1
|
Athar F, Zheng Z, Riquier S, Zacher M, Lu JY, Zhao Y, Volobaev V, Alcock D, Galazyuk A, Cooper LN, Schountz T, Wang LF, Teeling EC, Seluanov A, Gorbunova V. Limited cell-autonomous anticancer mechanisms in long-lived bats. Nat Commun 2025; 16:4125. [PMID: 40319021 PMCID: PMC12049446 DOI: 10.1038/s41467-025-59403-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2025] [Indexed: 05/07/2025] Open
Abstract
Several bat species live >20-40 years, suggesting that they possess efficient anti-aging and anti-cancer defenses. Here we investigate the requirements for malignant transformation in primary fibroblasts from four bat species Myotis lucifugus, Eptesicus fuscus, Eonycteris spelaea, and Artibeus jamaicensis - spanning the bat evolutionary tree and including the longest-lived genera. We show that bat fibroblasts do not undergo replicative senescence, express active telomerase, and show attenuated SIPs with dampened secretory phenotype. Unexpectedly, unlike other long-lived mammals, bat fibroblasts are readily transformed by two oncogenic "hits": inactivation of p53 or pRb and activation of HRASG12V. Bat fibroblasts exhibit increased TP53 and MDM2 transcripts and elevated p53-dependent apoptosis. M. lucifugus shows a genomic duplication of TP53. We hypothesize that some bat species have evolved enhanced p53 activity as an additional anti-cancer strategy, similar to elephants. Further, the absence of unique cell-autonomous tumor suppressive mechanisms may suggest that in vivo bats may rely on enhanced immunosurveillance.
Collapse
Affiliation(s)
- Fathima Athar
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Zhizhong Zheng
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Sebastien Riquier
- School of Biology and Environmental Science, Belfield, University College Dublin, Dublin, Ireland
| | - Max Zacher
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - J Yuyang Lu
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | - Dominic Alcock
- School of Biology and Environmental Science, Belfield, University College Dublin, Dublin, Ireland
| | - Alex Galazyuk
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Lisa Noelle Cooper
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
| | - Emma C Teeling
- School of Biology and Environmental Science, Belfield, University College Dublin, Dublin, Ireland
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
2
|
Melville DW, Meyer M, Kümmerle C, Alvarado-Barrantes KA, Wilhelm K, Sommer S, Tschapka M, Risely A. Delayed feeding disrupts diurnal oscillations in the gut microbiome of a neotropical bat in captivity. FEMS Microbiol Ecol 2025; 101:fiaf012. [PMID: 39844346 PMCID: PMC11783575 DOI: 10.1093/femsec/fiaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/05/2025] [Accepted: 01/21/2025] [Indexed: 01/24/2025] Open
Abstract
Diurnal rhythms of the gut microbiota are emerging as an important yet often overlooked facet of microbial ecology. Feeding is thought to stimulate gut microbial rhythmicity, but this has not been explicitly tested. Moreover, the role of the gut environment is entirely unexplored, with rhythmic changes to gut pH rather than feeding per se possibly affecting gut microbial fluctuations. In this study, we experimentally manipulated the feeding schedule of captive lesser long-nosed bats, Leptonycteris yerbabuenae, to dissociate photic and feeding cues, and measured the faecal microbiota and gut pH every 2 h. We detected strong diurnal rhythms in both microbial alpha diversity and beta diversity as well as in pH within the control group. However, a delay in feeding disrupted oscillations of gut microbial diversity and composition, but did not affect rhythms in gut pH. The oscillations of some genera, such as Streptococcus, which aid in metabolizing nutrients, shifted in accordance with the delayed-feeding cue and were correlated with pH. For other bacterial genera, oscillations were disturbed and no connection to pH was found. Our findings suggest that the rhythmic proliferation of bacteria matches peak feeding times, providing evidence that diurnal rhythms of the gut microbiota likely evolved to optimize their metabolic support to the host's circadian phenotype.
Collapse
Affiliation(s)
- Dominik W Melville
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Magdalena Meyer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Corbinian Kümmerle
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | | | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Marco Tschapka
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Alice Risely
- School of Science, Engineering and Environment, Salford University, M5 4WT Manchester, United Kingdom
| |
Collapse
|
3
|
Melville DW, Meyer M, Risely A, Wilhelm K, Baldwin HJ, Badu EK, Nkrumah EE, Oppong SK, Schwensow N, Tschapka M, Vallo P, Corman VM, Drosten C, Sommer S. Hibecovirus (genus Betacoronavirus) infection linked to gut microbial dysbiosis in bats. ISME COMMUNICATIONS 2025; 5:ycae154. [PMID: 40134608 PMCID: PMC11936109 DOI: 10.1093/ismeco/ycae154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/05/2024] [Accepted: 12/14/2024] [Indexed: 03/27/2025]
Abstract
Little is known about how zoonotic virus infections manifest in wildlife reservoirs. However, a common health consequence of enteric virus infections is gastrointestinal diseases following a shift in gut microbial composition. The sub-Saharan hipposiderid bat complex has recently emerged to host at least three coronaviruses (CoVs), with Hipposideros caffer D appearing particularly susceptible to Hibecovirus CoV-2B infection. In this study, we complement body condition and infection status data with information about the gut microbial community to understand the health impact of CoV infections in a wild bat population. Of the three CoVs, only infections with the distantly SARS-related Hibecovirus CoV-2B were associated with lower body condition and altered the gut microbial diversity and composition. The gut microbial community of infected bats became progressively less diverse and more dissimilar with infection intensity, arguing for dysbiosis as per the Anna Karenina principle. Putatively beneficial bacteria, such as Alistipes and Christensenella, decreased with infection intensity, while potentially pathogenic bacteria, namely Mycoplasma and Staphylococcus, increased. Infections with enterically replicating viruses may therefore cause changes in body condition and gut dysbiosis with potential negative health consequences even in virus reservoirs. We argue that high-resolution data on multiple health markers, ideally including microbiome information, will provide a more nuanced picture of bat disease ecology.
Collapse
Affiliation(s)
- Dominik W Melville
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
| | - Magdalena Meyer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
| | - Alice Risely
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
- School of Science, Engineering, and the Environment, Salford University, Salford M5 4NT, UK
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
| | - Heather J Baldwin
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2113, Australia
| | - Ebenezer K Badu
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, AK-385-1973, Kumasi, Ghana
| | - Evans Ewald Nkrumah
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, AK-385-1973, Kumasi, Ghana
| | - Samuel Kingsley Oppong
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, AK-385-1973, Kumasi, Ghana
| | - Nina Schwensow
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
| | - Marco Tschapka
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
| | - Peter Vallo
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno 675 02, Czech Republic
| | - Victor M Corman
- German Centre for Infection Research (DZIF) and Charité—Universitätsmedizin Berlin Institute of Virology, Berlin 10117, Germany
| | - Christian Drosten
- German Centre for Infection Research (DZIF) and Charité—Universitätsmedizin Berlin Institute of Virology, Berlin 10117, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
| |
Collapse
|
4
|
Pollard MD, Meyer WK, Puckett EE. Convergent relaxation of molecular constraint in herbivores reveals the changing role of liver and kidney functions across mammalian diets. Genome Res 2024; 34:2176-2189. [PMID: 39578099 PMCID: PMC11694762 DOI: 10.1101/gr.278930.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024]
Abstract
Mammalia comprises a great diversity of diet types and associated adaptations. An understanding of the genomic mechanisms underlying these adaptations may offer insights for improving human health. Comparative genomic studies of diet that employ taxonomically restricted analyses or simplified diet classifications may suffer reduced power to detect molecular convergence associated with diet evolution. Here, we use a quantitative carnivory score-indicative of the amount of animal protein in the diet-for 80 mammalian species to detect significant correlations between the relative evolutionary rates of genes and changes in diet. We have identified six genes-ACADSB, CLDN16, CPB1, PNLIP, SLC13A2, and SLC14A2-that experienced significant changes in evolutionary constraint alongside changes in carnivory score, becoming less constrained in lineages evolving more herbivorous diets. We further consider the biological functions associated with diet evolution and observe that pathways related to amino acid and lipid metabolism, biological oxidation, and small molecule transport experienced reduced purifying selection as lineages became more herbivorous. Liver and kidney functions show similar patterns of constraint with dietary change. Our results indicate that these functions are important for the consumption of animal matter and become less important with the evolution of increasing herbivory. So, genes expressed in these tissues experience a relaxation of evolutionary constraint in more herbivorous lineages.
Collapse
Affiliation(s)
- Matthew D Pollard
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee 38152, USA;
- Center for Biodiversity Research, University of Memphis, Memphis, Tennessee 38152, USA
| | - Wynn K Meyer
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Emily E Puckett
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee 38152, USA
- Center for Biodiversity Research, University of Memphis, Memphis, Tennessee 38152, USA
| |
Collapse
|
5
|
Liu G, Pan Q, Zhu P, Guo X, Zhang Z, Li Z, Zhang Y, Zhang X, Wang J, Liu W, Hu C, Yu Y, Wang X, Chen W, Li M, Yu W, Liu X, Seim I, Fan G, Zhou X. Comparative Genomics Provides Insights into Adaptive Evolution and Demographics of Bats. Mol Biol Evol 2024; 41:msae208. [PMID: 39530650 DOI: 10.1093/molbev/msae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/14/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Bats possess a range of distinctive characteristics, including flight, echolocation, impressive longevity, and the ability to harbor various zoonotic pathogens. Additionally, they account for the second-highest species diversity among mammalian orders, yet their phylogenetic relationships and demographic history remain underexplored. Here, we generated de novo assembled genomes for 17 bat species and 2 of their mammalian relatives (the Amur hedgehog and Chinese mole shrew), with 12 genomes reaching chromosome-level assembly. Comparative genomics and ChIP-seq assays identified newly gained genomic regions in bats potentially linked to the regulation of gene activity and expression. Notably, some antiviral infection-related gene under positive selection exhibited the activity of suppressing cancer, evidencing the linkage between virus tolerance and cancer resistance in bats. By integrating published bat genome assemblies, phylogenetic reconstruction established the proximity of noctilionoid bats to vesper bats. Interestingly, we found 2 distinct patterns of ancient population dynamics in bats and population changes since the last glacial maximum does not reflect species phylogenetic relationships. These findings enriched our understanding of adaptive mechanisms and demographic history of bats.
Collapse
Affiliation(s)
- Gaoming Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pingfen Zhu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Zhan Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihao Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Xiaoxiao Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Weiqiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyan Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yu
- School of Life Sciences, University of Science and Technology of China, Anhui 230026, China
| | - Xiao Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weixiao Chen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenhua Yu
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510000, China
| | - Xin Liu
- BGI Research, Beijing 100101, China
| | - Inge Seim
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing 210023, China
| | - Guangyi Fan
- BGI Research, Qingdao 266555, China
- BGI Research, Shenzhen 518083, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Han CJ, Huang JP, Chiang MR, Jean OSM, Nand N, Etebari K, Shelomi M. The hindgut microbiota of coconut rhinoceros beetles ( Oryctes rhinoceros) in relation to their geographical populations. Appl Environ Microbiol 2024; 90:e0098724. [PMID: 39311575 PMCID: PMC11497824 DOI: 10.1128/aem.00987-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/22/2024] [Indexed: 10/25/2024] Open
Abstract
The coconut rhinoceros beetle (CRB, Oryctes rhinoceros) is a palm tree pest capable of rapidly expanding its population in new territories. Previous studies identified a digestive symbiosis between CRB and its gut microbes. However, no research compared the genetic variation of CRBs with their hindgut microbiota on a global scale. This study aims to investigate the genetic divergence of CRB and the compositional variation of CRB's microbiota across different geographical locations, and explore the association between them and their predicted functional profiles and environmental data. The research reveals a distinct and consistent microbial community within local populations, but it varies across different geographical populations. The microbial functional profiles linked to the production of digestive enzymes, including cellulases and ligninases, are nonetheless globally conserved. This suggests that CRBs employ specific mechanisms to select and maintain microbes with functional benefits, contributing to host adaptability, stress tolerance, and fitness. The CRB microbial communities did not appear to recapitulate the genetic variation of their hosts. Rather than depend on obligate symbionts, CRBs seem to establish similar digestive associations with whatever environmentally acquired microbes are available wherever they are, aiding them in successfully establishing after invading a new location.IMPORTANCECoconut rhinoceros beetles (CRBs) are notorious pests on Arecaceae plants, posing destructive threats to countries highly reliant on coconut, oil palm, and date palm as economic crops. In the last century, CRBs have rapidly expanded their presence to territories that were once free of these beetles. The United States, for instance, has officially designated CRBs as invasive and alien pests. Given their remarkable ability to swiftly adapt to new environments, their gut microbes may play a crucial role in this process. While the microbiota of CRBs vary depending on geographical location, these beetles consistently exhibit a functionally identical digestive association with locally acquired microbes. This underscores the significance of CRB-microbe association in shaping the adaptive strategies of this agricultural pest.
