1
|
Pascual-González C, Pacheco-Carpio G, Fernández-Blázquez JP, Serrano MC, Wicklein B, Algueró M, Amorín H. Tailorable Piezoelectric Chain Morphology in Biocompatible Poly‑l‑lactide Induced by Melt-Based 3D Printing. ACS APPLIED POLYMER MATERIALS 2025; 7:6067-6081. [PMID: 40433556 PMCID: PMC12107498 DOI: 10.1021/acsapm.5c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/09/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025]
Abstract
Biobased and biodegradable poly-l-lactide (PLLA) stands out among piezoelectric polymers for its biocompatibility and environmental sustainability. Its piezoelectric response is closely related to the crystallinity and the alignment of polymer chains, which is conventionally obtained by drawing techniques. These are two-step processes with tight shape constraints, and the material technology implementation would strongly benefit from the demonstration of a single-step process capable of directly achieving tailored piezoelectric morphology in PLLA biopolymer from polymer melt. Fused deposition modeling (FDM) three-dimensional (3D) printing can play this role, directly achieving tailored piezoelectric morphology in PLLA biopolymer by the microscale control of molecular chain orientation through preparation parameters, such as 3D printing speed or bed temperature. The printing-crystal phase content and texture-piezoelectric property relationships are comprehensively presented, and the key 3D printing parameters to obtain optimized piezoelectric chain morphologies are defined. Results reveal melt-based 3D printing to be a suitable technique for manufacturing biocompatible PLLA piezoelectric platforms that are also biodegradable. A commercial PLLA (molecular weight of 160 kDa) has been used, with which a large shear piezoelectric coefficient (d 14 = 8.5 pC/N) was attained after optimized printing. Biocompatibility in vitro with murine L929 fibroblasts is confirmed for this specific material, opening its use not only for smart monitoring but also for biomedical applications, including tissue engineering.
Collapse
Affiliation(s)
- Cristina Pascual-González
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, C/Sor Juana Inés de la Cruz 3, Cantoblanco, 28049Madrid, Spain
| | - Gustavo Pacheco-Carpio
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, C/Sor Juana Inés de la Cruz 3, Cantoblanco, 28049Madrid, Spain
| | | | - María Concepción Serrano
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, C/Sor Juana Inés de la Cruz 3, Cantoblanco, 28049Madrid, Spain
| | - Bernd Wicklein
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, C/Sor Juana Inés de la Cruz 3, Cantoblanco, 28049Madrid, Spain
| | - Miguel Algueró
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, C/Sor Juana Inés de la Cruz 3, Cantoblanco, 28049Madrid, Spain
| | - Harvey Amorín
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, C/Sor Juana Inés de la Cruz 3, Cantoblanco, 28049Madrid, Spain
| |
Collapse
|
2
|
Cai J, Shahryari B, Seyedkanani A, Sasmito AP, Akbarzadeh A. Topology-Dependent Enhancement of Pyroelectric Property in Nanoarchitected GaN Metamaterials. NANO LETTERS 2025; 25:7603-7610. [PMID: 40274601 DOI: 10.1021/acs.nanolett.5c01586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Pyroelectric materials exhibit spontaneous polarization in response to temperature fluctuations, a phenomenon known as the pyroelectric effect. This study investigates the pyroelectric properties of nanoarchitected gallium nitride (GaN) metamaterials with distinctive topologies, i.e., body-centered cube, octet truss, gyroid, and spinodoid, using molecular dynamics simulations. Our findings reveal a topology-dependent enhancement in the pyroelectric coefficient, primarily affected by the piezoelectric stress constant and thermal expansion coefficient. We demonstrate that decreasing the relative density further enhances the pyroelectric coefficient due to an increased surface-to-volume ratio that enhances the surface effects. Finally, we compute the pyroelectric figures of merit for thermal energy harvesting application, highlighting the superior pyroelectric performance of nanoarchitected GaN metamaterials compared to bulk GaN and GaN nanowires. These results underscore the potential of nanoscale topology engineering in the field of pyroelectricity for realizing next-generation nanogenerators, thermal imaging devices, and self-powered nanosensors.
Collapse
Affiliation(s)
- Jun Cai
- Department of Bioresource Engineering, McGill University, Montreal, QC H9X 3V9, Canada
| | - Benyamin Shahryari
- Department of Bioresource Engineering, McGill University, Montreal, QC H9X 3V9, Canada
| | - Alireza Seyedkanani
- Department of Bioresource Engineering, McGill University, Montreal, QC H9X 3V9, Canada
| | - Agus P Sasmito
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 2A7, Canada
| | - Abdolhamid Akbarzadeh
- Department of Bioresource Engineering, McGill University, Montreal, QC H9X 3V9, Canada
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada
| |
Collapse
|
3
|
Hu Q, Hong M, Wang Z, Lin X, Wang W, Zheng W, Zhou S. Microbial biofilm-based hydrovoltaic pressure sensor with ultrahigh sensitivity for self-powered flexible electronics. Biosens Bioelectron 2025; 275:117220. [PMID: 39923528 DOI: 10.1016/j.bios.2025.117220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/20/2025] [Accepted: 01/29/2025] [Indexed: 02/11/2025]
Abstract
Developing the integration of self-powered detection with both dynamic and static forces is a significant challenge in promoting intelligent technology systems. Herein, we introduce an innovative microbial biofilm based-hydrovoltaic pressure sensor (mBio-HPS) using whole-cell Geobacter sulfurreducens, which successfully combines self-powered functionality and static pressure detection within a single device. The mBio-HPS exhibited a sensitivity of up to 8968.7 kPa⁻1 (at 1 kPa) in the 0.4-25 kPa regime without external power supply. Moreover, the mBio-HPS demonstrated the fastest reported response speed to date, with a remarkable response time of 112.5 μs, enabling effective detection of both dynamic and static forces while maintaining stability during an extensive 30,000 s testing. Experimental validation using a sensor-integrated array showed its outstanding real-time detection capabilities for both dynamic and static pressure, highlighting its outstanding potential for electronic skin applications. This unprecedented concept of a hydrovoltaic pressure sensor also offers new insights into the development of high-performance self-powered electronics.
Collapse
Affiliation(s)
- Qichang Hu
- Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Minhui Hong
- Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zhao Wang
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiuyu Lin
- Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Wei Wang
- Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Wei Zheng
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Shungui Zhou
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
4
|
Surjadi JU, Portela CM. Enabling three-dimensional architected materials across length scales and timescales. NATURE MATERIALS 2025; 24:493-505. [PMID: 40074881 DOI: 10.1038/s41563-025-02119-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/01/2025] [Indexed: 03/14/2025]
Abstract
Architected materials provide a pathway to defy the limitations of monolithic materials through their engineered microstructures or geometries, allowing them to exhibit unique and extreme properties. Thus far, most studies on architected materials have been limited to fabricating periodic structures in small tessellations and investigating them under mostly quasi-static conditions, but explorations of more complex architecture designs and their properties across length scales and timescales will be essential to fully uncover the potential of this materials system. In this Perspective, we summarize state-of-the-art approaches to realizing multiscale architected materials and highlight existing knowledge gaps and opportunities in their design, fabrication and characterization. We also propose a roadmap to accelerate the discovery of architected materials with programmable properties via the synergistic combination of experimental and computational efforts. Finally, we identify research opportunities and open questions in the development of next-generation architected materials, intelligent devices and integrated systems that can bridge the gap between the conception and implementation of these materials in real-world engineering applications.
