1
|
Taborowska P, Dzienia A, Janas D. Unraveling aryl peroxide chemistry to enrich optical properties of single-walled carbon nanotubes. Chem Sci 2025; 16:1374-1389. [PMID: 39703412 PMCID: PMC11653410 DOI: 10.1039/d4sc04785k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
Harnessing the unique optical properties of chirality-enriched single-walled carbon nanotubes (SWCNTs) is the key to unlocking the application of SWCNTs in photonics. Recently, it has been discovered that chemical modification of SWCNTs greatly increases their potential in this context. Despite the dynamic progress in this area, the mechanism of the chemical modification of SWCNTs and the impact of the reaction conditions on the properties of the obtained functional nanomaterials remain unclear. In this study, we demonstrate how the reaction environment influences the observed fluorescence pattern of SWCNTs after modification with benzoyloxy radicals generated in situ. The obtained results reveal that each diacyl peroxide molecule can generate either one or two radicals by two different mechanisms, i.e., induced or spontaneous decomposition. Through proper selection of the reactant concentration, process temperature, and solvent, we were able to activate one or both radical decay pathways. In addition, the choice of a solvent, such as tetrahydrofuran or acetonitrile, allowed drastic changes in the functionalization process. Consequently, the SWCNT surface was grafted with functional groups via C-C bonds using radicals derived from the solvent molecules instead of attaching an aromatic moiety from the reactant present in the system through the expected C-O linkage. Verification of the structure of the chemically bound functional groups through hydrolysis opens the route to further modification of SWCNT surfaces using the labile ester connection. By gaining a better understanding of the emergence and behavior of the generated radicals, we demonstrate the possibility of controlling the density of introduced defects, as well as the selectivity of the functionalization process. The identification of the underlying chemical pathways responsible for the functionalization of SWCNTs paves the way for the design of precise methods of SWCNT modification to adjust their photonic characteristics for specific applications.
Collapse
Affiliation(s)
- Patrycja Taborowska
- Department of Chemistry, Silesian University of Technology B. Krzywoustego 4 44-100 Gliwice Poland
| | - Andrzej Dzienia
- Department of Chemistry, Silesian University of Technology B. Krzywoustego 4 44-100 Gliwice Poland
| | - Dawid Janas
- Department of Chemistry, Silesian University of Technology B. Krzywoustego 4 44-100 Gliwice Poland
| |
Collapse
|
2
|
Sebastian FL, Settele S, Li H, Flavel BS, Zaumseil J. How to recognize clustering of luminescent defects in single-wall carbon nanotubes. NANOSCALE HORIZONS 2024; 9:2286-2294. [PMID: 39380328 PMCID: PMC11462117 DOI: 10.1039/d4nh00383g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Semiconducting single-wall carbon nanotubes (SWCNTs) are a promising material platform for near-infrared in vivo imaging, optical sensing, and single-photon emission at telecommunication wavelengths. The functionalization of SWCNTs with luminescent defects can lead to significantly enhanced photoluminescence (PL) properties due to efficient trapping of highly mobile excitons and red-shifted emission from these trap states. Among the most studied luminescent defect types are oxygen and aryl defects that have largely similar optical properties. So far, no direct comparison between SWCNTs functionalized with oxygen and aryl defects under identical conditions has been performed. Here, we employ a combination of spectroscopic techniques to quantify the number of defects, their distribution along the nanotubes and thus their exciton trapping efficiencies. The different slopes of Raman D/G+ ratios versus calculated defect densities from PL quantum yield measurements indicate substantial dissimilarities between oxygen and aryl defects. Supported by statistical analysis of single-nanotube PL spectra at cryogenic temperatures they reveal clustering of oxygen defects. The clustering of 2-3 oxygen defects, which act as a single exciton trap, occurs irrespective of the functionalization method and thus enables the use of simple equations to determine the density of oxygen defects and defect clusters in SWCNTs based on standard Raman spectroscopy. The presented analytical approach is a versatile and sensitive tool to study defect distribution and clustering in SWCNTs and can be applied to any new functionalization method.
Collapse
Affiliation(s)
- Finn L Sebastian
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany.
| | - Simon Settele
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany.
| | - Han Li
- Department of Mechanical and Materials Engineering, University of Turku, FI-20014 Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, FI-20520 Turku, Finland
| | - Benjamin S Flavel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
| | - Jana Zaumseil
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany.
| |
Collapse
|
3
|
Qu H, Han Y, Fortner J, Wu X, Kilina S, Kilin D, Tretiak S, Wang Y. [2 + 2] Cycloaddition Produces Divalent Organic Color-Centers with Reduced Heterogeneity in Single-Walled Carbon Nanotubes. J Am Chem Soc 2024; 146:23582-23590. [PMID: 39101632 DOI: 10.1021/jacs.4c08105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Organic color centers (OCCs), generated by the covalent functionalization of single-walled carbon nanotubes, have been exploited for chemical sensing, bioimaging, and quantum technologies. However, monovalent OCCs can assume at least 6 different bonding configurations on the sp2 carbon lattice of a chiral nanotube, resulting in heterogeneous OCC photoluminescence emissions. Herein, we show that a heat-activated [2 + 2] cycloaddition reaction enables the synthesis of divalent OCCs with a reduced number of atomic bonding configurations. The chemistry occurs by simply mixing enophile molecules (e.g., methylmaleimide, maleic anhydride, and 4-cyclopentene-1,3-dione) with an ethylene glycol suspension of SWCNTs at elevated temperature (70-140 °C). Unlike monovalent OCC chemistries, we observe just three OCC emission peaks that can be assigned to the three possible bonding configurations of the divalent OCCs based on density functional theory calculations. Notably, these OCC photoluminescence peaks can be controlled by temperature to decrease the emission heterogeneity even further. This divalent chemistry provides a scalable way to synthesize OCCs with tightly controlled emissions for emerging applications.
Collapse
Affiliation(s)
- Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Yulun Han
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Jacob Fortner
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaojian Wu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Dmitri Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Sergei Tretiak
- Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
4
|
Zhang Y, Jia MR, Liu XY, Fang WH, Cui G. Photoinduced Dynamics of a Single-Walled Carbon Nanotube with a sp 3 Defect: The Importance of Excitonic Effects. J Phys Chem A 2024; 128:3311-3320. [PMID: 38654690 DOI: 10.1021/acs.jpca.4c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Herein, we employed linear-response time-dependent functional theory nonadiabatic dynamic simulations to explore the photoinduced exciton dynamics of a chiral single-walled carbon nanotube CNT(6,5) covalently doped with a 4-nitrobenzyl group (CNT65-NO2). The results indicate that the introduction of a sp3 defect leads to the splitting of the degenerate VBM/VBM-1 and CBM/CBM+1 states. Both the VBM upshift and the CBM downshift are responsible for the experimentally observed redshifted E11* trapping state. The simulations reveal that the photoinduced exciton relaxation dynamics completes within 500 fs, which is consistent with the experimental work. On the other hand, we also conducted the nonadiabatic carrier (electron and hole) dynamic simulations, which completely ignore the excitonic effects. The comparison demonstrates that excitonic effects are indispensable. Deep analyses show that such effects induce several dark states, which play an important role in regulating the photoinduced dynamics of CNT65-NO2. The present work demonstrates the importance of including excitonic effects in simulating photoinduced processes of carbon nanotubes. In addition, it not only rationalizes previous experiments but also provides valuable insights that will help in the future rational design of novel covalently doped carbon nanotubes with superior photoluminescent properties.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Meng-Ru Jia
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Lei YJ, Zhao L, Lai WH, Huang Z, Sun B, Jaumaux P, Sun K, Wang YX, Wang G. Electrochemical coupling in subnanometer pores/channels for rechargeable batteries. Chem Soc Rev 2024; 53:3829-3895. [PMID: 38436202 DOI: 10.1039/d3cs01043k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Subnanometer pores/channels (SNPCs) play crucial roles in regulating electrochemical redox reactions for rechargeable batteries. The delicately designed and tailored porous structure of SNPCs not only provides ample space for ion storage but also facilitates efficient ion diffusion within the electrodes in batteries, which can greatly improve the electrochemical performance. However, due to current technological limitations, it is challenging to synthesize and control the quality, storage, and transport of nanopores at the subnanometer scale, as well as to understand the relationship between SNPCs and performances. In this review, we systematically classify and summarize materials with SNPCs from a structural perspective, dividing them into one-dimensional (1D) SNPCs, two-dimensional (2D) SNPCs, and three-dimensional (3D) SNPCs. We also unveil the unique physicochemical properties of SNPCs and analyse electrochemical couplings in SNPCs for rechargeable batteries, including cathodes, anodes, electrolytes, and functional materials. Finally, we discuss the challenges that SNPCs may face in electrochemical reactions in batteries and propose future research directions.
Collapse
Affiliation(s)
- Yao-Jie Lei
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Lingfei Zhao
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Wei-Hong Lai
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Zefu Huang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Bing Sun
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Pauline Jaumaux
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Kening Sun
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, P. R. China.
| | - Yun-Xiao Wang
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, P. R. China.
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
6
|
Li MK, Dehm S, Kappes MM, Hennrich F, Krupke R. Correlation Measurements for Carbon Nanotubes with Quantum Defects. ACS NANO 2024; 18:9525-9534. [PMID: 38513118 DOI: 10.1021/acsnano.3c12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Single-photon sources are essential building blocks for the development of photonic quantum technology. Regarding potential practical application, an on-demand electrically driven quantum-light emitter on a chip is notably crucial for photonic integrated circuits. Here, we propose functionalized single-walled carbon nanotube field-effect transistors as a promising solid-state quantum-light source by demonstrating photon antibunching behavior via electrical excitation. The sp3 quantum defects were formed on the surface of (7, 5) carbon nanotubes by 3,5-dichlorophenyl functionalization, and individual carbon nanotubes were wired to graphene electrode pairs. Filtered electroluminescent defect-state emission at 77 K was coupled into a Hanbury Brown and Twiss experiment setup, and single-photon emission was observed by performing second-order correlation function measurements. We discuss the dependence of the intensity correlation measurement on electrical power and emission wavelength, highlighting the challenges of performing such measurements while simultaneously analyzing acquired data. Our results indicate a route toward room-temperature electrically triggered single-photon emission.