Collapse
Affiliation(s)
- Chiao-Jung Han
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Jen-Pan Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Min-Rou Chiang
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | | | - Nitesh Nand
- Plant Health Laboratory, The Pacific Community, Suva, Fiji
| | - Kayvan Etebari
- Faculty of Science, School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Australia
| | - Matan Shelomi
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Bazzoni E, Cacciotto C, Zobba R, Pittau M, Martella V, Alberti A. Bat Ecology and Microbiome of the Gut: A Narrative Review of Associated Potentials in Emerging and Zoonotic Diseases. Animals (Basel) 2024; 14:3043. [PMID: 39457973 PMCID: PMC11504201 DOI: 10.3390/ani14203043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
In this review, we tentatively tried to connect the most recent findings on the bat microbiome and to investigate on their microbial communities, that may vary even in conspecific hosts and are influenced by host physiology, feeding behavior and diet, social interactions, but also by habitat diversity and climate change. From a conservation perspective, understanding the potentially negative and indirect effects of habitat destruction on animal microbiota can also play a crucial role in the conservation and management of the host itself. According to the One Health concept, which recognizes an interdependence between humans, animals, and the environment, bat microbiota represents an indicator of host and environmental health, besides allowing for evaluation of the risk of emerging infectious diseases. We noticed that a growing number of studies suggest that animal microbiota may respond in various ways to changes in land use, particularly when such changes lead to altered or deficient food resources. We have highlighted that the current literature is strongly focused on the initial phase of investigating the microbial communities found in Chiroptera from various habitats. However, there are gaps in effectively assessing the impacts of pathogens and microbial communities in general in animal conservation, veterinary, and public health. A deeper understanding of bat microbiomes is paramount to the implementation of correct habitat and host management and to the development of effective surveillance protocols worldwide.
Collapse
Affiliation(s)
- Emanuela Bazzoni
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (E.B.); (R.Z.); (M.P.)
| | - Carla Cacciotto
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (E.B.); (R.Z.); (M.P.)
- Mediterranean Center for Disease Control, 07100 Sassari, Italy
| | - Rosanna Zobba
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (E.B.); (R.Z.); (M.P.)
| | - Marco Pittau
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (E.B.); (R.Z.); (M.P.)
- Mediterranean Center for Disease Control, 07100 Sassari, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University Aldo Moro of Bari, 70010 Bari, Italy;
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Alberto Alberti
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (E.B.); (R.Z.); (M.P.)
- Mediterranean Center for Disease Control, 07100 Sassari, Italy
| |
Collapse
|
8
|
Fischer MT, Xue KS, Costello EK, Dvorak M, Raboisson G, Robaczewska A, Caty SN, Relman DA, O’Connell LA. Effects of parental care on skin microbial community composition in poison frogs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612488. [PMID: 39314287 PMCID: PMC11419107 DOI: 10.1101/2024.09.11.612488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Parent-offspring interactions constitute the first contact of many newborns with their environment, priming community assembly of microbes through priority effects. Early exposure to microbes can have lasting influences on the assembly and functionality of the host's microbiota, leaving a life-long imprint on host health and disease. Studies of the role played by parental care in microbial acquisition have primarily focused on humans and hosts with agricultural relevance. Anuran vertebrates offer the opportunity to examine microbial community composition across life stages as a function of parental investment. In this study, we investigate vertical transmission of microbiota during parental care in a poison frog (Family Dendrobatidae), where fathers transport their offspring piggyback-style from terrestrial clutches to aquatic nurseries. We found that substantial bacterial colonization of the embryo begins after hatching from the vitelline envelope, emphasizing its potential role as microbial barrier during early development. Using a laboratory cross-foster experiment, we demonstrated that poison frogs performing tadpole transport serve as a source of skin microbes for tadpoles on their back. To study how transport impacts the microbial skin communities of tadpoles in an ecologically relevant setting, we sampled frogs and tadpoles of sympatric species that do or do not exhibit tadpole transport in their natural habitat. We found more diverse microbial communities associated with tadpoles of transporting species compared to a non-transporting frog. However, we detected no difference in the degree of similarity between adult and tadpole skin microbiotas, based on whether the frog species exhibits transporting behavior or not. Using a field experiment, we confirmed that tadpole transport can result in the persistent colonization of tadpoles by isolated microbial taxa associated with the caregiver's skin, albeit often at low prevalence. This is the first study to describe vertical transmission of skin microbes in anuran amphibians, showing that offspring transport may serve as a mechanism for transmission of parental skin microbes. Overall, these findings provide a foundation for further research on how vertical transmission in this order impacts host-associated microbiota and physiology.
Collapse
Affiliation(s)
| | - Katherine S. Xue
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth K. Costello
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mai Dvorak
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Gaëlle Raboisson
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Anna Robaczewska
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - David A. Relman
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Lauren A. O’Connell
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Institute for Neuroscience, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Williams CE, Fontaine SS. Commentary: The microbial dependence continuum: Towards a comparative physiology approach to understand host reliance on microbes. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111690. [PMID: 38964709 DOI: 10.1016/j.cbpa.2024.111690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Comparative physiologists often compare physiological traits across organisms to understand the selective pressures influencing their evolution in different environments. Traditionally focused on the organisms themselves, comparative physiology has more recently incorporated studies of the microbiome-the communities of microbes living in and on animals that influence host physiology. In this commentary, we describe the utility of applying a comparative framework to study the microbiome, particularly in understanding how hosts vary in their dependence on microbial communities for physiological function, a concept we term the "microbial dependence continuum". This hypothesis suggests that hosts exist on a spectrum ranging from high to low reliance on their microbiota. Certain physiological traits may be highly dependent on microbes for proper function in some species but microbially independent in others. Comparative physiology can elucidate the selective pressures driving species along this continuum. Here, we discuss the microbial dependence continuum in detail and how comparative physiology can be useful to study it. Then, we discuss two example traits, herbivory and flight, where comparative physiology has helped reveal the selective pressures influencing host dependence on microbial communities. Lastly, we discuss useful experimental approaches for studying the microbial dependence continuum in a comparative physiology context.
Collapse
Affiliation(s)
- Claire E Williams
- University of Nevada, Department of Biology, 1664 N Virginia St, Reno, NV 89557, USA.
| | - Samantha S Fontaine
- Kent State University, Department of Biological Sciences, 800 E Summit St, Kent, OH, USA. https://twitter.com/sammiefontaine
| |
Collapse
|
10
|
Ma Z, Zuo T, Frey N, Rangrez AY. A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther 2024; 9:237. [PMID: 39307902 PMCID: PMC11418828 DOI: 10.1038/s41392-024-01946-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
The human microbiome is a complex and dynamic system that plays important roles in human health and disease. However, there remain limitations and theoretical gaps in our current understanding of the intricate relationship between microbes and humans. In this narrative review, we integrate the knowledge and insights from various fields, including anatomy, physiology, immunology, histology, genetics, and evolution, to propose a systematic framework. It introduces key concepts such as the 'innate and adaptive genomes', which enhance genetic and evolutionary comprehension of the human genome. The 'germ-free syndrome' challenges the traditional 'microbes as pathogens' view, advocating for the necessity of microbes for health. The 'slave tissue' concept underscores the symbiotic intricacies between human tissues and their microbial counterparts, highlighting the dynamic health implications of microbial interactions. 'Acquired microbial immunity' positions the microbiome as an adjunct to human immune systems, providing a rationale for probiotic therapies and prudent antibiotic use. The 'homeostatic reprogramming hypothesis' integrates the microbiome into the internal environment theory, potentially explaining the change in homeostatic indicators post-industrialization. The 'cell-microbe co-ecology model' elucidates the symbiotic regulation affecting cellular balance, while the 'meta-host model' broadens the host definition to include symbiotic microbes. The 'health-illness conversion model' encapsulates the innate and adaptive genomes' interplay and dysbiosis patterns. The aim here is to provide a more focused and coherent understanding of microbiome and highlight future research avenues that could lead to a more effective and efficient healthcare system.
Collapse
Affiliation(s)
- Ziqi Ma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
11
|
Lipowska MM, Sadowska ET, Kohl KD, Koteja P. Experimental Evolution of a Mammalian Holobiont? Genetic and Maternal Effects on the Cecal Microbiome in Bank Voles Selectively Bred for Herbivorous Capability. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:274-291. [PMID: 39680902 DOI: 10.1086/732781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
AbstractMammalian herbivory represents a complex adaptation requiring evolutionary changes across all levels of biological organization, from molecules to morphology to behavior. Explaining the evolution of such complex traits represents a major challenge in biology, as it is simultaneously muddled and enlightened by a growing awareness of the crucial role of symbiotic associations in shaping organismal adaptations. The concept of hologenomic evolution includes the partnered unit of the holobiont, the host with its microbiome, as a selection unit that may undergo adaptation. Here, we test some of the assumptions underlying the concept of hologenomic evolution using a unique experimental evolution model: lines of the bank vole (Myodes [=Clethrionomys] glareolus) selected for increased ability to cope with a low-quality herbivorous diet and unselected control lines. Results from a complex nature-nurture design, in which we combined cross-fostering between the selected and control lines with dietary treatment, showed that the herbivorous voles harbored a cecal microbiome with altered membership and structure and changed abundances of several phyla and genera regardless of the origin of their foster mothers. Although the differences were small, they were statistically significant and partially robust to changes in diet and housing conditions. Microbial characteristics also correlated with selection-related traits at the level of individual variation. Thus, the results support the hypothesis that selection on a host performance trait leads to genetic changes in the host that promote the maintenance of a beneficial microbiome. Such a result is consistent with some of the assumptions underlying the concept of hologenomic evolution.
Collapse
|
12
|
Camacho J, Bernal-Rivera A, Peña V, Morales-Sosa P, Robb SMC, Russell J, Yi K, Wang Y, Tsuchiya D, Murillo-García OE, Rohner N. Sugar assimilation underlying dietary evolution of Neotropical bats. Nat Ecol Evol 2024; 8:1735-1750. [PMID: 39198571 PMCID: PMC11383804 DOI: 10.1038/s41559-024-02485-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/27/2024] [Indexed: 09/01/2024]
Abstract
Dietary specializations in animals lead to adaptations in morphology, anatomy and physiology. Neotropical bats, with their high taxonomic and trophic diversity, offer a unique perspective on diet-driven evolutionary adaptations. Here we assess the metabolic response to different dietary sugars among wild-caught bats. We found that insectivorous bats had a pronounced metabolic response to trehalose, whereas bats with nectar and fruit-based diets showed significantly higher blood glucose levels in response to glucose and sucrose, reaching levels over 750 mg dl-1. The genomic analysis of 22 focal species and two outgroup species identified positive selection for the digestive enzyme trehalase in insect eaters, while sucrase-isomaltase showed selection in lineages with omnivorous and nectar diets. By examining anatomical and cellular features of the small intestine, we discovered that dietary sugar proportion strongly impacted numerous digestive traits, providing valuable insight into the physiological implications of molecular adaptations. Using hybridization chain reaction (HCR) RNA fluorescence in situ hybridization, we observed unusually high expression in the glucose transporter gene Slc2a2 in nectar bats, while fruit bats increased levels of Slc5a1 and Slc2a5. Overall, this study highlights the intricate interplay between molecular, morphological and physiological aspects of diet evolution, offering new insights into the mechanisms of dietary diversification and sugar assimilation in mammals.
Collapse
Affiliation(s)
- Jasmin Camacho
- Stowers Institute for Medical Research, Kansas City, MO, USA.
| | - Andrea Bernal-Rivera
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Grupo de Investigación en Ecología Animal, Departamento de Biología, Universidad del Valle, Cali, Colombia
| | - Valentina Peña
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Sofia M C Robb
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Kexi Yi
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Yongfu Wang
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Oscar E Murillo-García
- Grupo de Investigación en Ecología Animal, Departamento de Biología, Universidad del Valle, Cali, Colombia.