Collapse
Affiliation(s)
- James Utama Surjadi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carlos M Portela
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
5
|
Xing R, Zhang X, Fan X, Xie R, Wu L, Fang X. Coupling Strategies of Multi-Physical Fields in 2D Materials-Based Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2501833. [PMID: 40059460 DOI: 10.1002/adma.202501833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/18/2025] [Indexed: 04/24/2025]
Abstract
2D materials possess exceptional carrier transport properties and mechanical stability despite their ultrathin nature. In this context, the coupling between polarization fields and photoelectric fields has been proposed to modulate the physical properties of 2D materials, including energy band structure, carrier mobility, as well as the dynamic processes of photoinduced carriers. These strategies have led to significant improvements in the performance, functionality, and integration density of 2D materials -based photodetectors. The present review introduces the coupling of photoelectric field with four fundamental polarization fields, delivered from dielectric, piezoelectric, pyroelectric, and ferroelectric effects, focusing on their synergistic coupling mechanisms, distinctive properties, and technological merits in advanced photodetection applications. More importantly, it sheds light on the new path of material synthesis and novel structure design to improve the efficiency of the coupling strategies in photodetectors. Then, research advances on the synergy of multi-polarization effects and photoelectric effect in the domain of bionic photodetectors are highlighted. Finally, the review outlines the future research perspectives of coupling strategies in 2D materials-based photodetectors and proposes potential solutions to address the challenges issues of this area. This comprehensive overview will guide futural fundamental and applied research that capitalizes on coupling strategies for sensitive and intelligent photodetection.
Collapse
Affiliation(s)
- Ruofei Xing
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Xinglong Zhang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Xueshuo Fan
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Ranran Xie
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area, Shenzhen, 518045, P. R. China
| | - Limin Wu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
6
|
Wang H, Lai Q, Zhang D, Li X, Hu J, Yuan H. A Systematic Study on Digital Light Processing 3D Printing of 0-3 Ceramic Composites for Piezoelectric Metastructures. RESEARCH (WASHINGTON, D.C.) 2025; 8:0595. [PMID: 39990771 PMCID: PMC11842675 DOI: 10.34133/research.0595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/01/2025] [Accepted: 01/08/2025] [Indexed: 02/25/2025]
Abstract
Digital light processing (DLP) is a high-speed, high-precision 3-dimensional (3D) printing technique gaining traction in the fabrication of ceramic composites. However, when printing 0-3 composites containing lead zirconate titanate (PZT) particles, a widely used piezoelectric ceramic, severe density and refractive index mismatches between the 2 phases pose challenges for ink synthesis and the printing process. Here, we systematically and quantitatively optimized DLP printing of PZT composites, streamlining process development and providing a solid theoretical and experimental foundation for broader applications of DLP technology. PZT particles were pretreated with air plasma to improve slurry uniformity and enhance stress transfer at the composite interface, leading to improved chemical modification, mechanical strength, and piezoelectric properties. We investigated the effects of key process parameters on printability and accuracy by analyzing the curing behavior of PZT-polymer composites. A quantitative model of the DLP curing process was introduced. Unlike stereolithography (SLA), DLP curing depth was found to depend on energy dose and light intensity, with higher intensities proving more favorable for printing 0-3 PZT composites. From depth/width-energy curves, optimal process parameters were determined. We designed and fabricated a soft piezoelectric metamaterial-based touch sensor using these parameters, achieving a customized output profile. This work offers critical insights into optimizing DLP for functional materials and expands the potential of 3D-printed piezoelectric composites.
Collapse
Affiliation(s)
- Huiru Wang
- Department of Mechanics and Aerospace Engineering,
Southern University of Science and Technology, Shenzhen 518055, China
| | - Qingbo Lai
- Department of Mechanics and Aerospace Engineering,
Southern University of Science and Technology, Shenzhen 518055, China
| | - Dingcong Zhang
- Department of Mechanics and Aerospace Engineering,
Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Li
- Department of Mechanics and Aerospace Engineering,
Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiayi Hu
- Department of Mechanics and Aerospace Engineering,
Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongyan Yuan
- Department of Mechanics and Aerospace Engineering,
Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
7
|
Li S, Wang Y, Liu Z, Chen B, Liu M, He X, Yang S. Flexible pyroelectric energy harvesters from nanocomposites of liquid crystal elastomers/lead zirconate titanate nanoparticles. SCIENCE ADVANCES 2025; 11:eadt6136. [PMID: 39937905 DOI: 10.1126/sciadv.adt6136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/13/2025] [Indexed: 02/14/2025]
Abstract
Pyroelectric materials that can generate electric charges when subjected to temperature changes are of interest for renewable energy. However, current flexible pyroelectric energy harvesters suffer from low output. Here, we present a nanocomposite of liquid crystalline elastomer (LCE) and pyroelectric lead zirconate titanate (PZT) nanoparticles and demonstrate a flexible heat harvesting device with high output. The overall pyroelectricity is enhanced by the secondary pyroelectricity generated from the thermal stress imposed on the LCE. Calculations and simulations corroborate with experiments, suggesting that the monodomain LCE/PZT with fixed boundaries offers the most enhancement. At a maximum heating rate of 0.20 kelvin per second, the fixed monodomain film (42.7 weight % PZT) shows an output current of 2.81 nanoamperes and a voltage of 6.23 volts, corresponding to a pyroelectric coefficient p of -4.01 nanocoulombs per square centimeter per kelvin, 49% higher than that of the widely used polyvinylidene fluoride. Our energy harvester can charge capacitors and power electronic devices such as light-emitting diodes.
Collapse
Affiliation(s)
- Shangsong Li
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104, USA
| | - Yuchen Wang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104, USA
| | - Zixiao Liu
- Department of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Baohong Chen
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104, USA
| | - Mingzhu Liu
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104, USA
| | - Ximin He
- Department of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Li Z, Fu K, Cheng Y, Hong K, Zhang G. Circuit response and experimental verification of high energy storage density materials. Sci Rep 2025; 15:5432. [PMID: 39948167 PMCID: PMC11825866 DOI: 10.1038/s41598-025-89300-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
The electrical performance of high energy storage density materials has always been a research direction that has received high attention. This study used three typical high energy storage density materials and a traditional energy storage material to maximize the application effect of these materials. These materials include Graphene Oxide (GO), Polyaniline/Manganese Oxide Composite (PANI/Mno2) and Poly(3,4-ethylenedioxythiophene) (PEDOT) and a traditional material aluminum electrolytic capacitor (AEC). This article conducted systematic experiments to evaluate the effects of these materials on circuit response, stability, energy storage efficiency, electrical response time and humidity. The experimental materials of this article were prepared by high-purity raw materials and strict quality tests were conducted to ensure the accuracy and reliability of the experimental results. The results showed that in terms of energy storage efficiency, GO performed the best, and its energy storage efficiency was 30% higher than that of traditional materials AEC. In terms of different temperatures, the circuit response of the PANI/MNO2 was the most stable, and the stability of the high temperature increased by 25%. In terms of different humidity, the GO conductivity rate reached up to 125 s/m, an increase of 47% over the initial value. In terms of electrical response time, GO had the shortest response time, with an average of 0.35 s, which was 85% faster than AEC's 2.64 s. After comprehensive analysis of various data, the three high energy storage density materials have shown excellent performance in energy storage efficiency, electrical stability, and response speed, among which GO has the most outstanding performance. This study provides important data support for the selection and optimization of high-performance energy storage materials, verifies the excellent performance of high energy storage density materials under rapidly changing electrical conditions, and proves their wide applicability and huge potential in practical applications, laying a solid foundation for the promotion and application of industrial and technological fields.
