the implant surface loaded with antibiotics may be sufficient against Staphylococci.
Collapse
Affiliation(s)
- Sashank Lekkala
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nicoletta Inverardi
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Jean Yuh
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Keith K. Wannomae
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Peyton Tierney
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Amita Sekar
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Orhun K. Muratoglu
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Ebru Oral
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
17
|
Fan Y, McCanne M, Yuh J, Lekkala S, Leape CP, Hugard S, Thomson A, Collins JE, Muratoglu OK, Randolph M, Oral E. The efficacy of antibiotic-eluting material in a two-stage model of periprosthetic joint infection. J Orthop Res 2024; 42:460-473. [PMID: 37609941 DOI: 10.1002/jor.25681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/30/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023]
Abstract
Periprosthetic joint infections occur in about 2% of patients who undergo primary total joint arthroplasty, a procedure performed over 1 million times in the United States. The gold standard of treatment is a two-stage revision. This study aimed to establish a two-stage procedure in a preclinical small animal model (rat) to test and compare the efficacy of an antibiotic-eluting material in managing infection. Joint replacement was simulated by transchondylarly implanting a polyethylene (PE) plug into the distal femur and a titanium screw in the proximal tibia. Methicillin-sensitive Staphylococcus aureus (MSSA) 108 CFU/mL was injected into the tibial canal and the joint space before wound closure. The control groups were killed on postoperative day (POD) 18 (n = 12) and on POD 42 (n = 4) to assess both early and later-stage outcomes in the control group. The test group underwent revision surgery on POD 18 for treatment using gentamicin-eluting polyethylene (GPE, n = 4) and was observed until POD 42 to evaluate the efficacy of treatment. Our results showed that the bone loss for the treatment group receiving GPE was significantly less than that of the control (p < 0.05), which was supported by the histology images and an AI-tool assisted infection rate evaluation. Gait metrics duty factor imbalance and hindlimb temporal symmetry were significantly different between the treatment and control groups on Day 42. This animal model was feasible for evaluating treatments for peri-prosthetic joint infections (PJI) with a revision surgery and specifically that revision surgery and local antibiotic treatment largely hindered the peri-prosthetic bone loss. Statement of clinical significance: This revision model of peri-prosthetic infection has the potential of comparatively evaluating prophylaxis and treatment strategies and devices. Antibiotic-eluting UHMWPE is devised as at tool in treating PJI while providing weight bearing and joint space preservation.
Collapse
Affiliation(s)
- Yingfang Fan
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Madeline McCanne
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jean Yuh
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sashank Lekkala
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Charlotte P Leape
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shannon Hugard
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andrew Thomson
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA
- Boston College, Boston, Massachusetts, USA
| | - Jamie E Collins
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts, USA
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Orhun K Muratoglu
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark Randolph
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Ebru Oral
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Sekar A, Gil D, Tierney P, McCanne M, Daesety V, Trendafilova D, Muratoglu OK, Oral E. Synergistic use of anti-inflammatory ketorolac and gentamicin to target staphylococcal biofilms. J Transl Med 2024; 22:102. [PMID: 38273276 PMCID: PMC10809490 DOI: 10.1186/s12967-024-04871-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND While antibiotics remain our primary tools against microbial infection, increasing antibiotic resistance (inherent and acquired) is a major detriment to their efficacy. A practical approach to maintaining or reversing the efficacy of antibiotics is the use of other commonly used therapeutics, which show synergistic antibacterial action with antibiotics. Here, we investigated the extent of antibacterial synergy between the antibiotic gentamicin and the anti-inflammatory ketorolac regarding the dynamics of biofilm growth, the rate of acquired resistance, and the possible mechanism of synergy. METHODS Control (ATCC 12600, ATCC 35984) and clinical strains (L1101, L1116) of Staphylococcus aureus and Staphylococcus epidermidis with varying antibiotic susceptibility profiles were used in this study to simulate implant-material associated low-risk and high-risk biofilms in vitro. The synergistic action of gentamicin sulfate (GS) and ketorolac tromethamine (KT), against planktonic staphylococcal strains were determined using the fractional inhibitory concentration measurement assay. Nascent (6 h) and established (24 h) biofilms were grown on 316L stainless steel plates and the synergistic biofilm eradication activity was determined and characterized using adherent bacteria count, minimum biofilm eradication concentration (MBEC) measurement for GS, visualization by live/dead imaging, scanning electron microscopy, gene expression of biofilm-associated genes, and bacterial membrane fluidity assessment. RESULTS Gentamicin-ketorolac (GS-KT) combination demonstrated synergistic antibacterial action against planktonic Staphylococci. Control and clinical strains showed distinct biofilm growth dynamics and an increase in biofilm maturity was shown to confer further resistance to gentamicin for both 'low-risk' and 'high-risk' biofilms. The addition of ketorolac enhanced the antibiofilm activity of gentamicin against acquired resistance in staphylococcal biofilms. Mechanistic studies revealed that the synergistic action of gentamicin-ketorolac interferes with biofilm morphology and subverts bacterial stress response altering bacterial physiology, membrane dynamics, and biofilm properties. CONCLUSION The results of this study have a significant impact on the local administration of antibiotics and other therapeutic agents commonly used in the prevention and treatment of orthopaedic infections. Further, these results warrant the study of synergy for the concurrent or sequential administration of non-antibiotic drugs for antimicrobial effect.
Collapse
Affiliation(s)
- Amita Sekar
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, USA
| | - Dmitry Gil
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, USA
| | - Peyton Tierney
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
| | - Madeline McCanne
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
| | - Vikram Daesety
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
| | | | - Orhun K Muratoglu
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, USA
| | - Ebru Oral
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA.
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, USA.
| |
Collapse
|
19
|
Li Z, He D, Guo B, Wang Z, Yu H, Wang Y, Jin S, Yu M, Zhu L, Chen L, Ding C, Wu X, Wu T, Gong S, Mao J, Zhou Y, Luo D, Liu Y. Self-promoted electroactive biomimetic mineralized scaffolds for bacteria-infected bone regeneration. Nat Commun 2023; 14:6963. [PMID: 37907455 PMCID: PMC10618168 DOI: 10.1038/s41467-023-42598-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Infected bone defects are a major challenge in orthopedic treatment. Native bone tissue possesses an endogenous electroactive interface that induces stem cell differentiation and inhibits bacterial adhesion and activity. However, traditional bone substitutes have difficulty in reconstructing the electrical environment of bone. In this study, we develop a self-promoted electroactive mineralized scaffold (sp-EMS) that generates weak currents via spontaneous electrochemical reactions to activate voltage-gated Ca2+ channels, enhance adenosine triphosphate-induced actin remodeling, and ultimately achieve osteogenic differentiation of mesenchymal stem cells by activating the BMP2/Smad5 pathway. Furthermore, we show that the electroactive interface provided by the sp-EMS inhibits bacterial adhesion and activity via electrochemical products and concomitantly generated reactive oxygen species. We find that the osteogenic and antibacterial dual functions of the sp-EMS depend on its self-promoting electrical stimulation. We demonstrate that in vivo, the sp-EMS achieves complete or nearly complete in situ infected bone healing, from a rat calvarial defect model with single bacterial infection, to a rabbit open alveolar bone defect model and a beagle dog vertical bone defect model with the complex oral bacterial microenvironment. This translational study demonstrates that the electroactive bone graft presents a promising therapeutic platform for complex defect repair.
Collapse
Affiliation(s)
- Zixin Li
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
- Department of Stomatology, Peking University People's Hospital, Beijing, 100044, PR China
| | - Danqing He
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Bowen Guo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
| | - Zekun Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
| | - Huajie Yu
- Fourth Clinical Division, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Yu Wang
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Shanshan Jin
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Min Yu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Lisha Zhu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Liyuan Chen
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Chengye Ding
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Xiaolan Wu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Tianhao Wu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Shiqiang Gong
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jing Mao
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yanheng Zhou
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China.