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
13
|
Ma C, Xu C, Zhang T, Mu Q, Lv J, Xing Q, Yang Z, Xu Z, Guan Y, Chen C, Ni K, Dai X, Ding W, Hu J, Bao Z, Wang S, Liu P. Tracking the hologenome dynamics in aquatic invertebrates by the holo-2bRAD approach. Commun Biol 2024; 7:827. [PMID: 38972908 PMCID: PMC11228047 DOI: 10.1038/s42003-024-06509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/26/2024] [Indexed: 07/09/2024] Open
Abstract
The "hologenome" concept is an increasingly popular way of thinking about microbiome-host for marine organisms. However, it is challenging to track hologenome dynamics because of the large amount of material, with tracking itself usually resulting in damage or death of the research object. Here we show the simple and efficient holo-2bRAD approach for the tracking of hologenome dynamics in marine invertebrates (i.e., scallop and shrimp) from one holo-2bRAD library. The stable performance of our approach was shown with high genotyping accuracy of 99.91% and a high correlation of r > 0.99 for the species-level profiling of microorganisms. To explore the host-microbe association underlying mass mortality events of bivalve larvae, core microbial species changed with the stages were found, and two potentially associated host SNPs were identified. Overall, our research provides a powerful tool with various advantages (e.g., cost-effective, simple, and applicable for challenging samples) in genetic, ecological, and evolutionary studies.
Collapse
Affiliation(s)
- Cen Ma
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, China
| | - Chang Xu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Tianqi Zhang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qianqian Mu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Jia Lv
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China
| | - Qiang Xing
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, China
| | - Zhihui Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Zhenyuan Xu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Yalin Guan
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Chengqin Chen
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Kuo Ni
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoting Dai
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Institute of Gerontology, Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Wei Ding
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jingjie Hu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Zhenmin Bao
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Shi Wang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Pingping Liu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China.
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China.
| |
Collapse
|
14
|
Mena Canata DA, Benfato MS, Pereira FD, Ramos Pereira MJ, Hackenhaar FS, Mann MB, Frazzon APG, Rampelotto PH. Comparative Analysis of the Gut Microbiota of Bat Species with Different Feeding Habits. BIOLOGY 2024; 13:363. [PMID: 38927243 PMCID: PMC11200740 DOI: 10.3390/biology13060363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Bats are a diverse and ecologically important group of mammals that exhibit remarkable diversity in their feeding habits. These diverse feeding habits are thought to be reflected in the composition and function of their gut microbiota, which plays important roles in nutrient acquisition, immune function, and overall health. Despite the rich biodiversity of bat species in South America, there is a lack of microbiome studies focusing on bats from this region. Such studies could offer major insights into conservation efforts and the preservation of biodiversity in South America. In this work, we aimed to compare the gut microbiota of four bat species with different feeding habits from Southern Brazil, including nectarivorous, frugivorous, insectivorous, and hematophagous bats. Our findings demonstrate that feeding habits can have a significant impact on the diversity and composition of bat gut microbiotas, with each species exhibiting unique metabolic potentials related to their dietary niches. In addition, the identification of potentially pathogenic bacteria suggests that the carriage of microbial pathogens by bats may vary, depending on feeding habits and host-specific factors. These findings provide novel insights into the relationship between bat feeding habits and gut microbiota composition, highlighting the need to promote diverse habitats and food sources to support these ecologically important species.
Collapse
Affiliation(s)
- Diego Antonio Mena Canata
- Biophysics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Graduate Program in Cellular and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Mara Silveira Benfato
- Biophysics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Graduate Program in Cellular and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Francielly Dias Pereira
- Biophysics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Graduate Program in Cellular and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - María João Ramos Pereira
- Graduate Program in Animal Biology, Laboratory of Evolution, Systematics and Ecology of Birds and Mammals, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | | | - Michele Bertoni Mann
- Graduate Program in Agricole and Environmental Microbiology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Ana Paula Guedes Frazzon
- Graduate Program in Agricole and Environmental Microbiology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Pabulo Henrique Rampelotto
- Bioinformatics and Biostatistics Core Facility, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| |
Collapse
|
15
|
Bouilloud M, Galan M, Pradel J, Loiseau A, Ferrero J, Gallet R, Roche B, Charbonnel N. Exploring the potential effects of forest urbanization on the interplay between small mammal communities and their gut microbiota. Anim Microbiome 2024; 6:16. [PMID: 38528597 DOI: 10.1186/s42523-024-00301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Urbanization significantly impacts wild populations, favoring urban dweller species over those that are unable to adapt to rapid changes. These differential adaptative abilities could be mediated by the microbiome, which may modulate the host phenotype rapidly through a high degree of flexibility. Conversely, under anthropic perturbations, the microbiota of some species could be disrupted, resulting in dysbiosis and negative impacts on host fitness. The links between the impact of urbanization on host communities and their gut microbiota (GM) have only been scarcely explored. In this study, we tested the hypothesis that the bacterial composition of the GM could play a role in host adaptation to urban environments. We described the GM of several species of small terrestrial mammals sampled in forested areas along a gradient of urbanization, using a 16S metabarcoding approach. We tested whether urbanization led to changes in small mammal communities and in their GM, considering the presence and abundance of bacterial taxa and their putative functions. This enabled to decipher the processes underlying these changes. We found potential impacts of urbanization on small mammal communities and their GM. The urban dweller species had a lower bacterial taxonomic diversity but a higher functional diversity and a different composition compared to urban adapter species. Their GM assembly was mostly governed by stochastic effects, potentially indicating dysbiosis. Selection processes and an overabundance of functions were detected that could be associated with adaptation to urban environments despite dysbiosis. In urban adapter species, the GM functional diversity and composition remained relatively stable along the urbanization gradient. This observation can be explained by functional redundancy, where certain taxa express the same function. This could favor the adaptation of urban adapter species in various environments, including urban settings. We can therefore assume that there are feedbacks between the gut microbiota and host species within communities, enabling rapid adaptation.
Collapse
Affiliation(s)
- Marie Bouilloud
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France.
- Centre de Biologie pour la Gestion des Populations, 750 Avenue Agropolis, 34988, Montferrier sur Lez, France.
| | - Maxime Galan
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Julien Pradel
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Anne Loiseau
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Julien Ferrero
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Romain Gallet
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - Benjamin Roche
- MIVEGEC, IRD, CNRS, Univ Montpellier, Montpellier, France
| | - Nathalie Charbonnel
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| |
Collapse
|
16
|
Riopelle JC, Shamsaddini A, Holbrook MG, Bohrnsen E, Zhang Y, Lovaglio J, Cordova K, Hanley P, Kendall LV, Bosio CM, Schountz T, Schwarz B, Munster VJ, Port JR. Sex differences and individual variability in the captive Jamaican fruit bat (Artibeus jamaicensis) intestinal microbiome and metabolome. Sci Rep 2024; 14:3381. [PMID: 38336916 PMCID: PMC10858165 DOI: 10.1038/s41598-024-53645-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
The intestinal microbiome plays an important role in mammalian health, disease, and immune function. In light of this function, recent studies have aimed to characterize the microbiomes of various bat species, which are noteworthy for their roles as reservoir hosts for several viruses known to be highly pathogenic in other mammals. Despite ongoing bat microbiome research, its role in immune function and disease, especially the effects of changes in the microbiome on host health, remains nebulous. Here, we describe a novel methodology to investigate the intestinal microbiome of captive Jamaican fruit bats (Artibeus jamaicensis). We observed a high degree of individual variation in addition to sex- and cohort-linked differences. The intestinal microbiome was correlated with intestinal metabolite composition, possibly contributing to differences in immune status. This work provides a basis for future infection and field studies to examine in detail the role of the intestinal microbiome in antiviral immunity.
Collapse
Affiliation(s)
- Jade C Riopelle
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Amirhossein Shamsaddini
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Myndi G Holbrook
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Eric Bohrnsen
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Yue Zhang
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kathleen Cordova
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Patrick Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lon V Kendall
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Catharine M Bosio
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Benjamin Schwarz
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Julia R Port
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
17
|
Härer A, Rennison DJ. Gut Microbiota Uniqueness Is Associated with Lake Size, a Proxy for Diet Diversity, in Stickleback Fish. Am Nat 2024; 203:284-291. [PMID: 38306277 DOI: 10.1086/727703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
AbstractOrganismal divergence can be driven by differential resource use and adaptation to different trophic niches. Variation in diet is a major factor shaping the gut microbiota, which is crucial for many aspects of their hosts' biology. However, it remains largely unknown how host diet diversity affects the gut microbiota, and it could be hypothesized that trophic niche width is positively associated with gut microbiota diversity. To test this idea, we sequenced the 16S ribosomal RNA gene from intestinal tissue of 14 threespine stickleback populations from lakes of varying size on Vancouver Island, Canada, that have been shown to differ in trophic niche width. Using lake size as a proxy for trophic ecology, we found evidence for higher gut microbiota uniqueness among individuals from populations with broader trophic niches. While these results suggest that diet diversity might promote gut microbiota diversity, additional work investigating diet and gut microbiota variation of the same host organisms will be necessary. Yet our results motivate the question of how host population diversity (e.g., ecological, morphological, genetic) might interact with the gut microbiota during the adaptation to ecological niches.
Collapse
|
18
|
Jern P, Greenwood AD. Wildlife endogenous retroviruses: colonization, consequences, and cooption. Trends Genet 2024; 40:149-159. [PMID: 37985317 DOI: 10.1016/j.tig.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Endogenous retroviruses (ERVs) are inherited genomic remains of past germline retroviral infections. Research on human ERVs has focused on medical implications of their dysregulation on various diseases. However, recent studies incorporating wildlife are yielding remarkable perspectives on long-term retrovirus-host interactions. These initial forays into broader taxonomic analysis, including sequencing of multiple individuals per species, show the incredible plasticity and variation of ERVs within and among wildlife species. This demonstrates that stochastic processes govern much of the vertebrate genome. In this review, we elaborate on discoveries pertaining to wildlife ERV origins and evolution, genome colonization, and consequences for host biology.
Collapse
Affiliation(s)
- Patric Jern
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany; School of Veterinary Medicine, Freie Unversität Berlin, Berlin, Germany.
| |
Collapse
|
19
|
Fleischer R, Jones C, Ledezma-Campos P, Czirják GÁ, Sommer S, Gillespie TR, Vicente-Santos A. Gut microbial shifts in vampire bats linked to immunity due to changed diet in human disturbed landscapes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167815. [PMID: 37852483 DOI: 10.1016/j.scitotenv.2023.167815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/14/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Anthropogenic land-use change alters wildlife habitats and modifies species composition, diversity, and contacts among wildlife, livestock, and humans. Such human-modified ecosystems have been associated with emerging infectious diseases, threatening human and animal health. However, human disturbance also creates new resources that some species can exploit. Common vampire bats (Desmodus rotundus) in Latin America constitute an important example, as their adaptation to human-modified habitats and livestock blood-feeding has implications for e.g., rabies transmission. Despite the well-known links between habitat degradation and disease emergence, few studies have explored how human-induced disturbance influences wildlife behavioural ecology and health, which can alter disease dynamics. To evaluate links among habitat disturbance, diet shifts, gut microbiota, and immunity, we quantified disturbance around roosting caves of common vampire bats in Costa Rica, measured their long-term diet preferences (livestock or wildlife blood) using stable isotopes of carbon and nitrogen, evaluated innate and adaptive immune markers, and characterized their gut microbiota. We observed that bats from roosting caves with more cattle farming nearby fed more on cattle blood. Moreover, gut microbial richness and the abundance of specific gut microbes differed according to feeding preferences. Interestingly, bats feeding primarily on wildlife blood harboured a higher abundance of the bacteria Edwardsiella sp., which tended to be associated with higher immunoglobulin G levels. Our results highlight how human land-use change may indirectly affect wildlife health and emerging infectious diseases through diet-induced shifts in microbiota, with implications for host immunity and potential consequences for susceptibility to pathogens.
Collapse
Affiliation(s)
- Ramona Fleischer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany.
| | - Christie Jones
- Department of Environmental Sciences, Emory University, Atlanta, GA, USA; Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Thomas R Gillespie
- Department of Environmental Sciences, Emory University, Atlanta, GA, USA; Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, GA, USA
| | - Amanda Vicente-Santos
- Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, GA, USA.
| |
Collapse
|
20
|
Härer A, Rennison DJ. The effects of host ecology and phylogeny on gut microbiota (non)parallelism across birds and mammals. mSphere 2023; 8:e0044223. [PMID: 38038446 PMCID: PMC10732045 DOI: 10.1128/msphere.00442-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE What are the roles of determinism and contingency in evolution? The paleontologist and evolutionary biologist Stephen J. Gould raised this question in his famous thought experiment of "replaying life's tape." Settings where independent lineages have repeatedly adapted to similar ecological niches (i.e., parallel evolution) are well suited to address this question. Here, we quantified whether repeated ecological shifts across 53 mammalian and 50 avian host species are associated with parallel gut microbiota changes. Our results indicate that parallel shifts in host diet are associated with greater gut microbiota parallelism (i.e., more deterministic). While further research will be necessary to obtain a comprehensive picture of the circumstances under which deterministic gut microbiota changes might be expected, our study can be instrumental in motivating the use of more quantitative methods in microbiota research. This, in turn, can help us better understand microbiota dynamics during adaptive evolution of their hosts.