Collapse
Affiliation(s)
- Zheng Li
- College of Mechanical and Electrical Engineering, Huangshan University, Huangshan, 245021, China.
| | - Kang Fu
- College of Mechanical and Electrical Engineering, Huangshan University, Huangshan, 245021, China
| | - Yuwan Cheng
- College of Mechanical and Electrical Engineering, Huangshan University, Huangshan, 245021, China
| | - Kaijie Hong
- College of Mechanical and Electrical Engineering, Huangshan University, Huangshan, 245021, China
| | - Guo Zhang
- College of Mechanical and Electrical Engineering, Huangshan University, Huangshan, 245021, China
| |
Collapse
|
9
|
Sun B, Kitchen G, He D, Malu DK, Ding J, Huang Y, Eisape A, Omar MM, Hu Y, Kang SH. A material dynamically enhancing both load-bearing and energy dissipation capability under cyclic loading. SCIENCE ADVANCES 2025; 11:eadt3979. [PMID: 39919188 PMCID: PMC11804925 DOI: 10.1126/sciadv.adt3979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025]
Abstract
Material properties gradually degrade under cyclic loading, leading to catastrophic failure. It results in large costs for inspection, maintenance, and downtime. Besides, materials require combinations of performance such as load bearing and energy dissipation. However, improving one performance of a material often sacrifices another performance, making it difficult to create materials with optimal performance profiles. Here we report a liquid-infused porous piezoelectric scaffold (LIPPS) that simultaneously enhances its load-bearing and energy dissipation capability under cyclic loading. For example, after 12 million loading cycles, LIPPS increases its modulus by 3600% and hysteresis by 3000%. From a CT study, this behavior is attributed to the self-recoverable mineralization under mechanical loading. Moreover, LIPPS shows a reprogrammable stiffness distribution based on the loading distribution, which enables the material to generate multiple shapes by self-folding. Our findings can contribute toward unprecedented opportunities in soft robotics, vehicles, infrastructure, and tissue engineering and contribute to the new paradigm of material selection with improved resilience and sustainability.
Collapse
Affiliation(s)
- Bohan Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Grant Kitchen
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Dongjing He
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Deep K. Malu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jitao Ding
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Yiji Huang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Adebayo Eisape
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mostafa M. Omar
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Yuhang Hu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sung Hoon Kang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
10
|
Wu L, Song Y. Recent innovations in interfacial strategies for DLP 3D printing process optimization. MATERIALS HORIZONS 2025; 12:401-417. [PMID: 39470616 DOI: 10.1039/d4mh01160k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Three-dimensional (3D) printing, also known as additive manufacturing, is capable of transforming computer-aided designs into intricate structures directly and on demand. This technology has garnered significant attention in recent years. Among the various approaches, digital light processing (DLP) 3D printing, which utilizes polymers or prepolymers as the ink, has emerged as the leading new technology, driven by high demand across diverse fields such as customized production, healthcare, education, and art design. DLP 3D printing technology employs cured slices as molding units and is recognized for its potential to achieve both high printing speed and resolution. Recent insights into the DLP printing process highlight its inherent interface transformations between liquid and solid states. This review summarizes key aspects of the printing process, speed, precision, and material diversity optimization, from the view of interfacial interactions between solid and liquid phases which are influenced by resin formation, curing surfaces and light source properties. These interactions include those at the liquid resin-UV pattern interface, the cured structure-curing surface interface, the liquid resin-curing surface interface, and the liquid resin-cured structure interface, each contributing to the unique characteristics of the printed results. Finally, this review addresses the current challenges and limitations of DLP 3D printing, providing valuable insights for future improvements and guiding potential innovations in the field.
Collapse
Affiliation(s)
- Lei Wu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Yanlin Song
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| |
Collapse
|
11
|
Cao Z, Sai H, Wang W, Yang K, Wang L, Lv P, Duan H, Huang T. Bioinspired Microhinged Actuators for Active Mechanism-Based Metamaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407231. [PMID: 39555911 PMCID: PMC11727244 DOI: 10.1002/advs.202407231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/03/2024] [Indexed: 11/19/2024]
Abstract
Mechanism-based metamaterials, comprising rigid elements interconnected by flexible hinges, possess the potential to develop intelligent micromachines with programmable motility and morphology. However, the absence of efficient microactuators has constrained the ability to achieve multimodal locomotion and active shape-morphing behaviors at the micro and nanoscale. In this study, inspiration from the flight mechanisms of tiny insects is drawn to develop a biomimetic microhinged actuator by integrating compliant mechanisms with soft hydrogel muscle. A Pseudo-Rigid-Body mechanical model is introduced to analyze structural deformation, demonstrating that this hydrogel-based microactuator can undergo significant folding while maintaining high structural stiffness. Furthermore, multiple microhinged actuators are combined to facilitate folding in multiple degrees of freedom and arbitrary directions. Fabricated by a multi-step four-dimensional (4D) direct laser writing technique, the microhinged actuators are integrated into 2D and 3D metamaterials enabling programable shape morphing. Additionally, micro-kirigami with photonic structures is demonstrated to show the pattern transforming actuated by the microhinges. This bioinspired design approach opens new avenues for the development of active mechanism-based metamaterials capable of intricate shape-morphing behaviors.
Collapse
Affiliation(s)
- Zi‐Yi Cao
- Department of Advanced Manufacturing and RoboticsState Key Laboratory for Turbulence and Complex SystemsBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
| | - Huayang Sai
- Department of Advanced Manufacturing and RoboticsState Key Laboratory for Turbulence and Complex SystemsBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
| | - Weiwei Wang
- Department of Advanced Manufacturing and RoboticsState Key Laboratory for Turbulence and Complex SystemsBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
| | - Kai‐Cheng Yang
- Department of Advanced Manufacturing and RoboticsState Key Laboratory for Turbulence and Complex SystemsBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
| | - Linlin Wang
- Department of Advanced Manufacturing and RoboticsState Key Laboratory for Turbulence and Complex SystemsBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
| | - Pengyu Lv
- Department of Advanced Manufacturing and RoboticsState Key Laboratory for Turbulence and Complex SystemsBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
| | - Huiling Duan
- Department of Advanced Manufacturing and RoboticsState Key Laboratory for Turbulence and Complex SystemsBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
| | - Tian‐Yun Huang
- Department of Advanced Manufacturing and RoboticsState Key Laboratory for Turbulence and Complex SystemsBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
- National Key Laboratory of Advanced Micro and Nano Manufacture TechnologyBeijing100871China
| |
Collapse
|
12
|
Gu S, Chen B, Xu X, Han F, Chen S. 3D Nanofabrication via Directed Material Assembly: Mechanism, Method, and Future. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312915. [PMID: 39623887 PMCID: PMC11733727 DOI: 10.1002/adma.202312915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/27/2024] [Indexed: 01/16/2025]
Abstract
Fabrication of complex three-dimensional (3D) structures at nanoscale is the core of nanotechnology, as it enables the creation of various micro-/nano-devices such as micro-robots, metamaterials, sensors, photonic devices, etc. Among most 3D nanofabrication strategies, the guided material assembly, an efficient bottom-up approach capable of directly constructing designed structures from precise integration of material building blocks, possesses compelling advantages in diverse material compatibility, sufficient driving forces, facile processing steps, and nanoscale resolution. In this review, we focus on assembly-based fabrication methods capable of creating complex 3D nanostructures (instead of periodic or 2.5D-only structures). Recent advances are classified based on the different assembly mechanisms, i.e., assembly driven by chemical reactions, physical interactions, and the synergy of multiple microscopic interactions. The design principles of representative fabrication strategies with an emphasis on their respective advantages, e.g., structural design flexibility, material compatibility, resolution, or applications are analyzed. In the summary and outlook, existing challenges, as well as possible paths to solutions for future development are reviewed. We believe that with recent advances in assembly-based nanofabrication strategies, 3D nanofabrication has achieved tremendous progress in resolution, material generality, and manufacturing cost, for it to make a greater impact in the near future.
