1
|
Bassi L, Hennecke J, Albracht C, Solbach MD, Rai A, Pinheiro Alves de Souza Y, Fox A, Zeng M, Döll S, Doan VC, Richter R, Kahl A, Von Sivers L, Winkler L, Eisenhauer N, Meyer ST, van Dam NM, Weigelt A. Plant species richness promotes the decoupling of leaf and root defence traits while species-specific responses in physical and chemical defences are rare. THE NEW PHYTOLOGIST 2025; 246:729-746. [PMID: 40013369 PMCID: PMC11923407 DOI: 10.1111/nph.20434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/13/2025] [Indexed: 02/28/2025]
Abstract
The increased positive impact of plant diversity on ecosystem functioning is often attributed to the accumulation of mutualists and dilution of antagonists in diverse plant communities. While increased plant diversity alters traits related to resource acquisition, it remains unclear whether it reduces defence allocation, whether this reduction differs between roots and leaves, or varies among species. To answer these questions, we assessed the effect of plant species richness, plant species identity and their interaction on the expression of 23 physical and chemical leaf and fine root defence traits of 16 plant species in a 19-yr-old biodiversity experiment. Only leaf mass per area, leaf and root dry matter content and root nitrogen, traits associated with both, resource acquisition and defence, responded consistently to species richness. However, species richness promoted a decoupling of these defences in leaves and fine roots, possibly in response to resource limitations in diverse communities. Species-specific responses were rare and related to chemical defence and mutualist collaboration, likely responding to species-specific antagonists' dilution and mutualists' accumulation. Overall, our study suggests that resource limitation in diverse communities might mediate the relationship between plant defence traits and antagonist dilution.
Collapse
Affiliation(s)
- Leonardo Bassi
- Systematic Botany and Functional Biodiversity, Institute of BiologyLeipzig UniversityLeipzig04103Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzig04103Germany
| | - Justus Hennecke
- Systematic Botany and Functional Biodiversity, Institute of BiologyLeipzig UniversityLeipzig04103Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzig04103Germany
| | - Cynthia Albracht
- Department of Soil EcologyHelmholtz Centre for Environmental Research – UFZHalle06120Germany
- Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdam1098XHThe Netherlands
- Institute for Biosafety in Plant BiotechnologyJulius Kühn‐InstituteQuedlinburg06484Germany
| | | | - Akanksha Rai
- Department of Biogeochemical ProcessesMax Planck Institute for BiogeochemistryJena0774526Germany
| | - Yuri Pinheiro Alves de Souza
- Research Unit Comparative Microbiome AnalysisHelmholtz Zentrum MünchenNeuherberg85764Germany
- TUM School of Life Science, Chair of Environmental MicrobiologyTechnische Universität MünchenFreising85354Germany
| | - Aaron Fox
- TUM School of Life Science, Chair of Environmental MicrobiologyTechnische Universität MünchenFreising85354Germany
- Environment, Soils and Land UseTeagasc, Johnstown Castle, CoWexfordY35HK54Ireland
| | - Ming Zeng
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzig04103Germany
- Institute of BiodiversityUniversity JenaJena07743Germany
- Université de BordeauxINRAE, BFP, UMR 1332Villenave d'Ornon33140France
| | - Stefanie Döll
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzig04103Germany
- Institute of BiodiversityUniversity JenaJena07743Germany
| | - Van Cong Doan
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzig04103Germany
- Institute of BiodiversityUniversity JenaJena07743Germany
- Plant Physiology Unit, Life Sciences and Systems Biology DepartmentUniversity of TurinTorino10123Italy
| | - Ronny Richter
- Systematic Botany and Functional Biodiversity, Institute of BiologyLeipzig UniversityLeipzig04103Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzig04103Germany
| | - Anja Kahl
- Systematic Botany and Functional Biodiversity, Institute of BiologyLeipzig UniversityLeipzig04103Germany
| | - Lea Von Sivers
- Systematic Botany and Functional Biodiversity, Institute of BiologyLeipzig UniversityLeipzig04103Germany
| | - Luise Winkler
- Systematic Botany and Functional Biodiversity, Institute of BiologyLeipzig UniversityLeipzig04103Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzig04103Germany
- Experimental Interaction Ecology, Institute of BiologyLeipzig UniversityLeipzig04103Germany
| | - Sebastian T. Meyer
- Terrestrial Ecology Research Group, School of Life SciencesTechnical University MunichFreisingD‐85354Germany
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzig04103Germany
- Institute of BiodiversityUniversity JenaJena07743Germany
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ)Großbeeren14979Germany
| | - Alexandra Weigelt
- Systematic Botany and Functional Biodiversity, Institute of BiologyLeipzig UniversityLeipzig04103Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzig04103Germany
| |
Collapse
|
2
|
Liu X, Wang D, Chen A, Zeng Z. Asymmetric sensitivity of boreal forest resilience to forest gain and loss. Nat Ecol Evol 2025; 9:505-514. [PMID: 39814912 DOI: 10.1038/s41559-024-02631-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
Forest gains and losses may have unequal effects on forest resilience, particularly given their distinct temporal dynamics. Here, we quantify the sensitivities of boreal forest resilience to forest cover gain and loss using a resilience indicator derived from the temporal autocorrelation (TAC) of the kernel normalized difference vegetation index from 2000 to 2020. Our findings unveil pronounced asymmetric sensitivities, with stronger sensitivity to forest loss (-4.26 ± 0.14 × 10-3; TAC increase per 1% forest cover loss) than to forest gain (-1.65 ± 0.12 × 10-3; TAC decrease per 1% forest cover gain). Locally, ~73% of the boreal forest exhibits negative sensitivity, indicating enhanced resilience with forest cover gain and vice versa, especially in intact forests compared to managed ones. This sensitivity is affected by various trajectories in forest cover change, stemming primarily from temporal asynchrony in the recovery rates of various ecosystem functions. The observed asymmetry underscores the importance of prioritizing forest conservation over reactive management strategies following losses, ultimately contributing to more sustainable forest management practices.
Collapse
Affiliation(s)
- Xiaoye Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dashan Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Anping Chen
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Zhenzhong Zeng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
3
|
Chen C, Xiao W, Chen HYH. Meta-analysis reveals global variations in plant diversity effects on productivity. Nature 2025; 638:435-440. [PMID: 39779865 DOI: 10.1038/s41586-024-08407-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
Positive effects of plant diversity on productivity have been globally demonstrated and explained by two main effects: complementarity effects and selection effects1-4. However, plant diversity experiments have shown substantial variation in these effects, with driving factors poorly understood4-6. On the basis of a meta-analysis of 452 experiments across the globe, we show that productivity increases on average by 15.2% from monocultures to species mixtures with an average species richness of 2.6; net biodiversity effects are stronger in grassland and forest experiments and weaker in container, cropland and aquatic ecosystems. Of the net biodiversity effects, complementarity effects and selection effects contribute 65.6% and 34.4%, respectively. Complementarity effects increase with phylogenetic diversity, the mixing of nitrogen-fixing and non-nitrogen-fixing species and the functional diversity of leaf nitrogen contents, which indicate the key roles of niche partitioning, biotic feedback and abiotic facilitation in complementarity effects. More positive selection effects occur with higher species biomass inequality in their monocultures. Complementarity effects increase over time, whereas selection effects decrease over time, and they remain consistent across global variations in climates. Our results provide key insights into understanding global variations in plant diversity effects on productivity and underscore the importance of integrating both complementarity and selection effects into strategies for biodiversity conservation and ecological restoration.
Collapse
Affiliation(s)
- Chen Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada.
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| | - Wenya Xiao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada.
- Institute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Schnabel F, Guillemot J, Barry KE, Brunn M, Cesarz S, Eisenhauer N, Gebauer T, Guerrero‐Ramirez NR, Handa IT, Madsen C, Mancilla L, Monteza J, Moore T, Oelmann Y, Scherer‐Lorenzen M, Schwendenmann L, Wagner A, Wirth C, Potvin C. Tree Diversity Increases Carbon Stocks and Fluxes Above-But Not Belowground in a Tropical Forest Experiment. GLOBAL CHANGE BIOLOGY 2025; 31:e70089. [PMID: 39996326 PMCID: PMC11851259 DOI: 10.1111/gcb.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025]
Abstract
International commitments advocate large-scale forest restoration as a nature-based solution to climate change mitigation through carbon (C) sequestration. Mounting evidence suggests that mixed compared to monospecific planted forests may sequester more C, exhibit lower susceptibility to climate extremes and offer a broader range of ecosystem services. However, experimental studies comprehensively examining the control of tree diversity on multiple C stocks and fluxes above- and belowground are lacking. To address this gap, we leverage data from the Sardinilla experiment in Panama, the oldest tropical tree diversity experiment, which features a gradient of one-, two-, three- and five-species mixtures of native tree species. Over 16 years, we measured multiple above- and belowground C stocks and fluxes, ranging from tree aboveground C, over leaf litter C production, to soil organic carbon (SOC). We show that tree diversity significantly increased aboveground C stocks and fluxes, with a 57% higher gain in aboveground tree C in five-species mixtures compared to monocultures (35.7 ± 1.8 vs. 22.8 ± 3.4 Mg C ha-1) 16 years after planting. In contrast, we observed a net reduction in SOC (on average -11.2 ± 1.1 Mg C ha-1 across diversity levels) and no significant difference in SOC3 stocks (the predominantly tree-derived, i.e., C3 plant-derived SOC fraction) between five-species mixtures and monocultures (13.0 ± 0.9 vs. 15.1 ± 1.3 Mg C ha-1). Positive tree diversity effects persisted despite repeated climate extremes and strengthened over time for aboveground tree growth. Structural equation models showed that higher tree growth in mixtures enhanced leaf litter and coarse woody debris C fluxes to the soil, resulting in a tightly linked C cycle aboveground. However, we did not observe significant links between above- and belowground C stocks and fluxes. Our study elucidates the mechanisms through which higher tree diversity bolsters the climate mitigation potential of tropical forest restoration. Restoration schemes should prioritize mixed over monospecific planted forests.
Collapse
Affiliation(s)
- Florian Schnabel
- Chair of Silviculture, Institute of Forest SciencesUniversity of FreiburgFreiburgGermany
- Systematic Botany and Functional BiodiversityLeipzig UniversityLeipzigGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Joannès Guillemot
- CIRAD, UMR Eco&SolsMontpellierFrance
- Eco&Sols, Univ. Montpellier, CIRAD, INRAe, Institut Agro, IRDMontpellierFrance
- Department of Forest Sciences, ESALQUniversity of São PauloPiracicabaSão PauloBrazil
| | - Kathryn E. Barry
- Ecology and Biodiversity, Department of Biology, Institute of Environmental BiologyUtrecht UniversityUtrechtthe Netherlands
| | - Melanie Brunn
- Institute for Integrated Natural SciencesUniversity of KoblenzKoblenzGermany
- Institute for Environmental SciencesRPTU University of Kaiserslautern‐LandauLandauGermany
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Tobias Gebauer
- Gebotany, Faculty of BiologyUniversity of FreiburgFreiburgGermany
- Geo‐Konzept Society of Environmental Planning GmbHAdelschlagGermany
| | - Nathaly R. Guerrero‐Ramirez
- Département des sciences biologiquesUniversité du Québec à MontréalMontrealQuebecCanada
- Biodiversity, Macroecology and Biogeography, Faculty of Forest Sciences and Forest EcologyUniversity of GöttingenGöttingenGermany
- Silviculture and Forest Ecology of Temperate Zones, Faculty of Forest Sciences and Forest EcologyUniversity of GöttingenGöttingenGermany
- Centre of Biodiversity and Sustainable Land UseUniversity of GöttingenGöttingenGermany
| | - I. Tanya Handa
- Département des sciences biologiquesUniversité du Québec à MontréalMontrealQuebecCanada
| | - Chris Madsen
- Neotropical Ecology Laboratory, Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Lady Mancilla
- Smithsonian Tropical Research InstitutePanama CityPanama
| | - Jose Monteza
- Smithsonian Tropical Research InstitutePanama CityPanama
| | - Tim Moore
- Department of GeographyMcGill UniversityMontrealQuebecCanada
| | - Yvonne Oelmann
- Geoecology, Department of GeosciencesTübingen UniversityTübingenGermany
| | | | | | - Audrey Wagner
- Faculty of Agricultural and Environmental SciencesMcGill UniversityMontrealQuebecCanada
- Nature‐Based Solutions Initiative, Department of BiologyUniversity of OxfordOxfordUK
| | - Christian Wirth
- Systematic Botany and Functional BiodiversityLeipzig UniversityLeipzigGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Max Planck Institute for BiogeochemistryJenaGermany
| | - Catherine Potvin
- Neotropical Ecology Laboratory, Department of BiologyMcGill UniversityMontrealQuebecCanada
- Smithsonian Tropical Research InstitutePanama CityPanama
| |
Collapse
|
5
|
Kang S, Wang Z, Guo X, Zhao M, Wu S, Zhang X, Zhu L, Han G. High grazing pressure accelerates changes in community assembly over time in a long-term grazing experiment in the desert steppe of northern China. Oecologia 2025; 207:18. [PMID: 39775277 DOI: 10.1007/s00442-024-05647-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 10/18/2024] [Indexed: 01/11/2025]
Abstract
Although numerous studies have shown that grazing gives rise to community succession from the communities or even species perspective, there is a lack of discussion about how grazing drives community assembly based on plant functional traits in a long-term experiment. We find different grazing intensities lead to temporal effects on trait-mediated multidimensional community assembly processes, including community-weighted trait mean (CWM), trait filtering, and trait distribution (divergence/convergence). CWM, trait filtering, and trait distribution of different traits transformed over the 16-year grazing experiment. Major findings include the following: (1) CWM changed rapidly under higher grazing intensity, and the removal of unsuitable traits from communities over time was accelerated with higher grazing intensity, such as higher specific leaf area (SLA), rich epidermal appendages (PAP), deep root system (RD), and growth form (shrub and subshrub) and dispersal mode (DM, e.g., insect spread) with higher scores. (2) Patterns of trait filtering strongly depended on grazing intensity and trait types, most traits, such as SLA, DM, PAP, RD, and onset of flowering (OFL), were filtered at high grazing intensity area, and effects of trait filtering in the community assembly process strengthened with grazing time. (3) Traits related to the cycling of biological matter, such as leaf area (LA), SLA, reproductive height (RH), photosynthetic (PHO), and GF more frequently diverged after long-term grazing, especially in higher grazing areas. Community assembly in intensely grazed ecosystems takes over a decade to support fundamental functions, highlighting the need for grazing intensity thresholds for sustainable grassland use.