Collapse
Affiliation(s)
- Andreas Härer
- Department of Ecology, Behavior & Evolution, School of Biological Sciences , University of California San Diego, La Jolla, California, USA
| | - Diana J. Rennison
- Department of Ecology, Behavior & Evolution, School of Biological Sciences , University of California San Diego, La Jolla, California, USA
| |
Collapse
|
21
|
Vicente-Santos A, Lock LR, Allira M, Dyer KE, Dunsmore A, Tu W, Volokhov DV, Herrera C, Lei GS, Relich RF, Janech MG, Bland AM, Simmons NB, Becker DJ. Serum proteomics reveals a tolerant immune phenotype across multiple pathogen taxa in wild vampire bats. Front Immunol 2023; 14:1281732. [PMID: 38193073 PMCID: PMC10773587 DOI: 10.3389/fimmu.2023.1281732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024] Open
Abstract
Bats carry many zoonotic pathogens without showing pronounced pathology, with a few exceptions. The underlying immune tolerance mechanisms in bats remain poorly understood, although information-rich omics tools hold promise for identifying a wide range of immune markers and their relationship with infection. To evaluate the generality of immune responses to infection, we assessed the differences and similarities in serum proteomes of wild vampire bats (Desmodus rotundus) across infection status with five taxonomically distinct pathogens: bacteria (Bartonella spp., hemoplasmas), protozoa (Trypanosoma cruzi), and DNA (herpesviruses) and RNA (alphacoronaviruses) viruses. From 19 bats sampled in 2019 in Belize, we evaluated the up- and downregulated immune responses of infected versus uninfected individuals for each pathogen. Using a high-quality genome annotation for vampire bats, we identified 586 serum proteins but found no evidence for differential abundance nor differences in composition between infected and uninfected bats. However, using receiver operating characteristic curves, we identified four to 48 candidate biomarkers of infection depending on the pathogen, including seven overlapping biomarkers (DSG2, PCBP1, MGAM, APOA4, DPEP1, GOT1, and IGFALS). Enrichment analysis of these proteins revealed that our viral pathogens, but not the bacteria or protozoa studied, were associated with upregulation of extracellular and cytoplasmatic secretory vesicles (indicative of viral replication) and downregulation of complement activation and coagulation cascades. Additionally, herpesvirus infection elicited a downregulation of leukocyte-mediated immunity and defense response but an upregulation of an inflammatory and humoral immune response. In contrast to our two viral infections, we found downregulation of lipid and cholesterol homeostasis and metabolism with Bartonella spp. infection, of platelet-dense and secretory granules with hemoplasma infection, and of blood coagulation pathways with T. cruzi infection. Despite the small sample size, our results suggest that vampire bats have a similar suite of immune mechanisms for viruses distinct from responses to the other pathogen taxa, and we identify potential biomarkers that can expand our understanding of pathogenesis of these infections in bats. By applying a proteomic approach to a multi-pathogen system in wild animals, our study provides a distinct framework that could be expanded across bat species to increase our understanding of how bats tolerate pathogens.
Collapse
Affiliation(s)
| | - Lauren R. Lock
- School of Biological Sciences, University of Oklahoma, Norman, OK, United States
| | - Meagan Allira
- School of Biological Sciences, University of Oklahoma, Norman, OK, United States
| | - Kristin E. Dyer
- School of Biological Sciences, University of Oklahoma, Norman, OK, United States
| | - Annalise Dunsmore
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
- Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, United States
| | - Weihong Tu
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
- Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, United States
| | - Dmitriy V. Volokhov
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Claudia Herrera
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
- Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, United States
| | - Guang-Sheng Lei
- Department of Pathology and Laboratory Medicine, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Ryan F. Relich
- Department of Pathology and Laboratory Medicine, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Michael G. Janech
- Hollings Marine Laboratory, Charleston, SC, United States
- Department of Biology, College of Charleston, Charleston, SC, United States
| | - Alison M. Bland
- Hollings Marine Laboratory, Charleston, SC, United States
- Department of Biology, College of Charleston, Charleston, SC, United States
| | - Nancy B. Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, United States
| | - Daniel J. Becker
- School of Biological Sciences, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
22
|
Dhivahar J, Parthasarathy A, Krishnan K, Kovi BS, Pandian GN. Bat-associated microbes: Opportunities and perils, an overview. Heliyon 2023; 9:e22351. [PMID: 38125540 PMCID: PMC10730444 DOI: 10.1016/j.heliyon.2023.e22351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/21/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
The potential biotechnological uses of bat-associated bacteria are discussed briefly, indicating avenues for biotechnological applications of bat-associated microbes. The uniqueness of bats in terms of their lifestyle, genomes and molecular immunology may predispose bats to act as disease reservoirs. Molecular phylogenetic analysis has shown several instances of bats harbouring the ancestral lineages of bacterial (Bartonella), protozoal (Plasmodium, Trypanosoma cruzi) and viral (SARS-CoV2) pathogens infecting humans. Along with the transmission of viruses from bats, we also discuss the potential roles of bat-associated bacteria, fungi, and protozoan parasites in emerging diseases. Current evidence suggests that environmental changes and interactions between wildlife, livestock, and humans contribute to the spill-over of infectious agents from bats to other hosts. Domestic animals including livestock may act as intermediate amplifying hosts for bat-origin pathogens to transmit to humans. An increasing number of studies investigating bat pathogen diversity and infection dynamics have been published. However, whether or how these infectious agents are transmitted both within bat populations and to other hosts, including humans, often remains unknown. Metagenomic approaches are uncovering the dynamics and distribution of potential pathogens in bat microbiomes, which might improve the understanding of disease emergence and transmission. Here, we summarize the current knowledge on bat zoonoses of public health concern and flag the gaps in the knowledge to enable further research and allocation of resources for tackling future outbreaks.
Collapse
Affiliation(s)
- J. Dhivahar
- Research Department of Zoology, St. Johns College, Palayamkottai, 627002, India
- Department of Plant Biology and Biotechnology, Laboratory of Microbial Ecology, Loyola College, Chennai, 600034, India
- Department of Biotechnology, Laboratory of Virology, University of Madras, Chennai, 600025, India
| | - Anutthaman Parthasarathy
- Department of Chemistry and Biosciences, Richmond Building, University of Bradford, Bradford, West Yorkshire, BD7 1DP, United Kingdom
| | - Kathiravan Krishnan
- Department of Biotechnology, Laboratory of Virology, University of Madras, Chennai, 600025, India
| | - Basavaraj S. Kovi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Yoshida Ushinomiyacho, 69, Sakyo Ward, 606-8501, Kyoto, Japan
| | - Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Yoshida Ushinomiyacho, 69, Sakyo Ward, 606-8501, Kyoto, Japan
| |
Collapse
|
23
|
Teullet S, Tilak MK, Magdeleine A, Schaub R, Weyer NM, Panaino W, Fuller A, Loughry WJ, Avenant NL, de Thoisy B, Borrel G, Delsuc F. Metagenomics uncovers dietary adaptations for chitin digestion in the gut microbiota of convergent myrmecophagous mammals. mSystems 2023; 8:e0038823. [PMID: 37650612 PMCID: PMC10654083 DOI: 10.1128/msystems.00388-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/19/2023] [Indexed: 09/01/2023] Open
Abstract
IMPORTANCE Myrmecophagous mammals are specialized in the consumption of ants and/or termites. They do not share a direct common ancestor and evolved convergently in five distinct placental orders raising questions about the underlying adaptive mechanisms involved and the relative contribution of natural selection and phylogenetic constraints. Understanding how these species digest their prey can help answer these questions. More specifically, the role of their gut microbial symbionts in the digestion of the insect chitinous exoskeleton has not been investigated in all myrmecophagous orders. We generated 29 new gut metagenomes from nine myrmecophagous species to reconstruct more than 300 bacterial genomes in which we identified chitin-degrading enzymes. Studying the distribution of these chitinolytic bacteria among hosts revealed both shared and specific bacteria between ant-eating species. Overall, our results highlight the potential role of gut symbionts in the convergent dietary adaptation of myrmecophagous mammals and the evolutionary mechanisms shaping their gut microbiota.
Collapse
Affiliation(s)
- Sophie Teullet
- Institut des Sciences de l’Evolution de Montpellier (ISEM), Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Marie-Ka Tilak
- Institut des Sciences de l’Evolution de Montpellier (ISEM), Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Amandine Magdeleine
- Institut des Sciences de l’Evolution de Montpellier (ISEM), Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Roxane Schaub
- CIC AG/Inserm 1424, Centre Hospitalier de Cayenne Andrée Rosemon, Cayenne, French Guiana, France
- Tropical Biome and immunopathology, Université de Guyane, Labex CEBA, DFR Santé, Cayenne, French Guiana, France
| | - Nora M. Weyer
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Wendy Panaino
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for African Ecology, School of Animals, Plant, and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - W. J. Loughry
- Department of Biology, Valdosta State University, Valdosta, Georgia, USA
| | - Nico L. Avenant
- National Museum and Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| | - Benoit de Thoisy
- Institut Pasteur de la Guyane, Cayenne, French Guiana, France
- Kwata NGO, Cayenne, French Guiana, France
| | - Guillaume Borrel
- Evolutionary Biology of the Microbial Cell, Institut Pasteur, Université Paris Cité, Paris, France
| | - Frédéric Delsuc
- Institut des Sciences de l’Evolution de Montpellier (ISEM), Univ Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
24
|
Kearns PJ, Winter AS, Woodhams DC, Northup DE. The Mycobiome of Bats in the American Southwest Is Structured by Geography, Bat Species, and Behavior. MICROBIAL ECOLOGY 2023; 86:1565-1574. [PMID: 37126126 DOI: 10.1007/s00248-023-02230-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/23/2023] [Indexed: 06/19/2023]
Abstract
Bats are widespread mammals that play key roles in ecosystems as pollinators and insectivores. However, there is a paucity of information about bat-associated microbes, in particular their fungal communities, despite the important role microbes play in host health and overall host function. The emerging fungal disease, white-nose syndrome, presents a potential challenge to the bat microbiome and understanding healthy bat-associated taxa will provide valuable information about potential microbiome-pathogen interactions. To address this knowledge gap, we collected 174 bat fur/skin swabs from 14 species of bats captured in five locations in New Mexico and Arizona and used high-throughput sequencing of the fungal internal transcribed (ITS) region to characterize bat-associated fungal communities. Our results revealed a highly heterogeneous bat mycobiome that was structured by geography and bat species. Furthermore, our data suggest that bat-associated fungal communities are affected by bat foraging, indicating the bat skin microbiota is dynamic on short time scales. Finally, despite the strong effects of site and species, we found widespread and abundant taxa from several taxonomic groups including the genera Alternaria and Metschnikowia that have the potential to be inhibitory towards fungal and bacterial pathogens.