Collapse
Affiliation(s)
- Songyun Gu
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong SAR
| | - Bingxu Chen
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong SAR
| | - Xiayi Xu
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong SAR
- School of Biomedical Sciences and EngineeringGuangzhou International CampusSouth China University of TechnologyGuangzhou511442P. R. China
| | - Fei Han
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong SAR
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Shih‐Chi Chen
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong SAR
| |
Collapse
|
13
|
Kong C, Guo Z, Teng T, Yao Q, Yu J, Wang M, Ma Y, Wang P, Tang Q. Electroactive Nanomaterials for the Prevention and Treatment of Heart Failure: From Materials and Mechanisms to Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406206. [PMID: 39268781 DOI: 10.1002/smll.202406206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Heart failure (HF) represents a cardiovascular disease that significantly threatens global well-being and quality of life. Electroactive nanomaterials, characterized by their distinctive physical and chemical properties, emerge as promising candidates for HF prevention and management. This review comprehensively examines electroactive nanomaterials and their applications in HF intervention. It presents the definition, classification, and intrinsic characteristics of conductive, piezoelectric, and triboelectric nanomaterials, emphasizing their mechanical robustness, electrical conductivity, and piezoelectric coefficients. The review elucidates their applications and mechanisms: 1) early detection and diagnosis, employing nanomaterial-based sensors for real-time cardiac health monitoring; 2) cardiac tissue repair and regeneration, providing mechanical, chemical, and electrical stimuli for tissue restoration; 3) localized administration of bioactive biomolecules, genes, or pharmacotherapeutic agents, using nanomaterials as advanced drug delivery systems; and 4) electrical stimulation therapies, leveraging their properties for innovative pacemaker and neurostimulation technologies. Challenges in clinical translation, such as biocompatibility, stability, and scalability, are discussed, along with future prospects and potential innovations, including multifunctional and stimuli-responsive nanomaterials for precise HF therapies. This review encapsulates current research and future directions concerning the use of electroactive nanomaterials in HF prevention and management, highlighting their potential to innovating in cardiovascular medicine.
Collapse
Affiliation(s)
- Chunyan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Qi Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Jiabin Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Mingyu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Yulan Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Pan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| |
Collapse
|
14
|
Shi Y, Liu L, Huang J, Xiong J, Zhong S, Zhu G, Li X, He Z, Pan T, Xin H, Li B. Adaptive Opto-Thermal-Hydrodynamic Manipulation and Polymerization (AOTHMAP) for 4D Colloidal Patterning. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412895. [PMID: 39544118 DOI: 10.1002/adma.202412895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/27/2024] [Indexed: 11/17/2024]
Abstract
Precision colloidal patterning holds great promise in constructing customizable micro/nanostructures and functional frameworks, which showcases significant application values across various fields, from intelligent manufacturing to optoelectronic integration and biofabrication. Here, a direct 4D patterning method via adaptive opto-thermal-hydrodynamic manipulation and polymerization (AOTHMAP) with single-particle resolution is reported. This approach utilizes a single laser beam to automatically transport, position, and immobilize colloidal particles through the adaptive utilization of light-induced hydrodynamic force, optical force, and photothermal polymerization. The AOTHMAP enables precise 1D, 2D, and 3D patterning of colloidal particles of varying sizes and materials, facilitating the construction of customizable microstructures with complex shapes. Furthermore, by harnessing the pH-responsive properties of hydrogel adhesives, the AOTHMAP further enables 4D patterning by dynamic alteration of patterned structures through shrinkage, restructuring, and cloaking. Notably, the AOTHMAP also enables biological patterning of functional bio-structures such as bio-micromotors. The AOTHMAP offers a simple and efficient strategy for colloidal patterning with high versatility and flexibility, which holds great promises for the construction of functional colloidal microstructures in intelligent manufacturing, as well as optoelectronic integration and biofabrication.
Collapse
Affiliation(s)
- Yang Shi
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, P. R. China
| | - Lianrou Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, P. R. China
| | - Jingping Huang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, P. R. China
| | - Jianyun Xiong
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, P. R. China
| | - Shuhan Zhong
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, P. R. China
| | - Guoshuai Zhu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, P. R. China
| | - Xing Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, P. R. China
| | - Ziyi He
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, P. R. China
| | - Ting Pan
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, P. R. China
| | - Hongbao Xin
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, P. R. China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, P. R. China
| |
Collapse
|
15
|
Nam J, Kim M. Advances in materials and technologies for digital light processing 3D printing. NANO CONVERGENCE 2024; 11:45. [PMID: 39497012 PMCID: PMC11534933 DOI: 10.1186/s40580-024-00452-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024]
Abstract
Digital light processing (DLP) is a projection-based vat photopolymerization 3D printing technique that attracts increasing attention due to its high resolution and accuracy. The projection-based layer-by-layer deposition in DLP uses precise light control to cure photopolymer resin quickly, providing a smooth surface finish due to the uniform layer curing process. Additionally, the extensive material selection in DLP 3D printing, notably including existing photopolymerizable materials, presents a significant advantage compared with other 3D printing techniques with limited material choices. Studies in DLP can be categorized into two main domains: material-level and system-level innovation. Regarding material-level innovations, the development of photocurable resins with tailored rheological, photocuring, mechanical, and functional properties is crucial for expanding the application prospects of DLP technology. In this review, we comprehensively review the state-of-the-art advancements in DLP 3D printing, focusing on material innovations centered on functional materials, particularly various smart materials for 4D printing, in addition to piezoelectric ceramics and their composites with their applications in DLP. Additionally, we discuss the development of recyclable DLP resins to promote sustainable manufacturing practices. The state-of-the-art system-level innovations are also delineated, including recent progress in multi-materials DLP, grayscale DLP, AI-assisted DLP, and other related developments. We also highlight the current challenges and propose potential directions for future development. Exciting areas such as the creation of photocurable materials with stimuli-responsive functionality, ceramic DLP, recyclable DLP, and AI-enhanced DLP are still in their nascent stages. By exploring concepts like AI-assisted DLP recycling technology, the integration of these aspects can unlock significant opportunities for applications driven by DLP technology. Through this review, we aim to stimulate further interest and encourage active collaborations in advancing DLP resin materials and systems, fostering innovations in this dynamic field.
Collapse
Affiliation(s)
- Jisoo Nam
- Department of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Miso Kim
- Department of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University (SKKU), Suwon, 16419, South Korea.
| |
Collapse
|
16
|
Shen D, Li F, Zhao J, Wang R, Li B, Han Z, Guo L, Han P, Yang D, Kim HH, Su Y, Gong Z, Zhu L. Ionic Hydrogel-Based Moisture Electric Generators for Underwater Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408954. [PMID: 39342649 DOI: 10.1002/advs.202408954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/15/2024] [Indexed: 10/01/2024]
Abstract
Ubiquitous moisture is of particular interest for sustainable power generation and self-powered electronics. However, current moisture electric generators (MEGs) can only harvest moisture energy in the air, which tremendously limits the energy harvesting efficiency and practical application scenarios. Herein, the operationality of MEG from air to underwater environment, through a sandwiched engineered-hydrogel device with an additional waterproof breathable membrane layer allowing water vapor exchange while preventing liquid water penetration, is expanded. Underwater environment, the device can spontaneously deliver a voltage of 0.55 V and a current density of 130 µA cm-2 due to the efficient ion separation assisted by negative ions confinement in hydrogel networks. The output can be maintained even under harsh underwater environment with 10% salt concentration, 1 m s-1 disturbing flow, as well as >40 kPa hydraulic pressure. The engineered hydrogel used for MEG also exhibits excellent self-healing ability, flexibility, and biocompatibility. As the first demonstration of practical applications in self-powered underwater electronics, the MEG device is successfully powering a wireless emitter for remote communication in water. This new type of MEG offers an innovative route for harvesting moisture energy underwater and holds promise in the creation of a new range of innovative electronic devices for marine Internet-of-Things.