Collapse
Affiliation(s)
- Saruul Kang
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, 29 Ordos Rd., Hohhot, 010011, China
- Key Laboratory of Grassland Resources, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Key Laboratory of Grassland Management and Utilization, Inner Mongolia Agricultural University, Hohhot, 010011, China
- National Demonstration Center for Botany Experimental Education, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Zhongwu Wang
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, 29 Ordos Rd., Hohhot, 010011, China
- Key Laboratory of Grassland Resources, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Key Laboratory of Grassland Management and Utilization, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Xulin Guo
- Department of Geography and Planning, University of Saskatchewan, Saskatoon, S7N 5C8, Canada
| | - Mengli Zhao
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, 29 Ordos Rd., Hohhot, 010011, China
- Key Laboratory of Grassland Resources, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Key Laboratory of Grassland Management and Utilization, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Saqila Wu
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, 29 Ordos Rd., Hohhot, 010011, China
| | - Xia Zhang
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, 29 Ordos Rd., Hohhot, 010011, China
| | - Lin Zhu
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, 29 Ordos Rd., Hohhot, 010011, China
| | - Guodong Han
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, 29 Ordos Rd., Hohhot, 010011, China.
- Key Laboratory of Grassland Resources, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Key Laboratory of Grassland Management and Utilization, Inner Mongolia Agricultural University, Hohhot, 010011, China.
| |
Collapse
|
6
|
Amyntas A, Eisenhauer N, Scheu S, Klarner B, Ilieva-Makulec K, Madaj AM, Gauzens B, Li J, Potapov AM, Rosenbaum B, Bassi L, van Berkum PM, Brose U. Soil community history strengthens belowground multitrophic functioning across plant diversity levels in a grassland experiment. Nat Commun 2024; 15:10029. [PMID: 39562617 PMCID: PMC11577027 DOI: 10.1038/s41467-024-54401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 11/08/2024] [Indexed: 11/21/2024] Open
Abstract
Biodiversity experiments revealed that plant diversity loss can decrease ecosystem functions across trophic levels. To address why such biodiversity-function relationships strengthen over time, we established experimental mesocosms replicating a gradient in plant species richness across treatments of shared versus non-shared history of (1) the plant community and (2) the soil fauna community. After 4 months, we assessed the multitrophic functioning of soil fauna via biomass stocks and energy fluxes across the food webs. We find that soil community history significantly enhanced belowground multitrophic function via changes in biomass stocks and community-average body masses across the food webs. However, variation in plant diversity and plant community history had unclear effects. Our findings underscore the importance of long-term community assembly processes for soil fauna-driven ecosystem function, with species richness and short-term plant adaptations playing a minimal role. Disturbances that disrupt soil community stability may hinder fauna-driven ecosystem functions, while recovery may require several years.
Collapse
Affiliation(s)
- Angelos Amyntas
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany.
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
| | - Bernhard Klarner
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | | | - Anna-Maria Madaj
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Benoit Gauzens
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Jingyi Li
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Anton M Potapov
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Senckenberg Museum für Naturkunde Görlitz, Görlitz, Germany
| | - Benjamin Rosenbaum
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Leonardo Bassi
- Institute of Biology, Leipzig University, Leipzig, Germany
| | | | - Ulrich Brose
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
7
|
Luo S, Schmid B, Hector A, Scherer-Lorenzen M, Verheyen K, Barsoum N, Bauhus J, Beyer F, Bruelheide H, Ferlian O, Godbold D, Hall JS, Hajek P, Huang Y, Hölscher D, Kreft H, Liu X, Messier C, Nock C, Paquette A, Parker JD, Parker WC, Paterno GB, Reich PB, Rewald B, Sandén H, Sinacore K, Stefanski A, Williams L, Eisenhauer N. Mycorrhizal associations modify tree diversity-productivity relationships across experimental tree plantations. THE NEW PHYTOLOGIST 2024; 243:1205-1219. [PMID: 38855965 DOI: 10.1111/nph.19889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024]
Abstract
Decades of studies have demonstrated links between biodiversity and ecosystem functioning, yet the generality of the relationships and the underlying mechanisms remain unclear, especially for forest ecosystems. Using 11 tree-diversity experiments, we tested tree species richness-community productivity relationships and the role of arbuscular (AM) or ectomycorrhizal (ECM) fungal-associated tree species in these relationships. Tree species richness had a positive effect on community productivity across experiments, modified by the diversity of tree mycorrhizal associations. In communities with both AM and ECM trees, species richness showed positive effects on community productivity, which could have resulted from complementarity between AM and ECM trees. Moreover, both AM and ECM trees were more productive in mixed communities with both AM and ECM trees than in communities assembled by their own mycorrhizal type of trees. In communities containing only ECM trees, species richness had a significant positive effect on productivity, whereas species richness did not show any significant effects on productivity in communities containing only AM trees. Our study provides novel explanations for variations in diversity-productivity relationships by suggesting that tree-mycorrhiza interactions can shape productivity in mixed-species forest ecosystems.
Collapse
Affiliation(s)
- Shan Luo
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Bernhard Schmid
- Department of Geography, Remote Sensing Laboratories, University of Zürich, Zürich, CH-8006, Switzerland
| | - Andy Hector
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | | - Kris Verheyen
- Department of Environment, Forest & Nature Lab, Ghent University, Melle-Gontorde, B-9090, Belgium
| | - Nadia Barsoum
- Forest Research, Alice Holt Lodge, Farnham, Surrey, GU10 4LH, UK
| | - Juergen Bauhus
- Chair of Silviculture, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, 79108, Germany
| | - Friderike Beyer
- Chair of Silviculture, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, 79108, Germany
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, 06108, Germany
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Douglas Godbold
- Department of Forest and Soil Sciences, Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Vienna, 1190, Austria
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, 61300, Czech Republic
| | - Jefferson S Hall
- Agua Salud Project, Smithsonian Tropical Research Institute, Balboa, 401 Ancón, Panamá, Panama
| | - Peter Hajek
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Yuanyuan Huang
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Dirk Hölscher
- Tropical Silviculture and Forest Ecology, University of Goettingen, Göttingen, 37077, Germany
| | - Holger Kreft
- Biodiversity, Macroecology and Biogeography, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, 37077, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, 37077, Germany
| | - Xiaojuan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Christian Messier
- Centre for Forest Research, Université du Québec à Montréal, Montréal, QC, H2X 3Y7, Canada
- Institut des Sciences de la Forêt Tempérée, Université du Québec en Outaouais, Ripon, QC, J0V 1V0, Canada
| | - Charles Nock
- Department of Renewables Resources, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Alain Paquette
- Centre for Forest Research, Université du Québec à Montréal, Montréal, QC, H2X 3Y7, Canada
| | - John D Parker
- Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA
| | - William C Parker
- Ontario Ministry of Natural Resources and Forestry, Sault Ste. Marie, ON, P6A 2E5, Canada
| | - Gustavo B Paterno
- Biodiversity, Macroecology and Biogeography, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, 37077, Germany
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, MN, 55108, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
- Institute for Global Change Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Boris Rewald
- Department of Forest and Soil Sciences, Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Vienna, 1190, Austria
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, 61300, Czech Republic
| | - Hans Sandén
- Department of Forest and Soil Sciences, Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Vienna, 1190, Austria
| | - Katherine Sinacore
- Agua Salud Project, Smithsonian Tropical Research Institute, Balboa, 401 Ancón, Panamá, Panama
| | - Artur Stefanski
- Department of Forest Resources, University of Minnesota, St. Paul, MN, 55108, USA
| | - Laura Williams
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| |
Collapse
|
8
|
Bönisch E, Blagodatskaya E, Dirzo R, Ferlian O, Fichtner A, Huang Y, Leonard SJ, Maestre FT, von Oheimb G, Ray T, Eisenhauer N. Mycorrhizal type and tree diversity affect foliar elemental pools and stoichiometry. THE NEW PHYTOLOGIST 2024; 242:1614-1629. [PMID: 38594212 DOI: 10.1111/nph.19732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
Species-specific differences in nutrient acquisition strategies allow for complementary use of resources among plants in mixtures, which may be further shaped by mycorrhizal associations. However, empirical evidence of this potential role of mycorrhizae is scarce, particularly for tree communities. We investigated the impact of tree species richness and mycorrhizal types, arbuscular mycorrhizal fungi (AM) and ectomycorrhizal fungi (EM), on above- and belowground carbon (C), nitrogen (N), and phosphorus (P) dynamics. Soil and soil microbial biomass elemental dynamics showed weak responses to tree species richness and none to mycorrhizal type. However, foliar elemental concentrations, stoichiometry, and pools were significantly affected by both treatments. Tree species richness increased foliar C and P pools but not N pools. Additive partitioning analyses showed that net biodiversity effects of foliar C, N, P pools in EM tree communities were driven by selection effects, but in mixtures of both mycorrhizal types by complementarity effects. Furthermore, increased tree species richness reduced soil nitrate availability, over 2 yr. Our results indicate that positive effects of tree diversity on aboveground nutrient storage are mediated by complementary mycorrhizal strategies and highlight the importance of using mixtures composed of tree species with different types of mycorrhizae to achieve more multifunctional afforestation.
Collapse
Affiliation(s)
- Elisabeth Bönisch
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, 04103, Leipzig, Germany
| | - Evgenia Blagodatskaya
- Soil Ecology Department, Helmholtz-Centre for Environmental Research (UFZ), Theodor-Lieser-Str. 11, 06120, Halle, Germany
| | - Rodolfo Dirzo
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Earth Systems Science, Stanford University, Stanford, CA, 94305, USA
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, 04103, Leipzig, Germany
| | - Andreas Fichtner
- Institute of Ecology, Leuphana University of Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany
| | - Yuanyuan Huang
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, 04103, Leipzig, Germany
| | - Samuel J Leonard
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Earth Systems Science, Stanford University, Stanford, CA, 94305, USA
| | - Fernando T Maestre
- Environmental Sciences and Engineering, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Goddert von Oheimb
- Institute of General Ecology and Environmental Protection, TU Dresden University of Technology, Pienner Straße 7, 01737, Tharandt, Germany
| | - Tama Ray
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Institute of General Ecology and Environmental Protection, TU Dresden University of Technology, Pienner Straße 7, 01737, Tharandt, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06108, Halle (Saale), Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, 04103, Leipzig, Germany
| |
Collapse
|
9
|
Zheng L, Barry KE, Guerrero-Ramírez NR, Craven D, Reich PB, Verheyen K, Scherer-Lorenzen M, Eisenhauer N, Barsoum N, Bauhus J, Bruelheide H, Cavender-Bares J, Dolezal J, Auge H, Fagundes MV, Ferlian O, Fiedler S, Forrester DI, Ganade G, Gebauer T, Haase J, Hajek P, Hector A, Hérault B, Hölscher D, Hulvey KB, Irawan B, Jactel H, Koricheva J, Kreft H, Lanta V, Leps J, Mereu S, Messier C, Montagnini F, Mörsdorf M, Müller S, Muys B, Nock CA, Paquette A, Parker WC, Parker JD, Parrotta JA, Paterno GB, Perring MP, Piotto D, Wayne Polley H, Ponette Q, Potvin C, Quosh J, Rewald B, Godbold DL, van Ruijven J, Standish RJ, Stefanski A, Sundawati L, Urgoiti J, Williams LJ, Wilsey BJ, Yang B, Zhang L, Zhao Z, Yang Y, Sandén H, Ebeling A, Schmid B, Fischer M, Kotowska MM, Palmborg C, Tilman D, Yan E, Hautier Y. Effects of plant diversity on productivity strengthen over time due to trait-dependent shifts in species overyielding. Nat Commun 2024; 15:2078. [PMID: 38453933 PMCID: PMC10920907 DOI: 10.1038/s41467-024-46355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e., higher species-level productivity in diverse communities compared with monocultures) remains unclear. Here, using data from 65 grassland and forest biodiversity experiments, we show that the temporal strength of diversity effects at the community scale is underpinned by temporal changes in the species that yield. These temporal trends of species-level overyielding are shaped by plant ecological strategies, which can be quantitatively delimited by functional traits. In grasslands, the temporal strengthening of biodiversity effects on community productivity was associated with increasing biomass overyielding of resource-conservative species increasing over time, and with overyielding of species characterized by fast resource acquisition either decreasing or increasing. In forests, temporal trends in species overyielding differ when considering above- versus belowground resource acquisition strategies. Overyielding in stem growth decreased for species with high light capture capacity but increased for those with high soil resource acquisition capacity. Our results imply that a diversity of species with different, and potentially complementary, ecological strategies is beneficial for maintaining community productivity over time in both grassland and forest ecosystems.
Collapse
Affiliation(s)
- Liting Zheng
- Zhejiang Zhoushan Island Observation and Research Station, Zhejiang Tiantong National Forest Ecosystem Observation and Research Station, Shanghai Key Lab for Urban and Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.
- Institute for Global Change Biology and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA.