Collapse
Affiliation(s)
- Min-Ken Li
- Institute of Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Simone Dehm
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Manfred M Kappes
- Institute of Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Frank Hennrich
- Institute of Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Ralph Krupke
- Institute of Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
7
|
Wieland S, El Yumin AA, Settele S, Zaumseil J. Photo-Activated, Solid-State Introduction of Luminescent Oxygen Defects into Semiconducting Single-Walled Carbon Nanotubes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:2012-2021. [PMID: 38352856 PMCID: PMC10860128 DOI: 10.1021/acs.jpcc.3c07000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/17/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024]
Abstract
Oxygen defects in semiconducting single-walled carbon nanotubes (SWCNTs) are localized disruptions in the carbon lattice caused by the formation of epoxy or ether groups, commonly through wet-chemical reactions. The associated modifications of the electronic structure can result in luminescent states with emission energies below those of pristine SWCNTs in the near-infrared range, which makes them promising candidates for applications in biosensing and as single-photon emitters. Here, we demonstrate the controlled introduction of luminescent oxygen defects into networks of monochiral (6,5) SWCNTs using a solid-state photocatalytic approach. UV irradiation of SWCNTs on the photoreactive surfaces of the transition metal oxides TiOx and ZnOx in the presence of trace amounts of water and oxygen results in the creation of reactive oxygen species that initiate radical reactions with the carbon lattice and the formation of oxygen defects. The created ether-d and epoxide-l defect configurations give rise to two distinct red-shifted emissive features. The chemical and dielectric properties of the photoactive oxides influence the final defect emission properties, with oxygen-functionalized SWCNTs on TiOx substrates being brighter than those on ZnOx or pristine SWCNTs on glass. The photoinduced functionalization of nanotubes is further employed to create lateral patterns of oxygen defects in (6,5) SWCNT networks with micrometer resolution and thus spatially controlled defect emission.
Collapse
Affiliation(s)
- Sonja Wieland
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | | | - Simon Settele
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jana Zaumseil
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
8
|
Trerayapiwat KJ, Li X, Ma X, Sharifzadeh S. Broken Symmetry Optical Transitions in (6,5) Single-Walled Carbon Nanotubes Containing sp3 Defects Revealed by First-Principles Theory. NANO LETTERS 2024; 24:667-671. [PMID: 38174941 DOI: 10.1021/acs.nanolett.3c03957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
We present a first-principles many-body perturbation theory study of nitrophenyl-doped (6,5) single-walled nanotubes (SWCNTs) to understand how sp3 doping impacts the excitonic properties. sp3-doped SWCNTs are promising as a class of optoelectronic materials with bright tunable photoluminescence, long spin coherence, and single-photon emission (SPE), motivating the study of spin excitations. We predict that the dopant results in a single unpaired spin localized around the defect site, which induces multiple low-energy excitonic peaks. By comparing optical absorption and photoluminescence from experiment and theory, we identify the transitions responsible for the red-shifted, defect-induced E11* peak, which has demonstrated SPE for some dopants; the presence of this state is due to both the symmetry-breaking associated with the defect and the presence of the defect-induced in-gap state. Furthermore, we find an asymmetry between the contribution of the two spin channels, suggesting that this system has potential for spin-selective optical transitions.
Collapse
Affiliation(s)
| | - Xinxin Li
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Xuedan Ma
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Northwestern Argonne Institute of Science and Engineering, Evanston, Illinois 60208, United States
| | - Sahar Sharifzadeh
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Physics, Boston University, Boston, Massachusetts 02215, United States
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
9
|
Maeda Y, Zhao P, Ehara M. Recent progress in controlling the photoluminescence properties of single-walled carbon nanotubes by oxidation and alkylation. Chem Commun (Camb) 2023; 59:14497-14508. [PMID: 38009193 DOI: 10.1039/d3cc05065c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
The functionalization of single-walled carbon nanotubes (SWCNTs) has received considerable attention in the last decade since highly efficient near-infrared photoluminescence (PL) has been observed to be red-shifted compared with the intrinsic PL peak of pristine SWCNTs. The PL wavelength has been manipulated using arylation reactions with aryldiazonium salts and aryl halides. Additionally, simple oxidation and alkylation reactions have proven effective in extensively adjusting the PL wavelength, with the resulting PL efficiency varying based on the chosen reaction techniques and molecular structures. This review discusses the latest developments in tailoring the PL attributes of SWCNTs by oxidation and alkylation processes. (6,5) SWCNTs exhibit intrinsic emission at 980 nm, and the PL wavelength can be controlled in the range of 1100-1320 nm by chemical modification. In addition, recent developments in chiral separation techniques have increased our understanding of the control of the PL wavelength, extending to the selection of excitation and emission wavelengths, by chemical modification of SWCNTs with different chiral indices.
Collapse
Affiliation(s)
- Yutaka Maeda
- Department of Chemistry, Tokyo Gakugei University, Tokyo 184-8501, Japan.
| | - Pei Zhao
- Research Center for Computational Science, Institute for Molecular Science, Okazaki 444-8585, Japan
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science, Okazaki 444-8585, Japan
| |
Collapse
|
10
|
Heppe BJ, Dzombic N, Keil JM, Sun XL, Ao G. Solvent Isotope Effects on the Creation of Fluorescent Quantum Defects in Carbon Nanotubes by Aryl Diazonium Chemistry. J Am Chem Soc 2023; 145:25621-25631. [PMID: 37971308 DOI: 10.1021/jacs.3c07341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The integration of aryl diazonium and carbon nanotube chemistries has offered rich and versatile tools for creating nanomaterials of unique optical and electronic properties in a controllable fashion. The diazonium reaction with single-wall carbon nanotubes (SWCNTs) is known to proceed through a radical or carbocation mechanism in aqueous solutions, with deuterated water (D2O) being the frequently used solvent. Here, we show strong water solvent isotope effects on the aryl diazonium reaction with SWCNTs for creating fluorescent quantum defects using water (H2O) and D2O. We found a deduced reaction constant of ∼18.2 times larger value in D2O than in H2O, potentially due to their different chemical properties. We also observed the generation of new defect photoluminescence over a broad concentration range of diazonium reactants in H2O, as opposed to a narrow window of reaction conditions in D2O under UV excitation. Without UV light, the physical adsorption of diazonium on the surface of SWCNTs led to the fluorescence quenching of nanotubes. These findings provide important insights into the aryl diazonium chemistry with carbon nanotubes for creating promising material platforms for optical sensing, imaging, and quantum communication technologies.
Collapse
Affiliation(s)
- Brandon J Heppe
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Nina Dzombic
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Joseph M Keil
- Department of Chemistry, Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Xue-Long Sun
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
- Department of Chemistry, Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Geyou Ao
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| |
Collapse
|
11
|
Sebastian FL, Becker F, Yomogida Y, Hosokawa Y, Settele S, Lindenthal S, Yanagi K, Zaumseil J. Unified Quantification of Quantum Defects in Small-Diameter Single-Walled Carbon Nanotubes by Raman Spectroscopy. ACS NANO 2023; 17:21771-21781. [PMID: 37856164 PMCID: PMC10655237 DOI: 10.1021/acsnano.3c07668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
The covalent functionalization of single-walled carbon nanotubes (SWCNTs) with luminescent quantum defects enables their application as near-infrared single-photon sources, as optical sensors, and for in vivo tissue imaging. Tuning the emission wavelength and defect density is crucial for these applications. While the former can be controlled by different synthetic protocols and is easily measured, defect densities are still determined as relative rather than absolute values, limiting the comparability between different nanotube batches and chiralities. Here, we present an absolute and unified quantification metric for the defect density in SWCNT samples based on Raman spectroscopy. It is applicable to a range of small-diameter semiconducting nanotubes and for arbitrary laser wavelengths. We observe a clear inverse correlation of the D/G+ ratio increase with nanotube diameter, indicating that curvature effects contribute significantly to the defect activation of Raman modes. Correlation of intermediate frequency modes with defect densities further corroborates their activation by defects and provides additional quantitative metrics for the characterization of functionalized SWCNTs.
Collapse
Affiliation(s)
- Finn L. Sebastian
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Felicitas Becker
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Yohei Yomogida
- Department
of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Yuuya Hosokawa
- Department
of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Simon Settele
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Sebastian Lindenthal
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Kazuhiro Yanagi
- Department
of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Jana Zaumseil
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
12
|
Dzienia A, Just D, Taborowska P, Mielanczyk A, Milowska KZ, Yorozuya S, Naka S, Shiraki T, Janas D. Mixed-Solvent Engineering as a Way around the Trade-Off between Yield and Purity of (7,3) Single-Walled Carbon Nanotubes Obtained Using Conjugated Polymer Extraction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304211. [PMID: 37467281 DOI: 10.1002/smll.202304211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Indexed: 07/21/2023]
Abstract
The inability to purify nanomaterials such as single-walled carbon nanotubes (SWCNTs) to the desired extent hampers the progress in nanoscience. Various SWCNT types can be purified by extraction, but it is challenging to establish conditions giving rise to the isolation of high-purity fractions. The problem stems from the fact that common organic solvents or water cannot provide an optimal environment for purification. Consequently, one must often decide between the separation yield and purity of the product. This article reports how through the self-synthesis of poly(9,9-dioctylfluorene-alt-benzothiadiazole) with tailored characteristics, in-depth elucidation of the extraction process, and mixed-solvent engineering, a high-yield isolation of monochiral (7,3) SWCNTs is developed. The combination of toluene and tetralin affords a separation medium of unique properties, wherein both high yield and exceptional purity can be attained simultaneously. The reported results pave the way for further research on this rare chirality, which, as illustrated herein, is much more reactive than any of the previously separated SWCNTs.
Collapse
Affiliation(s)
- Andrzej Dzienia
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, Gliwice, 44-100, Poland
- Institute of Materials Engineering, University of Silesia in Katowice, Bankowa 12, Katowice, 40-007, Poland
| | - Dominik Just
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, Gliwice, 44-100, Poland
| | - Patrycja Taborowska
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, Gliwice, 44-100, Poland
| | - Anna Mielanczyk
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, Gliwice, 44-100, Poland
| | - Karolina Z Milowska
- CIC nanoGUNE, Donostia-San Sebastián, 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
- TCM Group, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Shunji Yorozuya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Sadahito Naka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tomohiro Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Dawid Janas
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, Gliwice, 44-100, Poland
| |
Collapse
|
13
|
Chen S, Chen Y, Xu H, Lyu M, Zhang X, Han Z, Liu H, Yao Y, Xu C, Sheng J, Xu Y, Gao L, Gao N, Zhang Z, Peng LM, Li Y. Single-walled carbon nanotubes synthesized by laser ablation from coal for field-effect transistors. MATERIALS HORIZONS 2023; 10:5185-5191. [PMID: 37724683 DOI: 10.1039/d3mh01053h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have been attracting extensive attention due to their excellent properties. We have developed a strategy of using coal to synthesize SWCNTs for high performance field-effect transistors (FETs). The high-quality SWCNTs were synthesized by laser ablation using only coal as the carbon source and Co-Ni as the catalyst. We show that coal is a carbon source superior to graphite with higher yield and better selectivity toward SWCNTs with smaller diameters. Without any pre-purification, the as-prepared SWCNTs were directly sorted based on their conductivity and diameter using either aqueous two-phase extraction or organic phase extraction with PCz (poly[9-(1-octylonoyl)-9H-carbazole-2,7-diyl]). The semiconducting SWCNTs sorted by one-step PCz extraction were used to fabricate thin film FETs. The transformation of coal into FETs (and further integrated circuits) demonstrates an efficient way of utilizing natural resources and a marvelous example in green carbon technology. Considering its short steps and high feasibility, it presents great potential in future practical applications not limited to electronics.