Collapse
Affiliation(s)
- Daozhi Shen
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fangzhou Li
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Jian Zhao
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Rui Wang
- University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Li
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Zechao Han
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linglan Guo
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peicheng Han
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongqi Yang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hyun Ho Kim
- Department of Energy Engineering Convergence, School of Materials Science and Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea
| | - Yanjie Su
- Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhixiong Gong
- State Key Laboratory of Ocean Engineering, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Limin Zhu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
17
|
Maurya MR, Alhamdi M, Al-Darwish F, Sadek F, Douglas Y, Karabili N, Eltayeb A, Bagherzadeh R, Zaidi SA, Sadasivuni KK. Energy Harvesting Using Optimized ZnO Polymer Nanocomposite-Based 3D-Printed Lattice Structure. Polymers (Basel) 2024; 16:2967. [PMID: 39518176 PMCID: PMC11548469 DOI: 10.3390/polym16212967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
A 3D-printable polymer can provide an effective solution for developing piezoelectric structures. However, their nanocomposite formulation and 3D printing processability must be optimized for fabricating complex geometries with high printability. In the present study, we optimized the 3D-printable piezoelectric composite formulation for developing complex geometries by an additive manufacturing approach. The zinc oxide (ZnO) nanomaterial was synthesized by the hydrothermal method. The ZnO loading in the 3D-printed flexible resin was optimized to exhibit good interfacial adhesion and enable 3D printing. The lattice structure was fabricated to improve the piezoelectric response compared with the solid structure. The lattice structure block printed with 10 wt% ZnO showed a good piezoelectric response, with a linear increase in the generated output voltage for an increase in force. The maximum power density of 0.065 μW/cm2 was obtained under 12 N force at 1 Hz. The fabricated structure generated a peak-peak voltage of ~3 V with a foot heel strike.
Collapse
Affiliation(s)
- Muni Raj Maurya
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; (M.R.M.); (M.A.)
| | - Mazen Alhamdi
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; (M.R.M.); (M.A.)
- Department of Civil and Environmental Engineering, Qatar University, Doha P.O. Box 2713, Qatar
| | - Fawziya Al-Darwish
- Department of Mechanical and Industrial Engineering, Qatar University, Doha P.O. Box 2713, Qatar; (F.A.-D.); (F.S.); (Y.D.)
| | - Faisal Sadek
- Department of Mechanical and Industrial Engineering, Qatar University, Doha P.O. Box 2713, Qatar; (F.A.-D.); (F.S.); (Y.D.)
| | - Yousef Douglas
- Department of Mechanical and Industrial Engineering, Qatar University, Doha P.O. Box 2713, Qatar; (F.A.-D.); (F.S.); (Y.D.)
| | - Nawar Karabili
- Department of Mechanical and Industrial Engineering, Qatar University, Doha P.O. Box 2713, Qatar; (F.A.-D.); (F.S.); (Y.D.)
| | - Allaa Eltayeb
- Department of Electrical Engineering, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Roohollah Bagherzadeh
- Advanced Fibrous Materials LAB (AFM-LAB), Institute for Advanced Textile Materials and Technologies (ATMT), Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran;
| | - Shabi Abbas Zaidi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Kishor Kumar Sadasivuni
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; (M.R.M.); (M.A.)
- Department of Mechanical and Industrial Engineering, Qatar University, Doha P.O. Box 2713, Qatar; (F.A.-D.); (F.S.); (Y.D.)
| |
Collapse
|
18
|
Khazaee M, Riahi S, Rezania A. Conceptual Piezoelectric-Based Energy Harvester from In Vivo Heartbeats' Cyclic Kinetic Motion for Leadless Intracardiac Pacemakers. MICROMACHINES 2024; 15:1133. [PMID: 39337793 PMCID: PMC11434573 DOI: 10.3390/mi15091133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024]
Abstract
This paper studies the development of piezoelectric energy harvesting for self-powered leadless intracardiac pacemakers. The energy harvester fit inside the battery compartment, assuming that the energy harvester would replace the battery with a smaller rechargeable battery capacity. The power output analysis was derived from the three-dimensional finite element analysis and in vivo heart measurements. A Doppler laser at the anterior basal in the right ventricle directly measured the heart's kinetic motion. Piezoceramics in the cantilevered configuration were studied. The heart motion was periodic but not harmonic and shock-based. This study found that energy can be harvested by applying periodic bio-movements (cardiac motion). The results also showed that the energy harvester can generate 1.1 V voltage. The effect of various geometrical parameters on power generation was studied. This approach offers potential for self-powered implantable medical devices, with the harvested energy used to power devices such as pacemakers.
Collapse
Affiliation(s)
- Majid Khazaee
- Department of AAU Energy, Aalborg University, 9220 Aalborg East, Denmark
| | - Sam Riahi
- Department of Cardiology, Aalborg University Hospital, 9000 Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark
| | - Alireza Rezania
- Department of AAU Energy, Aalborg University, 9220 Aalborg East, Denmark
| |
Collapse
|
19
|
De Marchi L. The Blossoming of Ultrasonic Metatransducers. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1097-1105. [PMID: 38935472 DOI: 10.1109/tuffc.2024.3420158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Key requirements to boost the applicability of ultrasonic systems for in situ, real-time operations are low hardware complexity and low power consumption. These features are not available in present-day systems due to the fact that US inspections are typically achieved through phased arrays featuring a large number of individually controlled piezoelectric transducers and generating huge quantities of data. To minimize the energy and computational requirements, novel devices that feature enhanced functionalities beyond the mere conversion (i.e., metatransducers) can be conceived. This article reviews the potential of recent research breakthroughs in the transducer technology, which allow them to efficiently perform tasks, such as focusing, energy harvesting, beamforming, data communication, or mode filtering, and discusses the challenges for the widespread adoption of these solutions.
Collapse
|
20
|
Hu H, Deng C, Gao H, Han T, Xue S, Tang Y, Zhang M, Li M, Liu H, Deng L, Xiong W. 3D Nanoprinting of Heterogeneous Metal Oxides with High Shape Fidelity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405053. [PMID: 38857896 DOI: 10.1002/adma.202405053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/27/2024] [Indexed: 06/12/2024]
Abstract
3D nanoprinting can significantly enhance the performance of sensors, batteries, optoelectronic/microelectronic devices, etc. However, current 3D nanoprinting methods for metal oxides are suffering from three key issues including limited material applicability, serious shape distortion, and the difficulty of heterogeneous integration. This paper discovers a mechanism in which imidazole and acrylic acid synergistically coordinate with metal ions in water. Using the mechanism, this work develops a series of metal ion synergistic coordination water-soluble (MISCWS) resins for 3D nanoprinting of various metal oxides, including MnO2, Cr2O3, Co3O4, and ZnO, as well as heterogeneous structures of MnO2/NiO, Cr2O3/Al2O3, and ZnO/MgO. Besides, the synergistic coordination effect results in a 2.54-fold increase in inorganic mass fraction within the polymer, compared with previous works, which effectively mitigates the shape distortion of metal oxide microstructures. Based on this method, this work also demonstrates a 3D ZnO microsensor with a high sensitivity (1.113 million at 200 ppm NO2), surpassing the conventional 2D ZnO sensors by tenfold. The method yields high-fidelity 3D structures of heterogeneous metal oxides with nanoscale resolution, paving the way for applications such as sensing, micro-optics, energy storage, and microsystems.