| | - Kathryn E Barry
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Nathaly R Guerrero-Ramírez
- Biodiversity, Macroecology and Biogeography, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany
- Silviculture and Forest Ecology of Temperate Zones, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
| | - Dylan Craven
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Huechuraba, Santiago, Chile
- Data Observatory Foundation, ANID Technology Center No. DO210001, Providencia, Santiago, Chile
| | - Peter B Reich
- Institute for Global Change Biology and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
- Department of Forest Resources, University of Minnesota, Saint Paul, MN, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Kris Verheyen
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | | | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Nadia Barsoum
- Centre for Ecosystems, Society and Biosecurity, Forest Research, Alice Holt Lodge, Farnham, UK
| | - Jürgen Bauhus
- Chair of Silviculture, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle Wittenberg, Halle, Germany
| | | | - Jiri Dolezal
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Department of Functional Ecology, Institute of Botany CAS, Třeboň, Czech Republic
| | - Harald Auge
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Community Ecology, Helmholtz-Centre for Environmental Research-UFZ, Halle (Saale), Germany
| | - Marina V Fagundes
- Departamento de Ecología, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Sebastian Fiedler
- Department of Ecosystem Modelling, Büsgen-Institute, University of Göttingen, Göttingen, Germany
| | | | - Gislene Ganade
- Departamento de Ecología, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Tobias Gebauer
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Bioenergy Systems Department, Resource Mobilisation, German Biomass Research Center-DBFZ gGmbH, Leipzig, Germany
| | - Josephine Haase
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Aquatic Ecology, Eawag-Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Peter Hajek
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Andy Hector
- Department of Biology, University of Oxford, Oxford, UK
| | - Bruno Hérault
- CIRAD, Forêts et Sociétés, Montpellier, France
- Forêts et Sociétés, Univ Montpellier, CIRAD, Montpellier, France
| | - Dirk Hölscher
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
- Tropical Silviculture and Forest Ecology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany
| | | | - Bambang Irawan
- Forestry Department, Faculty of Agriculture, University of Jambi, Jambi, Indonesia
- Land Use Transformation Systems Center of Excellence, University of Jambi, Jambi, Indonesia
| | - Hervé Jactel
- INRAE, University of Bordeaux, BIOGECO, Cestas, France
| | - Julia Koricheva
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Holger Kreft
- Biodiversity, Macroecology and Biogeography, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
| | - Vojtech Lanta
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Department of Functional Ecology, Institute of Botany CAS, Třeboň, Czech Republic
| | - Jan Leps
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Biological Research Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Simone Mereu
- Consiglio Nazionale delle Ricerche, Istituto per la Bioeconomia, CNR-IBE, Sassari, Italy
- CMCC-Centro Euro-Mediterraneo sui Cambiamenti Climatici, IAFES Division, Sassari, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy
| | - Christian Messier
- Département des sciences biologiques, Centre for Forest Research, Université du Québec à Montréal, Montreal, QC, Canada
- Département des sciences naturelles, ISFORT, Université du Québec en Outaouais, Ripon, QC, Canada
| | - Florencia Montagnini
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| | - Martin Mörsdorf
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department for Research, Biotope-, and Wildlife Management; National Park Administration Hunsrück-Hochwald, Birkenfeld, Germany
| | - Sandra Müller
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Bart Muys
- Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | - Charles A Nock
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Renewable Resources, Faculty of Agriculture, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Alain Paquette
- Département des sciences biologiques, Centre for Forest Research, Université du Québec à Montréal, Montreal, QC, Canada
| | - William C Parker
- Ontario Ministry of Natural Resources and Forestry, Sault Ste. Marie, ON, Canada
| | - John D Parker
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - John A Parrotta
- USDA Forest Service, Research & Development, Washington, DC, USA
| | - Gustavo B Paterno
- Biodiversity, Macroecology and Biogeography, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany
| | - Michael P Perring
- UKCEH (UK Centre for Ecology & Hydrology), Environment Centre Wales, Bangor, UK
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Daniel Piotto
- Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil
| | | | - Quentin Ponette
- Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Julius Quosh
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Boris Rewald
- Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
- Forest Ecosystem Research, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Douglas L Godbold
- Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
- Forest Ecosystem Research, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Jasper van Ruijven
- Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, The Netherlands
- Forest Ecology and Management group, Wageningen University, Wageningen, The Netherlands
| | - Rachel J Standish
- School of Environmental and Conservation Sciences, Murdoch University, Murdoch, WA, Australia
| | - Artur Stefanski
- Department of Forest Resources, University of Minnesota, Saint Paul, MN, USA
| | - Leti Sundawati
- Department of Forest Management, Faculty of Forestry and Environment, Institut Pertanian Bogor University, Bogor, Indonesia
| | - Jon Urgoiti
- Département des sciences biologiques, Centre for Forest Research, Université du Québec à Montréal, Montreal, QC, Canada
| | - Laura J Williams
- Department of Forest Resources, University of Minnesota, Saint Paul, MN, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Brian J Wilsey
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Baiyu Yang
- Zhejiang Zhoushan Island Observation and Research Station, Zhejiang Tiantong National Forest Ecosystem Observation and Research Station, Shanghai Key Lab for Urban and Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Li Zhang
- Zhejiang Zhoushan Island Observation and Research Station, Zhejiang Tiantong National Forest Ecosystem Observation and Research Station, Shanghai Key Lab for Urban and Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Zhao Zhao
- Zhejiang Zhoushan Island Observation and Research Station, Zhejiang Tiantong National Forest Ecosystem Observation and Research Station, Shanghai Key Lab for Urban and Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yongchuan Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, China
| | - Hans Sandén
- Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Anne Ebeling
- Institute of Ecology and Evolution, University Jena, Jena, Germany
| | - Bernhard Schmid
- Department of Geography, University of Zurich, Zurich, Switzerland
| | - Markus Fischer
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Martyna M Kotowska
- Department of Plant Ecology and Ecosystems Research, University of Göttingen, Göttingen, Germany
| | - Cecilia Palmborg
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - David Tilman
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, USA
| | - Enrong Yan
- Zhejiang Zhoushan Island Observation and Research Station, Zhejiang Tiantong National Forest Ecosystem Observation and Research Station, Shanghai Key Lab for Urban and Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.
- Institute of Eco-Chongming (IEC), Shanghai, China.
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
10
|
Zhou Y, Chang S, Huang X, Wang W, Hou F, Wang Y, Nan Z. Assembly of typical steppe community and functional groups along the precipitation gradient from 1985 to 2022. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167545. [PMID: 37793455 DOI: 10.1016/j.scitotenv.2023.167545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
Long-term observations have shown that structure and function of grasslands have changed due to climate change over the past decades. However, little is known about how grasslands respond to climate change along the precipitation gradient, and potential mechanisms remain elusive. Here, we utilize a long-term experiment in typical steppe to explore universal and differential mechanisms of community and functional groups assembly along the precipitation gradient. Our results indicated that the sensitivity of community and functional groups assembly to climate change was related to local precipitation. The strength of the positive effects of climate change on aboveground biomass, species richness, and their relationship of community decreased modestly with local precipitation. The mechanism behind this was the change in plant community composition of the precipitation-induced, annuals that was more responsive to climate change decreased as increased local precipitation. Furthermore, current and past climate both drove community and functional group assembly, and the role of past climate diminished with increasing local precipitation. Among them, climate fluctuation, average climate and current climate were the most critical climate indicators affecting community and functional groups assembly in low, medium and high precipitation sites, respectively. In conclusion, climatic change do not always exert identical effects on grasslands along the precipitation gradient. This could be critical importance for improving our ability to predict future changes in grassland ecosystems.
Collapse
Affiliation(s)
- Yi Zhou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China
| | - Shenghua Chang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China
| | - Xiaojuan Huang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China
| | - Wenjun Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China
| | - Fujiang Hou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China.
| | - Yanrong Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
11
|
Eisenhauer N, Ochoa-Hueso R, Huang Y, Barry KE, Gebler A, Guerra CA, Hines J, Jochum M, Andraczek K, Bucher SF, Buscot F, Ciobanu M, Chen H, Junker R, Lange M, Lehmann A, Rillig M, Römermann C, Ulrich J, Weigelt A, Schmidt A, Türke M. Ecosystem consequences of invertebrate decline. Curr Biol 2023; 33:4538-4547.e5. [PMID: 37757832 DOI: 10.1016/j.cub.2023.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/21/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Human activities cause substantial changes in biodiversity.1,2 Despite ongoing concern about the implications of invertebrate decline,3,4,5,6,7 few empirical studies have examined the ecosystem consequences of invertebrate biomass loss. Here, we test the responses of six ecosystem services informed by 30 above- and belowground ecosystem variables to three levels of aboveground (i.e., vegetation associated) invertebrate community biomass (100%, 36%, and 0% of ambient biomass) in experimental grassland mesocosms in a controlled Ecotron facility. In line with recent reports on invertebrate biomass loss over the last decade, our 36% biomass treatment also represented a decrease in invertebrate abundance (-70%) and richness (-44%). Moreover, we simulated the pronounced change in invertebrate biomass and turnover in community composition across the season. We found that the loss of invertebrate biomass decreases ecosystem multifunctionality, including two critical ecosystem services, aboveground pest control and belowground decomposition, while harvested plant biomass increases, likely because less energy was channeled up the food chain. Moreover, communities and ecosystem functions become decoupled with a lower biomass of invertebrates. Our study shows that invertebrate loss threatens the integrity of grasslands by decoupling ecosystem processes and decreasing ecosystem-service supply.
Collapse
Affiliation(s)
- Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; Institute of Biology, Leipzig University, Puschstrasse 4, 04103 Leipzig, Germany.
| | - Raúl Ochoa-Hueso
- Department of Biology, IVAGRO, University of Cádiz, Campus de Excelencia Internacional Agroalimentario (CeiA3), Campus Del Rio San Pedro, 11510 Puerto Real, Cádiz, Spain; Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, the Netherlands
| | - Yuanyuan Huang
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; Institute of Biology, Leipzig University, Puschstrasse 4, 04103 Leipzig, Germany
| | - Kathryn E Barry
- Ecology and Biodiversity; Department of Environmental Biology, Faculty of Science, Utrecht University Padualaan, 8 3584 CH Utrecht, the Netherlands
| | - Alban Gebler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; Institute of Biology, Leipzig University, Puschstrasse 4, 04103 Leipzig, Germany
| | - Carlos A Guerra
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; Institute of Biology, Leipzig University, Puschstrasse 4, 04103 Leipzig, Germany
| | - Jes Hines
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; Institute of Biology, Leipzig University, Puschstrasse 4, 04103 Leipzig, Germany
| | - Malte Jochum
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; Institute of Biology, Leipzig University, Puschstrasse 4, 04103 Leipzig, Germany
| | - Karl Andraczek
- Systematic Botany and Functional Biodiversity, Leipzig University, Johannisallee 21, 04103 Leipzig, Germany
| | - Solveig Franziska Bucher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; Institute of Ecology and Evolution, Plant Biodiversity Group, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
| | - Marcel Ciobanu
- Institute of Biological Research, Branch of the National Institute of Research and Development for Biological Sciences, 48 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Hongmei Chen
- Systematic Botany and Functional Biodiversity, Leipzig University, Johannisallee 21, 04103 Leipzig, Germany; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Robert Junker
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Markus Lange
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena, Germany
| | - Anika Lehmann
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research, Altensteinstr. 6, 14195 Berlin, Germany
| | - Matthias Rillig
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research, Altensteinstr. 6, 14195 Berlin, Germany
| | - Christine Römermann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; Institute of Ecology and Evolution, Plant Biodiversity Group, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Josephine Ulrich
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; Institute of Ecology and Evolution, Plant Biodiversity Group, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Alexandra Weigelt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; Systematic Botany and Functional Biodiversity, Leipzig University, Johannisallee 21, 04103 Leipzig, Germany
| | - Anja Schmidt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; Institute of Biology, Leipzig University, Puschstrasse 4, 04103 Leipzig, Germany; Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
| | - Manfred Türke
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; Institute of Biology, Leipzig University, Puschstrasse 4, 04103 Leipzig, Germany; Institute of Biological and Medical Imaging, Helmholtz Munich, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
12
|
Eisenhauer N, Hines J, Maestre FT, Rillig MC. Reconsidering functional redundancy in biodiversity research. NPJ BIODIVERSITY 2023; 2:9. [PMID: 39242717 PMCID: PMC11332098 DOI: 10.1038/s44185-023-00015-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/04/2023] [Indexed: 09/09/2024]
Affiliation(s)
- Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Institute of Biology, Leipzig University, Leipzig, Germany.
| | - Jes Hines
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Fernando T Maestre
- Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Universidad de Alicante, Alicante, Spain
- Departamento de Ecología, Universidad de Alicante, Alicante, Spain
| | - Matthias C Rillig
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
13
|
Restoration of insect communities after land use change is shaped by plant diversity: a case study on carabid beetles (Carabidae). Sci Rep 2023; 13:2140. [PMID: 36750583 PMCID: PMC9905558 DOI: 10.1038/s41598-023-28628-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
There is no doubt about the insect decline currently taking place in ecosystems with large anthropogenic impacts. Thus, there is a need for practices that avoid insect decline and or help to recover insect communities that have already suffered. Plant diversity has been shown to be positively related to insect abundance and diversity and to ecosystem functions provided by insects. However, it remains open if increased plant diversity can help to recover decreased populations. Here, we tested over one decade the effects of plant diversity on the carabid community in a large grassland biodiversity experiment and how plant diversity fostered the establishment of a natural grassland community after conversion of an arable field. There was a dramatic decline in carabid abundance from 2003, the first year after establishing the diversity experiment, to 2005. However, subsequently, the abundance increased constantly. One year after the land use change most individuals and species were those commonly found in agricultural fields. In subsequent years the community was dominated by grassland species. While plant diversity did not affect the abundance and richness of the carabid community, the turnover to a more native grassland community was accelerated by plant diversity in the first years after the land use change. In contrast, in later years plant diversity stabilized the community assemblage. Our study shows that high plant diversity can contribute to a faster transition of insect populations towards naturally occurring community assemblages and at later stages to more stabilized assemblages.
Collapse
|
14
|
Dietrich P, Ferlian O, Huang Y, Luo S, Quosh J, Eisenhauer N. Tree diversity effects on productivity depend on mycorrhizae and life strategies in a temperate forest experiment. Ecology 2023; 104:e3896. [PMID: 36215064 DOI: 10.1002/ecy.3896] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 02/03/2023]
Abstract
Tree species are known to predominantly interact either with arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi. However, there is a knowledge gap regarding whether these mycorrhizae differently influence biodiversity-ecosystem functioning (BEF) relationships and whether a combination of both can increase community productivity. In 2015, we established a tree-diversity experiment by growing tree communities with varying species richness levels (one, two, or four species) and either with AM or EM tree species or a combination of both. We investigated basal area and annual basal area increment from 2015 to 2020 as proxies for community productivity. We found significant positive relationships between tree species richness and community productivity, which strengthened over time. Further, AM and EM tree species differently influenced productivity; however, there was no overyielding when AM and EM trees grew together. EM tree communities were characterized by low productivity in the beginning but an increase of increment over time and showed overall strong biodiversity effects. For AM tree communities the opposite was true. Although young trees did not benefit from the presence of the other mycorrhizal type, dissimilar mechanisms underlying BEF relationships in AM and EM trees indicate that maximizing tree and mycorrhizal diversity may increase ecosystem functioning in the long run.
Collapse
Affiliation(s)
- Peter Dietrich
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Experimental Interaction Ecology, Leipzig University, Leipzig, Germany
| | - Olga Ferlian
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Experimental Interaction Ecology, Leipzig University, Leipzig, Germany
| | - Yuanyuan Huang
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Experimental Interaction Ecology, Leipzig University, Leipzig, Germany
| | - Shan Luo
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Experimental Interaction Ecology, Leipzig University, Leipzig, Germany
| | - Julius Quosh
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Experimental Interaction Ecology, Leipzig University, Leipzig, Germany
| | - Nico Eisenhauer
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Experimental Interaction Ecology, Leipzig University, Leipzig, Germany
| |
Collapse
|
15
|
Wu D, Xu C, Wang S, Zhang L, Kortsch S. Why are biodiversity-ecosystem functioning relationships so elusive? Trophic interactions may amplify ecosystem function variability. J Anim Ecol 2023; 92:367-376. [PMID: 36062409 DOI: 10.1111/1365-2656.13808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/24/2022] [Indexed: 11/27/2022]
Abstract
The relationship between biodiversity and ecosystem functions (BEFs) has attracted great interest. Studies on BEF have so far focused on the average trend of ecosystem function as species diversity increases. A tantalizing but rarely addressed question is why large variations in ecosystem functions are often observed across systems with similar species diversity, likely obscuring observed BEFs. Here we use a multi-trophic food web model in combination with empirical data to examine the relationships between species richness and the variation in ecosystem functions (VEFs) including biomass, metabolism, decomposition, and primary and secondary production. We then probe the mechanisms underlying these relationships, focusing on the role of trophic interactions. While our results reinforce the previously documented positive BEF relationships, we found that ecosystem functions exhibit significant variation within each level of species richness and the magnitude of this variation displays a hump-shaped relationship with species richness. Our analyses demonstrate that VEFs is reduced when consumer diversity increases through elevated nonlinearity in trophic interactions, and/or when the diversity of basal species such as producers and decomposers decreases. This explanation is supported by a 34-year empirical food web time series from the Gulf of Riga ecosystem. Our work suggests that biodiversity loss may not only result in ecosystem function decline, but also reduce the predictability of functions by generating greater function variability among ecosystems. It thus helps to reconcile the debate on the generality of positive BEF relationships and to disentangle the drivers of ecosystem stability. The role of trophic interactions and the variation in their strengths mediated by functional responses in shaping ecosystem function variation warrants further investigations and better incorporation into biodiversity-ecosystem functioning research.