Collapse
Affiliation(s)
- Patrick J Kearns
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA.
| | - Ara S Winter
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Diana E Northup
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
25
|
Lv W, Sha Y, Liu X, He Y, Hu J, Wang J, Li S, Guo X, Shao P, Zhao F, Li M. Interaction between Rumen Epithelial miRNAs-Microbiota-Metabolites in Response to Cold-Season Nutritional Stress in Tibetan Sheep. Int J Mol Sci 2023; 24:14489. [PMID: 37833936 PMCID: PMC10572940 DOI: 10.3390/ijms241914489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Tibetan sheep are already well adapted to cold season nutrient stress on the Tibetan Plateau. Rumen, an important nutrient for metabolism and as an absorption organ in ruminants, plays a vital role in the cold stress adaptations of Tibetan sheep. Ruminal microbiota also plays an indispensable role in rumen function. In this study, combined multiomics data were utilized to comprehensively analyze the interaction mechanism between rumen epithelial miRNAs and microbiota and their metabolites in Tibetan sheep under nutrient stress in the cold season. A total of 949 miRNAs were identified in the rumen epithelium of both cold and warm seasons. A total of 62 differentially expressed (DE) miRNAs were screened using FC > 1.5 and p value < 0.01, and a total of 20,206 targeted genes were predicted by DE miRNAs. KEGG enrichment analysis revealed that DE miRNA-targeted genes were mainly enriched in axon guidance(ko04360), tight junction(ko04530), inflammatory mediator regulation of TRP channels(ko04750) and metabolism-related pathways. Correlation analysis revealed that rumen microbiota, rumen VFAs and DE miRNAs were all correlated. Further study revealed that the targeted genes of cold and warm season rumen epithelial DE miRNAs were coenriched with differential metabolites of microbiota in glycerophospholipid metabolism (ko00564), apoptosis (ko04210), inflammatory mediator regulation of TRP channels (ko04750), small cell lung cancer (ko05222), and choline metabolism in cancer (ko05231) pathways. There are several interactions between Tibetan sheep rumen epithelial miRNAs, rumen microbiota, and microbial metabolites, mainly through maintaining rumen epithelial barrier function and host homeostasis of choline and cholesterol, improving host immunity, and promoting energy metabolism pathways, thus enabling Tibetan sheep to effectively respond to cold season nutrient stress. The results also suggest that rumen microbiota have coevolved with their hosts to improve the adaptive capacity of Tibetan sheep to cold season nutrient stress, providing a new perspective for the study of cold season nutritional stress adaptation in Tibetan sheep.
Collapse
Affiliation(s)
- Weibing Lv
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yuzhu Sha
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
| | - Xiu Liu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
| | - Yanyu He
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand;
| | - Jiang Hu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
| | - Jiqing Wang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
| | - Shaobin Li
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
| | - Xinyu Guo
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
| | - Pengyang Shao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
| | - Fangfang Zhao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
| | - Mingna Li
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
| |
Collapse
|
26
|
Scheben A, Mendivil Ramos O, Kramer M, Goodwin S, Oppenheim S, Becker DJ, Schatz MC, Simmons NB, Siepel A, McCombie WR. Long-Read Sequencing Reveals Rapid Evolution of Immunity- and Cancer-Related Genes in Bats. Genome Biol Evol 2023; 15:evad148. [PMID: 37728212 PMCID: PMC10510315 DOI: 10.1093/gbe/evad148] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/21/2023] Open
Abstract
Bats are exceptional among mammals for their powered flight, extended lifespans, and robust immune systems and therefore have been of particular interest in comparative genomics. Using the Oxford Nanopore Technologies long-read platform, we sequenced the genomes of two bat species with key phylogenetic positions, the Jamaican fruit bat (Artibeus jamaicensis) and the Mesoamerican mustached bat (Pteronotus mesoamericanus), and carried out a comprehensive comparative genomic analysis with a diverse collection of bats and other mammals. The high-quality, long-read genome assemblies revealed a contraction of interferon (IFN)-α at the immunity-related type I IFN locus in bats, resulting in a shift in relative IFN-ω and IFN-α copy numbers. Contradicting previous hypotheses of constitutive expression of IFN-α being a feature of the bat immune system, three bat species lost all IFN-α genes. This shift to IFN-ω could contribute to the increased viral tolerance that has made bats a common reservoir for viruses that can be transmitted to humans. Antiviral genes stimulated by type I IFNs also showed evidence of rapid evolution, including a lineage-specific duplication of IFN-induced transmembrane genes and positive selection in IFIT2. In addition, 33 tumor suppressors and 6 DNA-repair genes showed signs of positive selection, perhaps contributing to increased longevity and reduced cancer rates in bats. The robust immune systems of bats rely on both bat-wide and lineage-specific evolution in the immune gene repertoire, suggesting diverse immune strategies. Our study provides new genomic resources for bats and sheds new light on the extraordinary molecular evolution in this critically important group of mammals.
Collapse
Affiliation(s)
- Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | | - Melissa Kramer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Sara Oppenheim
- American Museum of Natural History, Institute for Comparative Genomics, New York, New York, USA
| | - Daniel J Becker
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, USA
| | - Michael C Schatz
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Departments of Computer Science and Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, New York, USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | |
Collapse
|
27
|
He H, Yang H, Foo R, Chan W, Zhu F, Liu Y, Zhou X, Ma L, Wang LF, Zhai W. Population genomic analysis reveals distinct demographics and recent adaptation in the black flying fox (Pteropus alecto). J Genet Genomics 2023; 50:554-562. [PMID: 37182682 DOI: 10.1016/j.jgg.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
As the only mammalian group capable of powered flight, bats have many unique biological traits. Previous comparative genomic studies in bats have focused on long-term evolution. However, the micro-evolutionary processes driving recent evolution are largely under-explored. Using resequencing data from 50 black flying foxes (Pteropus alecto), one of the model species for bats, we find that black flying fox has much higher genetic diversity and lower levels of linkage disequilibrium than most of the mammalian species. Demographic inference reveals strong population fluctuations (>100 fold) coinciding with multiple historical events including the last glacial change and Toba super eruption, suggesting that the black flying fox is a very resilient species with strong recovery abilities. While long-term adaptation in the black flying fox is enriched in metabolic genes, recent adaptation in the black flying fox has a unique landscape where recently selected genes are not strongly enriched in any functional category. The demographic history and mode of adaptation suggest that black flying fox might be a well-adapted species with strong evolutionary resilience. Taken together, this study unravels a vibrant landscape of recent evolution for the black flying fox and sheds light on several unique evolutionary processes for bats comparing to other mammalian groups.
Collapse
Affiliation(s)
- Haopeng He
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hechuan Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Randy Foo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Singhealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| | - Wharton Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Singhealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| | - Feng Zhu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Singhealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| | - Yunsong Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Singhealth Duke-NUS Global Health Institute, Singapore 169857, Singapore.
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
28
|
Guo M, Xie S, Wang J, Zhang Y, He X, Luo P, Deng J, Zhou C, Qin J, Huang C, Zhang L. The difference in the composition of gut microbiota is greater among bats of different phylogenies than among those with different dietary habits. Front Microbiol 2023; 14:1207482. [PMID: 37577418 PMCID: PMC10419214 DOI: 10.3389/fmicb.2023.1207482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Bats have a very long evolutionary history and are highly differentiated in their physiological functions. Results of recent studies suggest effects of some host factors (e.g., phylogeny and dietary habit) on their gut microbiota. In this study, we examined the gut microbial compositions of 18 different species of bats. Results showed that Firmicutes, Gammaproteobacteria, and Actinobacteria were dominant in all fecal samples of bats. However, the difference in the diversity of gut microbiota among bats of different phylogenies was notable (p = 0.06). Various species of Firmicutes, Actinobacteria, and Gammaproteobacteria were found to contribute to the majority of variations in gut microbiota of all bats examined, and Aeromonas species were much more abundant in bats that feed on both insects and fish than in those of insectivores. The abundance of various species of Clostridium, Euryarchaeota, and ancient bacterial phyla was found to vary among bats of different phylogenies, and various species of Vibrio varied significantly among bats with different dietary habits. No significant difference in the number of genes involved in various metabolic pathways was detected among bats of different phylogenies, but the abundance of genes involved in 5 metabolic pathways, including transcription; replication, recombination, and repair; amino acid transport and metabolism; and signal transduction mechanisms, was different among bats with different dietary habits. The abundance of genes in 3 metabolic pathways, including those involved in stilbenoid, diarylheptanoid, and gingerol biosynthesis, was found to be different between insectivorous bats and bats that feed on both insects and fish. Results of this study suggest a weak association between dietary habit and gut microbiota in most bats but a notable difference in gut microbiota among bats of different phylogenies.
Collapse
Affiliation(s)
- Min Guo
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Siwei Xie
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
| | - Junhua Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuzhi Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiangyang He
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Pengfei Luo
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jin Deng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
- College of Life Sciences, South China Normal University, Guangzhou, China
| | - Chunhui Zhou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiao Qin
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chen Huang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
29
|
Garg KM, Lamba V, Sanyal A, Dovih P, Chattopadhyay B. Next Generation Sequencing Revolutionizes Organismal Biology Research in Bats. J Mol Evol 2023:10.1007/s00239-023-10107-2. [PMID: 37154841 PMCID: PMC10166039 DOI: 10.1007/s00239-023-10107-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/29/2023] [Indexed: 05/10/2023]
Abstract
The advent of next generation sequencing technologies (NGS) has greatly accelerated our understanding of critical aspects of organismal biology from non-model organisms. Bats form a particularly interesting group in this regard, as genomic data have helped unearth a vast spectrum of idiosyncrasies in bat genomes associated with bat biology, physiology, and evolution. Bats are important bioindicators and are keystone species to many eco-systems. They often live in proximity to humans and are frequently associated with emerging infectious diseases, including the COVID-19 pandemic. Nearly four dozen bat genomes have been published to date, ranging from drafts to chromosomal level assemblies. Genomic investigations in bats have also become critical towards our understanding of disease biology and host-pathogen coevolution. In addition to whole genome sequencing, low coverage genomic data like reduced representation libraries, resequencing data, etc. have contributed significantly towards our understanding of the evolution of natural populations, and their responses to climatic and anthropogenic perturbations. In this review, we discuss how genomic data have enhanced our understanding of physiological adaptations in bats (particularly related to ageing, immunity, diet, etc.), pathogen discovery, and host pathogen co-evolution. In comparison, the application of NGS towards population genomics, conservation, biodiversity assessment, and functional genomics has been appreciably slower. We reviewed the current areas of focus, identifying emerging topical research directions and providing a roadmap for future genomic studies in bats.
Collapse
Affiliation(s)
- Kritika M Garg
- Centre for Interdisciplinay Archaeological Research, Ashoka University, Sonipat, Haryana, 131029, India
- Department of Biology, Ashoka University, Sonipat, Haryana, 131029, India
- Centre for Climate Change and Sustainability (3CS), Ashoka University, Sonipat, Haryana, 131029, India
| | - Vinita Lamba
- Trivedi School of Biosciences, Ashoka University, Sonipat, Haryana, 131029, India
- J. William Fulbright College of Arts and Sciences, Department of Biological Sciences, University of Arkansas, Fayetteville, AR72701, USA
| | - Avirup Sanyal
- Trivedi School of Biosciences, Ashoka University, Sonipat, Haryana, 131029, India
- Ecology and Evolution, National Centre for Biological Sciences, Bangalore, 560065, India
| | - Pilot Dovih
- Centre for Climate Change and Sustainability (3CS), Ashoka University, Sonipat, Haryana, 131029, India
- Ecology and Evolution, National Centre for Biological Sciences, Bangalore, 560065, India
- School of Chemistry and Biotechnology, Sastra University, Thanjavur, Tamil Nadu, 613401, India
| | - Balaji Chattopadhyay
- Centre for Climate Change and Sustainability (3CS), Ashoka University, Sonipat, Haryana, 131029, India.
- Trivedi School of Biosciences, Ashoka University, Sonipat, Haryana, 131029, India.
| |
Collapse
|
30
|
Tian S, Zeng J, Jiao H, Zhang D, Zhang L, Lei CQ, Rossiter SJ, Zhao H. Comparative analyses of bat genomes identify distinct evolution of immunity in Old World fruit bats. SCIENCE ADVANCES 2023; 9:eadd0141. [PMID: 37146151 PMCID: PMC10162675 DOI: 10.1126/sciadv.add0141] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Bats have been identified as natural reservoir hosts of several zoonotic viruses, prompting suggestions that they have unique immunological adaptations. Among bats, Old World fruit bats (Pteropodidae) have been linked to multiple spillovers. To test for lineage-specific molecular adaptations in these bats, we developed a new assembly pipeline to generate a reference-quality genome of the fruit bat Cynopterus sphinx and used this in comparative analyses of 12 bat species, including six pteropodids. Our results reveal that immunity-related genes have higher evolutionary rates in pteropodids than in other bats. Several lineage-specific genetic changes were shared across pteropodids, including the loss of NLRP1, duplications of PGLYRP1 and C5AR2, and amino acid replacements in MyD88. We introduced MyD88 transgenes containing Pteropodidae-specific residues into bat and human cell lines and found evidence of dampened inflammatory responses. By uncovering distinct immune adaptations, our results could help explain why pteropodids are frequently identified as viral hosts.