Collapse
Affiliation(s)
- Huace Hu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Chunsan Deng
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Hui Gao
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
- Optics Valley Laboratory, Hubei, 430074, China
| | - Tao Han
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Songyan Xue
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Yanting Tang
- School of Integrated Circuits, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Mingduo Zhang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Minjing Li
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Huan Liu
- Optics Valley Laboratory, Hubei, 430074, China
- School of Integrated Circuits, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Leimin Deng
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
- Optics Valley Laboratory, Hubei, 430074, China
| | - Wei Xiong
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
- Optics Valley Laboratory, Hubei, 430074, China
| |
Collapse
|
21
|
Yarali E, Mirzaali MJ, Ghalayaniesfahani A, Accardo A, Diaz-Payno PJ, Zadpoor AA. 4D Printing for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402301. [PMID: 38580291 DOI: 10.1002/adma.202402301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 04/07/2024]
Abstract
4D (bio-)printing endows 3D printed (bio-)materials with multiple functionalities and dynamic properties. 4D printed materials have been recently used in biomedical engineering for the design and fabrication of biomedical devices, such as stents, occluders, microneedles, smart 3D-cell engineered microenvironments, drug delivery systems, wound closures, and implantable medical devices. However, the success of 4D printing relies on the rational design of 4D printed objects, the selection of smart materials, and the availability of appropriate types of external (multi-)stimuli. Here, this work first highlights the different types of smart materials, external stimuli, and design strategies used in 4D (bio-)printing. Then, it presents a critical review of the biomedical applications of 4D printing and discusses the future directions of biomedical research in this exciting area, including in vivo tissue regeneration studies, the implementation of multiple materials with reversible shape memory behaviors, the creation of fast shape-transformation responses, the ability to operate at the microscale, untethered activation and control, and the application of (machine learning-based) modeling approaches to predict the structure-property and design-shape transformation relationships of 4D (bio)printed constructs.
Collapse
Affiliation(s)
- Ebrahim Yarali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Mohammad J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Ava Ghalayaniesfahani
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Chemistry, Materials and Chemical Engineering, Giulio Natta, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Pedro J Diaz-Payno
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Orthopedics and Sports Medicine, Erasmus MC University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| |
Collapse
|
22
|
Son JH, Kim H, Choi Y, Lee H. 3D printed energy devices: generation, conversion, and storage. MICROSYSTEMS & NANOENGINEERING 2024; 10:93. [PMID: 38962473 PMCID: PMC11220016 DOI: 10.1038/s41378-024-00708-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/02/2024] [Accepted: 04/16/2024] [Indexed: 07/05/2024]
Abstract
The energy devices for generation, conversion, and storage of electricity are widely used across diverse aspects of human life and various industry. Three-dimensional (3D) printing has emerged as a promising technology for the fabrication of energy devices due to its unique capability of manufacturing complex shapes across different length scales. 3D-printed energy devices can have intricate 3D structures for significant performance enhancement, which are otherwise impossible to achieve through conventional manufacturing methods. Furthermore, recent progress has witnessed that 3D-printed energy devices with micro-lattice structures surpass their bulk counterparts in terms of mechanical properties as well as electrical performances. While existing literature focuses mostly on specific aspects of individual printed energy devices, a brief overview collectively covering the wide landscape of energy applications is lacking. This review provides a concise summary of recent advancements of 3D-printed energy devices. We classify these devices into three functional categories; generation, conversion, and storage of energy, offering insight on the recent progress within each category. Furthermore, current challenges and future prospects associated with 3D-printed energy devices are discussed, emphasizing their potential to advance sustainable energy solutions.
Collapse
Affiliation(s)
- Jin-ho Son
- Department of Mechanical Engineering, Institute of Advanced Machines and Design, Seoul National University, Seoul, Republic of Korea
| | - Hongseok Kim
- Department of Mechanical Engineering, Institute of Advanced Machines and Design, Seoul National University, Seoul, Republic of Korea
| | - Yoonseob Choi
- Department of Mechanical Engineering, Institute of Advanced Machines and Design, Seoul National University, Seoul, Republic of Korea
| | - Howon Lee
- Department of Mechanical Engineering, Institute of Advanced Machines and Design, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Hong Y, Liu S, Yang X, Hong W, Shan Y, Wang B, Zhang Z, Yan X, Lin W, Li X, Peng Z, Xu X, Yang Z. A bioinspired surface tension-driven route toward programmed cellular ceramics. Nat Commun 2024; 15:5030. [PMID: 38866735 PMCID: PMC11169415 DOI: 10.1038/s41467-024-49345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
The intriguing biomineralization process in nature endows the mineralized biological materials with intricate microarchitected structures in a facile and orderly way, which provides an inspiration for processing ceramics. Here, we propose a simple and efficient manufacturing process to fabricate cellular ceramics in programmed cell-based 3D configurations, inspired by the biomineralization process of the diatom frustule. Our approach separates the ingredient synthesis from architecture building, enabling the programmable manufacturing of cellular ceramics with various cell sizes, geometries, densities, metastructures, and constituent elements. Our approach exploits surface tension to capture precursor solutions in the architected cellular lattices, allowing us to control the liquid geometry and manufacture cellular ceramics with high precision. We investigate the geometry parameters for the architected lattices assembled by unit cells and unit columns, both theoretically and experimentally, to guide the 3D fluid interface creation in arranged configurations. We manufacture a series of globally cellular and locally compact piezoceramics, obtaining an enhanced piezoelectric constant and a designed piezoelectric anisotropy. This bioinspired, surface tension-assisted approach has the potential to revolutionize the design and processing of multifarious ceramic materials for structural and functional applications in energy, electronics and biomedicine.
Collapse
Affiliation(s)
- Ying Hong
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Shiyuan Liu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiaodan Yang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Wang Hong
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China
| | - Yao Shan
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Biao Wang
- Institute of Artificial Intelligence, School of Future Technology, Shanghai University, Shanghai, China
| | - Zhuomin Zhang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiaodong Yan
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Weikang Lin
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xuemu Li
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zehua Peng
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiaote Xu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhengbao Yang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
24
|
Liu J, Zhang X, Liu J, Liu X, Zhang C. 3D Printing of Anisotropic Piezoresistive Pressure Sensors for Directional Force Perception. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309607. [PMID: 38477389 PMCID: PMC11199969 DOI: 10.1002/advs.202309607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/03/2024] [Indexed: 03/14/2024]
Abstract
Anisotropic pressure sensors are gaining increasing attention for next-generation wearable electronics and intelligent infrastructure owing to their sensitivity in identifying different directional forces. 3D printing technologies have unparalleled advantages in the design of anisotropic pressure sensors with customized 3D structures for realizing tunable anisotropy. 3D printing has demonstrated few successes in utilizing piezoelectric nanocomposites for anisotropic recognition. However, 3D-printed anisotropic piezoresistive pressure sensors (PPSs) remain unexplored despite their convenience in saving the poling process. This study pioneers the development of an aqueous printable ink containing waterborne polyurethane elastomer. An anisotropic PPS featuring tailorable flexibility in macroscopic 3D structures and microscopic pore morphologies is created by adopting direct ink writing 3D printing technology. Consequently, the desired directional force perception is achieved by programming the printing schemes. Notably, the printed PPS demonstrated excellent deformability, with a relative sensitivity of 1.22 (kPa*wt. %)-1 over a substantial pressure range (2.8 to 8.1 kPa), approximately fivefold than that of a state-of-the-art carbon-based PPS. This study underscores the versatility of 3D printing in customizing highly sensitive anisotropic pressure sensors for advanced sensing applications that are difficult to achieve using conventional measures.