Collapse
Affiliation(s)
- Dan Wu
- School of Mathematical Science, Yangzhou University, Yangzhou, China.,Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Chi Xu
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Shaopeng Wang
- Department of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Lai Zhang
- School of Mathematical Science, Yangzhou University, Yangzhou, China
| | - Susanne Kortsch
- Department of Agricultural Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Plant litter strengthens positive biodiversity-ecosystem functioning relationships over time. Trends Ecol Evol 2023; 38:473-484. [PMID: 36599737 DOI: 10.1016/j.tree.2022.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023]
Abstract
Plant biodiversity-productivity relationships become stronger over time in grasslands, forests, and agroecosystems. Plant shoot and root litter is important in mediating these positive relationships, yet the functional role of plant litter remains overlooked in long-term experiments. We propose that plant litter strengthens biodiversity-ecosystem functioning relationships over time in four ways by providing decomposing detritus that releases nitrogen (N) over time for uptake by existing and succeeding plants, enhancing overall soil fertility, changing soil community composition, and reducing the impact of residue-borne pathogens and pests. We bring new insights into how diversity-productivity relationships may change over time and suggest that the diversification of crop residue retention through increased residue diversity from plant mixtures will improve the sustainability of food production systems.
Collapse
|
17
|
Wagg C, Roscher C, Weigelt A, Vogel A, Ebeling A, de Luca E, Roeder A, Kleinspehn C, Temperton VM, Meyer ST, Scherer-Lorenzen M, Buchmann N, Fischer M, Weisser WW, Eisenhauer N, Schmid B. Biodiversity-stability relationships strengthen over time in a long-term grassland experiment. Nat Commun 2022; 13:7752. [PMID: 36517483 PMCID: PMC9751076 DOI: 10.1038/s41467-022-35189-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Numerous studies have demonstrated that biodiversity drives ecosystem functioning, yet how biodiversity loss alters ecosystems functioning and stability in the long-term lacks experimental evidence. We report temporal effects of species richness on community productivity, stability, species asynchrony, and complementarity, and how the relationships among them change over 17 years in a grassland biodiversity experiment. Productivity declined more rapidly in less diverse communities resulting in temporally strengthening positive effects of richness on productivity, complementarity, and stability. In later years asynchrony played a more important role in increasing community stability as the negative effect of richness on population stability diminished. Only during later years did species complementarity relate to species asynchrony. These results show that species complementarity and asynchrony can take more than a decade to develop strong stabilizing effects on ecosystem functioning in diverse plant communities. Thus, the mechanisms stabilizing ecosystem functioning change with community age.
Collapse
Affiliation(s)
- Cameron Wagg
- Department of Geography, Remote Sensing Laboratories, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 95 Innovation Road, Post Office Box 20280, Fredericton, E3B 4Z7, NB, Canada.
| | - Christiane Roscher
- UFZ, Helmholtz Centre for Environmental Research, Department of Physiological Diversity, Permoserstrasse 15, D-04318, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
| | - Alexandra Weigelt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Johannisallee 21, 04103, Leipzig, Germany
- Institute of Ecology and Evolution, University of Jena, Dornburger Straße 159, D-07743, Jena, Germany
| | - Anja Vogel
- Department of Geography, Remote Sensing Laboratories, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Johannisallee 21, 04103, Leipzig, Germany
- Institute of Ecology and Evolution, University of Jena, Dornburger Straße 159, D-07743, Jena, Germany
| | - Anne Ebeling
- Institute of Ecology and Evolution, University of Jena, Dornburger Straße 159, D-07743, Jena, Germany
| | - Enrica de Luca
- Department of Geography, Remote Sensing Laboratories, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Anna Roeder
- UFZ, Helmholtz Centre for Environmental Research, Department of Physiological Diversity, Permoserstrasse 15, D-04318, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
| | - Clemens Kleinspehn
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | | | - Sebastian T Meyer
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, Center for Food and Life Sciences Weihenstephan, Technische Universitat Munchen, Hans-Carl-von-Carlowitz-Platz 2, D-85350, Freising-Weihenstephan, Germany
| | | | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zurich, Universitatstrasse 2, 8092, Zurich, Switzerland
| | - Markus Fischer
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | - Wolfgang W Weisser
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, Center for Food and Life Sciences Weihenstephan, Technische Universitat Munchen, Hans-Carl-von-Carlowitz-Platz 2, D-85350, Freising-Weihenstephan, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstraße 4, 04103, Leipzig, Germany
| | - Bernhard Schmid
- Department of Geography, Remote Sensing Laboratories, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| |
Collapse
|
18
|
Eisenhauer N, Bonfante P, Buscot F, Cesarz S, Guerra C, Heintz-Buschart A, Hines J, Patoine G, Rillig M, Schmid B, Verheyen K, Wirth C, Ferlian O. Biotic Interactions as Mediators of Context-Dependent Biodiversity-Ecosystem Functioning Relationships. RESEARCH IDEAS AND OUTCOMES 2022. [DOI: 10.3897/rio.8.e85873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biodiversity drives the maintenance and stability of ecosystem functioning as well as many of nature’s benefits to people, yet people cause substantial biodiversity change. Despite broad consensus about a positive relationship between biodiversity and ecosystem functioning (BEF), the underlying mechanisms and their context-dependencies are not well understood. This proposal, submitted to the European Research Council (ERC), aims at filling this knowledge gap by providing a novel conceptual framework for integrating biotic interactions across guilds of organisms, i.e. plants and mycorrhizal fungi, to explain the ecosystem consequences of biodiversity change. The overarching hypothesis is that EF increases when more tree species associate with functionally dissimilar mycorrhizal fungi. Taking a whole-ecosystem perspective, we propose to explore the role of tree-mycorrhiza interactions in driving BEF across environmental contexts and how this relates to nutrient dynamics. Given the significant role that mycorrhizae play in soil nutrient and water uptake, BEF relationships will be investigated under normal and drought conditions. Resulting ecosystem consequences will be explored by studying main energy channels and ecosystem multifunctionality using food web energy fluxes and by assessing carbon storage. Synthesising drivers of biotic interactions will allow us to understand context-dependent BEF relationships. This interdisciplinary and integrative project spans the whole gradient from local-scale process assessments to global relationships by building on unique experimental infrastructures like the MyDiv Experiment, iDiv Ecotron and the global network TreeDivNet, to link ecological mechanisms to reforestation initiatives. This innovative combination of basic scientific research with real-world interventions links trait-based community ecology, global change research and ecosystem ecology, pioneering a new generation of BEF research and represents a significant step towards implementing BEF theory for human needs.
Collapse
|
19
|
Wang X, Wang J, Hu B, Zheng W, Li M, Shen Z, Yu F, Schmid B, Li M. Richness, not evenness, of invasive plant species promotes invasion success into native plant communities via selection effects. OIKOS 2022. [DOI: 10.1111/oik.08966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Xue Wang
- Inst. of Wetland Ecology&Clone Ecology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Univ. Taizhou China
| | - Jiang Wang
- Inst. of Wetland Ecology&Clone Ecology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Univ. Taizhou China
| | - Bing Hu
- Inst. of Wetland Ecology&Clone Ecology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Univ. Taizhou China
| | - Wei‐Long Zheng
- Inst. of Wetland Ecology&Clone Ecology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Univ. Taizhou China
| | - Meng Li
- Inst. of Wetland Ecology&Clone Ecology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Univ. Taizhou China
| | - Zhi‐Xiang Shen
- Inst. of Wetland Ecology&Clone Ecology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Univ. Taizhou China
| | - Fei‐Hai Yu
- Inst. of Wetland Ecology&Clone Ecology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Univ. Taizhou China
| | - Bernhard Schmid
- Dept of Geography, Remote Sensing Laboratories, Univ. of Zürich Zürich Switzerland
| | - Mai‐He Li
- Forest Dynamics, Swiss Federal Research Inst. WSL Birmensdorf Switzerland
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal Univ. Changchun China
| |
Collapse
|
20
|
Eisenhauer N. The shape that matters: how important is biodiversity for ecosystem functioning? SCIENCE CHINA. LIFE SCIENCES 2022; 65:651-653. [PMID: 34985644 DOI: 10.1007/s11427-021-2052-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany.
- Institute of Biology, Leipzig University, Puschstr. 4, 04103, Leipzig, Germany.
| |
Collapse
|
21
|
Urgoiti J, Messier C, Keeton WS, Reich PB, Gravel D, Paquette A. No complementarity no gain-Net diversity effects on tree productivity occur once complementarity emerges during early stand development. Ecol Lett 2022; 25:851-862. [PMID: 35106898 DOI: 10.1111/ele.13959] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 12/21/2022]
Abstract
Although there is compelling evidence that tree diversity has an overall positive effect on forest productivity, there are important divergences among studies on the nature and strength of these diversity effects and their timing during forest stand development. To clarify conflicting results related to stand developmental stage, we explored how diversity effects on productivity change through time in a diversity experiment spanning 11 years. We show that the strength of diversity effects on productivity progressively increases through time, becoming significantly positive after 9 years. Moreover, we demonstrate that the strengthening of diversity effects is driven primarily by gradual increases in complementarity. We also show that mixing species with contrasting resource-acquisition strategies, and the dominance of deciduous, fast-developing species, promote positive diversity effects on productivity. Our results suggest that the canopy closure and subsequent stem exclusion phase are key for promoting niche complementarity in diverse tree communities.
Collapse
Affiliation(s)
- Jon Urgoiti
- Centre for Forest Research, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Christian Messier
- Centre for Forest Research, Université du Québec à Montréal, Montréal, Québec, Canada.,Institut des sciences de la forêt tempérée (ISFORT), Université du Québec en Outaouais (UQO), Ripon, Québec, Canada
| | - William S Keeton
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, USA
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, Minnesota, USA.,Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia.,Institute for Global Change Biology, and School for the Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Dominique Gravel
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alain Paquette
- Centre for Forest Research, Université du Québec à Montréal, Montréal, Québec, Canada
| |
Collapse
|
22
|
Nölke I, Tonn B, Komainda M, Heshmati S, Isselstein J. The choice of the white clover population alters overyielding of mixtures with perennial ryegrass and chicory and underlying processes. Sci Rep 2022; 12:1155. [PMID: 35064196 PMCID: PMC8782889 DOI: 10.1038/s41598-022-05100-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Legume-based forage plant mixtures are known to increase biomass production over the mixture species grown as pure stands (overyielding), which has partly been attributed to enhanced nitrogen availability by legumes. However, the relative importance of underlying processes of these positive diversity effects and their drivers are not fully understood. Here we assessed if outcome and causes of diversity effects depend on the legume-species genetic identity. Over five years, we cultivated different white clover (Trifolium repens) populations, a grass and forb species in pure stands and clover-based mixtures and recorded biomass yield. Complementarity and selection effects of mixtures and relative yields of mixture species were calculated based on both unfertilized and nitrogen-fertilized non-leguminous pure stands. Results showed that the clover population altered the overall strength of diversity effects as well as the direction and magnitude of their temporal trends, at least for the grass component of mixtures. Differences in diversity effects between clover populations diminished when fertilized instead of unfertilized non-leguminous pure stands were considered. Hence, a part of these differences likely results from dissimilar effects of clover populations on nitrogen availability. The findings reveal the possibility to improve overyielding of legume-based forage plant mixtures by decisions on legume-species genetic identity.
Collapse
Affiliation(s)
- Isabelle Nölke
- Division of Grassland Science, Department of Crop Sciences, University of Göttingen, Von-Siebold-Str. 8, 37075, Göttingen, Germany. .,Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany.
| | - Bettina Tonn
- Division of Grassland Science, Department of Crop Sciences, University of Göttingen, Von-Siebold-Str. 8, 37075, Göttingen, Germany.,Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany.,Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070, Frick, Switzerland
| | - Martin Komainda
- Division of Grassland Science, Department of Crop Sciences, University of Göttingen, Von-Siebold-Str. 8, 37075, Göttingen, Germany
| | - Sara Heshmati
- Division of Grassland Science, Department of Crop Sciences, University of Göttingen, Von-Siebold-Str. 8, 37075, Göttingen, Germany.,Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany.,Plant Ecology Group, Institute of Ecology and Evolution, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Johannes Isselstein
- Division of Grassland Science, Department of Crop Sciences, University of Göttingen, Von-Siebold-Str. 8, 37075, Göttingen, Germany.,Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| |
Collapse
|
23
|
Liu X, Wang X, Bai M, Shaw JJ. Decrease in Carabid Beetles in Grasslands of Northwestern China: Further Evidence of Insect Biodiversity Loss. INSECTS 2021; 13:35. [PMID: 35055878 PMCID: PMC8777739 DOI: 10.3390/insects13010035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 12/27/2022]
Abstract
Ground-dwelling beetles are important functional components in nutrient-poor grasslands of middle temperate steppe ecosystems in China. Here, we assessed the changes in ground beetle (Coleoptera: Carabidae) communities in the grasslands of northwestern China over 12 years to improve the management and conservation of beetles all over the world. The Generalized Additive Model (GAM) was applied to estimate the changes in carabid beetle communities in two regions: a desert steppe (Yanchi region), and a typical steppe and meadow steppe (Guyuan region). During the 12-year investigation, a total of 34 species were captured. We found that species abundance and richness per survey declined by 0.2 and 11.2%, respectively. Precipitation was the main factor affecting the distribution of carabid beetles. A distinct decline in carabid beetle species in the Yanchi region indicated that they may be threatened by less precipitation and loss of habitat, which could be due to climate change. Overall, species richness was stable in the Guyuan region. It is necessary to estimate and monitor the changes in carabid beetle communities in a temperate steppe of northern China and to protect them. Extensive desertification seriously threatens the distribution of carabid beetles. Future research should develop methods to protect carabid beetle communities in temperate steppes in China.
Collapse
Affiliation(s)
- Xueqin Liu
- School of Agriculture, Ningxia University, Yinchuan 750021, China;
| | - Xinpu Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China;
| | - Ming Bai
- School of Agriculture, Ningxia University, Yinchuan 750021, China;
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Josh Jenkins Shaw
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|
24
|
Furey GN, Tilman D. Plant biodiversity and the regeneration of soil fertility. Proc Natl Acad Sci U S A 2021; 118:e2111321118. [PMID: 34845020 PMCID: PMC8670497 DOI: 10.1073/pnas.2111321118] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 11/18/2022] Open
Abstract
Fertile soils have been an essential resource for humanity for 10,000 y, but the ecological mechanisms involved in the creation and restoration of fertile soils, and especially the role of plant diversity, are poorly understood. Here we use results of a long-term, unfertilized plant biodiversity experiment to determine whether biodiversity, especially plant functional biodiversity, impacted the regeneration of fertility on a degraded sandy soil. After 23 y, plots containing 16 perennial grassland plant species had, relative to monocultures of these same species, ∼30 to 90% greater increases in soil nitrogen, potassium, calcium, magnesium, cation exchange capacity, and carbon and had ∼150 to 370% greater amounts of N, K, Ca, and Mg in plant biomass. Our results suggest that biodiversity, likely in combination with the increased plant productivity caused by higher biodiversity, led to greater soil fertility. Moreover, plots with high plant functional diversity, those containing grasses, legumes, and forbs, accumulated significantly greater N, K, Ca, and Mg in the total nutrient pool (plant biomass and soil) than did plots containing just one of these three functional groups. Plant species in these functional groups had trade-offs between their tissue N content, tissue K content, and root mass, suggesting why species from all three functional groups were essential for regenerating soil fertility. Our findings suggest that efforts to regenerate soil C stores and soil fertility may be aided by creative uses of plant diversity.