Collapse
Affiliation(s)
- Shaochuang Chen
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yuguang Chen
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Haitao Xu
- Institute for Carbon-Based Thin Film Electronics, Peking University, Shanxi, Taiyuan 030012, China
- Institute of Advanced Functional Materials and Devices, Shanxi University, Taiyuan 030031, China
- Beijing Institute of Carbon-based Integrated Circuits, Beijing 100195, China
| | - Min Lyu
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Xinrui Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zhen Han
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Haoming Liu
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yixi Yao
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Chi Xu
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Jian Sheng
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yifan Xu
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Lei Gao
- Beijing Institute of Carbon-based Integrated Circuits, Beijing 100195, China
| | - Ningfei Gao
- Beijing Institute of Carbon-based Integrated Circuits, Beijing 100195, China
| | - Zeyao Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Institute for Carbon-Based Thin Film Electronics, Peking University, Shanxi, Taiyuan 030012, China
- Institute of Advanced Functional Materials and Devices, Shanxi University, Taiyuan 030031, China
| | - Lian-Mao Peng
- Institute for Carbon-Based Thin Film Electronics, Peking University, Shanxi, Taiyuan 030012, China
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Institute for Carbon-Based Thin Film Electronics, Peking University, Shanxi, Taiyuan 030012, China
- PKU-HKUST ShenZhen-HongKong Institution, Shenzhen 518057, China
| |
Collapse
|
14
|
Eremin T, Eremina V, Svirko Y, Obraztsov P. Over Two-Fold Photoluminescence Enhancement from Single-Walled Carbon Nanotubes Induced by Oxygen Doping. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091561. [PMID: 37177106 PMCID: PMC10180646 DOI: 10.3390/nano13091561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Covalent functionalization of single-walled carbon nanotubes (SWCNTs) is a promising way to improve their photoluminescent (PL) brightness and thus make them applicable as a base material for infrared light emitters. We report as high as over two-fold enhancement of the SWCNT PL brightness by using oxygen doping via the UV photodissociation of hypochlorite ions. By analyzing the temporal evolution of the PL and Raman spectra of SWCNTs in the course of the doping process, we conclude that the enhancement of SWCNTs PL brightness depends on the homogeneity of induced quantum defects distribution over the SWCNT surface.
Collapse
Affiliation(s)
- Timofei Eremin
- Department of Physics and Mathematics, Center for Photonics Sciences, University of Eastern Finland, Yliopistokatu 2, 80101 Joensuu, Finland
| | - Valentina Eremina
- Department of Physics and Mathematics, Center for Photonics Sciences, University of Eastern Finland, Yliopistokatu 2, 80101 Joensuu, Finland
| | - Yuri Svirko
- Department of Physics and Mathematics, Center for Photonics Sciences, University of Eastern Finland, Yliopistokatu 2, 80101 Joensuu, Finland
| | - Petr Obraztsov
- Department of Physics and Mathematics, Center for Photonics Sciences, University of Eastern Finland, Yliopistokatu 2, 80101 Joensuu, Finland
| |
Collapse
|
15
|
Utama MIB, Zeng H, Sadhukhan T, Dasgupta A, Gavin SC, Ananth R, Lebedev D, Wang W, Chen JS, Watanabe K, Taniguchi T, Marks TJ, Ma X, Weiss EA, Schatz GC, Stern NP, Hersam MC. Chemomechanical modification of quantum emission in monolayer WSe 2. Nat Commun 2023; 14:2193. [PMID: 37069140 PMCID: PMC10110606 DOI: 10.1038/s41467-023-37892-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
Two-dimensional (2D) materials have attracted attention for quantum information science due to their ability to host single-photon emitters (SPEs). Although the properties of atomically thin materials are highly sensitive to surface modification, chemical functionalization remains unexplored in the design and control of 2D material SPEs. Here, we report a chemomechanical approach to modify SPEs in monolayer WSe2 through the synergistic combination of localized mechanical strain and noncovalent surface functionalization with aryl diazonium chemistry. Following the deposition of an aryl oligomer adlayer, the spectrally complex defect-related emission of strained monolayer WSe2 is simplified into spectrally isolated SPEs with high single-photon purity. Density functional theory calculations reveal energetic alignment between WSe2 defect states and adsorbed aryl oligomer energy levels, thus providing insight into the observed chemomechanically modified quantum emission. By revealing conditions under which chemical functionalization tunes SPEs, this work broadens the parameter space for controlling quantum emission in 2D materials.
Collapse
Affiliation(s)
- M Iqbal Bakti Utama
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Hongfei Zeng
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208, USA
| | - Tumpa Sadhukhan
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Anushka Dasgupta
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - S Carin Gavin
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208, USA
| | - Riddhi Ananth
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Dmitry Lebedev
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Wei Wang
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Jia-Shiang Chen
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA
- Northwestern-Argonne Institute of Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Tobin J Marks
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Xuedan Ma
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA
- Northwestern-Argonne Institute of Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Emily A Weiss
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - George C Schatz
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, 60208, USA.
| | - Nathaniel P Stern
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208, USA.
| | - Mark C Hersam
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, IL, 60208, USA.
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, 60208, USA.
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
16
|
Yu B, Naka S, Aoki H, Kato K, Yamashita D, Fujii S, Kato YK, Fujigaya T, Shiraki T. ortho-Substituted Aryldiazonium Design for the Defect Configuration-Controlled Photoluminescent Functionalization of Chiral Single-Walled Carbon Nanotubes. ACS NANO 2022; 16:21452-21461. [PMID: 36384293 DOI: 10.1021/acsnano.2c09897] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Defect functionalization of single-walled carbon nanotubes (SWCNTs) by chemical modification is a promising strategy for near-infrared photoluminescence (NIR PL) generation at >1000 nm, which has advanced telecom and bio/medical applications. The covalent attachment of molecular reagents generates sp3-carbon defects in the sp2-carbon lattice of SWCNTs with bright red-shifted PL generation. Although the positional difference between proximal sp3-carbon defects, labeled as the defect binding configuration, can dominate NIR PL properties, the defect arrangement chemistry remains unexplored. Here, aryldiazonium reagents with π-conjugated ortho-substituents (phenyl and acetylene groups) were developed to introduce molecular interactions with nanotube sidewalls into the defect-formation chemical reaction. The functionalized chiral SWCNTs selectively emitted single defect PL in the wavelength range of ∼1230-1270 nm for (6,5) tubes, indicating the formation of an atypical binding configuration, different from those exhibited by typical aryl- or alkyl-functionalized chiral tubes emitting ∼1150 nm PL. Moreover, the acetylene-based substituent design enabled PL brightening and a subsequent molecular modification of the doped sites using click chemistry.
Collapse
Affiliation(s)
- Boda Yu
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Sadahito Naka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Haruka Aoki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Koichiro Kato
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Daiki Yamashita
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama 351-0198, Japan
| | - Shun Fujii
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama 351-0198, Japan
| | - Yuichiro K Kato
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama 351-0198, Japan
- Nanoscale Quantum Photonics Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| | - Tsuyohiko Fujigaya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomohiro Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
17
|
Tomczyk MM, Minoshima M, Kikuchi K, Blacha-Grzechnik A, Starosolski Z, Bhavane R, Zalewski M, Kuźnik N. Hybrid, dual visible and near-infrared fluorescence emission of (6,5) single-walled carbon nanotubes modified with fluorescein through aryl diazonium salt chemistry. NANOTECHNOLOGY 2022; 34:055703. [PMID: 36278289 DOI: 10.1088/1361-6528/ac9c6a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The aryl diazonium salt chemistry offers enhancement of near-infrared (NIR) emission of single-walled carbon nanotubes (SWCNTs), although, the attachment of functional molecules which could bring hybrid properties through the process is underdeveloped. In this work, we utilize aryl diazonium salt of fluorescein to createsp3defects on (6,5) SWCNTs. We study the influence of pH on the grafting process identifying that pH 5-6 is necessary for a successful reaction. The fluorescein-modified (6,5) SWCNTs (F-(6,5) SWCNTs) exhibit red-shiftedE11* emission in the NIR region attributed to luminescentsp3defects, but also visible (Vis) fluorescence at 515 nm from surface-attached fluorescein molecules. The fluorescence in both Vis and NIR regions of F-(6,5) SWCNTs exhibit strong pH-dependency associated with the dissociation of fluorescein molecules with an indication of photoinduced-electron transfer quenching the Vis emission of fluorescein dianion. The F-(6,5) SWCNTs could potentially be used for dual-channel medical imaging as indicated by our preliminary experiments. We hope that our research will encourage new, bold modifications of SWCNTs with functional molecules introducing new, unique hybrid properties.
Collapse
Affiliation(s)
- Mateusz Michał Tomczyk
- Division of Chemistry, Silesian University of Technology, ul. M. Strzody 9, Gliwice, Poland
| | - Masafumi Minoshima
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Agata Blacha-Grzechnik
- Division of Chemistry, Silesian University of Technology, ul. M. Strzody 9, Gliwice, Poland
| | - Zbigniew Starosolski
- Texas Children's Hospital, 1102 Bates Street, Suite 850, Houston, TX 77030, United States of America
| | - Rohan Bhavane
- Texas Children's Hospital, 1102 Bates Street, Suite 850, Houston, TX 77030, United States of America
| | - Mariusz Zalewski
- Division of Chemistry, Silesian University of Technology, ul. M. Strzody 9, Gliwice, Poland
| | - Nikodem Kuźnik
- Division of Chemistry, Silesian University of Technology, ul. M. Strzody 9, Gliwice, Poland
| |
Collapse
|
18
|
Chen JS, Dasgupta A, Morrow DJ, Emmanuele R, Marks TJ, Hersam MC, Ma X. Room Temperature Lasing from Semiconducting Single-Walled Carbon Nanotubes. ACS NANO 2022; 16:16776-16783. [PMID: 36121213 DOI: 10.1021/acsnano.2c06419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Miniaturized near-infrared semiconductor lasers that are able to generate coherent light with low energy consumption have widespread applications in fields such as optical interconnects, neuromorphic computing, and deep-tissue optogenetics. With optical transitions at near-infrared wavelengths, diameter-tunable electronic structures, and superlative optoelectronic properties, semiconducting single-walled carbon nanotubes (SWCNTs) are promising candidates for nanolaser applications. However, despite significant efforts in this direction and recent progress toward enhancing spontaneous emission from SWCNTs through Purcell effects, SWCNT-based excitonic lasers have not yet been demonstrated. Leveraging an optimized cavity-emitter integration scheme enabled by a self-assembly process, here we couple SWCNT emission to the whispering gallery modes supported by polymer microspheres, resulting in room temperature excitonic lasing with an average lasing threshold of 4.5 kW/cm2. The high photostability of SWCNTs allows stable lasing for prolonged duration with minimal degradation. This experimental realization of excitonic lasing from SWCNTs, combined with their versatile electronic and optical properties that can be further controlled by chemical modification, offers far-reaching opportunities for tunable near-infrared nanolasers that are applicable for optical signal processing, in vivo biosensing, and optoelectronic devices.