Collapse
Affiliation(s)
- Jingfeng Liu
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Xuan Zhang
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Jintao Liu
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Xingang Liu
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| |
Collapse
|
25
|
Jia Y, Liu K, Zhang XS. Modulate stress distribution with bio-inspired irregular architected materials towards optimal tissue support. Nat Commun 2024; 15:4072. [PMID: 38773087 PMCID: PMC11109255 DOI: 10.1038/s41467-024-47831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/12/2024] [Indexed: 05/23/2024] Open
Abstract
Natural materials typically exhibit irregular and non-periodic architectures, endowing them with compelling functionalities such as body protection, camouflage, and mechanical stress modulation. Among these functionalities, mechanical stress modulation is crucial for homeostasis regulation and tissue remodeling. Here, we uncover the relationship between stress modulation functionality and the irregularity of bio-inspired architected materials by a generative computational framework. This framework optimizes the spatial distribution of a limited set of basic building blocks and uses these blocks to assemble irregular materials with heterogeneous, disordered microstructures. Despite being irregular and non-periodic, the assembled materials display spatially varying properties that precisely modulate stress distribution towards target values in various control regions and load cases, echoing the robust stress modulation capability of natural materials. The performance of the generated irregular architected materials is experimentally validated with 3D printed physical samples - a good agreement with target stress distribution is observed. Owing to its capability to redirect loads while keeping a proper amount of stress to stimulate bone repair, we demonstrate the potential application of the stress-programmable architected materials as support in orthopedic femur restoration.
Collapse
Affiliation(s)
- Yingqi Jia
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ke Liu
- Department of Advanced Manufacturing and Robotics, Peking University, Beijing, 100871, China.
| | - Xiaojia Shelly Zhang
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- National Center for Supercomputing Applications, Urbana, USA.
| |
Collapse
|
26
|
Yang X, Shan Y, Hong Y, Zhang Z, Liu S, Yan X, Gong X, Zhang G, Yang Z. Exploring the Mpemba effect: a universal ice pressing enables porous ceramics. MATERIALS HORIZONS 2024; 11:1899-1907. [PMID: 38314804 DOI: 10.1039/d3mh01869e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Piezoceramics with global porosity and local compaction are highly desired to exploit the combination of mechanical and electrical properties. However, achieving such a functional combination is challenging because of the lack of techniques for applying uniform pressure inside porous ceramic green parts. Nature provides many examples of generating strong forces inside the macro and micro channels via the state transformation of water. Inspired by these phenomena, we present a technique of "ice and fire", that is, water freezing (ice pressing) and high-temperature sintering (fire), to produce ideal porous piezoceramics. We introduce a new compaction method called the "ice pressing method", which manipulates liquid phase transition for compaction. This method has several advantages, including uniform pressure distribution, a wide pressure range, high effectiveness, and selective freezing. It can generate an ultrahigh pressure of up to 180 MPa on the piezoceramic green skeletons in minutes while retaining their functional pore structures. By exploiting the Mpemba phenomenon, we further accelerate the compaction procedure by 11%. The first ice-pressed and second fire-consolidated lead zirconate titanate (PZT) ceramics are highly densified and exhibit an outstanding piezoelectric response (d33 = 531 pC N-1), comparable to conventional pressed bulk counterparts and 10-20 times higher than those of unpressed materials. The novel ice pressing method breaks the limitation of lacking a compaction technique for porous ceramics. The versatile and effective ice pressing method is a green and low-cost route promoting applications in sensors, acoustics, water filtration, catalyst substrates, and energy harvesting.
Collapse
Affiliation(s)
- Xiaodan Yang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yao Shan
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Ying Hong
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhuomin Zhang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Shiyuan Liu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiaodong Yan
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xuetian Gong
- School of Optical and Electronic Information, Engineering Research Center for Functional Ceramic MOE and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guangzu Zhang
- School of Optical and Electronic Information, Engineering Research Center for Functional Ceramic MOE and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhengbao Yang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
27
|
Bas J, Dutta T, Llamas Garro I, Velázquez-González JS, Dubey R, Mishra SK. RETRACTED: Embedded Sensors with 3D Printing Technology: Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:1955. [PMID: 38544218 PMCID: PMC10974650 DOI: 10.3390/s24061955] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 12/17/2024]
Abstract
Embedded sensors (ESs) are used in smart materials to enable continuous and permanent measurements of their structural integrity, while sensing technology involves developing sensors, sensory systems, or smart materials that monitor a wide range of properties of materials. Incorporating 3D-printed sensors into hosting structures has grown in popularity because of improved assembly processes, reduced system complexity, and lower fabrication costs. 3D-printed sensors can be embedded into structures and attached to surfaces through two methods: attaching to surfaces or embedding in 3D-printed sensors. We discussed various additive manufacturing techniques for fabricating sensors in this review. We also discussed the many strategies for manufacturing sensors using additive manufacturing, as well as how sensors are integrated into the manufacturing process. The review also explained the fundamental mechanisms used in sensors and their applications. The study demonstrated that embedded 3D printing sensors facilitate the development of additive sensor materials for smart goods and the Internet of Things.
Collapse
Affiliation(s)
- Joan Bas
- Space and Resilient Communications and Systems (SRCOM), Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain;
| | - Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howarh 711103, India;
| | - Ignacio Llamas Garro
- Navigation and Positioning, Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain; (I.L.G.); (J.S.V.-G.)
| | - Jesús Salvador Velázquez-González
- Navigation and Positioning, Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain; (I.L.G.); (J.S.V.-G.)
| | - Rakesh Dubey
- Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland;
| | - Satyendra K. Mishra
- Space and Resilient Communications and Systems (SRCOM), Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain;
| |
Collapse
|
28
|
Wang Z, Xu M, Du J, Jin Y. Experimental and Numerical Investigation of Polymer-Based 3D-Printed Lattice Structures with Largely Tunable Mechanical Properties Based on Triply Periodic Minimal Surface. Polymers (Basel) 2024; 16:711. [PMID: 38475393 DOI: 10.3390/polym16050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Triply periodic minimal surfaces (TPMSs) have demonstrated significant potential in lattice structure design and have been successfully applied across multiple industrial fields. In this work, a novel lattice structure with tunable anisotropic properties is proposed based on two typical TPMS types, and their mechanical performances are studied both experimentally and numerically after being fabricated using a polymer 3D printing process. Initially, adjustments are made to the original TPMS lattice structures to obtain honeycomb lattice structures, which are found to possess significant anisotropy, by utilizing numerical homogenization methods. Based on this, a continuous self-twisting deformation is proposed to change the topology of the honeycomb lattice structures to largely tune the mechanical properties. Quasi-static compression experiments are conducted with different twisting angles, and the results indicate that self-twisting can affect the mechanical properties in specific directions of the structure, and also enhance the energy absorption capacity. Additionally, it mitigates the risk of structural collapse and failure during compression while diminishing structural anisotropy. The proposed self-twisting strategy, based on honeycomb lattice structures, has been proven valuable in advancing the investigation of lattice structures with largely tunable mechanical properties.