Collapse
Affiliation(s)
- Shilin Tian
- College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Jiaming Zeng
- College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Hengwu Jiao
- College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Dejing Zhang
- Novogene Bioinformatics Institute, Beijing 100015, China
| | - Libiao Zhang
- Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Cao-Qi Lei
- College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Huabin Zhao
- College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| |
Collapse
|
31
|
Riskin DK, Carter GG. The evolution of sanguivory in vampire bats: origins and convergences. CAN J ZOOL 2023. [DOI: 10.1139/cjz-2022-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Blood-feeding (sanguivory) has evolved more than two dozen times among birds, fishes, insects, arachnids, molluscs, crustaceans, and annelids; however, among mammals, it is restricted to the vampire bats. Here, the authors revisit the question of how it evolved in that group. Evidence to date suggests that the ancestors of phyllostomids were insectivorous, and that carnivory, omnivory, and nectarivory evolved among phyllostomids after vampire bats diverged. Frugivory likely also evolved after vampire bats diverged, but the phylogeny is ambiguous on that point. However, vampire bats lack any genetic evidence of a frugivorous past, and the behavioural progression from frugivory to sanguivory is difficult to envision. Thus, the most parsimonious scenario is that sanguivory evolved in an insectivorous ancestor to vampire bats via ectoparasite-eating, wound-feeding, or some combination of the two—all feeding habits found among blood-feeding birds today. Comparing vampire bats with other sanguivores, the authors find several remarkable examples of convergence. Further, it was found that blood-feeding has been ca. 50 times more likely to evolve in a vertebrate lineage than in an invertebrate one. The authors hypothesize that this difference exists because vertebrates are more likely than invertebrates to have the biochemical necessities required to assimilate the components of vertebrate blood.
Collapse
Affiliation(s)
- Daniel K. Riskin
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Gerald G. Carter
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panamá
- Department of Ecology, Evolution, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
32
|
Rasmussen JA, Kiilerich P, Madhun AS, Waagbø R, Lock EJR, Madsen L, Gilbert MTP, Kristiansen K, Limborg MT. Co-diversification of an intestinal Mycoplasma and its salmonid host. THE ISME JOURNAL 2023; 17:682-692. [PMID: 36807409 PMCID: PMC10119124 DOI: 10.1038/s41396-023-01379-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023]
Abstract
Understanding the evolutionary relationships between a host and its intestinal resident bacteria can transform how we understand adaptive phenotypic traits. The interplay between hosts and their resident bacteria inevitably affects the intestinal environment and, thereby, the living conditions of both the host and the microbiota. Thereby this co-existence likely influences the fitness of both bacteria and host. Whether this co-existence leads to evolutionary co-diversification in animals is largely unexplored, mainly due to the complexity of the environment and microbial communities and the often low host selection. We present the gut metagenome from wild Atlantic salmon (Salmo salar), a new wild organism model with an intestinal microbiota of low complexity and a well-described population structure, making it well-suited for investigating co-evolution. Our data reveal a strong host selection of a core gut microbiota dominated by a single Mycoplasma species. We found a clear co-diversification between the population structure of Atlantic salmon and nucleotide variability of the intestinal Mycoplasma populations conforming to expectations from co-evolution between host and resident bacteria. Our results show that the stable microbiota of Atlantic salmon has evolved with its salmonid host populations while potentially providing adaptive traits to the salmon host populations, including defence mechanisms, biosynthesis of essential amino acids, and metabolism of B vitamins. We highlight Atlantic salmon as a novel model for studying co-evolution between vertebrate hosts and their resident bacteria.
Collapse
Affiliation(s)
- Jacob A Rasmussen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark. .,Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Pia Kiilerich
- Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, 2300, Copenhagen, Denmark
| | | | - Rune Waagbø
- Institute of Marine Research, Bergen, Norway
| | | | - Lise Madsen
- Institute of Marine Research, Bergen, Norway
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Institute of Metagenomics, Qingdao-Europe Advanced Institute for Life Sciences, Qingdao, China
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
33
|
Fontaine SS, Kohl KD. The microbiome buffers tadpole hosts from heat stress: a hologenomic approach to understand host-microbe interactions under warming. J Exp Biol 2023; 226:286161. [PMID: 36546449 PMCID: PMC10086385 DOI: 10.1242/jeb.245191] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Phenotypic plasticity is an important strategy that animals employ to respond and adjust to changes in their environment. Plasticity may occur via changes in host gene expression or through functional changes in their microbiomes, which contribute substantially to host physiology. Specifically, the presence and function of host-associated microbes can impact how animals respond to heat stress. We previously demonstrated that 'depleted' tadpoles, with artificially disrupted microbiomes, are less tolerant to heat than 'colonized' tadpoles, with more natural microbiomes. However, the mechanisms behind these effects are unclear. Here, we compared gene expression profiles of the tadpole gut transcriptome, and tadpole gut microbial metagenome, between colonized and depleted tadpoles under cool or warm conditions. Our goal was to identify differences in host and microbial responses to heat between colonized and depleted tadpoles that might explain their observed differences in heat tolerance. We found that depleted tadpoles exhibited a much stronger degree of host gene expression plasticity in response to heat, while the microbiome of colonized tadpoles was significantly more heat sensitive. These patterns indicate that functional changes in the microbiome in response to heat may allow for a dampened host response, ultimately buffering hosts from the deleterious effects of heat stress. We also identified several specific host and microbial pathways that could be contributing to increased thermal tolerance in colonized tadpoles including amino acid metabolism, vitamin biosynthesis and ROS scavenging pathways. Our results demonstrate that the microbiome influences host plasticity and the response of hosts to environmental stressors.
Collapse
Affiliation(s)
- Samantha S Fontaine
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
34
|
Härer A, Rennison DJ. Quantifying (non)parallelism of gut microbial community change using multivariate vector analysis. Ecol Evol 2022; 12:e9674. [PMID: 36590339 PMCID: PMC9797641 DOI: 10.1002/ece3.9674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 12/30/2022] Open
Abstract
Parallel evolution of phenotypic traits is regarded as strong evidence for natural selection and has been studied extensively in a variety of taxa. However, we have limited knowledge of whether parallel evolution of host organisms is accompanied by parallel changes of their associated microbial communities (i.e., microbiotas), which are crucial for their hosts' ecology and evolution. Determining the extent of microbiota parallelism in nature can improve our ability to identify the factors that are associated with (putatively adaptive) shifts in microbial communities. While it has been emphasized that (non)parallel evolution is better considered as a quantitative continuum rather than a binary phenomenon, quantitative approaches have rarely been used to study microbiota parallelism. We advocate using multivariate vector analysis (i.e., phenotypic change vector analysis) to quantify direction and magnitude of microbiota changes and discuss the applicability of this approach for studying parallelism, and we compiled an R package for multivariate vector analysis of microbial communities ('multivarvector'). We exemplify its use by reanalyzing gut microbiota data from multiple fish species that exhibit parallel shifts in trophic ecology. We found that multivariate vector analysis results were largely consistent with other statistical methods, parallelism estimates were not affected by the taxonomic level at which the microbiota is studied, and parallelism might be stronger for gut microbiota function compared to taxonomic composition. This approach provides an analytical framework for quantitative comparisons across host lineages, thereby providing the potential to advance our capacity to predict microbiota changes. Hence, we emphasize that the development and application of quantitative measures, such as multivariate vector analysis, should be further explored in microbiota research in order to better understand the role of microbiota dynamics during their hosts' adaptive evolution, particularly in settings of parallel evolution.
Collapse
Affiliation(s)
- Andreas Härer
- School of Biological Sciences, Department of Ecology, Behavior, & EvolutionUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Diana J. Rennison
- School of Biological Sciences, Department of Ecology, Behavior, & EvolutionUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
35
|
Fitzpatrick LLJ, Nijman V, Ligabue-Braun R, Nekaris KAI. The Fast and the Furriest: Investigating the Rate of Selection on Mammalian Toxins. Toxins (Basel) 2022; 14:toxins14120842. [PMID: 36548740 PMCID: PMC9782207 DOI: 10.3390/toxins14120842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
The evolution of venom and the selection pressures that act on toxins have been increasingly researched within toxinology in the last two decades, in part due to the exceptionally high rates of diversifying selection observed in animal toxins. In 2015, Sungar and Moran proposed the 'two-speed' model of toxin evolution linking evolutionary age of a group to the rates of selection acting on toxins but due to a lack of data, mammals were not included as less than 30 species of venomous mammal have been recorded, represented by elusive species which produce small amounts of venom. Due to advances in genomics and transcriptomics, the availability of toxin sequences from venomous mammals has been increasing. Using branch- and site-specific selection models, we present the rates of both episodic and pervasive selection acting upon venomous mammal toxins as a group for the first time. We identified seven toxin groups present within venomous mammals, representing Chiroptera, Eulipotyphla and Monotremata: KLK1, Plasminogen Activator, Desmallipins, PACAP, CRiSP, Kunitz Domain One and Kunitz Domain Two. All but one group (KLK1) was identified by our results to be evolving under both episodic and pervasive diversifying selection with four toxin groups having sites that were implicated in the fitness of the animal by TreeSAAP (Selection on Amino Acid Properties). Our results suggest that venomous mammal ecology, behaviour or genomic evolution are the main drivers of selection, although evolutionary age may still be a factor. Our conclusion from these results indicates that mammalian toxins are following the two-speed model of selection, evolving predominately under diversifying selection, fitting in with other younger venomous taxa like snakes and cone snails-with high amounts of accumulating mutations, leading to more novel adaptions in their toxins.
Collapse
Affiliation(s)
- Leah Lucy Joscelyne Fitzpatrick
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Centre for Functional Genomics, Department of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Correspondence:
| | - Vincent Nijman
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Centre for Functional Genomics, Department of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Rodrigo Ligabue-Braun
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Avenida Sarmento Leite 245, Porto Alegre 90050-130, Brazil
| | - K. Anne-Isola Nekaris
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Centre for Functional Genomics, Department of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
36
|
McQueen JP, Gattoni K, Gendron EMS, Schmidt SK, Sommers P, Porazinska DL. Host identity is the dominant factor in the assembly of nematode and tardigrade gut microbiomes in Antarctic Dry Valley streams. Sci Rep 2022; 12:20118. [PMID: 36446870 PMCID: PMC9709161 DOI: 10.1038/s41598-022-24206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
Recent work examining nematode and tardigrade gut microbiomes has identified species-specific relationships between host and gut community composition. However, only a handful of species from either phylum have been examined. How microbiomes differ among species and what factors contribute to their assembly remains unexplored. Cyanobacterial mats within Antarctic Dry Valley streams host a simple and tractable natural ecosystem of identifiable microinvertebrates to address these questions. We sampled 2 types of coexisting mats (i.e., black and orange) across four spatially isolated streams, hand-picked single individuals of two nematode species (i.e., Eudorylaimus antarcticus and Plectus murrayi) and tardigrades, to examine their gut microbiomes using 16S and 18S rRNA metabarcoding. All gut microbiomes (bacterial and eukaryotic) were significantly less diverse than the mats they were isolated from. In contrast to mats, microinvertebrates' guts were depleted of Cyanobacteria and differentially enriched in taxa of Bacteroidetes, Proteobacteria, and Fungi. Among factors investigated, gut microbiome composition was most influenced by host identity while environmental factors (e.g., mats and streams) were less important. The importance of host identity in predicting gut microbiome composition suggests functional value to the host, similar to other organisms with strong host selected microbiomes.
Collapse
Affiliation(s)
- J. Parr McQueen
- grid.15276.370000 0004 1936 8091Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611 USA
| | - Kaitlin Gattoni
- grid.15276.370000 0004 1936 8091Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611 USA
| | - Eli M. S. Gendron
- grid.15276.370000 0004 1936 8091Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611 USA
| | - Steven K. Schmidt
- grid.266190.a0000000096214564Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
| | - Pacifica Sommers
- grid.266190.a0000000096214564Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
| | - Dorota L. Porazinska
- grid.15276.370000 0004 1936 8091Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
37
|
Response of Ruminal Microbiota-Host Gene Interaction to High-Altitude Environments in Tibetan Sheep. Int J Mol Sci 2022; 23:ijms232012430. [PMID: 36293284 PMCID: PMC9604387 DOI: 10.3390/ijms232012430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Altitude is the main external environmental pressure affecting the production performance of Tibetan sheep, and the adaptive evolution of many years has formed a certain response mechanism. However, there are few reports on the response of ruminal microbiota and host genomes of Tibetan sheep to high-altitude environments. Here, we conducted an integrated analysis of volatile fatty acids (VFAs), microbial diversity (16S rRNA), epithelial morphology, and epithelial transcriptome in the rumen of Tibetan sheep at different altitudes to understand the changes in ruminal microbiota−host interaction in response to high altitude. The differences in the nutritional quality of forage at different altitudes, especially the differences in fiber content (ADF/NDF), led to changes in rumen VFAs of Tibetan sheep, in which the A/P value (acetic acid/propionic acid) was significantly decreased (p < 0.05). In addition, the concentrations of IgA and IgG in Middle-altitude (MA) and High-altitude Tibetan sheep (HA) were significantly increased (p < 0.05), while the concentrations of IgM were significantly increased in MA (p < 0.05). Morphological results showed that the width of the rumen papilla and the thickness of the basal layer increased significantly in HA Tibetan sheep (p < 0.05). The 16S rRNA analysis found that the rumen microbial diversity of Tibetan sheep gradually decreased with increasing altitude, and there were some differences in phylum- and genus-level microbes at the three altitudes. RDA analysis found that the abundance of the Rikenellaceae RC9 gut group and the Ruminococcaceae NK4A214 group increased with altitudes. Furthermore, a functional analysis of the KEGG microbial database found the “lipid metabolism” function of HA Tibetan sheep to be significantly enriched. WGCNA revealed that five gene modules were enriched in “energy production and conversion”, “lipid transport and metabolism”, and “defense mechanisms”, and cooperated with microbiota to regulate rumen fermentation and epithelial immune barrier function, so as to improve the metabolism and immune level of Tibetan sheep at high altitude.