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China.
| |
Collapse
|
20
|
Sekar A, Gil D, Tierney PA, McCanne M, Daesety V, Trendafilova D, Muratoglu OK, Oral E. Synergistic use of anti-inflammatory ketorolac and gentamicin to target staphylococcal biofilms. RESEARCH SQUARE 2023:rs.3.rs-3471646. [PMID: 37961705 PMCID: PMC10635368 DOI: 10.21203/rs.3.rs-3471646/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background While antibiotics remain our primary tools against microbial infection, increasing antibiotic resistance (inherent and acquired) is a major detriment to their efficacy. A practical approach to maintaining or reversing the efficacy of antibiotics is the use of other commonly used therapeutics, which show synergistic antibacterial action with antibiotics. Here, we investigated the extent of antibacterial synergy between the antibiotic gentamicin and the anti-inflammatory ketorolac regarding the dynamics of biofilm growth, the rate of acquired resistance, and the possible mechanism of synergy. Methods Control (ATCC 12600, ATCC 35984) and clinical strains (L1101, L1116) of S. aureus and S. epidermidis with varying antibiotic susceptibility profiles were used in this study to simulate implant-material associated low-risk and high-risk biofilms in vitro. The synergistic action of gentamicin sulfate (GS) and ketorolac tromethamine (KT), against planktonic staphylococcal strains were determined using the fractional inhibitory concentration measurement assay. Nascent (6hr) and established (24hr) biofilms were grown on 316 stainless steel plates and the synergistic biofilm eradication activity was determined and characterized using adherent bacteria count, MBEC measurement for GS, gene expression of biofilm-associated genes, visualization by live/dead imaging, scanning electron microscopy, and bacterial membrane fluidity assessment. Results Gentamicin-ketorolac combination demonstrated synergistic antibacterial action against planktonic Staphylococci. Control and clinical strains showed distinct biofilm growth dynamics and an increase in biofilm maturity was shown to confer further resistance to gentamicin for both 'low-risk' and 'high-risk' biofilms. The addition of ketorolac enhanced the antibiofilm activity of gentamicin against acquired resistance in staphylococcal biofilms. Mechanistic studies revealed that the synergistic action of gentamicin-ketorolac interferes with biofilm morphology and subverts bacterial stress response altering bacterial physiology, membrane dynamics, and biofilm properties. Conclusion The results of this study have a significant impact on the local administration of antibiotics and other therapeutic agents commonly used in the prevention and treatment of orthopaedic infections. Further, these results warrant the study of synergy for the concurrent or sequential administration of non-antibiotic drugs for antimicrobial effect.
Collapse
Affiliation(s)
- Amita Sekar
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University; Boston, U.S.A
| | - Dmitry Gil
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University; Boston, U.S.A
| | - Peyton Anne Tierney
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
| | - Madeline McCanne
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
| | - Vikram Daesety
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
| | - Darina Trendafilova
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
| | - Orhun K Muratoglu
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University; Boston, U.S.A
| | - Ebru Oral
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University; Boston, U.S.A
| |
Collapse
|
21
|
Gil D, Hugard S, Borodinov N, Ovchinnikova OS, Muratoglu OK, Bedair H, Oral E. Dual-analgesic loaded UHMWPE exhibits synergistic antibacterial effects against Staphylococci. J Biomed Mater Res B Appl Biomater 2023; 111:912-922. [PMID: 36462210 DOI: 10.1002/jbm.b.35201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/15/2022] [Accepted: 11/06/2022] [Indexed: 12/07/2022]
Abstract
Total joint arthroplasty is one of the most common surgeries in the United States, with almost a million procedures performed annually. Periprosthetic joint infections (PJI) remain the most devastating complications associated with total joint replacement. Effective antibacterial prophylaxis after primary arthroplasty could substantially reduce incidence rate of PJI. In the present study we propose to provide post-arthroplasty prophylaxis via dual-analgesic loaded ultra-high molecular weight polyethylene (UHMWPE). Our approach is based on previous studies that showed pronounced antibacterial activity of analgesic- and NSAID-loaded UHMWPE against Staphylococci. Here, we prepared bupivacaine/tolfenamic acid-loaded UHMWPE and assessed its antibacterial activity against Staphylococcus aureus and Staphylococcus epidermidis. Dual-drug loaded UHMWPE yielded an additional 1-2 log reduction of bacteria, when compared with single-drug loaded UHMWPE. Analysis of the drug elution kinetics suggested that the observed increase in antibacterial activity is due to the increased tolfenamic acid elution from dual-drug loaded UHMWPE. We showed that the increased fractal dimension of the drug domains in UHMWPE could be associated with increased drug elution, leading to higher antibacterial activity. Dual-analgesic loaded UHMWPE proposed here can be used as part of multi-modal antibacterial prophylaxis and promises substantial reduction in post-arthroplasty mortality and morbidity.
Collapse
Affiliation(s)
- Dmitry Gil
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Shannon Hugard
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Nikolay Borodinov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Olga S Ovchinnikova
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Orhun K Muratoglu
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Hany Bedair
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Ebru Oral
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Simón JA, Utomo E, Pareja F, Collantes M, Quincoces G, Otero A, Ecay M, Domínguez-Robles J, Larrañeta E, Peñuelas I. Radiolabeled Risperidone microSPECT/CT Imaging for Intranasal Implant Studies Development. Pharmaceutics 2023; 15:pharmaceutics15030843. [PMID: 36986704 PMCID: PMC10054269 DOI: 10.3390/pharmaceutics15030843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The use of intranasal implantable drug delivery systems has many potential advantages for the treatment of different diseases, as they can provide sustained drug delivery, improving patient compliance. We describe a novel proof-of-concept methodological study using intranasal implants with radiolabeled risperidone (RISP) as a model molecule. This novel approach could provide very valuable data for the design and optimization of intranasal implants for sustained drug delivery. RISP was radiolabeled with 125I by solid supported direct halogen electrophilic substitution and added to a poly(lactide-co-glycolide) (PLGA; 75/25 D,L-Lactide/glycolide ratio) solution that was casted on top of 3D-printed silicone molds adapted for intranasal administration to laboratory animals. Implants were intranasally administered to rats, and radiolabeled RISP release followed for 4 weeks by in vivo non-invasive quantitative microSPECT/CT imaging. Percentage release data were compared with in vitro ones using radiolabeled implants containing either 125I-RISP or [125I]INa and also by HPLC measurement of drug release. Implants remained in the nasal cavity for up to a month and were slowly and steadily dissolved. All methods showed a fast release of the lipophilic drug in the first days with a steadier increase to reach a plateau after approximately 5 days. The release of [125I]I− took place at a much slower rate. We herein demonstrate the feasibility of this experimental approach to obtain high-resolution, non-invasive quantitative images of the release of the radiolabeled drug, providing valuable information for improved pharmaceutical development of intranasal implants.
Collapse
Affiliation(s)
- Jon Ander Simón
- Radiopharmacy Unit, Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, IdiSNA, 31008 Pamplona, Spain
| | - Emilia Utomo
- School of Pharmacy, Queen’s University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Félix Pareja
- Radiopharmacy Unit, Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, IdiSNA, 31008 Pamplona, Spain
| | - María Collantes
- Translational Molecular Imaging Unit (UNIMTRA), Department of Nuclear Medicine, Clinica Universidad de Navarra, 31008 Pamplona, Spain
- Correspondence: (M.C.); (E.L.)
| | - Gemma Quincoces
- Radiopharmacy Unit, Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, IdiSNA, 31008 Pamplona, Spain
| | - Aarón Otero
- Translational Molecular Imaging Unit (UNIMTRA), Department of Nuclear Medicine, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Margarita Ecay
- Translational Molecular Imaging Unit (UNIMTRA), Department of Nuclear Medicine, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen’s University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
- Department of Pharmacy and Pharmaceutical Technology, University of Seville, 41012 Seville, Spain
| | - Eneko Larrañeta
- School of Pharmacy, Queen’s University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
- Correspondence: (M.C.); (E.L.)
| | - Iván Peñuelas
- Radiopharmacy Unit, Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, IdiSNA, 31008 Pamplona, Spain
- Translational Molecular Imaging Unit (UNIMTRA), Department of Nuclear Medicine, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
23
|
Sekar A, Lekkala S, Oral E. A Novel Method to Determine the Longitudinal Antibacterial Activity of Drug-Eluting Materials. J Vis Exp 2023:10.3791/64641. [PMID: 36939249 PMCID: PMC10859037 DOI: 10.3791/64641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Ultrahigh molecular weight polyethylene (UHMWPE) is widely used in total joint arthroplasties as a load-bearing surface. Periprosthetic joint infections, the majority of which occur shortly after joint replacement, constitute almost 25% of total knee revision surgeries, and the complete eradication of bacterial infection poses a major challenge. A promising way to tackle this problem is to ensure the local sustained delivery of antibiotic concentrations sufficient to inhibit the bacteria to support routine systemic antibiotic prophylaxis. There is increased research into the development of efficient local drug delivery devices. Although established antibacterial testing methods for drugs can be used to test the antibacterial efficacy of drug-eluting materials, they are lacking in terms of providing real-time and longitudinal antibacterial efficacy data that can be correlated to the elution profiles of antibiotics from these devices. Here, we report a direct and versatile methodology to determine the antibacterial efficacy of antibiotic-eluting UHMWPE implants. This methodology can be used as a platform to avoid bacterial culture at each time point of a lengthy experiment and can also be adapted to other local drug delivery devices.