Collapse
Affiliation(s)
- George N Furey
- Ecology Evolution and Behavior, College of Biological Science, University of Minnesota, St. Paul, MN 55108;
| | - David Tilman
- Ecology Evolution and Behavior, College of Biological Science, University of Minnesota, St. Paul, MN 55108;
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93117
| |
Collapse
|
25
|
Hong P, Schmid B, De Laender F, Eisenhauer N, Zhang X, Chen H, Craven D, De Boeck HJ, Hautier Y, Petchey OL, Reich PB, Steudel B, Striebel M, Thakur MP, Wang S. Biodiversity promotes ecosystem functioning despite environmental change. Ecol Lett 2021; 25:555-569. [PMID: 34854529 PMCID: PMC9300022 DOI: 10.1111/ele.13936] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 12/27/2022]
Abstract
Three decades of research have demonstrated that biodiversity can promote the functioning of ecosystems. Yet, it is unclear whether the positive effects of biodiversity on ecosystem functioning will persist under various types of global environmental change drivers. We conducted a meta‐analysis of 46 factorial experiments manipulating both species richness and the environment to test how global change drivers (i.e. warming, drought, nutrient addition or CO2 enrichment) modulated the effect of biodiversity on multiple ecosystem functions across three taxonomic groups (microbes, phytoplankton and plants). We found that biodiversity increased ecosystem functioning in both ambient and manipulated environments, but often not to the same degree. In particular, biodiversity effects on ecosystem functioning were larger in stressful environments induced by global change drivers, indicating that high‐diversity communities were more resistant to environmental change. Using a subset of studies, we also found that the positive effects of biodiversity were mainly driven by interspecific complementarity and that these effects increased over time in both ambient and manipulated environments. Our findings support biodiversity conservation as a key strategy for sustainable ecosystem management in the face of global environmental change.
Collapse
Affiliation(s)
- Pubin Hong
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Bernhard Schmid
- Remote Sensing Laboratories, Department of Geography, University of Zurich, Zurich, Switzerland
| | - Frederik De Laender
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Namur, Belgium
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Xingwen Zhang
- School of Mathematics and Statistics, Yunnan University, China
| | - Haozhen Chen
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Dylan Craven
- Centro de Modelación y Monitoreo de Ecosistemas, Universidad Mayor, Santiago de Chile, Chile
| | - Hans J De Boeck
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, CH, The Netherlands
| | - Owen L Petchey
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St Paul, Minnesota, USA.,Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia.,Institute for Global Change Biology, and School for the Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Bastian Steudel
- Department of Health and Environmental Sciences, Xi'an Jiaotong- Liverpool University, Suzhou, Jiangsu Province, China
| | - Maren Striebel
- Institute for Chemistry and Biology of the Marine Environment, Carl Von Ossietzky Universität Oldenburg, Wilhelmshaven, Germany
| | - Madhav P Thakur
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
26
|
Gottschall F, Cesarz S, Auge H, Kovach KR, Mori AS, Nock CA, Eisenhauer N. Spatiotemporal dynamics of abiotic and biotic properties explain biodiversity–ecosystem‐functioning relationships. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Felix Gottschall
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig 04103 Germany
- Institute of Biology Leipzig University Leipzig 04103 Germany
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig 04103 Germany
- Institute of Biology Leipzig University Leipzig 04103 Germany
| | - Harald Auge
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig 04103 Germany
- Department of Community Ecology Helmholtz‐Centre for Environmental Research – UFZ Halle 06120 Germany
| | - Kyle R. Kovach
- Chair of Geobotany Faculty of Biology University of Freiburg Freiburg 79104 Germany
- Department of Forest and Wildlife Ecology University of Wisconsin Madison Wisconsin 53706 USA
| | - Akira S. Mori
- Graduate School of Environment and Information Sciences Yokohama National University Yokohama 240‐8501 Japan
| | - Charles A. Nock
- Chair of Geobotany Faculty of Biology University of Freiburg Freiburg 79104 Germany
- Department of Renewable Resources University of Alberta Edmonton Alberta T6G 2R3 Canada
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig 04103 Germany
- Institute of Biology Leipzig University Leipzig 04103 Germany
| |
Collapse
|
27
|
Bongers FJ, Schmid B, Bruelheide H, Bongers F, Li S, von Oheimb G, Li Y, Cheng A, Ma K, Liu X. Functional diversity effects on productivity increase with age in a forest biodiversity experiment. Nat Ecol Evol 2021; 5:1594-1603. [PMID: 34737435 DOI: 10.1038/s41559-021-01564-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/06/2021] [Indexed: 11/09/2022]
Abstract
Forest restoration increases global forest area and ecosystem services such as primary productivity and carbon storage. How tree species functional composition impacts the provisioning of these services as forests develop is sparsely studied. We used 10-year data from 478 plots with 191,200 trees in a forest biodiversity experiment in subtropical China to assess the relationship between community productivity and community-weighted mean (CWM) or functional diversity (FD) values of 38 functional traits. We found that effects of FD values on productivity became larger than effects of CWM values after 7 years of forest development and that the FD values also became more reliable predictors of productivity than the CWM values. In contrast to CWM, FD values consistently increased productivity across ten different species-pool subsets. Our results imply that to promote productivity in the long term it is imperative for forest restoration projects to plant multispecies communities with large functional diversity.
Collapse
Affiliation(s)
- Franca J Bongers
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Bernhard Schmid
- Department of Geography, Remote Sensing Laboratories, University of Zurich, Zurich, Switzerland
| | - Helge Bruelheide
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Frans Bongers
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Shan Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Goddert von Oheimb
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of General Ecology and Environmental Protection, Technische Universität Dresden, Tharandt, Germany
| | - Yin Li
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, China
| | - Anpeng Cheng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Xiaojuan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
28
|
Affiliation(s)
- Nathaly R Guerrero-Ramírez
- Biodiversity, Macroecology and Biogeography, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Göttingen, Germany.
| |
Collapse
|
29
|
Liu D, Chang PHS, Power SA, Bell JNB, Manning P. Changes in plant species abundance alter the multifunctionality and functional space of heathland ecosystems. THE NEW PHYTOLOGIST 2021; 232:1238-1249. [PMID: 34346089 DOI: 10.1111/nph.17667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Though it is well established that species composition affects ecosystem function, the way in which species combine to control overall ecosystem functioning is still debated. In experimental mesocosms, we planted three functionally distinct dry-heath species in varying proportions and measured multiple ecosystem properties related to nutrient cycling and carbon storage (hereafter functions). Overall ecosystem functioning was described as the main axes of variation in ecosystem functioning (functional space) and the proportion of ecosystem functions at high levels; for example, fast carbon and nutrient cycling (cluster-based multifunctionality). The first functional space axis, related to nitrogen availability, was driven by plant species abundance, particularly that of legumes, which strongly affected many individual functions. The second, related to total plant biomass and woodiness, was mostly driven by the abundance of dwarf shrubs. Similarly, cluster-based multifunctionality was related to the initial abundance of all species, but particularly the legume. Interactions between species also affected ecosystem multifunctionality, but these effects were smaller in magnitude. These results indicate that species interactions could play a secondary role to species abundance and identity in driving the overall ecosystem functioning of heathlands, but also that axes of variation in functional space are clearly linked to plant functional composition.
Collapse
Affiliation(s)
- Daijun Liu
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, 1030, Austria
- Global Ecology Unit CREAF-CSIC-UAB, CSIC, Bellaterra, Catalonia, E-08193, Spain
| | - Pi-Hui S Chang
- Division of Biology, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
- Research Division III, Taiwan Research Institute on Water Resources and Agriculture (TRIWRA), 19F, No. 27-8, Section 2, Zhongzheng East Road, Tamsui District, New Taipei, 251, Taiwan
| | - Sally A Power
- Division of Biology, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - John N B Bell
- Division of Biology, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
| | - Peter Manning
- Division of Biology, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, D-60325, Germany
| |
Collapse
|
30
|
Bakker LM, Barry KE, Mommer L, van Ruijven J. Focusing on individual plants to understand community scale biodiversity effects: the case of root distribution in grasslands. OIKOS 2021. [DOI: 10.1111/oik.08113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lisette M. Bakker
- Plant Ecology and Nature Conservation Group, Wageningen Univ. and Research Wageningen the Netherlands
| | - Kathryn E. Barry
- Ecology and Biodiversity Group, Dept of Biology, Utrecht Univ. Utrecht the Netherlands
| | - Liesje Mommer
- Plant Ecology and Nature Conservation Group, Wageningen Univ. and Research Wageningen the Netherlands
| | - Jasper van Ruijven
- Plant Ecology and Nature Conservation Group, Wageningen Univ. and Research Wageningen the Netherlands
| |
Collapse
|
31
|
Phytoplankton biodiversity is more important for ecosystem functioning in highly variable thermal environments. Proc Natl Acad Sci U S A 2021; 118:2019591118. [PMID: 34446547 PMCID: PMC8536371 DOI: 10.1073/pnas.2019591118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The 21st century has seen an acceleration of anthropogenic climate change and biodiversity loss, with both stressors deemed to affect ecosystem functioning. However, we know little about the interactive effects of both stressors and in particular about the interaction of increased climatic variability and biodiversity loss on ecosystem functioning. This should be remedied because larger climatic variability is one of the main features of climate change. Here, we demonstrated that temperature fluctuations led to changes in the importance of biodiversity for ecosystem functioning. We used microcosm communities of different phytoplankton species richness and exposed them to a constant, mild, and severe temperature-fluctuating environment. Wider temperature fluctuations led to steeper biodiversity-ecosystem functioning slopes, meaning that species loss had a stronger negative effect on ecosystem functioning in more fluctuating environments. For severe temperature fluctuations, the slope increased through time due to a decrease of the productivity of species-poor communities over time. We developed a theoretical competition model to better understand our experimental results and showed that larger differences in thermal tolerances across species led to steeper biodiversity-ecosystem functioning slopes. Species-rich communities maintained their ecosystem functioning with increased fluctuation as they contained species able to resist the thermally fluctuating environments, while this was on average not the case in species-poor communities. Our results highlight the importance of biodiversity for maintaining ecosystem functions and services in the context of increased climatic variability under climate change.
Collapse
|
32
|
Crawford MS, Barry KE, Clark AT, Farrior CE, Hines J, Ladouceur E, Lichstein JW, Maréchaux I, May F, Mori AS, Reineking B, Turnbull LA, Wirth C, Rüger N. The function-dominance correlation drives the direction and strength of biodiversity-ecosystem functioning relationships. Ecol Lett 2021; 24:1762-1775. [PMID: 34157796 DOI: 10.1111/ele.13776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 04/21/2021] [Indexed: 11/29/2022]
Abstract
Community composition is a primary determinant of how biodiversity change influences ecosystem functioning and, therefore, the relationship between biodiversity and ecosystem functioning (BEF). We examine the consequences of community composition across six structurally realistic plant community models. We find that a positive correlation between species' functioning in monoculture versus their dominance in mixture with regard to a specific function (the "function-dominance correlation") generates a positive relationship between realised diversity and ecosystem functioning across species richness treatments. However, because realised diversity declines when few species dominate, a positive function-dominance correlation generates a negative relationship between realised diversity and ecosystem functioning within species richness treatments. Removing seed inflow strengthens the link between the function-dominance correlation and BEF relationships across species richness treatments but weakens it within them. These results suggest that changes in species' identities in a local species pool may more strongly affect ecosystem functioning than changes in species richness.
Collapse
Affiliation(s)
- Michael S Crawford
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Economics, Institute of Empirical Economic Research, University of Leipzig, Leipzig, Germany.,Department of Land-Use Management, Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
| | - Kathryn E Barry
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, University of Leipzig, Leipzig, Germany.,Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Adam T Clark
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Physiological Diversity, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.,Institute of Biology, University of Graz, Graz, Austria
| | - Caroline E Farrior
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Jes Hines
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,University of Leipzig, Leipzig, Germany
| | - Emma Ladouceur
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Physiological Diversity, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.,Biodiversity Synthesis, Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | - Isabelle Maréchaux
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, Montpellier, IRD, France.,Laboratoire Évolution et Diversité Biologique, UMR 5174 (CNRS/IRD/UPS), Toulouse Cedex, France
| | - Felix May
- Institute of Biology, Freie Universität Berlin, Gartenhaus, Berlin, Germany
| | - Akira S Mori
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
| | - Björn Reineking
- University of Grenoble Alpes, INRAE, LESSEM, Grenoble, France
| | | | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, University of Leipzig, Leipzig, Germany.,University of Grenoble Alpes, INRAE, LESSEM, Grenoble, France.,Max-Planck-Institute for Biogeochemistry, Jena, Germany
| | - Nadja Rüger
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Economics, Institute of Empirical Economic Research, University of Leipzig, Leipzig, Germany.,Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| |
Collapse
|
33
|
Dietrich P, Cesarz S, Liu T, Roscher C, Eisenhauer N. Effects of plant species diversity on nematode community composition and diversity in a long-term biodiversity experiment. Oecologia 2021; 197:297-311. [PMID: 34091787 PMCID: PMC8505370 DOI: 10.1007/s00442-021-04956-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/26/2021] [Indexed: 11/04/2022]
Abstract
Diversity loss has been shown to change the soil community; however, little is known about long-term consequences and underlying mechanisms. Here, we investigated how nematode communities are affected by plant species richness and whether this is driven by resource quantity or quality in 15-year-old plant communities of a long-term grassland biodiversity experiment. We extracted nematodes from 93 experimental plots differing in plant species richness, and measured above- and belowground plant biomass production and soil organic carbon concentrations (Corg) as proxies for resource quantity, as well as C/Nleaf ratio and specific root length (SRL) as proxies for resource quality. We found that nematode community composition and diversity significantly differed among plant species richness levels. This was mostly due to positive plant diversity effects on the abundance and genus richness of bacterial-feeding, omnivorous, and predatory nematodes, which benefited from higher shoot mass and soil Corg in species-rich plant communities, suggesting control via resource quantity. In contrast, plant-feeding nematodes were negatively influenced by shoot mass, probably due to higher top–down control by predators, and were positively related to SRL and C/Nleaf, indicating control via resource quality. The decrease of the grazing pressure ratio (plant feeders per root mass) with plant species richness indicated a higher accumulation of plant-feeding nematodes in species-poor plant communities. Our results, therefore, support the hypothesis that soil-borne pathogens accumulate in low-diversity communities over time, while soil mutualists (bacterial-feeding, omnivorous, predatory nematodes) increase in abundance and richness in high-diversity plant communities, which may contribute to the widely-observed positive plant diversity–productivity relationship.