Collapse
|
38
|
Behavioral innovation and genomic novelty are associated with the exploitation of a challenging dietary opportunity by an avivorous bat. iScience 2022; 25:104973. [PMID: 36093062 PMCID: PMC9459691 DOI: 10.1016/j.isci.2022.104973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/12/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
Foraging on nocturnally migrating birds is one of the most challenging foraging tasks in the animal kingdom. Only three bat species (e.g., Ia io) known to date can prey on migratory birds. However, how these bats have exploited this challenging dietary niche remains unknown. Here, we demonstrate that I. io hunts at the altitude of migrating birds during the bird migration season. The foraging I. io exhibited high flight altitudes (up to 4945 m above sea level) and high flight speeds (up to 143.7 km h−1). I. io in flight can actively prey on birds in the night sky via echolocation cues. Genes associated with DNA damage repair, hypoxia adaptation, biting and mastication, and digestion and metabolism have evolved to adapt to this species’ avivorous habits. Our results suggest that the evolution of behavioral innovation and genomic novelty are associated with the exploitation of challenging dietary opportunities. Predation on nocturnally migrating birds is rare and challenging in nature Bats exhibit high flight altitude and speed associated with foraging on migrating birds Bats can actively prey on birds in the night sky via echolocation cues The adaptive evolution of genes enables bats to adapt to the avivorous habits
Collapse
|
39
|
Bieker VC, Battlay P, Petersen B, Sun X, Wilson J, Brealey JC, Bretagnolle F, Nurkowski K, Lee C, Barreiro FS, Owens GL, Lee JY, Kellner FL, van Boheeman L, Gopalakrishnan S, Gaudeul M, Mueller-Schaerer H, Lommen S, Karrer G, Chauvel B, Sun Y, Kostantinovic B, Dalén L, Poczai P, Rieseberg LH, Gilbert MTP, Hodgins KA, Martin MD. Uncovering the genomic basis of an extraordinary plant invasion. SCIENCE ADVANCES 2022; 8:eabo5115. [PMID: 36001672 PMCID: PMC9401624 DOI: 10.1126/sciadv.abo5115] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/11/2022] [Indexed: 05/31/2023]
Abstract
Invasive species are a key driver of the global biodiversity crisis, but the drivers of invasiveness, including the role of pathogens, remain debated. We investigated the genomic basis of invasiveness in Ambrosia artemisiifolia (common ragweed), introduced to Europe in the late 19th century, by resequencing 655 ragweed genomes, including 308 herbarium specimens collected up to 190 years ago. In invasive European populations, we found selection signatures in defense genes and lower prevalence of disease-inducing plant pathogens. Together with temporal changes in population structure associated with introgression from closely related Ambrosia species, escape from specific microbial enemies likely favored the plant's remarkable success as an invasive species.
Collapse
Affiliation(s)
- Vanessa C. Bieker
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Paul Battlay
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Bent Petersen
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, 08100 Kedah, Malaysia
| | - Xin Sun
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jonathan Wilson
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Jaelle C. Brealey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - François Bretagnolle
- UMR CNRS/uB 6282 Biogéosciences, Université de Bourgogne-Franche-Comté, Dijon, France
| | - Kristin Nurkowski
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Chris Lee
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Fátima Sánchez Barreiro
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Jacqueline Y. Lee
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Fabian L. Kellner
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Shyam Gopalakrishnan
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Myriam Gaudeul
- Institut de Systématique Evolution Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, SU, EPHE, UA, National Herbarium (P), 57 rue Cuvier, CP39, 75005 Paris, France
| | | | - Suzanne Lommen
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, P.O. Box 9505, 2300 RA Leiden, Netherlands
- Koppert Biological Systems, Department R&D Macrobiology, Veilingweg 14, 2651 BE Berkel en Rodenrijs, Netherlands
| | - Gerhard Karrer
- Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Bruno Chauvel
- UMR Agroécologie, Institut Agro, INRAE, Univ. Bourgogne, Univ. Bourgogne-Franche-Comté, F-21000 Dijon, France
| | - Yan Sun
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Bojan Kostantinovic
- Department of Environmental and Plant Protection, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Love Dalén
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Péter Poczai
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Advanced Studies Kőszeg (iASK), Kőszeg, Hungary
| | - Loren H. Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - M. Thomas P. Gilbert
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Michael D. Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
40
|
Brealey JC, Lecaudey LA, Kodama M, Rasmussen JA, Sveier H, Dheilly NM, Martin MD, Limborg MT. Microbiome "Inception": an Intestinal Cestode Shapes a Hierarchy of Microbial Communities Nested within the Host. mBio 2022; 13:e0067922. [PMID: 35502903 PMCID: PMC9239044 DOI: 10.1128/mbio.00679-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
The concept of a holobiont, a host organism and its associated microbial communities, encapsulates the vital role the microbiome plays in the normal functioning of its host. Parasitic infections can disrupt this relationship, leading to dysbiosis. However, it is increasingly recognized that multicellular parasites are themselves holobionts. Intestinal parasites share space with the host gut microbiome, creating a system of nested microbiomes within the primary host. However, how the parasite, as a holobiont, interacts with the host holobiont remains unclear, as do the consequences of these interactions for host health. Here, we used 16S amplicon and shotgun metagenomics sequencing to characterize the microbiome of the intestinal cestode Eubothrium and its effect on the gut microbiome of its primary host, Atlantic salmon. Our results indicate that cestode infection is associated with salmon gut dysbiosis by acting as a selective force benefiting putative pathogens and potentially introducing novel bacterial species to the host. Our results suggest that parasitic cestodes may themselves be holobionts nested within the microbial community of their holobiont host, emphasizing the importance of also considering microbes associated with parasites when studying intestinal parasitic infections. IMPORTANCE The importance of the parasite microbiome is gaining recognition. Of particular concern is understanding how these parasite microbiomes influence host-parasite interactions and parasite interactions with the vertebrate host microbiome as part of a system of nested holobionts. However, there are still relatively few studies focusing on the microbiome of parasitic helminths in general and almost none on cestodes in particular, despite the significant burden of disease caused by these parasites globally. Our study provides insights into a system of significance to the aquaculture industry, cestode infections of Atlantic salmon and, more broadly, expands our general understanding of parasite-microbiome-host interactions and introduces a new element, the microbiome of the parasite itself, which may play a critical role in modulating the host microbiome, and, therefore, the host response, to parasite infection.
Collapse
Affiliation(s)
- Jaelle C. Brealey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Laurène A. Lecaudey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Miyako Kodama
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob A. Rasmussen
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Nolwenn M. Dheilly
- UMR 1161 Virology ANSES/INRAE/ENVA, ANSES Animal Health Laboratory, Maisons-Alfort, France
| | - Michael D. Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Morten T. Limborg
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Tian J, Sun J, Li D, Wang N, Wang L, Zhang C, Meng X, Ji X, Suchard MA, Zhang X, Lai A, Su S, Veit M. Emerging viruses: Cross-species transmission of coronaviruses, filoviruses, henipaviruses, and rotaviruses from bats. Cell Rep 2022; 39:110969. [PMID: 35679864 PMCID: PMC9148931 DOI: 10.1016/j.celrep.2022.110969] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/10/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
Emerging infectious diseases, especially if caused by bat-borne viruses, significantly affect public health and the global economy. There is an urgent need to understand the mechanism of interspecies transmission, particularly to humans. Viral genetics; host factors, including polymorphisms in the receptors; and ecological, environmental, and population dynamics are major parameters to consider. Here, we describe the taxonomy, geographic distribution, and unique traits of bats associated with their importance as virus reservoirs. Then, we summarize the origin, intermediate hosts, and the current understanding of interspecies transmission of Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, Nipah, Hendra, Ebola, Marburg virus, and rotaviruses. Finally, the molecular interactions of viral surface proteins with host cell receptors are examined, and a comparison of these interactions in humans, intermediate hosts, and bats is conducted. This uncovers adaptive mutations in virus spike protein that facilitate cross-species transmission and risk factors associated with the emergence of novel viruses from bats.
Collapse
Affiliation(s)
- Jin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Harbin 150069, China.
| | - Jiumeng Sun
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Dongyan Li
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Ningning Wang
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Lifang Wang
- College of Veterinary Medicine, China Agricultural University, No. 17 Qinghua Donglu, Beijing 100083, China
| | - Chang Zhang
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Xiaorong Meng
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Robert-von-Ostertag-Str. 7, 14163 Berlin, Germany
| | - Xiang Ji
- Department of Mathematics, School of Science & Engineering, Tulane University, 6823 St., Charles Avenue, New Orleans, LA 70118, USA
| | - Marc A Suchard
- Departments of Biomathematics, Human Genetics and Biostatistics, David Geffen School of Medicine and Fielding School of Public Health, University of California, Los Angeles, Geffen Hall 885 Tiverton Drive, Los Angeles, CA 90095, USA
| | - Xu Zhang
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Alexander Lai
- School of Science, Technology, Engineering, and Mathematics, Kentucky State University, 400 East Main St., Frankfort, KY 40601, USA
| | - Shuo Su
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China.
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Robert-von-Ostertag-Str. 7, 14163 Berlin, Germany.
| |
Collapse
|
42
|
Alberdi A, Andersen SB, Limborg MT, Dunn RR, Gilbert MTP. Disentangling host-microbiota complexity through hologenomics. Nat Rev Genet 2022; 23:281-297. [PMID: 34675394 DOI: 10.1038/s41576-021-00421-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
Research on animal-microbiota interactions has become a central topic in biological sciences because of its relevance to basic eco-evolutionary processes and applied questions in agriculture and health. However, animal hosts and their associated microbial communities are still seldom studied in a systemic fashion. Hologenomics, the integrated study of the genetic features of a eukaryotic host alongside that of its associated microbes, is becoming a feasible - yet still underexploited - approach that overcomes this limitation. Acknowledging the biological and genetic properties of both hosts and microbes, along with the advantages and disadvantages of implemented techniques, is essential for designing optimal studies that enable some of the major questions in biology to be addressed.
Collapse
Affiliation(s)
- Antton Alberdi
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Sandra B Andersen
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Robert R Dunn
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
43
|
Chua PYS, Carøe C, Crampton-Platt A, Reyes-Avila CS, Jones G, Streicker DG, Bohmann K. A two-step metagenomics approach for the identification and mitochondrial DNA contig assembly of vertebrate prey from the blood meals of common vampire bats (Desmodus rotundus). METABARCODING AND METAGENOMICS 2022. [DOI: 10.3897/mbmg.6.78756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The feeding behaviour of the sanguivorous common vampire bat (Desmodus rotundus) facilitates the transmission of pathogens that can impact both human and animal health. To formulate effective strategies in controlling the spread of diseases, there is a need to obtain information on which animals they feed on. One DNA-based approach, shotgun sequencing, can be used to obtain such information. Even though it is costly, shotgun sequencing can be used to simultaneously retrieve prey and vampire bat mitochondrial DNA for population studies within one round of sequencing. However, due to the challenges of analysing shotgun sequenced metagenomic data such as false negatives/positives and typically low proportion of reads mapped to diet items, shotgun sequencing has not been used for the identification of prey from common vampire bat blood meals. To overcome these challenges and generate longer mitochondrial contigs which could be useful for prey population studies, we shotgun sequenced common vampire bat blood meal samples (n = 8) and utilised a two-step metagenomic approach based on combining existing bioinformatic workflows (alignment and mtDNA contig assembly) to identify prey. After validating our results from detections made through metabarcoding, we accurately identified the common vampire bats’ prey in six out of eight samples without any false positives. We also generated prey mitochondrial contig lengths between 138 bp to 3231 bp (median = 770 bp, Q1 = 262 bp, Q3 = 1766 bp). This opens the potential to conduct phylogenetic and phylogeographic monitoring of elusive prey species in future studies, through the analyses of blood meal metagenomic data.