Collapse
Affiliation(s)
- Amita Sekar
- Harris Orthopaedics Laboratory, Massachusetts General Hospital; Department of Orthopaedic Surgery, Harvard Medical School
| | - Sashank Lekkala
- Harris Orthopaedics Laboratory, Massachusetts General Hospital
| | - Ebru Oral
- Harris Orthopaedics Laboratory, Massachusetts General Hospital; Department of Orthopaedic Surgery, Harvard Medical School;
| |
Collapse
|
24
|
Tarabichi S, Chen AF, Higuera CA, Parvizi J, Polkowski GG. 2022 American Association of Hip and Knee Surgeons Symposium: Periprosthetic Joint Infection. J Arthroplasty 2023:S0883-5403(23)00065-7. [PMID: 36738863 DOI: 10.1016/j.arth.2023.01.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/06/2023] Open
Abstract
Periprosthetic joint infection (PJI) is the leading cause of failure in patients undergoing total joint arthroplasty. This article is a brief summary of a symposium on PJI that was presented at the annual AAHKS meeting. It will provide an overview of current technqiues in the prevention, diagnosis, and management of PJI. It will also highlight emerging technologies in this setting.
Collapse
Affiliation(s)
- Saad Tarabichi
- Rothman Orthopaedic Institute at Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Antonia F Chen
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Carlos A Higuera
- Levitetz Department of Orthopaedic Surgery, Cleveland Clinic Florida, Weston, Florida
| | - Javad Parvizi
- Rothman Orthopaedic Institute at Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Gregory G Polkowski
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
25
|
Zhao Y, Yang J, Hao D, Xie R, Jia L, Yang M, Ma H, Wang P, Yang W, Sui F, Zhao H, Chen Y, Zhao Q. Infection Microenvironment-Sensitive Photothermal Nanotherapeutic Platform to Inhibit Methicillin-Resistant Staphylococcus aureus Infection. Macromol Biosci 2023; 23:e2200430. [PMID: 36478660 DOI: 10.1002/mabi.202200430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) can induce multiple inflammations. The biofilm formed by MRSA is resistant to a variety of antibiotics and is extremely difficult to cure, which seriously threatens human health. Herein, a nanoparticle encapsulating berberine with polypyrrole core and pH-sensitive shell to provide chemo-photothermal dual therapy for MRSA infection is reported. By integrating photothermal agent polypyrrole, berberine, acid-degradable crosslinker, and acid-induced charge reversal polymer, the nanoparticle exhibited highly efficient MRSA infection treatment. In normal uninfected areas and bloodstream, nanoparticles showed negatively charged, demonstrating high biocompatibility and excellent hemocompatibility. However, once arriving at the MRSA infection site, the nanoparticle can penetrate and accumulate in the biofilm within 2 h. Simultaneously, berberine can be released into biofilm rapidly. Under the combined effect of photothermal response and berberine inhibition, 88.7% of the biofilm is removed at 1000 µg mL-1 . Moreover, the nanoparticles have an excellent inhibitory effect on biofilm formation, the biofilm inhibition capacity can reach up to 90.3%. Taken together, this pH-tunable nanoparticle can be employed as a new generation treatment strategy to fight against the fast-growing MRSA infection.
Collapse
Affiliation(s)
- Yu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiaying Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Danli Hao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ran Xie
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lingyu Jia
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Miyi Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hai Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Weipeng Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yanjun Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qinghe Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
26
|
Choi S, Jeon Y, Kwon JH, Ihm C, Kim SY, Choi KC. Wearable Photomedicine for Neonatal Jaundice Treatment Using Blue Organic Light-Emitting Diodes (OLEDs): Toward Textile-Based Wearable Phototherapeutics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204622. [PMID: 36310107 PMCID: PMC9762290 DOI: 10.1002/advs.202204622] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Neonatal jaundice is a very common disease in newborns and can lead to brain damage or death in severe cases. Phototherapy with light-emitting diode (LED) arrays is widely used as the easiest and fastest way to relieve jaundice in newborns, but it has distinct disadvantages such as loss of water in the patient, damage to the retina, and separation from parents. In this paper, a novel light source-based phototherapy for neonatal jaundice is proposed using a textile-based wearable organic light-emitting diode (OLED) platform that can move flexibly and conform to the curvature of the human body. The soft and flexible textile-based blue OLED platform is designed to have a peak wavelength of 470 nm, suitable for jaundice treatment, and shows performance (>20 µW cm-2 nm- 1 ) suitable for intensive jaundice treatment even at low voltage (<4.0 V). The textile-based OLEDs fabricated in this study exhibit an operating reliability of over 100 h and low-temperature operation (<35 °C). The results of an in vitro jaundice treatment test using a large-area blue OLED confirm that the bilirubin level decreases to 12 mg dL-1 with 3 h of OLED irradiation.
Collapse
Affiliation(s)
- Seungyeop Choi
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Yongmin Jeon
- Department of Biomedical EngineeringGachon UniversitySeongnam13120Republic of Korea
| | - Jeong Hyun Kwon
- Department of Display and Semiconductor EngineeringSUN MOON UniversityChoongcheongnam‐doAsan31460Republic of Korea
| | - Chunhwa Ihm
- Department of Laboratory MedicineDaejeon Eulji Medical CenterEulji University School of MedicineDaejeon35233Republic of Korea
| | - Seung Yeon Kim
- Department of PediatricsNowon Eulji Medical CenterEulji University School of MedicineSeoul01830Republic of Korea
| | - Kyung Cheol Choi
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| |
Collapse
|
27
|
de Mello Gindri I, Silveira da Silva L, Vitor Salmoria G, Rodrigo de Mello Roesler C. Ibuprofen-loaded UHMWPE for orthopedics applications: preliminary evaluation of mechanical and biological properties. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04598-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Proshin PI, Abdurashitov AS, Sindeeva OA, Ivanova AA, Sukhorukov GB. Additive Manufacturing of Drug-Eluting Multilayer Biodegradable Films. Polymers (Basel) 2022; 14:polym14204318. [PMID: 36297899 PMCID: PMC9611279 DOI: 10.3390/polym14204318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/20/2022] Open
Abstract
Drug-eluting films made of bioresorbable polymers are a widely used tool of modern personalized medicine. However, most currently existing methods of producing coatings do not go beyond the laboratory, as they have low encapsulation efficiency and/or difficulties in scaling up. The PLACE (Printed Layered Adjustable Cargo Encapsulation) technology proposed in this article uses an additive approach for film manufacturing. PLACE technology is accessible, scalable, and reproducible in any laboratory. As a demonstration of the technology capabilities, we fabricated layered drug-eluting polyglycolic acid films containing different concentrations of Cefazolin antibiotic. The influence of the amount of loaded drug component on the film production process and the release kinetics was studied. The specific loading of drugs was significantly increased to 200-400 µg/cm2 while maintaining the uniform release of Cefazolin antibiotic in a dosage sufficient for local antimicrobial therapy for 14 days. The fact that the further increase in the drug amount results in the crystallization of a substance, which can lead to specific defects in the cover film formation and accelerated one-week cargo release, was also shown, and options for further technology development were proposed.