Collapse
Affiliation(s)
- Peter Dietrich
- Department of Physiological Diversity, UFZ, Helmholtz Centre for Environmental Research, Permoser Straße 15, 04318, Leipzig, Germany. .,German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany.
| | - Simone Cesarz
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany.,Department of Experimental Interaction Ecology, Institute of Biology, Leipzig University, Puschstraße 4, 04103, Leipzig, Germany
| | - Tao Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Christiane Roscher
- Department of Physiological Diversity, UFZ, Helmholtz Centre for Environmental Research, Permoser Straße 15, 04318, Leipzig, Germany.,German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
| | - Nico Eisenhauer
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany.,Department of Experimental Interaction Ecology, Institute of Biology, Leipzig University, Puschstraße 4, 04103, Leipzig, Germany
| |
Collapse
|
34
|
Dietrich P, Eisenhauer N, Otto P, Roscher C. Plant history and soil history jointly influence the selection environment for plant species in a long-term grassland biodiversity experiment. Ecol Evol 2021; 11:8156-8169. [PMID: 34188877 PMCID: PMC8216899 DOI: 10.1002/ece3.7647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 11/08/2022] Open
Abstract
Long-term biodiversity experiments have shown increasing strengths of biodiversity effects on plant productivity over time. However, little is known about rapid evolutionary processes in response to plant community diversity, which could contribute to explaining the strengthening positive relationship. To address this issue, we performed a transplant experiment with offspring of seeds collected from four grass species in a 14-year-old biodiversity experiment (Jena Experiment). We used two- and six-species communities and removed the vegetation of the study plots to exclude plant-plant interactions. In a reciprocal design, we transplanted five "home" phytometers (same origin and actual environment), five "away-same" phytometers (same species richness of origin and actual environment, but different plant composition), and five "away-different" phytometers (different species richness of origin and actual environment) of the same species in the study plots. In the establishment year, plants transplanted in home soil produced more shoots than plants in away soil indicating that plant populations at low and high diversity developed differently over time depending on their associated soil community and/or conditions. In the second year, offspring of individuals selected at high diversity generally had a higher performance (biomass production and fitness) than offspring of individuals selected at low diversity, regardless of the transplant environment. This suggests that plants at low and high diversity showed rapid evolutionary responses measurable in their phenotype. Our findings provide first empirical evidence that loss of productivity at low diversity is not only caused by changes in abiotic and biotic conditions but also that plants respond to this by a change in their micro-evolution. Thus, we conclude that eco-evolutionary feedbacks of plants at low and high diversity are critical to fully understand why the positive influence of diversity on plant productivity is strengthening through time.
Collapse
Affiliation(s)
- Peter Dietrich
- Department of Physiological DiversityUFZHelmholtz Centre for Environmental ResearchLeipzigGermany
- German Centre of Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Nico Eisenhauer
- German Centre of Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Department of Experimental Interaction EcologyInstitute of BiologyLeipzig UniversityLeipzigGermany
| | - Peter Otto
- Institute of BiologyHerbarium Universitatis Lipsiensis (LZ)Leipzig UniversityLeipzigGermany
| | - Christiane Roscher
- Department of Physiological DiversityUFZHelmholtz Centre for Environmental ResearchLeipzigGermany
- German Centre of Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| |
Collapse
|
35
|
Heklau H, Schindler N, Buscot F, Eisenhauer N, Ferlian O, Prada Salcedo LD, Bruelheide H. Mixing tree species associated with arbuscular or ectotrophic mycorrhizae reveals dual mycorrhization and interactive effects on the fungal partners. Ecol Evol 2021; 11:5424-5440. [PMID: 34026018 PMCID: PMC8131788 DOI: 10.1002/ece3.7437] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 11/29/2022] Open
Abstract
Recent studies found that the majority of shrub and tree species are associated with both arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungi. However, our knowledge on how different mycorrhizal types interact with each other is still limited. We asked whether the combination of hosts with a preferred association with either AM or EM fungi increases the host tree roots' mycorrhization rate and affects AM and EM fungal richness and community composition.We established a tree diversity experiment, where five tree species of each of the two mycorrhiza types were planted in monocultures, two-species and four-species mixtures. We applied morphological assessment to estimate mycorrhization rates and next-generation molecular sequencing to quantify mycobiont richness.Both the morphological and molecular assessment revealed dual-mycorrhizal colonization in 79% and 100% of the samples, respectively. OTU community composition strongly differed between AM and EM trees. While host tree species richness did not affect mycorrhization rates, we observed significant effects of mixing AM- and EM-associated hosts in AM mycorrhization rate. Glomeromycota richness was larger in monotypic AM tree combinations than in AM-EM mixtures, pointing to a dilution or suppression effect of AM by EM trees. We found a strong match between morphological quantification of AM mycorrhization rate and Glomeromycota richness. Synthesis. We provide evidence that the combination of hosts differing in their preferred mycorrhiza association affects the host's fungal community composition, thus revealing important biotic interactions among trees and their associated fungi.
Collapse
Affiliation(s)
- Heike Heklau
- Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Nicole Schindler
- Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - François Buscot
- Department of Soil EcologyHelmholtz Centre for Environmental Research – UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Luis D. Prada Salcedo
- Department of Soil EcologyHelmholtz Centre for Environmental Research – UFZHalle (Saale)Germany
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle‐WittenbergHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| |
Collapse
|
36
|
Thakur MP, van der Putten WH, Wilschut RA, Veen GFC, Kardol P, van Ruijven J, Allan E, Roscher C, van Kleunen M, Bezemer TM. Plant-Soil Feedbacks and Temporal Dynamics of Plant Diversity-Productivity Relationships. Trends Ecol Evol 2021; 36:651-661. [PMID: 33888322 DOI: 10.1016/j.tree.2021.03.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Plant-soil feedback (PSF) and diversity-productivity relationships are important research fields to study drivers and consequences of changes in plant biodiversity. While studies suggest that positive plant diversity-productivity relationships can be explained by variation in PSF in diverse plant communities, key questions on their temporal relationships remain. Here, we discuss three processes that change PSF over time in diverse plant communities, and their effects on temporal dynamics of diversity-productivity relationships: spatial redistribution and changes in dominance of plant species; phenotypic shifts in plant traits; and dilution of soil pathogens and increase in soil mutualists. Disentangling these processes in plant diversity experiments will yield new insights into how plant diversity-productivity relationships change over time.
Collapse
Affiliation(s)
- Madhav P Thakur
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.
| | - Wim H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO- KNAW), Wageningen, The Netherlands; Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Rutger A Wilschut
- Ecology, Department of Biology, University of Konstanz, 78464, Konstanz, Germany
| | - G F Ciska Veen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO- KNAW), Wageningen, The Netherlands
| | - Paul Kardol
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jasper van Ruijven
- Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, The Netherlands
| | - Eric Allan
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Christiane Roscher
- Helmholtz Centre for Environmental Research, Physiological Diversity - UFZ, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, 78464, Konstanz, Germany; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - T Martijn Bezemer
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO- KNAW), Wageningen, The Netherlands; Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, 2300, RA, Leiden, The Netherlands
| |
Collapse
|
37
|
Ingty T. Pastoralism in the highest peaks: Role of the traditional grazing systems in maintaining biodiversity and ecosystem function in the alpine Himalaya. PLoS One 2021; 16:e0245221. [PMID: 33411837 PMCID: PMC7790420 DOI: 10.1371/journal.pone.0245221] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/23/2020] [Indexed: 11/18/2022] Open
Abstract
Rangelands cover around half of the planet’s land mass and provide vital ecosystem services to over a quarter of humanity. The Himalayan rangelands, part of a global biodiversity hotspot is among the most threatened regions in the world. In rangelands of many developing nations policies banning grazing in protected areas is common practice. In 1998, the Indian state of Sikkim, in the Eastern Himalaya, enacted a grazing ban in response to growing anthropogenic pressure in pastures and forests that was presumably leading to degradation of biodiversity. Studies from the region demonstrate the grazing ban has had some beneficial results in the form of increased carbon stocks and regeneration of some species of conservation value but the ban also resulted in negative outcomes such as reduced household incomes, increase in monocultures in lowlands, decreased manure production in a state that exclusively practices organic farming, spread of gregarious species, and a perceived increase in human wildlife conflict. This paper explores the impact of the traditional pastoral system on high elevation plant species in Lachen valley, one of the few regions of Sikkim where the grazing ban was not implemented. Experimental plots were laid in along an elevation gradient in grazed and ungrazed areas. Ungrazed areas are part of pastures that have been fenced off (preventing grazing) for over a decade and used by the locals for hay formation. I quantified plant species diversity (Species richness, Shannon index, Simpson diversity index, and Pielou evenness index) and ecosystem function (above ground net primary productivity ANPP). The difference method using movable exlosure cages was used in grazing areas to account for plant ANPP eaten and regrowth between grazing periods). The results demonstrate that grazing significantly contributes to greater plant species diversity (Species richness, Shannon index, Simpson diversity index, and Pielou evenness index) and ecosystem function (using above ground net primary productivity as an indicator). The multidimensional scaling and ANOSIM (Analysis of Similarities) pointed to significant differences in plant species assemblages in grazed and ungrazed areas. Further, ecosystem function is controlled by grazing, rainfall and elevation. Thus, the traditional transhumant pastoral system may enhance biodiversity and ecosystem function. I argue that a complete restriction of open grazing meet neither conservation nor socioeconomic goals. Evidence based policies are required to conserve the rich and vulnerable biodiversity of the region.
Collapse
Affiliation(s)
- Tenzing Ingty
- Department of Biology, University of Massachusetts, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
38
|
Xu S, Eisenhauer N, Ferlian O, Zhang J, Zhou G, Lu X, Liu C, Zhang D. Species richness promotes ecosystem carbon storage: evidence from biodiversity-ecosystem functioning experiments. Proc Biol Sci 2020; 287:20202063. [PMID: 33234078 PMCID: PMC7739490 DOI: 10.1098/rspb.2020.2063] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022] Open
Abstract
Plant diversity has a strong impact on a plethora of ecosystem functions and services, especially ecosystem carbon (C) storage. However, the potential context-dependency of biodiversity effects across ecosystem types, environmental conditions and carbon pools remains largely unknown. In this study, we performed a meta-analysis by collecting data from 95 biodiversity-ecosystem functioning (BEF) studies across 60 sites to explore the effects of plant diversity on different C pools, including aboveground and belowground plant biomass, soil microbial biomass C and soil C content across different ecosystem types. The results showed that ecosystem C storage was significantly enhanced by plant diversity, with stronger effects on aboveground biomass than on soil C content. Moreover, the response magnitudes of ecosystem C storage increased with the level of species richness and experimental duration across all ecosystems. The effects of plant diversity were more pronounced in grasslands than in forests. Furthermore, the effects of plant diversity on belowground plant biomass increased with aridity index in grasslands and forests, suggesting that climate change might modulate biodiversity effects, which are stronger under wetter conditions but weaker under more arid conditions. Taken together, these results provide novel insights into the important role of plant diversity in ecosystem C storage across critical C pools, ecosystem types and environmental contexts.
Collapse
Affiliation(s)
- Shan Xu
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510070, People's Republic of China
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, People's Republic of China
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Jinlong Zhang
- Flora Conservation Department, Kadoorie Farm and Botanic Garden, Tai Po, New Territories, Hong Kong SAR, People's Republic of China
| | - Guoyi Zhou
- Institute of Ecology, Nanjing University of Information Science & Technology, Nanjing 210044, People's Republic of China
| | - Xiankai Lu
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Chengshuai Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, People's Republic of China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, People's Republic of China
| | - Deqiang Zhang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510070, People's Republic of China
| |
Collapse
|
39
|
van Moorsel SJ, Hahl T, Petchey OL, Ebeling A, Eisenhauer N, Schmid B, Wagg C. Co-occurrence history increases ecosystem stability and resilience in experimental plant communities. Ecology 2020; 102:e03205. [PMID: 32979225 DOI: 10.1002/ecy.3205] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/03/2020] [Accepted: 08/17/2020] [Indexed: 01/29/2023]
Abstract
Understanding factors that maintain ecosystem stability is critical in the face of environmental change. Experiments simulating species loss from grassland have shown that losing biodiversity decreases ecosystem stability. However, as the originally sown experimental communities with reduced biodiversity develop, plant evolutionary processes or the assembly of interacting soil organisms may allow ecosystems to increase stability over time. We explored such effects in a long-term grassland biodiversity experiment with plant communities with either a history of co-occurrence (selected communities) or no such history (naïve communities) over a 4-yr period in which a major flood disturbance occurred. Comparing communities of identical species composition, we found that selected communities had temporally more stable biomass than naïve communities, especially at low species richness. Furthermore, selected communities showed greater biomass recovery after flooding, resulting in more stable post-flood productivity. In contrast to a previous study, the positive diversity-stability relationship was maintained after the flooding. Our results were consistent across three soil treatments simulating the presence or absence of co-selected microbial communities. We suggest that prolonged exposure of plant populations to a particular community context and abiotic site conditions can increase ecosystem temporal stability and resilience due to short-term evolution. A history of co-occurrence can in part compensate for species loss, as can high plant diversity in part compensate for the missing opportunity of such adaptive adjustments.
Collapse
Affiliation(s)
- Sofia J van Moorsel
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, Zürich, 8057, Switzerland.,Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec, H3A 1B1, Canada
| | - Terhi Hahl
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, Zürich, 8057, Switzerland
| | - Owen L Petchey
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, Zürich, 8057, Switzerland
| | - Anne Ebeling
- Institute of Ecology and Evolution, University of Jena, Dornburger Strasse 159, Jena, 07743, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany.,Institute of Biology, Leipzig University, Deutscher Platz 5e, Leipzig, 04103, Germany
| | - Bernhard Schmid
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, Zürich, 8057, Switzerland.,Department of Geography, University of Zürich, Winterthurerstrasse 190, Zürich, 8057, Switzerland
| | - Cameron Wagg
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, Zürich, 8057, Switzerland.,Agriculture and Agri-Food Canada, 850 Lincoln Road, Fredericton, New Brunswick, E3B 4Z7, Canada
| |
Collapse
|
40
|
Carrick PJ, Forsythe KJ. The species composition-ecosystem function relationship: A global meta-analysis using data from intact and recovering ecosystems. PLoS One 2020; 15:e0236550. [PMID: 32730290 PMCID: PMC7392319 DOI: 10.1371/journal.pone.0236550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 07/07/2020] [Indexed: 11/18/2022] Open
Abstract
The idea that biodiversity is necessary in order for ecosystems to function properly has long been used as a basic argument for the conservation of species, and has led to an abundance of research exploring the relationships between species richness and ecosystem function. Here we present a meta-analysis of global ecosystems using the Bray-Curtis index to explore more complex changes in the species composition of natural ecosystems, and their relationship with ecosystem functions. By using data recorded, firstly in reference sites and secondly in recovering sites, captured in restoration ecology studies, we pose the following questions: Firstly, how much variation is there in species composition and in ecosystem function in an intact ecosystem? Secondly, once an ecosystem has become degraded, is there a general relationship between its recovery in species composition and its recovery in ecosystem function? Thirdly, is this relationship the same for all types of ecosystem functions? Data from 21 studies yielded 478 comparisons of mean values for ecosystems. On Average, sites within the same intact natural ecosystems shared only a 48% similarity in species composition but were 69% similar in ecosystem functioning. In recovering ecosystems the relationship between species composition and ecosystem function was weak and saturating (directly accounting for only 2% of the variation). Only two of the six types of ecosystem function examined, biomass and biotic structure, showed a significant relationship with species composition, and the three types that measured soil functions showed no significant relationship. To date, most biodiversity-ecosystem function (BEF) research has been conducted in simplified ecosystems using the simple species richness metric. This study encourages a broader examination of the drivers of ecosystem functions under realistic scenarios of biodiversity change, and highlights the need to properly account for the extensive natural variation.