Collapse
Affiliation(s)
- Jia-Shiang Chen
- Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Anushka Dasgupta
- Department of Materials Science and Engineering, and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Darien J Morrow
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ruggero Emmanuele
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Tobin J Marks
- Department of Materials Science and Engineering, and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Xuedan Ma
- Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
19
|
Fortner J, Wang Y. Quantum Coupling of Two Atomic Defects in a Carbon Nanotube Semiconductor. J Phys Chem Lett 2022; 13:8908-8913. [PMID: 36126326 DOI: 10.1021/acs.jpclett.2c02439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chemical defects can create organic color centers in the graphitic lattice of single-walled carbon nanotubes. However, the underlying physics remains somewhat of a mystery. Here we show that two sp3 atomic defects can interact with each other in a way reminiscent of atoms bonding to form molecules. Each defect creates an atom-like mid-gap state within the band gap of the nanotube semiconductor. Two such defects, when brought close to each other, interact to form a split pair of orbitals akin to two hydrogen atoms covalently bonding to form a H2 molecule. This unexpected finding may help in understanding the nature of atomic defects in solids and provide a fresh perspective to the engineering of these color centers.
Collapse
Affiliation(s)
- Jacob Fortner
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - YuHuang Wang
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
20
|
Li MK, Riaz A, Wederhake M, Fink K, Saha A, Dehm S, He X, Schöppler F, Kappes MM, Htoon H, Popov VN, Doorn SK, Hertel T, Hennrich F, Krupke R. Electroluminescence from Single-Walled Carbon Nanotubes with Quantum Defects. ACS NANO 2022; 16:11742-11754. [PMID: 35732039 DOI: 10.1021/acsnano.2c03083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Individual single-walled carbon nanotubes with covalent sidewall defects have emerged as a class of photon sources whose photoluminescence spectra can be tailored by the carbon nanotube chirality and the attached functional group/molecule. Here we present electroluminescence spectroscopy data from single-tube devices based on (7, 5) carbon nanotubes, functionalized with dichlorobenzene molecules, and wired to graphene electrodes. We observe electrically generated, defect-induced emissions that are controllable by electrostatic gating and strongly red-shifted compared to emissions from pristine nanotubes. The defect-induced emissions are assigned to excitonic and trionic recombination processes by correlating electroluminescence excitation maps with electrical transport and photoluminescence data. At cryogenic conditions, additional gate-dependent emission lines appear, which are assigned to phonon-assisted hot-exciton electroluminescence from quasi-levels. Similar results were obtained with functionalized (6, 5) nanotubes. We also compare functionalized (7, 5) electroluminescence data with photoluminescence of pristine and functionalized (7, 5) nanotubes redox-doped using gold(III) chloride solution. This work shows that electroluminescence excitation is selective toward neutral defect-state configurations with the lowest transition energy, which in combination with gate-control over neutral versus charged defect-state emission leads to high spectral purity.
Collapse
Affiliation(s)
- Min-Ken Li
- Institute of Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
- Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Adnan Riaz
- Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Martina Wederhake
- Institute of Physical and Theoretical Chemistry, Julius Maximilian University Würzburg, Würzburg 97074, Germany
| | - Karin Fink
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Avishek Saha
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Simone Dehm
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Xiaowei He
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Friedrich Schöppler
- Institute of Physical and Theoretical Chemistry, Julius Maximilian University Würzburg, Würzburg 97074, Germany
| | - Manfred M Kappes
- Institute of Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | - Han Htoon
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | | - Stephen K Doorn
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Tobias Hertel
- Institute of Physical and Theoretical Chemistry, Julius Maximilian University Würzburg, Würzburg 97074, Germany
| | - Frank Hennrich
- Institute of Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Ralph Krupke
- Institute of Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
- Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| |
Collapse
|
21
|
Zheng Y, Han Y, Weight BM, Lin Z, Gifford BJ, Zheng M, Kilin D, Kilina S, Doorn SK, Htoon H, Tretiak S. Photochemical spin-state control of binding configuration for tailoring organic color center emission in carbon nanotubes. Nat Commun 2022; 13:4439. [PMID: 35915090 PMCID: PMC9343348 DOI: 10.1038/s41467-022-31921-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
Incorporating fluorescent quantum defects in the sidewalls of semiconducting single-wall carbon nanotubes (SWCNTs) through chemical reaction is an emerging route to predictably modify nanotube electronic structures and develop advanced photonic functionality. Applications such as room-temperature single-photon emission and high-contrast bio-imaging have been advanced through aryl-functionalized SWCNTs, in which the binding configurations of the aryl group define the energies of the emitting states. However, the chemistry of binding with atomic precision at the single-bond level and tunable control over the binding configurations are yet to be achieved. Here, we explore recently reported photosynthetic protocol and find that it can control chemical binding configurations of quantum defects, which are often referred to as organic color centers, through the spin multiplicity of photoexcited intermediates. Specifically, photoexcited aromatics react with SWCNT sidewalls to undergo a singlet-state pathway in the presence of dissolved oxygen, leading to ortho binding configurations of the aryl group on the nanotube. In contrast, the oxygen-free photoreaction activates previously inaccessible para configurations through a triplet-state mechanism. These experimental results are corroborated by first principles simulations. Such spin-selective photochemistry diversifies SWCNT emission tunability by controlling the morphology of the emitting sites. Chemical functionalization of the sidewalls of single-wall carbon nanotubes (SWCNTs) is an emerging route to introduce fluorescent quantum defects and tailor the emission properties. Here, authors demonstrate that spin-selective photochemistry diversifies SWCNT emission tunability by controlling the morphology of the emitting sites.
Collapse
Affiliation(s)
- Yu Zheng
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Yulun Han
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58102, USA
| | - Braden M Weight
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.,Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58102, USA.,Department of Physics, North Dakota State University, Fargo, ND, 58102, USA.,Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627, USA
| | - Zhiwei Lin
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Brendan J Gifford
- Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Dmitri Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58102, USA
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58102, USA
| | - Stephen K Doorn
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Han Htoon
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Sergei Tretiak
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA. .,Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
22
|
Wang P, Fortner J, Luo H, Kłos J, Wu X, Qu H, Chen F, Li Y, Wang Y. Quantum Defects: What Pairs with the Aryl Group When Bonding to the sp 2 Carbon Lattice of Single-Wall Carbon Nanotubes? J Am Chem Soc 2022; 144:13234-13241. [PMID: 35830302 DOI: 10.1021/jacs.2c03846] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aryl diazonium reactions are widely used to covalently modify graphitic electrodes and low-dimensional carbon materials, including the recent creation of organic color centers (OCCs) on single-wall carbon nanotube semiconductors. However, due to the experimental difficulties in resolving small functional groups over extensive carbon lattices, a basic question until now remains unanswered: what group, if any, is pairing with the aryl sp3 defect when breaking a C═C bond on the sp2 carbon lattice? Here, we show that water plays an unexpected role in completing the diazonium reaction with carbon nanotubes involving chlorosulfonic acid, acting as a nucleophilic agent that contributes -OH as the pairing group. By simply replacing water with other nucleophilic solvents, we find it is possible to create OCCs that feature an entirely new series of pairing groups, including -OCH3, -OC2H5, -OC3H7, -i-OC3H7, and -NH2, which allows us to systematically tailor the defect pairs and the optical properties of the resulting color centers. Enabled by these pairing groups, we further achieved the synthesis of OCCs with sterically bulky pairs that exhibit high purity defect photoluminescence effectively covering both the second near-infrared window and the telecom wavelengths. Our studies further suggest that these diazonium reactions proceed through the formation of carbocations in chlorosulfonic acid, rather than a radical mechanism that typically occurs in aqueous solutions. These findings uncover the unknown half of the sp3 defect pairs and provide a synthetic approach to control these defect color centers for quantum information, imaging, and sensing.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jacob Fortner
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Hongbin Luo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jacek Kłos
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States.,Department of Physics, Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaojian Wu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Fu Chen
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Yue Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States.,Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, United State
| |
Collapse
|
23
|
Kozawa D, Wu X, Ishii A, Fortner J, Otsuka K, Xiang R, Inoue T, Maruyama S, Wang Y, Kato YK. Formation of organic color centers in air-suspended carbon nanotubes using vapor-phase reaction. Nat Commun 2022; 13:2814. [PMID: 35595760 PMCID: PMC9123200 DOI: 10.1038/s41467-022-30508-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/28/2022] [Indexed: 11/28/2022] Open
Abstract
Organic color centers in single-walled carbon nanotubes have demonstrated exceptional ability to generate single photons at room temperature in the telecom range. Combining the color centers with pristine air-suspended nanotubes would be desirable for improved performance, but all current synthetic methods occur in solution which makes them incompatible. Here we demonstrate the formation of color centers in air-suspended nanotubes using a vapor-phase reaction. Functionalization is directly verified by photoluminescence spectroscopy, with unambiguous statistics from more than a few thousand individual nanotubes. The color centers show strong diameter-dependent emission, which can be explained with a model for chemical reactivity considering strain along the tube curvature. We also estimate the defect density by comparing the experiments with simulations based on a one-dimensional exciton diffusion equation. Our results highlight the influence of the nanotube structure on vapor-phase reactivity and emission properties, providing guidelines for the development of high-performance near-infrared quantum light sources. Organic color centers in single-walled carbon nanotubes can act as single-photon sources in the telecom range. Here the authors report the functionalization of air-suspended nanotubes through a vapor-phase photochemical reaction, demonstrating a further tailoring of quantum emitter materials.
Collapse
Affiliation(s)
- Daichi Kozawa
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama, 351-0198, Japan.
| | - Xiaojian Wu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Akihiro Ishii
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama, 351-0198, Japan.,Nanoscale Quantum Photonics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
| | - Jacob Fortner
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Keigo Otsuka
- Nanoscale Quantum Photonics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
| | - Rong Xiang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.,Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Taiki Inoue
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.,Department of Applied Physics, Osaka University, Osaka, 565-0871, Japan
| | - Shigeo Maruyama
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA.,Maryland NanoCenter, University of Maryland, College Park, MD, 20742, USA
| | - Yuichiro K Kato
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama, 351-0198, Japan. .,Nanoscale Quantum Photonics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan.
| |
Collapse
|
24
|
Sebastian FL, Zorn NF, Settele S, Lindenthal S, Berger FJ, Bendel C, Li H, Flavel BS, Zaumseil J. Absolute Quantification of sp 3 Defects in Semiconducting Single-Wall Carbon Nanotubes by Raman Spectroscopy. J Phys Chem Lett 2022; 13:3542-3548. [PMID: 35420437 PMCID: PMC9059186 DOI: 10.1021/acs.jpclett.2c00758] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The functionalization of semiconducting single-wall carbon nanotubes (SWCNTs) with luminescent sp3 defects creates red-shifted emission features in the near-infrared and boosts their photoluminescence quantum yields (PLQYs). While multiple synthetic routes for the selective introduction of sp3 defects have been developed, a convenient metric to precisely quantify the number of defects on a SWCNT lattice is not available. Here, we present a direct and simple quantification protocol based on a linear correlation of the integrated Raman D/G+ signal ratios and defect densities as extracted from PLQY measurements. Corroborated by a statistical analysis of single-nanotube emission spectra at cryogenic temperature, this method enables the quantitative evaluation of sp3 defect densities in (6,5) SWCNTs with an error of ±3 defects per micrometer and the determination of oscillator strengths for different defect types. The developed protocol requires only standard Raman spectroscopy and is independent of the defect configuration, dispersion solvent, and nanotube length.