Collapse
Affiliation(s)
- Pavel I. Proshin
- A.V. Zelmann Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205 Moscow, Russia
- Correspondence: (P.I.P.); (G.B.S.)
| | - Arkady S. Abdurashitov
- A.V. Zelmann Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205 Moscow, Russia
| | - Olga A. Sindeeva
- A.V. Zelmann Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205 Moscow, Russia
| | - Anastasia A. Ivanova
- Skoltech Center for Petroleum Science and Engineering, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205 Moscow, Russia
| | - Gleb B. Sukhorukov
- A.V. Zelmann Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205 Moscow, Russia
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Siberian State Medical University, Moskovskiy Trakt, 2, 634050 Tomsk, Russia
- Correspondence: (P.I.P.); (G.B.S.)
| |
Collapse
|
29
|
A potent antibiotic-loaded bone-cement implant against staphylococcal bone infections. Nat Biomed Eng 2022; 6:1180-1195. [PMID: 36229662 PMCID: PMC10101771 DOI: 10.1038/s41551-022-00950-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/08/2022] [Indexed: 12/14/2022]
Abstract
New antibiotics should ideally exhibit activity against drug-resistant bacteria, delay the development of bacterial resistance to them and be suitable for local delivery at desired sites of infection. Here, we report the rational design, via molecular-docking simulations, of a library of 17 candidate antibiotics against bone infection by wild-type and mutated bacterial targets. We screened this library for activity against multidrug-resistant clinical isolates and identified an antibiotic that exhibits potent activity against resistant strains and the formation of biofilms, decreases the chances of bacterial resistance and is compatible with local delivery via a bone-cement matrix. The antibiotic-loaded bone cement exhibited greater efficacy than currently used antibiotic-loaded bone cements against staphylococcal bone infections in rats. Potent and locally delivered antibiotic-eluting polymers may help address antimicrobial resistance.
Collapse
|
30
|
Zhang H, Guo Y, Tian F, Qiao Y, Tang Z, Zhu C, Xu J. Discussion of Orientation and Performance of Crosslinked Ultrahigh-Molecular-Weight Polyethylene Used for Artificial Joints. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29230-29237. [PMID: 35700194 DOI: 10.1021/acsami.2c05549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Previously, the orientation structure of ultrahigh-molecular-weight polyethylene (UHMWPE) for artificial joints was considered to be unchanged after irradiation crosslinking. Therefore, much of the research related to the long-term failure of artificial joints has focused on material improvements. In this study, ultrasmall-angle X-ray scattering (USAXS) and the small/wide-angle X-ray scattering (SAXS-WAXS) combined technique reveal that the orientation structures of UHMWPE materials at all scales (nanoscale to microscale) are responsible for the long-term failure of artificial joints. To further illustrate the formation of these hierarchical oriented structures, a simple model is presented. In this model, first, the migration of free radicals plays a vital role, and the different steric hindrances in different directions directly lead to uneven migration behavior of free radicals. Second, the uneven migration of free radicals contributes to an inhomogeneous concentration of free radicals, thus resulting in observable crosslinking nonuniformities. Finally, all the hierarchical structural nonuniformities promote long-term failure of artificial joints after long-term wear.
Collapse
Affiliation(s)
- Hao Zhang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Yuhai Guo
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Feng Tian
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yongna Qiao
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Zheng Tang
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Caizhen Zhu
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Jian Xu
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
31
|
Towards rainbow portable Cytophone with laser diodes for global disease diagnostics. Sci Rep 2022; 12:8671. [PMID: 35606373 PMCID: PMC9126638 DOI: 10.1038/s41598-022-11452-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/18/2022] [Indexed: 11/08/2022] Open
Abstract
In vivo, Cytophone has demonstrated the capability for the early diagnosis of cancer, infection, and cardiovascular disorders through photoacoustic detection of circulating disease markers directly in the bloodstream with an unprecedented 1,000-fold improvement in sensitivity. Nevertheless, a Cytophone with higher specificity and portability is urgently needed. Here, we introduce a novel Cytophone platform that integrates a miniature multispectral laser diode array, time-color coding, and high-speed time-resolved signal processing. Using two-color (808 nm/915 nm) laser diodes, we demonstrated spectral identification of white and red clots, melanoma cells, and hemozoin in malaria-infected erythrocytes against a blood background and artifacts. Data from a Plasmodium yoelii murine model and cultured human P. falciparum were verified in vitro with confocal photothermal and fluorescent microscopy. With these techniques, we detected infected cells within 4 h after invasion, which makes hemozoin promising as a spectrally selective marker at the earliest stages of malaria progression. Along with the findings from our previous application of Cytophone with conventional lasers for the diagnosis of melanoma, bacteremia, sickle anemia, thrombosis, stroke, and abnormal hemoglobin forms, this current finding suggests the potential for the development of a portable rainbow Cytophone with multispectral laser diodes for the identification of these and other diseases.
Collapse
|
32
|
Singh S, Vashisth P, Meena VK, Kalyanasundaram D. Cellular studies and sustained drug delivery via nanostructures fabricated on 3D printed porous Neovius lattices of Ti6Al4V ELI. Biomed Mater 2022; 17. [PMID: 35447615 DOI: 10.1088/1748-605x/ac6922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/21/2022] [Indexed: 11/11/2022]
Abstract
Site-specific drug delivery has the potential to reduce drug dosage by 3 to 5-folds. Given the propensity of drugs used in the treatment of tuberculosis and cancers, the increased drug dosages via oral ingestion for several months to a few years of medication is often detrimental to the health of patients. In this study, the sustained delivery of drugs with multiscale structured novel Neovius lattices was achieved. 3D Neovius Open Cell Lattices (NOCL) with porosities of 40, 45, and 50 % were fabricated layer-by-layer on the laser bed fusion process. Micron-sized Ti6Al4V Eli powder was used for 3D printing. The Young's modulus achieved from the novel Neovius lattices were in the range of 1.2 to 1.6 GPa, which is comparable to human cortical bone and helps to improve implant failure due to the stress shielding effect. To provide sustained drug delivery, nanotubes (NTs) were fabricated on NOCLs via high-voltage anodisation. The osteogenic agent icariin was loaded onto the NOCL-NT samples and their release profiles were studied for 7 days. A significantly steady and slow release rate of 0.05% per hour of the drug was achieved using NOCL-NT. In addition, the initial burst release of NOCL-NT was 4 fold lower than that of the open-cell lattices without nanotubes. Cellular studies using MG63 human osteoblast-like cells were performed to determine their biocompatibility and osteogenesis which were analysed using Calcein AM staining and Alamar Blue after 1, 5, and 7 days. 3D printed NOCL samples with NTs and with Icariin loaded NTs demonstrated a significant increase in cell proliferation as compared to as printed NOCL samples.
Collapse
Affiliation(s)
- Sonu Singh
- Indian Institute of Technology Delhi, Centre for Biomedical Engineering, New Delhi, 110016, INDIA
| | - Priya Vashisth
- Mechanical Engineering, Indian Institute of Technology Delhi, II/253, Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, New Delhi, 110016, INDIA
| | - Vijay Kumar Meena
- Council of Scientific & Industrial Research, CSIR, Chandigarh, New Delhi, 110001, INDIA
| | - Dinesh Kalyanasundaram
- Indian Institute of Technology Delhi, Centre for Biomedical Engineering, New Delhi, 110016, INDIA
| |
Collapse
|
33
|
Lewis G. Antibiotic-free antimicrobial poly (methyl methacrylate) bone cements: A state-of-the-art review. World J Orthop 2022; 13:339-353. [PMID: 35582158 PMCID: PMC9048499 DOI: 10.5312/wjo.v13.i4.339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/30/2021] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
Prosthetic joint infection (PJI) is the most serious complication following total joint arthroplasty, this being because it is associated with, among other things, high morbidity and low quality of life, is difficult to prevent, and is very challenging to treat/manage. The many shortcomings of antibiotic-loaded poly (methyl methacrylate) (PMMA) bone cement (ALBC) as an agent for preventing and treating/managing PJI are well-known. One is that microorganisms responsible for most PJI cases, such as methicillin-resistant S. aureus, have developed or are developing resistance to gentamicin sulfate, which is the antibiotic in the vast majority of approved ALBC brands. This has led to many research efforts to develop cements that do not contain gentamicin (or, for that matter, any antibiotic) but demonstrate excellent antimicrobial efficacy. There is a sizeable body of literature on these so-called "antibiotic-free antimicrobial" PMMA bone cements (AFAMBCs). The present work is a comprehensive and critical review of this body. In addition to summaries of key trends in results of characterization studies of AFAMBCs, the attractive features and shortcomings of the literature are highlighted. Shortcomings provide motivation for future work, with some ideas being formulation of a new generation of AFAMBCs by, example, adding a nanostructured material and/or an extract from a natural product to the powder and/or liquid of the basis cement, respectively.