Collapse
Affiliation(s)
- Peter J. Carrick
- Plant Conservation Unit, Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Katherine J. Forsythe
- Percy FitzPatrick Institute of African Ornithology, Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
41
|
Patoine G, Bruelheide H, Haase J, Nock C, Ohlmann N, Schwarz B, Scherer‐Lorenzen M, Eisenhauer N. Tree litter functional diversity and nitrogen concentration enhance litter decomposition via changes in earthworm communities. Ecol Evol 2020; 10:6752-6768. [PMID: 32724548 PMCID: PMC7381558 DOI: 10.1002/ece3.6474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 11/23/2022] Open
Abstract
Biodiversity is a major driver of numerous ecosystem functions. However, consequences of changes in forest biodiversity remain difficult to predict because of limited knowledge about how tree diversity influences ecosystem functions. Litter decomposition is a key process affecting nutrient cycling, productivity, and carbon storage and can be influenced by plant biodiversity. Leaf litter species composition, environmental conditions, and the detritivore community are main components of the decomposition process, but their complex interactions are poorly understood. In this study, we tested the effect of tree functional diversity (FD) on litter decomposition in a field experiment manipulating tree diversity and partitioned the effects of litter physiochemical diversity and the detritivore community. We used litterbags with different mesh sizes to separate the effects of microorganisms and microfauna, mesofauna, and macrofauna and monitored soil fauna using pitfall traps and earthworm extractions. We hypothesized that higher tree litter FD accelerates litter decomposition due to the availability of complementary food components and higher activity of detritivores. Although we did not find direct effects of tree FD on litter decomposition, we identified key litter traits and macrodetritivores that explained part of the process. Litter mass loss was found to decrease with an increase in leaf litter carbon:nitrogen ratio. Moreover, litter mass loss increased with an increasing density of epigeic earthworms, with most pronounced effects in litterbags with a smaller mesh size, indicating indirect effects. Higher litter FD and litter nutrient content were found to increase the density of surface-dwelling macrofauna and epigeic earthworm biomass. Based on structural equation modeling, we conclude that tree FD has a weak positive effect on soil surface litter decomposition by increasing the density of epigeic earthworms and that litter nitrogen-related traits play a central role in tree composition effects on soil fauna and decomposition.
Collapse
Affiliation(s)
- Guillaume Patoine
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Josephine Haase
- GeobotanyFaculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Charles Nock
- GeobotanyFaculty of BiologyUniversity of FreiburgFreiburgGermany
- Department of Renewable ResourcesFaculty of Agriculture, Life and Environmental SciencesGeneral Services BuildingUniversity of AlbertaEdmontonABCanada
| | - Niklas Ohlmann
- GeobotanyFaculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Benjamin Schwarz
- Biometry and Environmental System AnalysisFaculty of Environment and Natural ResourcesUniversity of FreiburgFreiburgGermany
| | | | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| |
Collapse
|
42
|
Heintz-Buschart A, Guerra C, Djukic I, Cesarz S, Chatzinotas A, Patoine G, Sikorski J, Buscot F, Küsel K, Wegner CE, Eisenhauer N. Microbial diversity-ecosystem function relationships across environmental gradients. RESEARCH IDEAS AND OUTCOMES 2020. [DOI: 10.3897/rio.6.e52217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In light of increasing anthropogenic pressures on ecosystems around the globe, the question how biodiversity change of organisms in the critical zone between Earth’s canopies and bedrock relates to ecosystem functions is an urgent issue, as human life relies on these functions. Particularly, soils play vital roles in nutrient cycling, promotion of plant growth, water purification, litter decomposition, and carbon storage, thereby securing food and water resources and stabilizing the climate. Soil functions are carried to a large part by complex communities of microorganisms, such as bacteria, archaea, fungi and protists. The assessment of microbial diversity and the microbiome's functional potential continues to pose significant challenges. Next generation sequencing offers some of the most promising tools to help shedding light on microbial diversity-function relationships. Studies relating microbial diversity and ecosystem functions are rare, particularly those on how this relationship is influenced by environmental gradients. The proposed project focuses on decomposition as one of the most important microbial soil ecosystem functions. The researchers from the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig combine an unparalleled range of expertise from next generation sequencing- based analysis of microbial communities (“meta-omics”) to soil ecology and biodiversity-ecosystem function research. This consortium will make use of soil samples from large international networks to assess microbial diversity both at the taxonomic and functional level and across the domains of life. By linking microbial diversity to functional measurements of decomposition and environmental gradients, the proposed project aims to achieve a comprehensive scale-independent understanding of environmental drivers and anthropogenic effects on the structural and functional diversity of microbial communities and subsequent consequences for ecosystem functioning.
Collapse
|
43
|
Gonzalez A, Germain RM, Srivastava DS, Filotas E, Dee LE, Gravel D, Thompson PL, Isbell F, Wang S, Kéfi S, Montoya J, Zelnik YR, Loreau M. Scaling-up biodiversity-ecosystem functioning research. Ecol Lett 2020; 23:757-776. [PMID: 31997566 PMCID: PMC7497049 DOI: 10.1111/ele.13456] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/18/2019] [Accepted: 12/14/2019] [Indexed: 12/27/2022]
Abstract
A rich body of knowledge links biodiversity to ecosystem functioning (BEF), but it is primarily focused on small scales. We review the current theory and identify six expectations for scale dependence in the BEF relationship: (1) a nonlinear change in the slope of the BEF relationship with spatial scale; (2) a scale‐dependent relationship between ecosystem stability and spatial extent; (3) coexistence within and among sites will result in a positive BEF relationship at larger scales; (4) temporal autocorrelation in environmental variability affects species turnover and thus the change in BEF slope with scale; (5) connectivity in metacommunities generates nonlinear BEF and stability relationships by affecting population synchrony at local and regional scales; (6) spatial scaling in food web structure and diversity will generate scale dependence in ecosystem functioning. We suggest directions for synthesis that combine approaches in metaecosystem and metacommunity ecology and integrate cross‐scale feedbacks. Tests of this theory may combine remote sensing with a generation of networked experiments that assess effects at multiple scales. We also show how anthropogenic land cover change may alter the scaling of the BEF relationship. New research on the role of scale in BEF will guide policy linking the goals of managing biodiversity and ecosystems.
Collapse
Affiliation(s)
- Andrew Gonzalez
- Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, H3A 1B1, Canada
| | - Rachel M Germain
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Diane S Srivastava
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Elise Filotas
- Center for Forest Research, Département Science et Technologie, Université du Québec, 5800 Saint-Denis, Téluq, Montreal, H2S 3L5, Canada
| | - Laura E Dee
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
| | - Dominique Gravel
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, J1K 2R1, Canada
| | - Patrick L Thompson
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Forest Isbell
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, 100871, Beijing, China
| | - Sonia Kéfi
- ISEM, CNRS, Univ. Montpellier, IRD, EPHE, Montpellier, France
| | - Jose Montoya
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200, Moulis, France
| | - Yuval R Zelnik
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200, Moulis, France
| | - Michel Loreau
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200, Moulis, France
| |
Collapse
|
44
|
Dietrich P, Roeder A, Cesarz S, Eisenhauer N, Ebeling A, Schmid B, Schulze E, Wagg C, Weigelt A, Roscher C. Nematode communities, plant nutrient economy and life‐cycle characteristics jointly determine plant monoculture performance over 12 years. OIKOS 2020. [DOI: 10.1111/oik.06989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Peter Dietrich
- Inst. of Ecology and Evolution, Friedrich‐Schiller‐Univ. Jena Jena Germany
- UFZ, Helmholtz Centre for Environmental Research, Permoserstraße 15, Physiological Diversity DE‐04318 Leipzig Germany
- German Centre of Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| | - Anna Roeder
- UFZ, Helmholtz Centre for Environmental Research, Permoserstraße 15, Physiological Diversity DE‐04318 Leipzig Germany
- German Centre of Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| | - Simone Cesarz
- German Centre of Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Inst. of Biology, Experimental Interaction Ecology, Leipzig Univ Leipzig Germany
| | - Nico Eisenhauer
- German Centre of Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Inst. of Biology, Experimental Interaction Ecology, Leipzig Univ Leipzig Germany
| | - Anne Ebeling
- Inst. of Ecology and Evolution, Friedrich‐Schiller‐Univ. Jena Jena Germany
| | | | | | - Cameron Wagg
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Zurich Switzerland
- Fredericton Research and Development Center, Agriculture and Agri‐Food Canada Fredericton New Brunswick Canada
| | - Alexandra Weigelt
- Inst. of Biology, Systematic Botany and Functional Biodiversity, Leipzig Univ Leipzig Germany
| | - Christiane Roscher
- UFZ, Helmholtz Centre for Environmental Research, Permoserstraße 15, Physiological Diversity DE‐04318 Leipzig Germany
- German Centre of Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| |
Collapse
|
45
|
Hahl T, Moorsel SJ, Schmid MW, Zuppinger‐Dingley D, Schmid B, Wagg C. Plant responses to diversity‐driven selection and associated rhizosphere microbial communities. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13511] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Terhi Hahl
- Department of Evolutionary Biology and Environmental Studies University of Zürich Zurich Switzerland
| | - Sofia J. Moorsel
- Department of Evolutionary Biology and Environmental Studies University of Zürich Zurich Switzerland
- Department of Biology McGill University Montreal QC Canada
| | - Marc W. Schmid
- Department of Evolutionary Biology and Environmental Studies University of Zürich Zurich Switzerland
- MWSchmid GmbH Zurich Switzerland
| | - Debra Zuppinger‐Dingley
- Department of Evolutionary Biology and Environmental Studies University of Zürich Zurich Switzerland
| | - Bernhard Schmid
- Department of Evolutionary Biology and Environmental Studies University of Zürich Zurich Switzerland
- Department of Geography University of Zürich Zurich Switzerland
- Institute of Ecology College of Urban and Environmental Sciences Peking University Beijing China
| | - Cameron Wagg
- Department of Evolutionary Biology and Environmental Studies University of Zürich Zurich Switzerland
- Fredericton Research and Development Centre Agriculture and Agri‐Food Canada Fredericton NB Canada
| |
Collapse
|
46
|
Onandia G, Schittko C, Ryo M, Bernard-Verdier M, Heger T, Joshi J, Kowarik I, Gessler A. Ecosystem functioning in urban grasslands: The role of biodiversity, plant invasions and urbanization. PLoS One 2019; 14:e0225438. [PMID: 31756202 PMCID: PMC6874358 DOI: 10.1371/journal.pone.0225438] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/05/2019] [Indexed: 11/19/2022] Open
Abstract
Urbanization is driving the transformation of natural and rural ecosystems worldwide by affecting both the abiotic environment and the biota. This raises the question whether urban ecosystems are able to provide services in a comparable way to their non-urban counterparts. In urban grasslands, the effects of urbanization-driven ecological novelty and the role of plant diversity in modulating ecosystem functioning have received little attention. In this study, we assessed the influence of biodiversity, abiotic and biotic novelty on ecosystem functioning based on in situ measurements in non-manipulated grasslands along an urbanization gradient in Berlin (Germany). We focused on plant aboveground biomass (AGB), intrinsic water-use efficiency (iWUE) and 15N enrichment factor (Δδ15N) as proxies for biomass production, water and N cycling, respectively, within grassland communities, and tested how they change with plant biogeographic status (native vs alien), functional group and species identity. Approximately one third of the forb species were alien to Berlin and they were responsible for 13.1% of community AGB. Community AGB was positively correlated with plant-species richness. In contrast, iWUE and Δδ15N were mostly determined by light availability (depicted by sky view factor) and urban parameters like the percentage of impervious surface or human population density. We found that abiotic novelty potentially favors aliens in Berlin, mainly by enhancing their dispersal and fitness under drought. Mainly urban parameters indicating abiotic novelty were significantly correlated to both alien and native Δδ15N, but to AGB and iWUE of alien plants only, pointing to a stronger impact of abiotic novelty on N cycling compared to C and water cycling. At the species level, sky view factor appeared to be the prevailing driver of photosynthetic performance and resource-use efficiency. Although we identified a significant impact of abiotic novelty on AGB, iWUE and Δδ15N at different levels, the relationship between species richness and community AGB found in the urban grasslands studied in Berlin was comparable to that described in non-urban experimental grasslands in Europe. Hence, our results indicate that conserving and enhancing biodiversity in urban ecosystems is essential to preserve ecosystem services related to AGB production. For ensuring the provision of ecosystem services associated to water and N use, however, changes in urban abiotic parameters seem necessary.