Collapse
Affiliation(s)
- Finn L. Sebastian
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Nicolas F. Zorn
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Simon Settele
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Sebastian Lindenthal
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Felix J. Berger
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Christoph Bendel
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Han Li
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, D-76131 Karlsruhe, Germany
| | - Benjamin S. Flavel
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, D-76131 Karlsruhe, Germany
| | - Jana Zaumseil
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
25
|
Qu H, Wu X, Fortner J, Kim M, Wang P, Wang Y. Reconfiguring Organic Color Centers on the sp 2 Carbon Lattice of Single-Walled Carbon Nanotubes. ACS NANO 2022; 16:2077-2087. [PMID: 35040631 DOI: 10.1021/acsnano.1c07669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic color centers (OCCs) are atomic defects that can be synthetically created in single-walled carbon nanotube hosts to enable the emission of shortwave infrared single photons at room temperature. However, all known chemistries developed thus far to generate these quantum defects produce a variety of bonding configurations, posing a formidable challenge to the synthesis of identical, uniformly emitting color centers. Herein, we show that laser irradiation of the nanotube host can locally reconfigure the chemical bonding of aryl OCCs on (6,5) nanotubes to significantly reduce their spectral inhomogeneity. After irradiation the defect emission narrows in distribution by ∼26% to yield a single photoluminescence peak. We use hyperspectral photoluminescence imaging to follow this structural transformation on the single nanotube level. Density functional theory calculations corroborate our experimental observations, suggesting that the OCCs convert from kinetic structures to the more thermodynamically stable configuration. This approach may enable localized tuning and creation of identical OCCs for emerging applications in bioimaging, molecular sensing, and quantum information sciences.
Collapse
Affiliation(s)
- Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaojian Wu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jacob Fortner
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Mijin Kim
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Peng Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
26
|
Kelich P, Jeong S, Navarro N, Adams J, Sun X, Zhao H, Landry MP, Vuković L. Discovery of DNA-Carbon Nanotube Sensors for Serotonin with Machine Learning and Near-infrared Fluorescence Spectroscopy. ACS NANO 2022; 16:736-745. [PMID: 34928575 DOI: 10.1021/acsnano.1c08271] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
DNA-wrapped single walled carbon nanotube (SWNT) conjugates have distinct optical properties leading to their use in biosensing and imaging applications. A critical limitation in the development of DNA-SWNT sensors is the current inability to predict unique DNA sequences that confer a strong analyte-specific optical response to these sensors. Here, near-infrared (nIR) fluorescence response data sets for ∼100 DNA-SWNT conjugates, narrowed down by a selective evolution protocol starting from a pool of ∼1010 unique DNA-SWNT candidates, are used to train machine learning (ML) models to predict DNA sequences with strong optical response to neurotransmitter serotonin. First, classifier models based on convolutional neural networks (CNN) are trained on sequence features to classify DNA ligands as either high response or low response to serotonin. Second, support vector machine (SVM) regression models are trained to predict relative optical response values for DNA sequences. Finally, we demonstrate with validation experiments that integrating the predictions of ensembles of the highest quality neural network classifiers (convolutional or artificial) and SVM regression models leads to the best predictions of both high and low response sequences. With our ML approaches, we discovered five DNA-SWNT sensors with higher fluorescence intensity response to serotonin than obtained previously. Overall, the explored ML approaches, shown to predict useful DNA sequences, can be used for discovery of DNA-based sensors and nanobiotechnologies.
Collapse
Affiliation(s)
- Payam Kelich
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968 United States
| | - Sanghwa Jeong
- School of Convergence Engineering, Pusan National University, Yangsan 50612, South Korea
| | - Nicole Navarro
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720 United States
| | - Jaquesta Adams
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720 United States
| | - Xiaoqi Sun
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720 United States
| | - Huanhuan Zhao
- Bioinformatics Program, University of Texas at El Paso, El Paso, Texas 79968 United States
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720 United States
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, California 94720 United States
- Innovative Genomics Institute, Berkeley, California 94702 United States
- Chan-Zuckerberg Biohub, San Francisco, California 94158 United States
| | - Lela Vuković
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968 United States
| |
Collapse
|
27
|
Chen S, Jiang Y, Jia S, Liu H, Zhang G, Han X, Zhang R. Revealing the tunability of electronic structures and optical properties of novel SWCNT derivatives, phenine nanotubes. Phys Chem Chem Phys 2021; 23:24239-24248. [PMID: 34668917 DOI: 10.1039/d1cp03932f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-walled carbon nanotubes (SWCNTs) have evoked great interest for various luminescent applications, but the large emission heterogeneity resulting from the structural complexity of the samples seriously restricts their further development. Herein we theoretically explore the electronic structures and optical properties of phenine nanotubes (pNTs), which are typical luminescent SWCNT derivatives with determined molecular structures that have been synthesized recently (Z. Sun, K. Ikemoto, T. M. Fukunaga, T. Koretsune, R. Arita, S. Sato and H. Isobe, Science, 2019, 363, 151-155; K. Ikemoto, S. Yang, H. Naito, M. Kotani, S. Sato and H. Isobe, Nat. Commun., 2020, 11, 1807). Interestingly, pNTs are found to feature different semiconducting properties to SWCNTs, as indicated by a spatial separation trend in the HOMO and LUMO resulting from periodic structural vacancies. The HOMO-LUMO and optical gaps of pNTs depend inversely on their lengths and diameters, but diameter variation should be an ineffective method for property tuning due to its negligible influence. By contrast, chemical modifications via N doping or hydrogenation highly affect the HOMO-LUMO gaps and their distributions and greatly broaden the light absorption/emission range, and importantly, low-dose hydrogenation is predicted to be a feasible strategy to enhance luminescence. This work, by studying the fundamental photophysical properties of pNTs and making comparisons to SWCNTs, shows the promise of structural vacancy engineering and surface functionalization in acquiring multifunctional tube-like materials.
Collapse
Affiliation(s)
- Shunwei Chen
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China. .,Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| | - Yuhang Jiang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Shangke Jia
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Hao Liu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Guangwei Zhang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Xiujun Han
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Ruiqin Zhang
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
28
|
Weight BM, Sifain AE, Gifford BJ, Kilin D, Kilina S, Tretiak S. Coupling between Emissive Defects on Carbon Nanotubes: Modeling Insights. J Phys Chem Lett 2021; 12:7846-7853. [PMID: 34380317 DOI: 10.1021/acs.jpclett.1c01631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Covalent functionalization of single-walled carbon nanotubes (SWCNTs) with organic molecules results in red-shifted emissive states associated with sp3-defects in the tube lattice, which facilitate their improved optical functionality, including single-photon emission. The energy of the defect-based electronic excitations (excitons) depends on the molecular adducts, the configuration of the defect, and concentration of defects. Here we model the interactions between two sp3-defects placed at various distances in the (6,5) SWCNT using time-dependent density functional theory. Calculations reveal that these interactions conform to the effective model of J-aggregates for well-spaced defects (>2 nm), leading to a red-shifted and optically allowed (bright) lowest energy exciton. H-aggregate behavior is not observed for any defect orientations, which is beneficial for emission. The splitting between the lowest energy bright and optically forbidden (dark) excitons and the pristine excitonic band are controlled by the single-defect configurations and their axial separation. These findings enable a synthetic design strategy for SWCNTs with tunable near-infrared emission.
Collapse
Affiliation(s)
- Braden M Weight
- Center for Integrated Nanotechnologies, Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, United States
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
- Department of Physics, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Andrew E Sifain
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Brendan J Gifford
- Center for Integrated Nanotechnologies, Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dmitri Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Sergei Tretiak
- Center for Integrated Nanotechnologies, Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
29
|
Yang X, Liu T, Li R, Yang X, Lyu M, Fang L, Zhang L, Wang K, Zhu A, Zhang L, Qiu C, Zhang YZ, Wang X, Peng LM, Yang F, Li Y. Host-Guest Molecular Interaction Enabled Separation of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes. J Am Chem Soc 2021; 143:10120-10130. [PMID: 34105955 DOI: 10.1021/jacs.1c02245] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Semiconducting single-walled carbon nanotubes (s-SWCNTs) with a diameter of around 1.0-1.5 nm, which present bandgaps comparable to silicon, are highly desired for electronic applications. Therefore, the preparation of s-SWCNTs of such diameters has been attracting great attention. The inner surface of SWCNTs has a suitable curvature and large contacting area, which is attractive in host-guest chemistry triggered by electron transfer. Here we reported a strategy of host-guest molecular interaction between SWCNTs and inner clusters with designed size, thus selectively separating s-SWCNTs of expected diameters. When polyoxometalate clusters of ∼1 nm in size were filled in the inner cavities of SWCNTs, s-SWCNTs with diameters concentrated at ∼1.3-1.4 nm were selectively extracted with the purity of ∼98% by a commercially available polyfluorene derivative. The field-effect transistors built from the sorted s-SWCNTs showed a typical behavior of semiconductors. The sorting mechanisms associated with size-dependent electron transfer from nanotubes to inner polyoxometalate were revealed by the spectroscopic and in situ electron microscopic evidence as well as the theoretical calculation. The polyoxometalates with designable size and redox property enable the flexible regulation of interaction between the nanotubes and the clusters, thus tuning the diameter of sorted s-SWCNTs. The present sorting strategy is simple and should be generally feasible in other SWCNT sorting techniques, bringing both great easiness in dispersant design and improved selectivity.
Collapse
Affiliation(s)
- Xusheng Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tianhui Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruoming Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaoxin Yang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Min Lyu
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Li Fang
- Department of Electronics, Peking University, Beijing 100871, China
| | - Lei Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kun Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Anquan Zhu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Luyao Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chenguang Qiu
- Department of Electronics, Peking University, Beijing 100871, China
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiao Wang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lian-Mao Peng
- Department of Electronics, Peking University, Beijing 100871, China
| | - Feng Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking University Shenzhen Institute, Shenzhen 518057, China.,PKU-HKUST ShenZhen-HongKong Institution, Shenzhen 518055, China
| |
Collapse
|
30
|
Zorn N, Berger FJ, Zaumseil J. Charge Transport in and Electroluminescence from sp 3-Functionalized Carbon Nanotube Networks. ACS NANO 2021; 15:10451-10463. [PMID: 34048654 PMCID: PMC8223481 DOI: 10.1021/acsnano.1c02878] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The controlled covalent functionalization of semiconducting single-walled carbon nanotubes (SWCNTs) with luminescent sp3 defects leads to additional narrow and tunable photoluminescence features in the near-infrared and even enables single-photon emission at room temperature, thus strongly expanding their application potential. However, the successful integration of sp3-functionalized SWCNTs in optoelectronic devices with efficient defect state electroluminescence not only requires control over their emission properties but also a detailed understanding of the impact of functionalization on their electrical performance, especially in dense networks. Here, we demonstrate ambipolar, light-emitting field-effect transistors based on networks of pristine and functionalized polymer-sorted (6,5) SWCNTs. We investigate the influence of sp3 defects on charge transport by employing electroluminescence and (charge-modulated) photoluminescence spectroscopy combined with temperature-dependent current-voltage measurements. We find that sp3-functionalized SWCNTs actively participate in charge transport within the network as mobile carriers efficiently sample the sp3 defects, which act as shallow trap states. While both hole and electron mobilities decrease with increasing degree of functionalization, the transistors remain fully operational, showing electroluminescence from the defect states that can be tuned by the defect density.