Collapse
Affiliation(s)
- Gladius Lewis
- Department of Mechanical Engineering, University of Memphis, Memphis, TN 38152, United States
| |
Collapse
|
34
|
Wang Y, Dai X, Dong C, Guo W, Xu Z, Chen Y, Xiang H, Zhang R. Engineering Electronic Band Structure of Binary Thermoelectric Nanocatalysts for Augmented Pyrocatalytic Tumor Nanotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106773. [PMID: 34783097 DOI: 10.1002/adma.202106773] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/27/2021] [Indexed: 05/19/2023]
Abstract
Photothermal therapy (PTT) has emerged as a distinct therapeutic modality owing to its noninvasiveness and spatiotemporal selectivity. However, heat-shock proteins (HSPs) endow tumor cells with resistance to heat-induced apoptosis, severely lowering the therapeutic efficacy of PTT. Here, a high-performance pyroelectric nanocatalyst, Bi13 S18 I2 nanorods (NRs), with prominent pyroelectric conversion and photothermal conversion performance for augmented pyrocatalytic tumor nanotherapy, is developed. Canonical binary compounds are reconstructed by inserting a third biocompatible agent, thus facilitating the formation of Bi13 S18 I2 NRs with enhanced pyrocatalytic conversion efficiency. Under 808 nm laser irradiation, Bi13 S18 I2 NRs induce a conspicuous temperature elevation for photonic hyperthermia. In particular, Bi13 S18 I2 NRs harvest pyrocatalytic energy from the heating and cooling alterations to produce abundant reactive oxygen species, which results in the depletion of HSPs and hence the reduction of thermoresistance of tumor cells, thereby significantly augmenting the therapeutic efficacy of photothermal tumor hyperthermia. By synergizing the pyroelectric dynamic therapy with PTT, tumor suppression with a significant tumor inhibition rate of 97.2% is achieved after intravenous administration of Bi13 S18 I2 NRs and subsequent exposure to an 808 nm laser. This work opens an avenue for the design of high-performance pyroelectric nanocatalysts by reconstructing canonical binary compounds for therapeutic applications in biocatalytic nanomedicine.
Collapse
Affiliation(s)
- Yachao Wang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xinyue Dai
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Caihong Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| | - Weitao Guo
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Ziwei Xu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Huijing Xiang
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Ruifang Zhang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| |
Collapse
|
35
|
Bright R, Fernandes D, Wood J, Palms D, Burzava A, Ninan N, Brown T, Barker D, Vasilev K. Long-term antibacterial properties of a nanostructured titanium alloy surface: An in vitro study. Mater Today Bio 2021; 13:100176. [PMID: 34938990 DOI: 10.1016/j.mtbio.2021.100176] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 12/31/2022] Open
Abstract
The demand for joint replacement and other orthopedic surgeries involving titanium implants is continuously increasing; however, 1%-2% of surgeries result in costly and devastating implant associated infections (IAIs). Pseudomonas aeruginosa and Staphylococcus aureus are two common pathogens known to colonise implants, leading to serious complications. Bioinspired surfaces with spike-like nanotopography have previously been shown to kill bacteria upon contact; however, the longer-term potential of such surfaces to prevent or delay biofilm formation is unclear. Hence, we monitored biofilm formation on control and nanostructured titanium disc surfaces over 21 days following inoculation with Pseudomonas aeruginosa and Staphylococcus aureus. We found a consistent 2-log or higher reduction in live bacteria throughout the time course for both bacteria. The biovolume on nanostructured discs was also significantly lower than control discs at all time points for both bacteria. Analysis of the biovolume revealed that for the nanostructured surface, bacteria was killed not just on the surface, but at locations above the surface. Interestingly, pockets of bacterial regrowth on top of the biomass occurred in both bacterial species, however this was more pronounced for S. aureus cultures after 21 days. We found that the nanostructured surface showed antibacterial properties throughout this longitudinal study. To our knowledge this is the first in vitro study to show reduction in the viability of bacterial colonisation on a nanostructured surface over a clinically relevant time frame, providing potential to reduce the likelihood of implant associated infections.
Collapse
Affiliation(s)
- Richard Bright
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, South Australia, Australia
| | - Daniel Fernandes
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, South Australia, Australia
| | - Jonathan Wood
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, South Australia, Australia
| | - Dennis Palms
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, South Australia, Australia
| | - Anouck Burzava
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, South Australia, Australia
| | - Neethu Ninan
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, South Australia, Australia
| | - Toby Brown
- Corin Australia, Pymble, NSW 2073, Australia
| | - Dan Barker
- Corin Australia, Pymble, NSW 2073, Australia
| | - Krasimir Vasilev
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, South Australia, Australia
| |
Collapse
|
36
|
Josyula A, Parikh KS, Pitha I, Ensign LM. Engineering biomaterials to prevent post-operative infection and fibrosis. Drug Deliv Transl Res 2021; 11:1675-1688. [PMID: 33710589 PMCID: PMC8238864 DOI: 10.1007/s13346-021-00955-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/19/2022]
Abstract
Implantable biomaterials are essential surgical devices, extending and improving the quality of life of millions of people globally. Advances in materials science, manufacturing, and in our understanding of the biological response to medical device implantation over several decades have resulted in improved safety and functionality of biomaterials. However, post-operative infection and immune responses remain significant challenges that interfere with biomaterial functionality and host healing processes. The objectives of this review is to provide an overview of the biology of post-operative infection and the physiological response to implanted biomaterials and to discuss emerging strategies utilizing local drug delivery and surface modification to improve the long-term safety and efficacy of biomaterials.
Collapse
Affiliation(s)
- Aditya Josyula
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kunal S Parikh
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Center for Bioengineering Innovation and Design, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ian Pitha
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Laura M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, 21287, USA.
- Departments Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
37
|
Ashraf R, Maqbool T, Beigh MA, Jadhav AH, Sofi HS, Sheikh FA. Synthesis, characterization, and cell viability of bifunctional medical‐grade polyurethane nanofiber: Functionalization by bone inducing and bacteria ablating materials. J Appl Polym Sci 2021. [DOI: 10.1002/app.50594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Roqia Ashraf
- Department of Nanotechnology University of Kashmir Srinagar India
| | - Tariq Maqbool
- Department of Nanotechnology University of Kashmir Srinagar India
| | - Mushtaq A. Beigh
- Department of Nanotechnology University of Kashmir Srinagar India
| | - Arvind H. Jadhav
- Centre for Nano and Material Science (CNMS) Jain University Bangalore India
| | - Hasham S. Sofi
- Department of Nanotechnology University of Kashmir Srinagar India
| | - Faheem A. Sheikh
- Department of Nanotechnology University of Kashmir Srinagar India
| |
Collapse
|
38
|
Coutinho IT, Maia-Obi LP, Champeau M. Aspirin-Loaded Polymeric Films for Drug Delivery Systems: Comparison between Soaking and Supercritical CO 2 Impregnation. Pharmaceutics 2021; 13:824. [PMID: 34199551 PMCID: PMC8229088 DOI: 10.3390/pharmaceutics13060824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
Polymeric implants loaded with drugs can overcome the disadvantages of oral or injection drug administration and deliver the drug locally. Several methods can load drugs into polymers. Herein, soaking and supercritical CO2 (scCO2) impregnation methods were employed to load aspirin into poly(l-lactic acid) (PLLA) and linear low-density polyethylene (LLDPE). Higher drug loadings (DL) were achieved with scCO2 impregnation compared to soaking and in a shorter time (3.4 ± 0.8 vs. 1.3 ± 0.4% for PLLA; and 0.4 ± 0.5 vs. 0.6 ± 0.5% for LLDPE), due to the higher swelling capacity of CO2. The higher affinity of aspirin explained the higher DL in PLLA than in LLDPE. Residual solvent was detected in LLDPE prepared by soaking, but within the FDA concentration limits. The solvents used in both methods acted as plasticizers and increased PLLA crystallinity. PLLA impregnated with aspirin exhibited faster hydrolysis in vitro due to the catalytic effect of aspirin. Finally, PLLA impregnated by soaking showed a burst release because of aspirin crystals on the PLLA surface, and released 100% of aspirin within 60 days, whereas the PLLA prepared with scCO2 released 60% after 74 days by diffusion and PLLA erosion. Hence, the scCO2 impregnation method is adequate for higher aspirin loadings and prolonged drug release.