Collapse
Affiliation(s)
- Gabriela Onandia
- Research Platform “Data”, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Conrad Schittko
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- Biodiversity Research and Systematic Botany, University of Potsdam, Potsdam, Germany
| | - Masahiro Ryo
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Maud Bernard-Verdier
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- Division of Zoology, Freie Universität Berlin, Berlin, Germany
| | - Tina Heger
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- Biodiversity Research and Systematic Botany, University of Potsdam, Potsdam, Germany
- Restoration Ecology, Technical University of Munich, Freising, Germany
| | - Jasmin Joshi
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- Biodiversity Research and Systematic Botany, University of Potsdam, Potsdam, Germany
- Institute for Landscape and Open Space, HSR Hochschule für Technik, Rapperswil, Switzerland
| | - Ingo Kowarik
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- Department of Ecology, Ecosystem Science and Plant Ecology, Technische Universität Berlin, Berlin, Germany
| | - Arthur Gessler
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- Department of Forest Dynamics, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
47
|
Barry KE, van Ruijven J, Mommer L, Bai Y, Beierkuhnlein C, Buchmann N, de Kroon H, Ebeling A, Eisenhauer N, Guimarães-Steinicke C, Hildebrandt A, Isbell F, Milcu A, Neßhöver C, Reich PB, Roscher C, Sauheitl L, Scherer-Lorenzen M, Schmid B, Tilman D, von Felten S, Weigelt A. Limited evidence for spatial resource partitioning across temperate grassland biodiversity experiments. Ecology 2019; 101:e02905. [PMID: 31560129 DOI: 10.1002/ecy.2905] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/19/2019] [Accepted: 09/10/2019] [Indexed: 11/10/2022]
Abstract
Locally, plant species richness supports many ecosystem functions. Yet, the mechanisms driving these often-positive biodiversity-ecosystem functioning relationships are not well understood. Spatial resource partitioning across vertical resource gradients is one of the main hypothesized causes for enhanced ecosystem functioning in more biodiverse grasslands. Spatial resource partitioning occurs if species differ in where they acquire resources and can happen both above- and belowground. However, studies investigating spatial resource partitioning in grasslands provide inconsistent evidence. We present the results of a meta-analysis of 21 data sets from experimental species-richness gradients in grasslands. We test the hypothesis that increasing spatial resource partitioning along vertical resource gradients enhances ecosystem functioning in diverse grassland plant communities above- and belowground. To test this hypothesis, we asked three questions. (1) Does species richness enhance biomass production or community resource uptake across sites? (2) Is there evidence of spatial resource partitioning as indicated by resource tracer uptake and biomass allocation above- and belowground? (3) Is evidence of spatial resource partitioning correlated with increased biomass production or community resource uptake? Although plant species richness enhanced community nitrogen and potassium uptake and biomass production above- and belowground, we found that plant communities did not meet our criteria for spatial resource partitioning, though they did invest in significantly more aboveground biomass in higher canopy layers in mixture relative to monoculture. Furthermore, the extent of spatial resource partitioning across studies was not positively correlated with either biomass production or community resource uptake. Our results suggest that spatial resource partitioning across vertical resource gradients alone does not offer a general explanation for enhanced ecosystem functioning in more diverse temperate grasslands.
Collapse
Affiliation(s)
- Kathryn E Barry
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Johannisallee 21, Leipzig, 04103, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
| | - Jasper van Ruijven
- Plant Ecology and Nature Conservation Group, Wageningen University, P.O. Box 47, Wageningen, NL-6700 AA, The Netherlands
| | - Liesje Mommer
- Plant Ecology and Nature Conservation Group, Wageningen University, P.O. Box 47, Wageningen, NL-6700 AA, The Netherlands
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Carl Beierkuhnlein
- Department of Biogeography, University of Bayreuth, Universitätstraße 30, Bayreuth, 95447, Germany.,Bayreuth Center for Ecology and Environmental Research, Universitätstraße 30, Bayreuth, 95447, Germany
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, Zürich, 8092, Switzerland
| | - Hans de Kroon
- Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, NL-6525 AJ, The Netherlands
| | - Anne Ebeling
- Institute of Geosciences, Friedrich Schiller University, Jena, Burgweg 11, Jena, 07745, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany.,Institute of Biology, Leipzig University, Deutscher Platz 5e, Leipzig, 04103, Germany
| | - Claudia Guimarães-Steinicke
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Johannisallee 21, Leipzig, 04103, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
| | - Anke Hildebrandt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany.,Institute of Geosciences, Friedrich Schiller University, Jena, Burgweg 11, Jena, 07745, Germany
| | - Forest Isbell
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| | - Alexandru Milcu
- The European Ecotron of Montpellier (UPS-3248), Centre National de la Recherche Scientifique (CNRS), Campus Bailarguet, Montferrier-sur-Lez, France.,Centre d'Ecologie Fonctionnelle et Evolutive (UMR 5175), Centre National de la Recherche Scientifique (CNRS), EPHE, IRD, Université de Montpellier, Université Paul Valéry, Montpellier Cedex 5, France
| | - Carsten Neßhöver
- Department of Conservation Biology, UFZ-Helmholtz Centre for Environmental Research, Permoserstrasse 15, Leipzig, 04318, Germany
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, Saint Paul, Minnesota, 55108, USA.,Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, 2753, Australia
| | - Christiane Roscher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany.,Department of Physiological Diversity, UFZ - Helmholtz Centre for Environmental Research, Permoserstrasse 15, Leipzig, 04318, Germany
| | - Leopold Sauheitl
- Institute of Soil Science, University of Hannover, Herrenhäuser Strasse 2, Hannover, 30419, Germany.,Department of Soil Physics, University of Bayreuth, Bayreuth, Germany
| | - Michael Scherer-Lorenzen
- Geobotany, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, Freiburg, 79104, Germany
| | - Bernhard Schmid
- Department of Geography, University of Zürich, Winterthurerstrasse 190, Zürich, 8057, Switzerland
| | - David Tilman
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, 55108, USA.,Bren School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, California, 93106-5131, USA
| | - Stefanie von Felten
- Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, Zürich, 8092, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Oikostat GmbH, Ettiswil, Switzerland
| | - Alexandra Weigelt
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Johannisallee 21, Leipzig, 04103, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
| |
Collapse
|
48
|
Gottschall F, Davids S, Newiger‐Dous TE, Auge H, Cesarz S, Eisenhauer N. Tree species identity determines wood decomposition via microclimatic effects. Ecol Evol 2019; 9:12113-12127. [PMID: 31832147 PMCID: PMC6854332 DOI: 10.1002/ece3.5665] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/15/2019] [Accepted: 08/27/2019] [Indexed: 01/22/2023] Open
Abstract
Empirical evidence suggests that the rich set of ecosystem functions and nature's contributions to people provided by forests depends on tree diversity. Biodiversity-ecosystem functioning research revealed that not only species richness per se but also other facets of tree diversity, such as tree identity, have to be considered to understand the underlying mechanisms. One important ecosystem function in forests is the decomposition of deadwood that plays a vital role in carbon and nutrient cycling and is assumed to be determined by above- and belowground interactions. However, the actual influence of tree diversity on wood decay in forests remains inconclusive. Recent studies suggest an important role of microclimate and advocate a systematical consideration of small-scale environmental conditions. We studied the influence of tree species richness, tree species identity, and microclimatic conditions on wood decomposition in a 12-year-old tree diversity experiment in Germany, containing six native species within a tree species richness gradient. We assessed wood mass loss, soil microbial properties, and soil surface temperature in high temporal resolution. Our study shows a significant influence of tree species identity on all three variables. The presence of Scots pine strongly increased wood mass loss, while the presence of Norway spruce decreased it. This could be attributed to structural differences in the litter layer that were modifying the capability of plots to hold the soil surface temperature at night, consequently leading to enhanced decomposition rates in plots with higher nighttime surface temperatures. Therefore, our study confirmed the critical role of microclimate for wood decomposition in forests and showed that soil microbial properties alone were not sufficient to predict wood decay. We conclude that tree diversity effects on ecosystem functions may include different biodiversity facets, such as tree identity, tree traits, and functional and structural diversity, in influencing the abiotic and biotic soil properties.
Collapse
Affiliation(s)
- Felix Gottschall
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Sophie Davids
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Till E. Newiger‐Dous
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Harald Auge
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Department of Community EcologyHelmholtz‐Centre for Environmental Research – UFZHalleGermany
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| |
Collapse
|
49
|
Eisenhauer N, Bonkowski M, Brose U, Buscot F, Durka W, Ebeling A, Fischer M, Gleixner G, Heintz-Buschart A, Hines J, Jesch A, Lange M, Meyer S, Roscher C, Scheu S, Schielzeth H, Schloter M, Schulz S, Unsicker S, van Dam N, Weigelt A, Weisser W, Wirth C, Wolf J, Schmid B. Biotic interactions, community assembly, and eco-evolutionary dynamics as drivers of long-term biodiversity–ecosystem functioning relationships. RESEARCH IDEAS AND OUTCOMES 2019. [DOI: 10.3897/rio.5.e47042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The functioning and service provisioning of ecosystems in the face of anthropogenic environmental and biodiversity change is a cornerstone of ecological research. The last three decades of biodiversity–ecosystem functioning (BEF) research have provided compelling evidence for the significant positive role of biodiversity in the functioning of many ecosystems. Despite broad consensus of this relationship, the underlying ecological and evolutionary mechanisms have not been well understood. This complicates the transition from a description of patterns to a predictive science. The proposed Research Unit aims at filling this gap of knowledge by applying novel experimental and analytical approaches in one of the longest-running biodiversity experiments in the world: the Jena Experiment. The central aim of the Research Unit is to uncover the mechanisms that determine BEF relationships in the short- and in the long-term. Increasing BEF relationships with time in long-term experiments do not only call for a paradigm shift in the appreciation of the relevance of biodiversity change, they likely are key to understanding the mechanisms of BEF relationships in general. The subprojects of the proposed Research Unit fall into two tightly linked main categories with two research areas each that aim at exploring variation in community assembly processes and resulting differences in biotic interactions as determinants of the long-term BEF relationship. Subprojects under “Microbial community assembly” and “Assembly and functions of animal communities” mostly focus on plant diversity effects on the assembly of communities and their feedback effects on biotic interactions and ecosystem functions. Subprojects under “Mediators of plant-biotic interactions” and “Intraspecific diversity and micro-evolutionary changes” mostly focus on plant diversity effects on plant trait expression and micro-evolutionary adaptation, and subsequent feedback effects on biotic interactions and ecosystem functions. This unification of evolutionary and ecosystem processes requires collaboration across the proposed subprojects in targeted plant and soil history experiments using cutting-edge technology and will produce significant synergies and novel mechanistic insights into BEF relationships. The Research Unit of the Jena Experiment is uniquely positioned in this context by taking an interdisciplinary and integrative approach to capture whole-ecosystem responses to changes in biodiversity and to advance a vibrant research field.
Collapse
|
50
|
Eisenhauer N, Schielzeth H, Barnes AD, Barry K, Bonn A, Brose U, Bruelheide H, Buchmann N, Buscot F, Ebeling A, Ferlian O, Freschet GT, Giling DP, Hättenschwiler S, Hillebrand H, Hines J, Isbell F, Koller-France E, König-Ries B, de Kroon H, Meyer ST, Milcu A, Müller J, Nock CA, Petermann JS, Roscher C, Scherber C, Scherer-Lorenzen M, Schmid B, Schnitzer SA, Schuldt A, Tscharntke T, Türke M, van Dam NM, van der Plas F, Vogel A, Wagg C, Wardle DA, Weigelt A, Weisser WW, Wirth C, Jochum M. A multitrophic perspective on biodiversity-ecosystem functioning research. ADV ECOL RES 2019; 61:1-54. [PMID: 31908360 PMCID: PMC6944504 DOI: 10.1016/bs.aecr.2019.06.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Concern about the functional consequences of unprecedented loss in biodiversity has prompted biodiversity-ecosystem functioning (BEF) research to become one of the most active fields of ecological research in the past 25 years. Hundreds of experiments have manipulated biodiversity as an independent variable and found compelling support that the functioning of ecosystems increases with the diversity of their ecological communities. This research has also identified some of the mechanisms underlying BEF relationships, some context-dependencies of the strength of relationships, as well as implications for various ecosystem services that mankind depends upon. In this paper, we argue that a multitrophic perspective of biotic interactions in random and non-random biodiversity change scenarios is key to advance future BEF research and to address some of its most important remaining challenges. We discuss that the study and the quantification of multitrophic interactions in space and time facilitates scaling up from small-scale biodiversity manipulations and ecosystem function assessments to management-relevant spatial scales across ecosystem boundaries. We specifically consider multitrophic conceptual frameworks to understand and predict the context-dependency of BEF relationships. Moreover, we highlight the importance of the eco-evolutionary underpinnings of multitrophic BEF relationships. We outline that FAIR data (meeting the standards of findability, accessibility, interoperability, and reusability) and reproducible processing will be key to advance this field of research by making it more integrative. Finally, we show how these BEF insights may be implemented for ecosystem management, society, and policy. Given that human well-being critically depends on the multiple services provided by diverse, multitrophic communities, integrating the approaches of evolutionary ecology, community ecology, and ecosystem ecology in future BEF research will be key to refine conservation targets and develop sustainable management strategies.
Collapse
Affiliation(s)
- Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Holger Schielzeth
- Department of Population Ecology, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
| | - Andrew D Barnes
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Kathryn Barry
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Aletta Bonn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- EcoNetLab, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology / Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle (Saale), Germany
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zurich, Universitätstr. 2, 8092 Zurich, Switzerland
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- UFZ - Helmholtz Centre for Environmental Research, Soil Ecology Department, Theodor-Lieser-Straße 4, 06120 Halle Saale, Germany
| | - Anne Ebeling
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Grégoire T Freschet
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE), 1919 Route de Mende, Montpellier 34293, France
| | - Darren P Giling
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
| | - Stephan Hättenschwiler
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE), 1919 Route de Mende, Montpellier 34293, France
| | - Helmut Hillebrand
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute for Chemistry and Biology of Marine Environments [ICBM], Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany
| | - Jes Hines
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Forest Isbell
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN 55108, USA
| | - Eva Koller-France
- Karlsruher Institut für Technologie (KIT), Institut für Geographie und Geoökologie, Reinhard-Baumeister-Platz 1, 76131 Karlsruhe, Germany
| | - Birgitta König-Ries
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Computer Science, Friedrich Schiller Universität Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
| | - Hans de Kroon
- Radboud University, Institute for Water and Wetland Research, Animal Ecology and Physiology & Experimental Plant Ecology, PO Box 9100, 6500 GL Nijmegen, The Netherlands
| | - Sebastian T Meyer
- Terrestrial Ecology Research Group, Technical University of Munich, School of Life Sciences Weihenstephan, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Alexandru Milcu
- Ecotron Européen de Montpellier, Centre National de la Recherche Scientifique (CNRS), Unité Propre de Service 3248, Campus Baillarguet, Montferrier-sur-Lez, France
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE), 1919 Route de Mende, Montpellier 34293, France
| | - Jörg Müller
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Glashüttenstraße 5, 96181 Rauhenebrach, Germany
- Bavarian Forest National Park, Freyunger Str. 2, 94481 Grafenau, Germany
| | - Charles A Nock
- Geobotany, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
- Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, Canada, T6G 2H1
| | - Jana S Petermann
- Department of Biosciences, University of Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria
| | - Christiane Roscher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- UFZ - Helmholtz Centre for Environmental Research, Department Physiological Diversity, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Christoph Scherber
- Institute of Landscape Ecology, University of Münster, Heisenbergstr. 2, 48149 Münster, Germany
| | - Michael Scherer-Lorenzen
- Geobotany, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
| | - Bernhard Schmid
- Department of Geography, University of Zürich, 190 Winterthurerstrasse, 8057, Zürich, Switzerland
| | | | - Andreas Schuldt
- Forest Nature Conservation, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Buesgenweg 3, 37077 Goettingen, Germany
| | - Teja Tscharntke
- Agroecology, Dept. of Crop Sciences, University of Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Germany
| | - Manfred Türke
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München (HMGU) - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany
| | - Fons van der Plas
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Anja Vogel
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
| | - Cameron Wagg
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, E3B 8B7, Fredericton, Canada
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, 190 Winterthurerstrasse, 8057, Zürich, Switzerland
| | - David A Wardle
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Alexandra Weigelt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Wolfgang W Weisser
- Terrestrial Ecology Research Group, Technical University of Munich, School of Life Sciences Weihenstephan, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Malte Jochum
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| |
Collapse
|