Collapse
|
31
|
Yang X, Zhao X, Liu T, Yang F. Precise Synthesis of Carbon Nanotubes and
One‐Dimensional
Hybrids from Templates
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xusheng Yang
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xin Zhao
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Tianhui Liu
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Feng Yang
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
32
|
Synthetic control over the binding configuration of luminescent sp 3-defects in single-walled carbon nanotubes. Nat Commun 2021; 12:2119. [PMID: 33837208 PMCID: PMC8035247 DOI: 10.1038/s41467-021-22307-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
The controlled functionalization of single-walled carbon nanotubes with luminescent sp3-defects has created the potential to employ them as quantum-light sources in the near-infrared. For that, it is crucial to control their spectral diversity. The emission wavelength is determined by the binding configuration of the defects rather than the molecular structure of the attached groups. However, current functionalization methods produce a variety of binding configurations and thus emission wavelengths. We introduce a simple reaction protocol for the creation of only one type of luminescent defect in polymer-sorted (6,5) nanotubes, which is more red-shifted and exhibits longer photoluminescence lifetimes than the commonly obtained binding configurations. We demonstrate single-photon emission at room temperature and expand this functionalization to other polymer-wrapped nanotubes with emission further in the near-infrared. As the selectivity of the reaction with various aniline derivatives depends on the presence of an organic base we propose nucleophilic addition as the reaction mechanism. Covalent functionalization of single-walled carbon nanotubes with luminescent sp3-defects generally produces a variety of binding configurations and emission wavelengths. The authors propose a base-mediated nucleophilic functionalization approach to selectively achieve configurations for E11* and E11*- or purely E11*- defect emission.
Collapse
|
33
|
Shiraki T. Molecular Functionalization of Carbon Nanotubes towards Near Infrared Photoluminescent Nanomaterials. CHEM LETT 2021. [DOI: 10.1246/cl.200776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomohiro Shiraki
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
34
|
Yang D, Li L, Wei X, Wang Y, Zhou W, Kataura H, Xie S, Liu H. Submilligram-scale separation of near-zigzag single-chirality carbon nanotubes by temperature controlling a binary surfactant system. SCIENCE ADVANCES 2021; 7:7/8/eabe0084. [PMID: 33597241 PMCID: PMC7888923 DOI: 10.1126/sciadv.abe0084] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/31/2020] [Indexed: 05/19/2023]
Abstract
Mass production of zigzag and near-zigzag single-wall carbon nanotubes (SWCNTs), whether by growth or separation, remains a challenge, which hinders the disclosure of their previously unknown property and practical applications. Here, we report a method to separate SWCNTs by chiral angle through temperature control of a binary surfactant system of sodium cholate (SC) and SDS in gel chromatography. Eleven types of single-chirality SWCNT species with chiral angle less than 20° were efficiently separated including multiple zigzag and near-zigzag species. Among them, (7, 3), (8, 3), (8, 4), (9, 1), (9, 2), (10, 2), and (11, 1), were produced on the submilligram scale. The spectral detection results indicate that lowering the temperature induced selective adsorption and reorganization of the SC/SDS cosurfactants on SWCNTs with different chiral angles, amplifying their interaction difference with gel. We believe that this work is an important step toward industrial separation of single-chirality zigzag and near-zigzag SWCNTs.
Collapse
Affiliation(s)
- Dehua Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China
| | - Linhai Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojun Wei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yanchun Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China
| | - Weiya Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hiromichi Kataura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Sishen Xie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaping Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Zheng Y, Weight BM, Jones AC, Chandrasekaran V, Gifford BJ, Tretiak S, Doorn SK, Htoon H. Photoluminescence Dynamics Defined by Exciton Trapping Potential of Coupled Defect States in DNA-Functionalized Carbon Nanotubes. ACS NANO 2021; 15:923-933. [PMID: 33395262 DOI: 10.1021/acsnano.0c07544] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chemical reactions between semiconducting single-wall carbon nanotubes (SWCNTs) and single-stranded DNA (ssDNA) achieve spatially patterned covalent functionalization sites and create coupled fluorescent quantum defects on the nanotube surface, tailoring SWCNT photophysics for applications such as single-photon emitters in quantum information technologies. The evaluation of relaxation dynamics of photoluminescence (PL) from those coupled quantum defects is essential for understanding the nanotube electronic structure and beneficial to the design of quantum light emitters. Here, we measured the PL decay for ssDNA-functionalized SWCNTs as a function of the guanine content of the ssDNA oligo that dictates the red-shifting of their PL emission peaks relative to the band-edge exciton. We then correlate the observed dependence of PL decay dynamics on energy red-shifts to the exciton potential energy landscape, which is modeled using first-principles approaches based upon the morphology of ssDNA-altered SWCNTs obtained by atomic force microscopy (AFM) imaging. Our simulations illustrate that the multiple guanine defects introduced within a single ssDNA strand strongly interact to create a deep exciton trapping well, acting as a single hybrid trap. The emission decay from the distinctive trapping potential landscape is found to be biexponential for ssDNA-modified SWCNTs. We attributed the fast time component of the biexponential PL decay to the redistribution of exciton population among the lowest energy bright states and a manifold of dark states emerging from the coupling of multiple guanine defects. The long lifetime component in the biexponential decay, on the other hand, is attributed to the redistribution of exciton population among different exciton trapping sites that arise from the binding of multiple ssDNA strands along the nanotube axis. AFM measurements indicate that those trapping sites are separated on average by ∼8 nm along the nanotube axis.
Collapse
Affiliation(s)
| | - Braden M Weight
- Department of Physics, North Dakota State University, Fargo, North Dakota 58102, United States
| | | | | | | | | | | | | |
Collapse
|
36
|
Lüttgens JM, Berger FJ, Zaumseil J. Population of Exciton-Polaritons via Luminescent sp 3 Defects in Single-Walled Carbon Nanotubes. ACS PHOTONICS 2021; 8:182-193. [PMID: 33506074 PMCID: PMC7821305 DOI: 10.1021/acsphotonics.0c01129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 05/27/2023]
Abstract
Semiconducting single-walled carbon nanotubes (SWCNTs) are an interesting material for strong-light matter coupling due to their stable excitons, narrow emission in the near-infrared region, and high charge carrier mobilities. Furthermore, they have emerged as quantum light sources as a result of the controlled introduction of luminescent quantum defects (sp3 defects) with red-shifted transitions that enable single-photon emission. The complex photophysics of SWCNTs and the overall goal of polariton condensation pose the question of how exciton-polaritons are populated and how the process might be optimized. The contributions of possible relaxation processes, i.e., scattering with acoustic phonons, vibrationally assisted scattering, and radiative pumping, are investigated using angle-resolved reflectivity and time-resolved photoluminescence measurements on microcavities with a wide range of detunings. We show that the predominant population mechanism for SWCNT exciton-polaritons in planar microcavities is radiative pumping. Consequently, the limitation of polariton population due to the low photoluminescence quantum yield of nanotubes can be overcome by luminescent sp3 defects. Without changing the polariton branch structure, radiative pumping through these emissive defects leads to an up to 10-fold increase of the polariton population for detunings with a large photon fraction. Thus, the controlled and tunable functionalization of SWCNTs with sp3 defects presents a viable route toward bright and efficient polariton devices.
Collapse
|
37
|
Lohmann SH, Trerayapiwat KJ, Niklas J, Poluektov OG, Sharifzadeh S, Ma X. sp3-Functionalization of Single-Walled Carbon Nanotubes Creates Localized Spins. ACS NANO 2020; 14:17675-17682. [PMID: 33306353 DOI: 10.1021/acsnano.0c08782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Chemical functionalization-introduced sp3 quantum defects in single-walled carbon nanotubes (SWCNTs) have shown compelling optical properties for their potential applications in quantum information science and bioimaging. Here, we utilize temperature- and power-dependent electron spin resonance measurements to study the fundamental spin properties of SWCNTs functionalized with well-controlled densities of sp3 quantum defects. Signatures of isolated spins that are highly localized at the sp3 defect sites are observed, which we further confirm with density functional theory calculations. Applying temperature-dependent line width analysis and power-saturation measurements, we estimate the spin-lattice relaxation time T1 and spin dephasing time T2 to be around 9 μs and 40 ns, respectively. These findings of the localized spin states that are associated with the sp3 quantum defects not only deepen our understanding of the molecular structures of the quantum defects but could also have strong implications for their applications in quantum information science.
Collapse
Affiliation(s)
- Sven-Hendrik Lohmann
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | | | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Oleg G Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Sahar Sharifzadeh
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Division of Materials Science and Engineering and Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Xuedan Ma
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
38
|
Przypis L, Krzywiecki M, Niidome Y, Aoki H, Shiraki T, Janas D. Enhancing near-infrared photoluminescence from single-walled carbon nanotubes by defect-engineering using benzoyl peroxide. Sci Rep 2020; 10:19877. [PMID: 33199740 PMCID: PMC7669876 DOI: 10.1038/s41598-020-76716-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/02/2020] [Indexed: 11/17/2022] Open
Abstract
Single-walled carbon nanotubes (SWCNTs) have been modified with ester groups using typical organic radical chemistry. Consequently, traps for mobile excitons have been created, which enhanced the optical properties of the material. The proposed methodology combines the benefits of mainstream approaches to create luminescent defects in SWCNTs while it simultaneously avoids their limitations. A step change was achieved when the aqueous medium was abandoned. The selection of an appropriate organic solvent enabled much more facile modification of SWCNTs. The presented technique is quick and versatile as it can engage numerous reactants to tune the light emission capabilities of SWCNTs. Importantly, it can also utilize SWCNTs sorted by chirality using conjugated polymers to enhance their light emission capabilities. Such differentiation is conducted in organic solvents, so monochiral SWCNT can be directly functionalized using the demonstrated concept in the same medium without the need to redisperse the material in water.