Collapse
Affiliation(s)
| | | | - Mathilde Champeau
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo Andre 09210-580, Brazil; (I.T.C.); (L.P.M.-O.)
| |
Collapse
|
39
|
Choi H, Schulte A, Müller M, Park M, Jo S, Schönherr H. Drug Release from Thermo-Responsive Polymer Brush Coatings to Control Bacterial Colonization and Biofilm Growth on Titanium Implants. Adv Healthc Mater 2021; 10:e2100069. [PMID: 33951320 PMCID: PMC11481028 DOI: 10.1002/adhm.202100069] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/05/2021] [Indexed: 02/05/2023]
Abstract
Despite decades of biomedical advances, the colonization of implant devices with bacterial biofilms is still a leading cause of implant failure. Clearly, new strategies and materials that suppress both initial and later stage bacterial colonization are required in this context. Ideal would be the implementation of a bactericidal functionality in the implants that is temporally and spatially triggered in an autonomous fashion at the infection site. Herein, the fabrication and validation of functional titanium-based implants with triggered antibiotic release function afforded via an intelligent polymer coating is reported. In particular, thermo-responsive poly(di(ethylene glycol) methyl ether methacrylate) (PDEGMA) brushes on titanium implants synthesized via a surface-initiated atom transfer radical polymerization with activators regenerated through the electron transfer technique (ARGET ATRP) allows for a controlled and thermally triggered release of the antibiotic levofloxacin at the wound site. Antibiotic loaded brushes are investigated as a function of thickness, loading capacity for antibiotics, and temperature. At temperatures of the infection site >37 °C the lower critical solution temperature behavior of the brushes afforded the triggered release. Hence, in addition to the known antifouling effects, the PDEGMA coating ensured enhanced bactericidal effects, as demonstrated in initial in vivo tests with rodents infected with Staphylococcus aureus.
Collapse
Affiliation(s)
- Hongsuh Choi
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ)Department of Chemistry and BiologySchool of Science and TechnologyUniversity of SiegenAdolf‐Reichwein‐Str. 2Siegen57076Germany
| | - Anna Schulte
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ)Department of Chemistry and BiologySchool of Science and TechnologyUniversity of SiegenAdolf‐Reichwein‐Str. 2Siegen57076Germany
| | - Mareike Müller
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ)Department of Chemistry and BiologySchool of Science and TechnologyUniversity of SiegenAdolf‐Reichwein‐Str. 2Siegen57076Germany
| | - Mineon Park
- Seoul National University Hospital Biomedical Research InstituteSeoul03080Republic of Korea
| | - Suenghwan Jo
- Department of Orthopaedic SurgerySchool of MedicineChosun University365 PilmundaeroGwangju61453Republic of Korea
| | - Holger Schönherr
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ)Department of Chemistry and BiologySchool of Science and TechnologyUniversity of SiegenAdolf‐Reichwein‐Str. 2Siegen57076Germany
| |
Collapse
|
40
|
Yang Z, He Y, Liao S, Ma Y, Tao X, Wang Y. Renatured hydrogel painting. SCIENCE ADVANCES 2021; 7:eabf9117. [PMID: 34078605 PMCID: PMC10791013 DOI: 10.1126/sciadv.abf9117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Hydrogel coatings pave an avenue for improving the lubricity, biocompatibility, and flexibility of solid surfaces. From the viewpoint of practical applications, this work establishes a scalable method to firmly adhere hydrogel layers to diverse solid surfaces. The strategy, termed as renatured hydrogel painting (RHP), refers to adhering dehydrated xerogel to a surface with appropriate glues, followed by the formation of a hydrogel layer after rehydration of the xerogel. With the benefits of simplicity and generality, this strategy can be readily applied to different hydrogel systems, no matter what the substrate is. Hydrogel adhesion is demonstrated by its tolerance against mechanical impact with hydrodynamic shearing at 14 m/s. This method affords powerful supplements to renew the surface chemistry and physical properties of solid substrates. In addition, we show that the RHP technique can be applied to living tissue, with potential for clinical applications such as the protection of bone tissue.
Collapse
Affiliation(s)
- Zhaoxiang Yang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yonglin He
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Shenglong Liao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yingchao Ma
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xinglei Tao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yapei Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
41
|
Zhao L, Liu T, Li X, Cui Q, Wu Q, Wang X, Song K, Ge D. Low-Temperature Hydrothermal Synthesis of Novel 3D Hybrid Nanostructures on Titanium Surface with Mechano-bactericidal Performance. ACS Biomater Sci Eng 2021; 7:2268-2278. [PMID: 34014655 DOI: 10.1021/acsbiomaterials.0c01659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Titanium is extensively employed in modern medicines as orthopedic and dental implants, but implant failures frequently occur because of bacterial infections. Herein, three types of 3D nanostructured titanium surfaces with nanowire clusters (NWC), nanowire/sheet clusters (NW/SC) and nanosheet clusters (NSC), were fabricated using the low-temperature hydrothermal synthesis under normal pressure, and assessed for the sterilization against two common human pathogens. The results show that the NWC and NSC surfaces merely display good bactericidal activity against Escherichia coli, whereas the NW/SC surface represents optimal bactericidal efficiency against both Escherichia coli (98.6 ± 1.23%) and Staphylococcus aureus (69.82 ± 2.79%). That is attributed to the hybrid geometric nanostructure of NW/SC, i.e., the pyramidal structures of ∼23 nm in tip diameter formed with tall clustered wires, and the sharper sheets of ∼8 nm in thickness in-between these nanopyramids. This nanostructure displays a unique mechano-bactericidal performance via the synergistic effect of capturing the bacteria cells and penetrating the cell membrane. This study proves that the low-temperature hydrothermal synthesized hybrid mechano-bactericidal titanium surfaces provide a promising solution for the construction of bactericidal biomedical implants.
Collapse
Affiliation(s)
- Lidan Zhao
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Tianqing Liu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Xiangqin Li
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Qianqian Cui
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Qiqi Wu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Xin Wang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Kedong Song
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Dan Ge
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| |
Collapse
|
42
|
Somszor K, Allison-Logan S, Karimi F, McKenzie T, Fu Q, O'Connor A, Qiao G, Heath D. Amphiphilic Core Cross-Linked Star Polymers for the Delivery of Hydrophilic Drugs from Hydrophobic Matrices. Biomacromolecules 2021; 22:2554-2562. [PMID: 33983713 DOI: 10.1021/acs.biomac.1c00296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The delivery of hydrophilic drugs from hydrophobic polymers is a long-standing challenge in the biomaterials field due to the limited solubility of the therapeutic agent within the polymer matrix. In this work, we develop a drug delivery mechanism that enables the impregnation and subsequent elution of hydrophilic drugs from a hydrophobic polymer material. This was achieved by synthesizing core cross-linked star polymer amphiphiles with hydrophilic cores and hydrophobic coronas. While significant work has been done to create nanocarriers for hydrophilic drugs, this work is distinct from previous work in that it designs amphiphilic and core cross-linked particles for controlled release from hydrophobic matrices. Ultraviolet-mediated atom transfer radical polymerization was used to synthesize the poly(ethylene glycol) (PEG)-based hydrophilic cores of the star polymers, and hydrophobic coronas of poly(caprolactone) (PCL) were then built onto the stars using ring-opening polymerization. We illustrated the cytocompatibility of PCL loaded with these star polymers through human endothelial cell adhesion and proliferation for up to 7 days, with star loadings of up to 40 wt %. We demonstrated successful loading of the hydrophilic drug heparin into the star polymer core, achieving a loading efficiency and content of 50 and 5%, respectively. Finally, the heparin-loaded star polymers were incorporated into a PCL matrix and sustained release of heparin was illustrated for over 40 days. These results support the use of core cross-linked star polymer amphiphiles for the delivery of hydrophilic drugs from hydrophobic polymer matrices. These materials were developed for application as drug-eluting and biodegradable coronary artery stents, but this flexible drug delivery platform could have impact in a broad range of medical applications.