Collapse
|
44
|
A bibliometric analysis of research trends in bat echolocation studies between 1970 and 2021. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Blumer M, Brown T, Freitas MB, Destro AL, Oliveira JA, Morales AE, Schell T, Greve C, Pippel M, Jebb D, Hecker N, Ahmed AW, Kirilenko BM, Foote M, Janke A, Lim BK, Hiller M. Gene losses in the common vampire bat illuminate molecular adaptations to blood feeding. SCIENCE ADVANCES 2022; 8:eabm6494. [PMID: 35333583 PMCID: PMC8956264 DOI: 10.1126/sciadv.abm6494] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/03/2022] [Indexed: 05/06/2023]
Abstract
Vampire bats are the only mammals that feed exclusively on blood. To uncover genomic changes associated with this dietary adaptation, we generated a haplotype-resolved genome of the common vampire bat and screened 27 bat species for genes that were specifically lost in the vampire bat lineage. We found previously unknown gene losses that relate to reduced insulin secretion (FFAR1 and SLC30A8), limited glycogen stores (PPP1R3E), and a unique gastric physiology (CTSE). Other gene losses likely reflect the biased nutrient composition (ERN2 and CTRL) and distinct pathogen diversity of blood (RNASE7) and predict the complete lack of cone-based vision in these strictly nocturnal bats (PDE6H and PDE6C). Notably, REP15 loss likely helped vampire bats adapt to high dietary iron levels by enhancing iron excretion, and the loss of CYP39A1 could have contributed to their exceptional cognitive abilities. These findings enhance our understanding of vampire bat biology and the genomic underpinnings of adaptations to blood feeding.
Collapse
Affiliation(s)
- Moritz Blumer
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Tom Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | - Ana Luiza Destro
- Department of Animal Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Juraci A. Oliveira
- Department of General Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Ariadna E. Morales
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Tilman Schell
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - David Jebb
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Nikolai Hecker
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Alexis-Walid Ahmed
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Bogdan M. Kirilenko
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Maddy Foote
- Native Bat Conservation Program, Toronto Zoo, 361A Old Finch Avenue, Toronto, Ontario M1B 5K7, Canada
| | - Axel Janke
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Burton K. Lim
- Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| |
Collapse
|
46
|
Do gastrointestinal microbiomes play a role in bats' unique viral hosting capacity? Trends Microbiol 2022; 30:632-642. [PMID: 35034797 DOI: 10.1016/j.tim.2021.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022]
Abstract
Bats are reservoirs for zoonotic viruses, which they tolerate without experiencing disease. Research focused on deciphering mechanisms of virus tolerance in bats has rarely considered the influence of their gastrointestinal tract (GIT) microbiome. In mammals, GIT microbiomes influence infections through their effect on host physiology, immunity, nutrition, and behavior. Bat GIT microbiomes more closely resemble the Proteobacteria-dominated GIT microbiomes of birds than those of other mammals. As an adaptation to flight, bats have rapid GIT transit times which may reduce the stability of their microbiome, constrain nutrient uptake, and affect pathogen exposure and evolution of tolerance mechanisms. Experimental and longitudinal studies are needed to understand the function of bats' GIT microbiomes and their role in modulating viral infection dynamics.
Collapse
|
47
|
Ingala MR, Simmons NB, Dunbar M, Wultsch C, Krampis K, Perkins SL. You are more than what you eat: potentially adaptive enrichment of microbiome functions across bat dietary niches. Anim Microbiome 2021; 3:82. [PMID: 34906258 PMCID: PMC8672517 DOI: 10.1186/s42523-021-00139-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/20/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Animals evolved in a microbial world, and their gut microbial symbionts have played a role in their ecological diversification. While many recent studies report patterns of phylosymbiosis between hosts and their gut bacteria, fewer studies examine the potentially adaptive functional contributions of these microbes to the dietary habits of their hosts. In this study, we examined predicted metabolic pathways in the gut bacteria of more than 500 individual bats belonging to 60 species and compare the enrichment of these functions across hosts with distinct dietary ecologies. RESULTS We found that predicted microbiome functions were differentially enriched across hosts with different diets. Using a machine-learning approach, we also found that inferred microbiome functions could be used to predict specialized host diets with reasonable accuracy. We detected a relationship between both host phylogeny and diet with respect to microbiome functional repertoires. Because many predicted functions could potentially fill nutritional gaps for bats with specialized diets, we considered pathways discriminating dietary niches as traits of the host and fit them to comparative phylogenetic models of evolution. Our results suggest that some, but not all, predicted microbiome functions may evolve toward adaptive optima and thus be visible to the forces of natural selection operating on hosts over evolutionary time. CONCLUSIONS Our results suggest that bats with specialized diets may partially rely on their gut microbes to fulfill or augment critical nutritional pathways, including essential amino acid synthesis, fatty acid biosynthesis, and the generation of cofactors and vitamins essential for proper nutrition. Our work adds to a growing body of literature suggesting that animal microbiomes are structured by a combination of ecological and evolutionary processes and sets the stage for future metagenomic and metabolic characterization of the bat microbiome to explore links between bacterial metabolism and host nutrition.
Collapse
Affiliation(s)
- Melissa R. Ingala
- Department of Vertebrate Zoology, National Museum of Natural History, Washington, DC USA
- Department of Mammalogy, The American Museum of Natural History, New York, NY USA
- Division of Invertebrate Zoology, The American Museum of Natural History, New York, NY USA
| | - Nancy B. Simmons
- Department of Mammalogy, The American Museum of Natural History, New York, NY USA
| | - Miranda Dunbar
- Department of Biological Sciences, Southern Connecticut State University, New Haven, CT USA
| | - Claudia Wultsch
- Sackler Institute for Comparative Genomics, The American Museum of Natural History, New York, NY USA
- Bioinformatics and Computational Genomics Laboratory, Hunter College, City University of New York, New York, NY USA
| | - Konstantinos Krampis
- Bioinformatics and Computational Genomics Laboratory, Hunter College, City University of New York, New York, NY USA
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY USA
- Institute of Computational Biomedicine, Weill Cornell Medical College, New York, NY USA
| | - Susan L. Perkins
- Division of Invertebrate Zoology, The American Museum of Natural History, New York, NY USA
- Sackler Institute for Comparative Genomics, The American Museum of Natural History, New York, NY USA
| |
Collapse
|
48
|
Yarlagadda K, Razik I, Malhi RS, Carter GG. Social convergence of gut microbiomes in vampire bats. Biol Lett 2021; 17:20210389. [PMID: 34727703 PMCID: PMC8563296 DOI: 10.1098/rsbl.2021.0389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
The 'social microbiome' can fundamentally shape the costs and benefits of group-living, but understanding social transmission of microbes in free-living animals is challenging due to confounding effects of kinship and shared environments (e.g. highly associated individuals often share the same spaces, food and water). Here, we report evidence for convergence towards a social microbiome among introduced common vampire bats, Desmodus rotundus, a highly social species in which adults feed only on blood, and engage in both mouth-to-body allogrooming and mouth-to-mouth regurgitated food sharing. Shotgun sequencing of samples from six zoos in the USA, 15 wild-caught bats from a colony in Belize and 31 bats from three colonies in Panama showed that faecal microbiomes were more similar within colonies than between colonies. To assess microbial transmission, we created an experimentally merged group of the Panama bats from the three distant sites by housing these bats together for four months. In this merged colony, we found evidence that dyadic gut microbiome similarity increased with both clustering and oral contact, leading to microbiome convergence among introduced bats. Our findings demonstrate that social interactions shape microbiome similarity even when controlling for past social history, kinship, environment and diet.
Collapse
Affiliation(s)
- Karthik Yarlagadda
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Imran Razik
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| | - Ripan S. Malhi
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Program in Ecology, Evolution and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gerald G. Carter
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| |
Collapse
|
49
|
Aizpurua O, Nyholm L, Morris E, Chaverri G, Herrera Montalvo LG, Flores-Martinez JJ, Lin A, Razgour O, Gilbert MTP, Alberdi A. The role of the gut microbiota in the dietary niche expansion of fishing bats. Anim Microbiome 2021; 3:76. [PMID: 34711286 PMCID: PMC8555116 DOI: 10.1186/s42523-021-00137-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/04/2021] [Indexed: 01/04/2023] Open
Abstract
Background Due to its central role in animal nutrition, the gut microbiota is likely a relevant factor shaping dietary niche shifts. We analysed both the impact and contribution of the gut microbiota to the dietary niche expansion of the only four bat species that have incorporated fish into their primarily arthropodophage diet. Results We first compared the taxonomic and functional features of the gut microbiota of the four piscivorous bats to that of 11 strictly arthropodophagous species using 16S rRNA targeted amplicon sequencing. Second, we increased the resolution of our analyses for one of the piscivorous bat species, namely Myotis capaccinii, and analysed multiple populations combining targeted approaches with shotgun sequencing. To better understand the origin of gut microorganisms, we also analysed the gut microbiota of their fish prey (Gambusia holbrooki). Our analyses showed that piscivorous bats carry a characteristic gut microbiota that differs from that of their strict arthropodophagous counterparts, in which the most relevant bacteria have been directly acquired from their fish prey. This characteristic microbiota exhibits enrichment of genes involved in vitamin biosynthesis, as well as complex carbohydrate and lipid metabolism, likely providing their hosts with an enhanced capacity to metabolise the glycosphingolipids and long-chain fatty acids that are particularly abundant in fish. Conclusions Our results depict the gut microbiota as a relevant element in facilitating the dietary transition from arthropodophagy to piscivory. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00137-w.
Collapse
Affiliation(s)
- Ostaizka Aizpurua
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, 1353, Copenhagen, Denmark.
| | - Lasse Nyholm
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, 1353, Copenhagen, Denmark
| | - Evie Morris
- University of Exeter, Streatham Campus, Biosciences, Exeter, EX4 4PS, UK
| | - Gloriana Chaverri
- Sede del Sur, Universidad de Costa Rica, #4000 Alamedas, Golfito, 60701, Costa Rica.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, República de Panamá
| | - L Gerardo Herrera Montalvo
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 21, San Patricio, 48980, Jalisco, Mexico
| | - José Juan Flores-Martinez
- Laboratorio de Sistemas de Información Geográfica, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Aiqing Lin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117, China
| | - Orly Razgour
- University of Exeter, Streatham Campus, Biosciences, Exeter, EX4 4PS, UK
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, 1353, Copenhagen, Denmark.,University Museum, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Antton Alberdi
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, 1353, Copenhagen, Denmark
| |
Collapse
|
50
|
Nectar-feeding bats and birds show parallel molecular adaptations in sugar metabolism enzymes. Curr Biol 2021; 31:4667-4674.e6. [PMID: 34478643 DOI: 10.1016/j.cub.2021.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 04/21/2021] [Accepted: 08/05/2021] [Indexed: 12/27/2022]
Abstract
In most vertebrates, the demand for glucose as the primary substrate for cellular respiration is met by the breakdown of complex carbohydrates, or energy is obtained by protein and lipid catabolism. In contrast, a few bat and bird species have convergently evolved to subsist on nectar, a sugar-rich mixture of glucose, fructose, and sucrose.1-4 How these nectar-feeders have adapted to cope with life-long high sugar intake while avoiding the onset of metabolic syndrome and diabetes5-7 is not understood. We analyzed gene sequences obtained from 127 taxa, including 22 nectar-feeding bat and bird genera that collectively encompass four independent origins of nectarivory. We show these divergent taxa have undergone pervasive molecular adaptation in sugar catabolism pathways, including parallel selection in key glycolytic and fructolytic enzymes. We also uncover convergent amino acid substitutions in the otherwise evolutionarily conserved aldolase B (ALDOB), which catalyzes rate-limiting steps in fructolysis and glycolysis, and the mitochondrial gatekeeper pyruvate dehydrogenase (PDH), which links glycolysis and the tricarboxylic acid cycle. Metabolomic profile and enzyme functional assays are consistent with increased respiratory flux in nectar-feeding bats and help explain how these taxa can both sustain hovering flight and efficiently clear simple sugars. Taken together, our results indicate that nectar-feeding bats and birds have undergone metabolic adaptations that have enabled them to exploit a unique energy-rich dietary niche among vertebrates.
Collapse
|