Collapse
Affiliation(s)
- Lukasz Przypis
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Maciej Krzywiecki
- Institute of Physics-CSE, Silesian University of Technology, Konarskiego 22B, 44-100, Gliwice, Poland
| | - Yoshiaki Niidome
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Haruka Aoki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tomohiro Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Dawid Janas
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| |
Collapse
|
39
|
Gaviria Rojas WA, Hersam MC. Chirality-Enriched Carbon Nanotubes for Next-Generation Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905654. [PMID: 32255238 DOI: 10.1002/adma.201905654] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/10/2019] [Indexed: 05/06/2023]
Abstract
For the past half century, silicon has served as the primary material platform for integrated circuit technology. However, the recent proliferation of nontraditional electronics, such as wearables, embedded systems, and low-power portable devices, has led to increasingly complex mechanical and electrical performance requirements. Among emerging electronic materials, single-walled carbon nanotubes (SWCNTs) are promising candidates for next-generation computing as a result of their superlative electrical, optical, and mechanical properties. Moreover, their chirality-dependent properties enable a wide range of emerging electronic applications including sub-10 nm complementary field-effect transistors, optoelectronic integrated circuits, and enantiomer-recognition sensors. Here, recent progress in SWCNT-based computing devices is reviewed, with an emphasis on the relationship between chirality enrichment and electronic functionality. In particular, after highlighting chirality-dependent SWCNT properties and chirality enrichment methods, the range of computing applications that have been demonstrated using chirality-enriched SWCNTs are summarized. By identifying remaining challenges and opportunities, this work provides a roadmap for next-generation SWCNT-based computing.
Collapse
Affiliation(s)
- William A Gaviria Rojas
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
40
|
Gifford BJ, Kilina S, Htoon H, Doorn SK, Tretiak S. Controlling Defect-State Photophysics in Covalently Functionalized Single-Walled Carbon Nanotubes. Acc Chem Res 2020; 53:1791-1801. [PMID: 32805109 DOI: 10.1021/acs.accounts.0c00210] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ConspectusSingle-walled carbon nanotubes (SWCNTs) show promise as light sources for modern fiber optical communications due to their emission wavelengths tunable via chirality and diameter dependency. However, the emission quantum yields are relatively low owing to the existence of low-lying dark electronic states and fast excitonic diffusion leading to carrier quenching at defects. Covalent functionalization of SWCNTs addresses this problem by brightening their infrared emission. Namely, introduction of sp3-hybridized defects makes the lowest energy transitions optically active for some defect geometries and enables further control of their optical properties. Such functionalized SWCNTs are currently the only material exhibiting room-temperature single photon emission at telecom relevant infrared wavelengths. While this fluorescence is strong and has the right wavelength, functionalization introduces a variety of emission peaks resulting in spectrally broad inhomogeneous photoluminescence that prohibits the use of SWCNTs in practical applications. Consequently, there is a strong need to control the emission diversity in order to render these materials useful for applications. Recent experimental and computational work has attributed the emissive diversity to the presence of multiple localized defect geometries each resulting in distinct emission energy. This Account outlines methods by which the morphology of the defect in functionalized SWCNTs can be controlled to reduce emissive diversity and to tune the fluorescence wavelengths. The chirality-dependent trends of emission energies with respect to individual defect morphologies are explored. It is demonstrated that defect geometries originating from functionalization of SWCNT carbon atoms along bonds with strong π-orbital mismatch are favorable. Furthermore, the effect of controlling the defect itself through use of different chemical groups is also discussed. Such tunability is enabled due to the formation of specific defect geometries in close proximity to other existing defects. This takes advantage of the changes in π-orbital mismatch enforced by existing defects and the resulting changes in reactivities toward formation of specific defect morphologies. Furthermore, the trends in emissive energies are highly dependent on the value of mod(n-m,3) for an (n,m) tube chirality. These powerful concepts allow for a targeted formation of defects that emit at desired energies based on SWCNT single chirality enriched samples. Finally, the impact of functionalization with specific types of defects that enforce certain defect geometries due to steric constraints in bond lengths and angles to the SWCNT are discussed. We further relate to a similar effect that is present in systems where high density of surface defects is formed due to high reactant concentration. The outlined strategies suggested by simulations are instrumental in guiding experimental efforts toward the generation of functionalized SWCNTs with tunable emission energies.
Collapse
Affiliation(s)
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | | | | | | |
Collapse
|
41
|
Shiraki T, Miyauchi Y, Matsuda K, Nakashima N. Carbon Nanotube Photoluminescence Modulation by Local Chemical and Supramolecular Chemical Functionalization. Acc Chem Res 2020; 53:1846-1859. [PMID: 32791829 DOI: 10.1021/acs.accounts.0c00294] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
ConspectusCarbon nanotubes (CNTs) have been central materials in nanoscience and nanotechnologies. Single-walled CNTs (SWCNTs) consisting of a cylindrical graphene show a metallic (met) or semiconducting (sc) property depending on their rolling up manner (chirality). The sc-SWCNTs show characteristic chirality-dependent optical properties of their absorption and photoluminescence (PL) in the near-infrared (NIR) region. These are derived from their highly π-conjugated structures having semiconducting crystalline sp2 carbon networks with defined nanoarchitectures that afford a strong quantum confinement and weak dielectric screening. Consequently, photoirradiation of the SWCNTs produces a stable and mobile exciton (excited electron-hole pair) even at room temperature, and the exciton properties dominate such optical phenomena in the SWCNTs. However, the mobile excitons decrease the PL efficiency due to nonradiative relaxation including collision with tube edges and relaxation to lower-lying dark states. A breakthrough regarding the efficient use of the mobile exciton for PL has recently been achieved by local chemical functionalization of the SWCNTs, in which the chemical reactions introduce local defects of oxygen and sp3 carbon atoms in the tube structures. The defect doping creates new emissive doped sites that have narrower band gaps and trap the mobile excitons, which provides locally functionalized SWCNTs (lf-SWCNTs). As a result, the localized exciton produces E11* PL with red-shifted wavelengths and enhanced PL quantum yields compared to the original E11 PL of the nonmodified SWCNTs.In this Account, we describe recently revealed fundamental properties of the lf-SWCNTs based on the analyses by photophysics, theoretical calculations, and electrochemistry combined with in situ PL spectroscopy. The new insight allows us to expand the wavelength regions of the NIR E11* PL derived from the localized exciton, in which upconversion generates a higher energy PL through thermal activation and proximal doped site formation using bis-aryldiazonium modifiers provides a much lower energy PL than typical E11* PL. Moreover, owing to the chemical reaction-dominant doping process, the molecular structure design of modifiers succeeds in producing functionalized lf-SWCNTs; namely, molecular functions are incorporated into the doped sites for their PL modulation. The wavelength changes/switching in the E11* PL selectively occurs by a supramolecular approach using molecular recognition and imine chemistry. Therefore, the local chemical functionalization of the SWCNTs is a key to designing the properties and creating their new functions of the lf-SWCNTs. Fundamental understanding of the doped site properties of the lf-SWCNTs and molecularly driven approaches for exciton and defect engineering would unveil the intrinsic natures of these materials, which is crucial for elevating the SWCNT-based nanotechnologies to the next stage. The resulting materials are of interest in the fields of high performance NIR-II imaging and sensing for bio/medical analyses and single-photon emitters in quantum information technology.
Collapse
Affiliation(s)
- Tomohiro Shiraki
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuhei Miyauchi
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kazunari Matsuda
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Naotoshi Nakashima
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
42
|
White DL, Lystrom L, He X, Burkert SC, Kilin DS, Kilina S, Star A. Synthesis of Holey Graphene Nanoparticle Compounds. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36513-36522. [PMID: 32672929 DOI: 10.1021/acsami.0c09394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bulk-scale syntheses of sp2 nanocarbon have typically been generated by extensive chemical oxidation to yield graphite oxide from graphite, followed by a reductive step. Materials generated via harsh random processes lose desirable physical characteristics. Loss of sp2 conjugation inhibits long-range electronic transport and the potential for electronic band manipulation. Here, we present a nanopatterned holey graphene material electronically hybridized with metal-containing nanoparticles. Oxidative plasma etching of highly ordered pyrolytic graphite via previously developed covalent organic framework (COF)-5-templated patterning yields bulk-scale materials for electrocatalytic applications and fundamental investigations into band structure engineering of nanocomposites. We establish a broad ability (Ag, Au, Cu, and Ni) to grow metal-containing nanoparticles in patterned holes in a metal precursor-dependent manner without a reducing agent. Graphene nanoparticle compounds (GNCs) show metal-contingent changes in the valence band structure. Density functional theory investigations reveal preferences for uncharged metal states, metal contributions to the valence band, and embedding of nanoparticles over surface incorporation. Ni-GNCs show activity for oxygen evolution reaction in alkaline media (1 M KOH). Electrocatalytic activity exceeds 10,000 mA/mg of Ni, shows stability for 2 h of continuous operation, and is kinetically consistent via a Tafel slope with Ni(OH)2-based catalysis.
Collapse
Affiliation(s)
- David L White
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Levi Lystrom
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Xiaoyun He
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Seth C Burkert
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Dmitri S Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
43
|
Ma C, Xiao Z, Puretzky AA, Wang H, Mohsin A, Huang J, Liang L, Luo Y, Lawrie BJ, Gu G, Lu W, Hong K, Bernholc J, Li AP. Engineering Edge States of Graphene Nanoribbons for Narrow-Band Photoluminescence. ACS NANO 2020; 14:5090-5098. [PMID: 32283017 DOI: 10.1021/acsnano.0c01737] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Solid-state narrow-band light emitters are on-demand for quantum optoelectronics. Current approaches based on defect engineering in low-dimensional materials usually introduce a broad range of emission centers. Here, we report narrow-band light emission from covalent heterostructures fused to the edges of graphene nanoribbons (GNRs) by controllable on-surface reactions from molecular precursors. Two types of heterojunction (HJ) states are realized by sequentially synthesizing GNRs and graphene nanodots (GNDs) and then coupling them together. HJs between armchair GNDs and armchair edges of the GNR are coherent and give rise to narrow-band photoluminescence. In contrast, HJs between the armchair GNDs and the zigzag ends of GNRs are defective and give rise to nonradiative states near the Fermi level. At low temperatures, sharp photoluminescence emissions with peak energy range from 2.03 to 2.08 eV and line widths of 2-5 meV are observed. The radiative HJ states are uniform, and the optical transition energy is controlled by the band gaps of GNRs and GNDs. As these HJs can be synthesized in a large quantity with atomic precision, this finding highlights a route to programmable and deterministic creation of quantum light emitters.
Collapse
Affiliation(s)
- Chuanxu Ma
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, United States
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhongcan Xiao
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Alexander A Puretzky
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Hao Wang
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ali Mohsin
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jingsong Huang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Liangbo Liang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yingdong Luo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin J Lawrie
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Gong Gu
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Wenchang Lu
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jerzy Bernholc
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - An-Ping Li
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
44
|
Kim Y, Goupalov SV, Weight BM, Gifford BJ, He X, Saha A, Kim M, Ao G, Wang Y, Zheng M, Tretiak S, Doorn SK, Htoon H. Hidden Fine Structure of Quantum Defects Revealed by Single Carbon Nanotube Magneto-Photoluminescence. ACS NANO 2020; 14:3451-3460. [PMID: 32053343 DOI: 10.1021/acsnano.9b09548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Organic color-center quantum defects in semiconducting carbon nanotube hosts are rapidly emerging as promising candidates for solid-state quantum information technologies. However, it is unclear whether these defect color-centers could support the spin or pseudospin-dependent excitonic fine structure required for spin manipulation and readout. Here we conducted magneto-photoluminescence spectroscopy on individual organic color-centers and observed the emergence of fine structure states under an 8.5 T magnetic field applied parallel to the nanotube axis. One to five fine structure states emerge depending on the chirality of the nanotube host, nature of chemical functional group, and chemical binding configuration, presenting an exciting opportunity toward developing chemical control of magnetic brightening. We attribute these hidden excitonic fine structure states to field-induced mixing of singlet excitons trapped at sp3 defects and delocalized band-edge triplet excitons. These findings provide opportunities for using organic color-centers for spintronics, spin-based quantum computing, and quantum sensing.