Collapse
Affiliation(s)
- Katarzyna Somszor
- Department of Biomedical Engineering, University of Melbourne, Parkville, 3010 VIC, Australia
| | - Stephanie Allison-Logan
- Department of Biomedical Engineering, University of Melbourne, Parkville, 3010 VIC, Australia.,Department of Chemical Engineering, University of Melbourne, Parkville, 3010 VIC, Australia
| | - Fatemeh Karimi
- Department of Chemical Engineering, University of Melbourne, Parkville, 3010 VIC, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Thomas McKenzie
- Department of Chemical Engineering, University of Melbourne, Parkville, 3010 VIC, Australia
| | - Qiang Fu
- Department of Chemical Engineering, University of Melbourne, Parkville, 3010 VIC, Australia.,Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Andrea O'Connor
- Department of Biomedical Engineering, University of Melbourne, Parkville, 3010 VIC, Australia
| | - Greg Qiao
- Department of Chemical Engineering, University of Melbourne, Parkville, 3010 VIC, Australia
| | - Daniel Heath
- Department of Biomedical Engineering, University of Melbourne, Parkville, 3010 VIC, Australia
| |
Collapse
|
43
|
Controlled bacteriostasis of tea polyphenol loaded ultrahigh molecular weight polyethylene with high crosslink density and oxidation resistance for total joint replacement. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112040. [PMID: 33947540 DOI: 10.1016/j.msec.2021.112040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
To avoid catastrophic bacterial infection in prosthesis failure, ultrahigh molecular weight polyethylene (UHMWPE), a common bearing material of artificial joints, has been formulated with antibiotics to eliminate bacteria locally at the implant site. However, the pressing issues regarding cytotoxic effects and evolution of drug resistant bacteria necessitates the development of bio-friendly bacteriostat with long bacteriostatic efficacy. Herein, tea polyphenol extracted from nature source was introduced in UHMWPE as a biogenic antimicrobial. Controlled antimicrobial activity was achieved by chemical crosslinking to regulate the release of the tea polyphenol. In addition, the crosslinking efficiency of UHMWPE blends with high loaded tea polyphenol was significantly improved in comparison to radiation crosslinking. The immobilized tea polyphenols also enhanced the oxidation stability of the UHMWPE, which is essential to prolong the service life in vivo and the storage time in vitro. The blends presented good biocompatibility, despite cell repellent on the highly crosslinked surface. Chemically crosslinked tea polyphenol/UHMWPE exhibited feasible properties for total joint implants, which is promising for clinical application.
Collapse
|
44
|
Abstract
Periprosthetic joint infection (PJI) is one of the most dreaded complications after arthroplasty surgery; thus numerous approaches have been undertaken to equip metal surfaces with antibacterial properties. Due to its antimicrobial effects, silver is a promising coating for metallic surfaces, and several types of silver-coated arthroplasty implants are in clinical use today. However, silver can also exert toxic effects on eukaryotic cells both in the immediate vicinity of the coated implants and systemically. In most clinically-used implants, silver coatings are applied on bulk components that are not in direct contact with bone, such as in partial or total long bone arthroplasties used in tumour or complex revision surgery. These implants differ considerably in the coating method, total silver content, and silver release rates. Safety issues, such as the occurrence of argyria, have been a cause for concern, and the efficacy of silver coatings in terms of preventing PJI is also controversial. The application of silver coatings is uncommon on parts of implants intended for cementless fixation in host bone, but this option might be highly desirable since the modification of implant surfaces in order to improve osteoconductivity can also increase bacterial adhesion. Therefore, an optimal silver content that inhibits bacterial colonization while maintaining osteoconductivity is crucial if silver were to be applied as a coating on parts intended for bone contact. This review summarizes the different methods used to apply silver coatings to arthroplasty components, with a focus on the amount and duration of silver release from the different coatings; the available experience with silver-coated implants that are in clinical use today; and future strategies to balance the effects of silver on bacteria and eukaryotic cells, and to develop silver-coated titanium components suitable for bone ingrowth. Cite this article: Bone Joint J 2021;103-B(3):423-429.
Collapse
Affiliation(s)
- Anna Diez-Escudero
- Department of Surgical Sciences, Uppsala University Hospital, Uppsala, Sweden
| | - Nils P Hailer
- Department of Surgical Sciences, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
45
|
Cahill SV, Kwon HK, Back J, Lee I, Lee S, Alder KD, Hao Z, Yu KE, Dussik CM, Kyriakides TR, Lee FY. Locally delivered adjuvant biofilm-penetrating antibiotics rescue impaired endochondral fracture healing caused by MRSA infection. J Orthop Res 2021; 39:402-414. [PMID: 33336805 DOI: 10.1002/jor.24965] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
Infection is a devastating complication following an open fracture. We investigated whether local rifampin-loaded hydrogel can combat infection and improve healing in a murine model of methicillin-resistant Staphylococcus aureus (MRSA) osteomyelitis. A transverse fracture was made at the tibia midshaft of C57BL/6J mice aged 10-12 weeks and stabilized with an intramedullary pin. A total of 1 × 106 colony-forming units (CFU) of MRSA was inoculated. A collagen-based hydrogel containing low-dose (60 μg) and high-dose (300 μg) rifampin was applied before closure. Postoperative treatment response was assessed through bacterial CFU counts from tissue and hardware, tibial radiographs and microcomputed tomography (μCT), immunohistochemistry, and histological analyses. All untreated MRSA-infected fractures progressed to nonunion by 28 days with profuse MRSA colonization. Infected fractures demonstrated decreased soft callus formation on safranin O stain compared to controls. Areas of dense interleukin-1β stain were associated with poor callus formation. High-dose rifampin hydrogels reduced the average MRSA load in tissue (p < 0.0001) and implants (p = 0.041). Low-dose rifampin hydrogels reduced tissue bacterial load by 50% (p = 0.021). Among sterile models, 88% achieved union compared to 0% of those infected. Mean radiographic union scale in tibia scores improved from 6 to 8.7 with high-dose rifampin hydrogel (p = 0.024) and to 10 with combination local/systemic rifampin therapy (p < 0.0001). μCT demonstrated reactive bone formation in MRSA infection. Histology demonstrated restored fracture healing with bacterial elimination. Rifampin-loaded hydrogels suppressed osteomyelitis, prevented implant colonization, and improved healing. Systemic rifampin was more effective at eliminating infection and improving fracture healing. Further investigation into rifampin-loaded hydrogels is required to correlate these findings with clinical efficacy.
Collapse
Affiliation(s)
- Sean V Cahill
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hyuk-Kwon Kwon
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jungho Back
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut, USA
| | - Inkyu Lee
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Saelim Lee
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut, USA
- College of Medicine, Dankook University, Yongin, Gyeonggi-do, Republic of Korea
| | - Kareme D Alder
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut, USA
| | - Zichen Hao
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Emergency and Trauma, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Kristin E Yu
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christopher M Dussik
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut, USA
| | - Themis R Kyriakides
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Francis Y Lee
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
46
|
Ren Y, Wang FY, Lan RT, Fu WQ, Chen ZJ, Lin H, Huang S, Gul RM, Wang J, Xu JZ, Li ZM. Polyphenol-Assisted Chemical Crosslinking: A New Strategy to Achieve Highly Crosslinked, Antioxidative, and Antibacterial Ultrahigh-Molecular-Weight Polyethylene for Total Joint Replacement. ACS Biomater Sci Eng 2020; 7:373-381. [PMID: 33351587 DOI: 10.1021/acsbiomaterials.0c01437] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Highly crosslinked ultrahigh-molecular-weight polyethylene (UHMWPE) bearings are wear-resistant to reduce aseptic loosening but are susceptible to oxidize in vivo/in vitro, as reported in clinical studies. Despite widespread acceptance of antioxidants in preventing oxidation, the crosslinking efficiency of UHMWPE is severely impacted by antioxidants, the use of which was trapped in a trace amount. Herein, we proposed a new strategy of polyphenol-assisted chemical crosslinking to facilitate the formation of a crosslinking network in high-loaded tea polyphenol/UHMWPE blends. Epigallocatechin gallate (EGCG), a representative of tea polyphenol, was mixed with UHMWPE and peroxide. Multiple reactive phenolic hydroxyl groups of tea polyphenol coupled with the nearby free radicals to form extra crosslinking sites. The crosslinking efficiency was remarkably enhanced with increasing tea polyphenol content, even at a concentration of 8 wt %. Given by the hydrogen donation principle, the high-loaded tea polyphenol also enhanced the oxidation stability of the crosslinked UHMWPE. The antioxidative performance was preserved even after tea polyphenol elution. Moreover, superior antibacterial performance was achieved by the in situ tea polyphenol release from the interconnected pathways in the present design. The strategy of polyphenol-assisted chemical crosslinking is applicable for producing highly crosslinked, antioxidative, and antibacterial UHMWPE, which has promising prospects in clinical applications.
Collapse
Affiliation(s)
- Yue Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065 Chengdu, China
| | - Fei-Yu Wang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, China
| | - Ri-Tong Lan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065 Chengdu, China
| | - Wan-Qun Fu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, China
| | - Zi-Jian Chen
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, China
| | - Hao Lin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065 Chengdu, China
| | - Shishu Huang
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Rizwan M Gul
- Department of Mechanical Engineering, University of Engineering and Technology, 25120 Peshawar, Pakistan
| | - Jing Wang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, China
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065 Chengdu, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065 Chengdu, China
| |
Collapse
|
47
|
Ren Y, Wang FY, Chen ZJ, Lan RT, Huang RH, Fu WQ, Gul RM, Wang J, Xu JZ, Li ZM. Antibacterial and anti-inflammatory ultrahigh molecular weight polyethylene/tea polyphenol blends for artificial joint applications. J Mater Chem B 2020; 8:10428-10438. [PMID: 33112351 DOI: 10.1039/d0tb01677b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Periprosthetic joint infection (PJI) is one of the main causes for the failure of joint arthroplasty. In view of the limited clinical effect of oral/injectable antibiotics and the drug resistance problem, there is a pressing need to develop antibacterial implants with therapeutic antimicrobial properties. In this work, we prepared a highly antibacterial ultrahigh molecular weight polyethylene (UHMWPE) implant by incorporating tea polyphenols. The presence of tea polyphenols not only improved the oxidation stability of irradiated UHMWPE, but also gave it the desirable antibacterial property. The potent antibacterial activity was attributed to the tea polyphenols that produced excess intracellular reactive oxygen species and destroyed the bacterial membrane structure. The tea polyphenol-blended UHMWPE had no biological toxicity to human adipose-derived stem cells and effectively reduced bacteria-induced inflammation in vivo. These results indicate that tea polyphenol-blended UHMWPE is promising for joint replacement prostheses with multifunctionality to meet patient satisfaction.
Collapse
Affiliation(s)
- Yue Ren
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, China. and College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065 Chengdu, China
| | - Fei-Yu Wang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, China.
| | - Zi-Jian Chen
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, China.
| | - Ri-Tong Lan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065 Chengdu, China
| | - Ren-Huan Huang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, China.
| | - Wan-Qun Fu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, China.
| | - Rizwan M Gul
- Department of Mechanical Engineering, University of Engineering and Technology, 25120 Peshawar, Pakistan
| | - Jing Wang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072 Shanghai, China.
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065 Chengdu, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065 Chengdu, China
| |
Collapse
|
48
|
Gil B, Li B, Gao A, Yang GZ. Miniaturized Piezo Force Sensor for a Medical Catheter and Implantable Device. ACS APPLIED ELECTRONIC MATERIALS 2020; 2:2669-2677. [PMID: 32879913 PMCID: PMC7450887 DOI: 10.1021/acsaelm.0c00538] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/03/2020] [Indexed: 05/04/2023]
Abstract
Real-time monitoring of intrabody pressures can benefit from the use of miniaturized force sensors during surgical interventions or for the recovery period thereafter. Herein, we present a force sensor made of poly(vinylidene fluoride)-co-trifluoroethylene (P(VDF-TrFE)) with a simple fabrication process that has been integrated into the tip of a medical catheter for intraluminal pressure monitoring, as well as into an implantable device with a power consumption of 180 μW obtained by the near-field communication (NFC) interface to monitor the arterial pulse at the subcutaneous level (≤1 cm). The pressure range supported by the sensor is below 40 kPa, with a signal responsivity of 0.63 μV/Pa and a mean lifetime expectancy of 400 000 loading cycles inside physiological conditions (12 kPa). The proposed sensor has been tested experimentally with synthetic anatomical models for the lungs (bronchoscopy) and subcutaneous tissue, as well as directly above the human carotid and radial arteries. Information about these pressure levels can provide insights about tissue homeostasis inside the body as fluid dynamics are altered in some health conditions affecting the hemodynamic and endocrine body systems, whereas for surgical interventions, precise control and estimation of the pressure exerted by a catheter over the internal walls are necessary to avoid endothelium injuries that lead to bleeding, liquid extravasation, or flow alteration associated with atheroma formation.
Collapse
Affiliation(s)
- Bruno Gil
- The
Hamlyn Centre, Imperial College London, South Kensington, London SW7 2AZ, U.K.
| | - Bing Li
- The
UK DRI Care Research and Technology Centre, Department of Brain Science, Imperial College London, London W12 0NN, U.K.
| | - Anzhu Gao
- Institute
of Medical Robotics, Shanghai Jiao Tong
University, Shanghai 200240, China
| | - Guang-Zhong Yang
- Institute
of Medical Robotics, Shanghai Jiao Tong
University, Shanghai 200240, China
| |
Collapse
|
49
|
Mihalko WM, Haider H, Kurtz S, Marcolongo M, Urish K. New materials for hip and knee joint replacement: What's hip and what's in kneed? J Orthop Res 2020; 38:1436-1444. [PMID: 32437026 DOI: 10.1002/jor.24750] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 02/04/2023]
Abstract
Over the last three decades there have been significant advancements in the knee and hip replacement technology that has been driven by an issue in the past concerning adverse local tissue reactions, aseptic and septic loosening. The implants and the materials we utilize have improved over the last two decades and in knee and hip replacement there has been a decrease in the failures attributed to wear and osteolysis. Despite these advancements there are still issues with patient satisfaction and early revisions due to septic and aseptic loosening in knee replacement patients. This article reviews the state of current implant material technology in hip and knee replacement surgery, discusses some of the unmet needs we have in biomaterials, and reviews some of the current biomaterials and technology that may be able to solve the most common issues in the knee and hip replacement surgery.
Collapse
Affiliation(s)
- William M Mihalko
- Department of Orthopaedic Surgery and Biomedical Engineering, Campbell Clinic Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hani Haider
- Orthopaedic Biomechanics and Advanced Surgical Technologies Laboratory, Department of Orthopaedic Surgery and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska
| | - Steven Kurtz
- Exponent Inc., Drexel University, Philadelphia, Pennsylvania
| | - Michele Marcolongo
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania
| | - Kenneth Urish
- Department of Orthopaedic Surgery, Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Bioengineering, Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
50
|
Gil D, Atici AE, Connolly RL, Hugard S, Shuvaev S, Wannomae KK, Oral E, Muratoglu OK. Addressing prosthetic joint infections via gentamicin-eluting UHMWPE spacer. Bone Joint J 2020; 102-B:151-157. [PMID: 32475290 DOI: 10.1302/0301-620x.102b6.bjj-2019-1593.r1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AIMS We propose a state-of-the-art temporary spacer, consisting of a cobalt-chrome (CoCr) femoral component and a gentamicin-eluting ultra-high molecular weight polyethylene (UHMWPE) tibial insert, which can provide therapeutic delivery of gentamicin, while retaining excellent mechanical properties. The proposed implant is designed to replace conventional spacers made from bone cement. METHODS Gentamicin-loaded UHMWPE was prepared using phase-separated compression moulding, and its drug elution kinetics, antibacterial, mechanical, and wear properties were compared with those of conventional gentamicin-loaded bone cement. RESULTS Gentamicin-loaded UHMWPE tibial components not only eradicated planktonic Staphylococcus aureus, but also prevented colonization of both femoral and tibial components. The proposed spacer possesses far superior mechanical and wear properties when compared with conventional bone cement spacers. CONCLUSION The proposed gentamicin-eluting UHMWPE spacer can provide antibacterial efficacy comparable with currently used bone cement spacers, while overcoming their drawbacks. The novel spacer proposed here has the potential to drastically reduce complications associated with currently used bone cement spacers and substantially improve patients' quality of life during the treatment. Cite this article: Bone Joint J 2020;102-B(6 Supple A):151-157.
Collapse
Affiliation(s)
- Dmitry Gil
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Ali E Atici
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Rachel L Connolly
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shannon Hugard
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sergey Shuvaev
- Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Keith K Wannomae
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ebru Oral
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Orhun K Muratoglu
- Harris Orthopaedic Laboratory, Massachusetts General Hospital.,Harvard Medical School, Harvard University
| |
Collapse
|