Collapse
Affiliation(s)
- Younghee Kim
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Serguei V Goupalov
- Department of Physics, Jackson State University, Jackson, Mississippi 39217, United States
- Ioffe Institute, St. Petersburg 194021, Russia
| | - Braden M Weight
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Brendan J Gifford
- Center for Nonlinear Studies, Theory Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Xiaowei He
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Avishek Saha
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mijin Kim
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Geyou Ao
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Sergei Tretiak
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Theory Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Stephen K Doorn
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Han Htoon
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
45
|
Nelson TR, White AJ, Bjorgaard JA, Sifain AE, Zhang Y, Nebgen B, Fernandez-Alberti S, Mozyrsky D, Roitberg AE, Tretiak S. Non-adiabatic Excited-State Molecular Dynamics: Theory and Applications for Modeling Photophysics in Extended Molecular Materials. Chem Rev 2020; 120:2215-2287. [PMID: 32040312 DOI: 10.1021/acs.chemrev.9b00447] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Optically active molecular materials, such as organic conjugated polymers and biological systems, are characterized by strong coupling between electronic and vibrational degrees of freedom. Typically, simulations must go beyond the Born-Oppenheimer approximation to account for non-adiabatic coupling between excited states. Indeed, non-adiabatic dynamics is commonly associated with exciton dynamics and photophysics involving charge and energy transfer, as well as exciton dissociation and charge recombination. Understanding the photoinduced dynamics in such materials is vital to providing an accurate description of exciton formation, evolution, and decay. This interdisciplinary field has matured significantly over the past decades. Formulation of new theoretical frameworks, development of more efficient and accurate computational algorithms, and evolution of high-performance computer hardware has extended these simulations to very large molecular systems with hundreds of atoms, including numerous studies of organic semiconductors and biomolecules. In this Review, we will describe recent theoretical advances including treatment of electronic decoherence in surface-hopping methods, the role of solvent effects, trivial unavoided crossings, analysis of data based on transition densities, and efficient computational implementations of these numerical methods. We also emphasize newly developed semiclassical approaches, based on the Gaussian approximation, which retain phase and width information to account for significant decoherence and interference effects while maintaining the high efficiency of surface-hopping approaches. The above developments have been employed to successfully describe photophysics in a variety of molecular materials.
Collapse
Affiliation(s)
- Tammie R Nelson
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Alexander J White
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Josiah A Bjorgaard
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Andrew E Sifain
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States.,U.S. Army Research Laboratory , Aberdeen Proving Ground , Maryland 21005 , United States
| | - Yu Zhang
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Benjamin Nebgen
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | | | - Dmitry Mozyrsky
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Adrian E Roitberg
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Sergei Tretiak
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| |
Collapse
|
46
|
Yang F, Wang M, Zhang D, Yang J, Zheng M, Li Y. Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization. Chem Rev 2020; 120:2693-2758. [PMID: 32039585 DOI: 10.1021/acs.chemrev.9b00835] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have been attracting tremendous attention owing to their structure (chirality) dependent outstanding properties, which endow them with great potential in a wide range of applications. The preparation of chirality-pure SWCNTs is not only a great scientific challenge but also a crucial requirement for many high-end applications. As such, research activities in this area over the last two decades have been very extensive. In this review, we summarize recent achievements and accumulated knowledge thus far and discuss future developments and remaining challenges from three aspects: controlled growth, postsynthesis sorting, and characterization techniques. In the growth part, we focus on the mechanism of chirality-controlled growth and catalyst design. In the sorting part, we organize and analyze existing literature based on sorting targets rather than methods. Since chirality assignment and quantification is essential in the study of selective preparation, we also include in the last part a comprehensive description and discussion of characterization techniques for SWCNTs. It is our view that even though progress made in this area is impressive, more efforts are still needed to develop both methodologies for preparing ultrapure (e.g., >99.99%) SWCNTs in large quantity and nondestructive fast characterization techniques with high spatial resolution for various nanotube samples.
Collapse
Affiliation(s)
- Feng Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meng Wang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Daqi Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Juan Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
47
|
Zheng Y, Bachilo SM, Weisman RB. Photoexcited Aromatic Reactants Give Multicolor Carbon Nanotube Fluorescence from Quantum Defects. ACS NANO 2020; 14:715-723. [PMID: 31887007 DOI: 10.1021/acsnano.9b07606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Covalent functionalization of single-wall carbon nanotubes (SWCNTs) can be valuable for modifying their electronic properties and creating fluorescent quantum defects. We report here a previously unreported category of such reactions involving interactions of photoexcited aromatic compounds with SWCNT sidewalls. When aqueous suspensions of SWCNTs are exposed to organic aromatic compounds and then irradiated by UV light, fluorescent defects are formed in the nanotubes at rates that depend on the aromatic ring substituents. In reactions with aniline or iodoaniline, strong spectral sidebands appear within 1 min. Total SWCNT photoluminescence can be enhanced by a factor as large as ∼5. Notably, emission spectra of reacted SWCNTs depend on the presence or absence of dissolved oxygen during the reaction. For (6,5) SWCNTs, treatment when oxygen is present gives an additional emission band red-shifted by 160 meV from the pristine position, whereas treatment without oxygen leads to two additional emission bands red-shifted by 140 and 270 meV. Variance spectroscopy shows the presence of individual "multicolor" nanotubes with three distinct emission bands (pristine plus two shifted). The facile generation of dual fluorescent quantum defects in SWCNTs provides emission closer to standard telecom wavelengths, advancing the prospects for applications as single-photon sources in quantum information processing.
Collapse
|
48
|
Liu F, Yuan Z, Sui X, Wang C, Xu M, Li W, Chen Y. Viscosity sensitive near-infrared fluorescent probes based on functionalized single-walled carbon nanotubes. Chem Commun (Camb) 2020; 56:8301-8304. [DOI: 10.1039/d0cc02813d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A new family of viscosity sensitive near-infrared fluorescent probes is created by grafting rotors on single walled carbon nanotubes. The new photoluminescence emission peaks are highly sensitive to the viscosity of solutions.
Collapse
Affiliation(s)
- Fei Liu
- Guangdong Institute of Microbiology
- Guangdong Academy of Sciences
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- China
| | - Ziwen Yuan
- School of Chemical and Biomolecular Engineering
- The University of Sydney
- NSW
- Australia
| | - Xiao Sui
- School of Chemical and Biomolecular Engineering
- The University of Sydney
- NSW
- Australia
| | - Chaojun Wang
- School of Chemical and Biomolecular Engineering
- The University of Sydney
- NSW
- Australia
| | - Meiying Xu
- Guangdong Institute of Microbiology
- Guangdong Academy of Sciences
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- China
| | - Wei Li
- School of Chemical and Biomolecular Engineering
- The University of Sydney
- NSW
- Australia
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering
- The University of Sydney
- NSW
- Australia
| |
Collapse
|
49
|
Gifford BJ, Saha A, Weight BM, He X, Ao G, Zheng M, Htoon H, Kilina S, Doorn SK, Tretiak S. Mod(n-m,3) Dependence of Defect-State Emission Bands in Aryl-Functionalized Carbon Nanotubes. NANO LETTERS 2019; 19:8503-8509. [PMID: 31682455 DOI: 10.1021/acs.nanolett.9b02926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molecularly functionalized single-walled carbon nanotubes (SWCNTs) are potentially useful for fiber optical applications due to their room temperature single-photon emission capacity at telecommunication wavelengths. Several distinct defect geometries are generated upon covalent functionalization. While it has been shown that the defect geometry controls electron localization around the defect site, thereby changing the electronic structure and generating new optically bright red-shifted emission bands, the reasons for such localization remain unexplained. Our joint experimental and computational studies of functionalized SWCNTs with various chiralities show that the value of mod(n-m,3) in an (n,m) chiral nanotube plays a key role in the relative ordering of defect-dependent emission energies. This dependence is linked to the complex nodal characteristics of electronic wave function extending along specific bonds in the tube, which justifies the defect-geometry dependent exciton localization. This insight helps to uncover the essential structural motifs allowing tuning the redshifts of emission energies in functionalized SWCNTs.
Collapse
Affiliation(s)
| | - Avishek Saha
- CSIR-Central Scientific Instruments Organization , Chandigarh 160030 , India
| | | | | | - Geyou Ao
- Materials Science and Engineering Division , National Institute of Standards and Technology , Gaithersburg , Maryland 20899-8540 , United States
| | - Ming Zheng
- Materials Science and Engineering Division , National Institute of Standards and Technology , Gaithersburg , Maryland 20899-8540 , United States
| | | | | | | | | |
Collapse
|
50
|
Sykes ME, Kim M, Wu X, Wiederrecht GP, Peng L, Wang Y, Gosztola DJ, Ma X. Ultrafast Exciton Trapping at sp3 Quantum Defects in Carbon Nanotubes. ACS NANO 2019; 13:13264-13270. [PMID: 31661244 DOI: 10.1021/acsnano.9b06279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Semiconducting single-walled carbon nanotubes (SWCNTs) constitute an ideal platform for developing near-infrared biosensors, single photon sources, and nanolasers due to their distinct optical and electrical properties. Covalent doping of SWCNTs has recently been discovered as an efficient approach in enhancing their emission intensities. We perform pump-probe studies of SWCNTs that are covalently doped with sp3 quantum defects and reveal strikingly different exciton formation dynamics and decay mechanisms in the presence of the defect sites. We show that, in highly doped SWCNTs, ultrafast trapping of excitons at the defect sites can outpace other photodynamic processes and lead to ground-state photobleaching of the quantum defects. Our fitting of the transient data with a kinetic model also reveals an upper limit in the quantum defect density for obtaining highly luminescent SWCNTs without causing irreversible damage. These findings not only deepen our understanding of the photodynamics in covalently doped SWCNTs but also reveal critical information for the design of bright near-infrared emitters that can be utilized in biological, quantum information, and nanophotonic applications.
Collapse
Affiliation(s)
- Matthew E Sykes
- Center for Nanoscale Materials , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Mijin Kim
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Xiaojian Wu
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Gary P Wiederrecht
- Center for Nanoscale Materials , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Lintao Peng
- Center for Nanoscale Materials , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - David J Gosztola
- Center for Nanoscale Materials , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Xuedan Ma
- Center for Nanoscale Materials , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| |
Collapse
|