Collapse
Affiliation(s)
- Zhenjie Wang
- Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
| | - Menghui Xu
- Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
- Science and Technology Department, Xinjiang Institute of Technology, Akesu 843100, China
| | - Jianke Du
- Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
| | - Yuan Jin
- Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
| |
Collapse
|
29
|
Zhou S, Xiao C, Fan L, Yang J, Ge R, Cai M, Yuan K, Li C, Crawford RW, Xiao Y, Yu P, Deng C, Ning C, Zhou L, Wang Y. Injectable ultrasound-powered bone-adhesive nanocomposite hydrogel for electrically accelerated irregular bone defect healing. J Nanobiotechnology 2024; 22:54. [PMID: 38326903 PMCID: PMC10851493 DOI: 10.1186/s12951-024-02320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
The treatment of critical-size bone defects with irregular shapes remains a major challenge in the field of orthopedics. Bone implants with adaptability to complex morphological bone defects, bone-adhesive properties, and potent osteogenic capacity are necessary. Here, a shape-adaptive, highly bone-adhesive, and ultrasound-powered injectable nanocomposite hydrogel is developed via dynamic covalent crosslinking of amine-modified piezoelectric nanoparticles and biopolymer hydrogel networks for electrically accelerated bone healing. Depending on the inorganic-organic interaction between the amino-modified piezoelectric nanoparticles and the bio-adhesive hydrogel network, the bone adhesive strength of the prepared hydrogel exhibited an approximately 3-fold increase. In response to ultrasound radiation, the nanocomposite hydrogel could generate a controllable electrical output (-41.16 to 61.82 mV) to enhance the osteogenic effect in vitro and in vivo significantly. Rat critical-size calvarial defect repair validates accelerated bone healing. In addition, bioinformatics analysis reveals that the ultrasound-responsive nanocomposite hydrogel enhanced the osteogenic differentiation of bone mesenchymal stem cells by increasing calcium ion influx and up-regulating the PI3K/AKT and MEK/ERK signaling pathways. Overall, the present work reveals a novel wireless ultrasound-powered bone-adhesive nanocomposite hydrogel that broadens the therapeutic horizons for irregular bone defects.
Collapse
Affiliation(s)
- Shiqi Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Cairong Xiao
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Lei Fan
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jinghong Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Ruihan Ge
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Min Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Kaiting Yuan
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Changhao Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Ross William Crawford
- Institute of Health and Biomedical Innovation & Australia-China Centre for Tissue Engineering and Regenerative Medicine, Centre for Biomedical Technologies, Queensland University of Technology, Queensland, 4059, Australia
| | - Yin Xiao
- School of Medicine and Dentistry & Menzies Health Institute Queensland, Griffith University, Queensland, 4111, Australia
| | - Peng Yu
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Chunlin Deng
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Chengyun Ning
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510641, China.
| | - Lei Zhou
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Spine Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510150, China.
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China.
| |
Collapse
|
30
|
Qiao L, Gao X, Ren K, Qiu C, Liu J, Jin H, Dong S, Xu Z, Li F. Designing transparent piezoelectric metasurfaces for adaptive optics. Nat Commun 2024; 15:805. [PMID: 38280898 PMCID: PMC10821918 DOI: 10.1038/s41467-024-45088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024] Open
Abstract
Simultaneously generating various motion modes with high strains in piezoelectric devices is highly desired for high-technology fields to achieve multi-functionalities. However, traditional approach for designing multi-degrees-of-freedom systems is to bond together several multilayer piezoelectric stacks, which generally leads to cumbersome and complicated structures. Here, we proposed a transparent piezo metasurface to achieve various types of strains in a wide frequency range. As an example, we designed a ten-unit piezo metasurface, which can produce high strains (ε3 = 0.76%), and generate linear motions along X-, Y- and Z-axis, rotary motions around X-, Y- and Z-axis as well as coupled modes. An adaptive lens based on the proposed piezo metasurface was demonstrated. It can realize a wide range of focal length (35.82 cm ~ ∞) and effective image stabilization with relatively large displacements (5.05 μm along Y-axis) and tilt angles (44.02' around Y-axis). This research may benefit the miniaturization and integration of multi-degrees-of-freedom systems.
Collapse
Affiliation(s)
- Liao Qiao
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiangyu Gao
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Kaile Ren
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chaorui Qiu
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jinfeng Liu
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Haonan Jin
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuxiang Dong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518051, China
| | - Zhuo Xu
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Fei Li
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
31
|
Lee J, Park S, Lee J, Kim N, Kim MK. Recent advances of additively manufactured noninvasive kinematic biosensors. Front Bioeng Biotechnol 2023; 11:1303004. [PMID: 38047290 PMCID: PMC10690938 DOI: 10.3389/fbioe.2023.1303004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
The necessity of reliable measurement data assessment in the realm of human life has experienced exponential growth due to its extensive utilization in health monitoring, rehabilitation, surgery, and long-term treatment. As a result, the significance of kinematic biosensors has substantially increased across various domains, including wearable devices, human-machine interaction, and bioengineering. Traditionally, the fabrication of skin-mounted biosensors involved complex and costly processes such as lithography and deposition, which required extensive preparation. However, the advent of additive manufacturing has revolutionized biosensor production by facilitating customized manufacturing, expedited processes, and streamlined fabrication. AM technology enables the development of highly sensitive biosensors capable of measuring a wide range of kinematic signals while maintaining a low-cost aspect. This paper provides a comprehensive overview of state-of-the-art noninvasive kinematic biosensors created using diverse AM technologies. The detailed development process and the specifics of different types of kinematic biosensors are also discussed. Unlike previous review articles that primarily focused on the applications of additively manufactured sensors based on their sensing data, this article adopts a unique approach by categorizing and describing their applications according to their sensing frequencies. Although AM technology has opened new possibilities for biosensor fabrication, the field still faces several challenges that need to be addressed. Consequently, this paper also outlines these challenges and provides an overview of future applications in the field. This review article offers researchers in academia and industry a comprehensive overview of the innovative opportunities presented by kinematic biosensors fabricated through additive manufacturing technologies.
Collapse
Affiliation(s)
- Jeonghoon Lee
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul, Republic of Korea
| | - Sangmin Park
- Department of Mechanical Engineering, Gachon University, Seongnam, Republic of Korea
| | - Jaehoon Lee
- Department of Mechanical Engineering, Gachon University, Seongnam, Republic of Korea
| | - Namjung Kim
- Department of Mechanical Engineering, Gachon University, Seongnam, Republic of Korea
| | - Min Ku Kim
- School of Mechanical Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Zheng X, Zhang X, Chen TT, Watanabe I. Deep Learning in Mechanical Metamaterials: From Prediction and Generation to Inverse Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302530. [PMID: 37332101 DOI: 10.1002/adma.202302530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/27/2023] [Indexed: 06/20/2023]
Abstract
Mechanical metamaterials are meticulously designed structures with exceptional mechanical properties determined by their microstructures and constituent materials. Tailoring their material and geometric distribution unlocks the potential to achieve unprecedented bulk properties and functions. However, current mechanical metamaterial design considerably relies on experienced designers' inspiration through trial and error, while investigating their mechanical properties and responses entails time-consuming mechanical testing or computationally expensive simulations. Nevertheless, recent advancements in deep learning have revolutionized the design process of mechanical metamaterials, enabling property prediction and geometry generation without prior knowledge. Furthermore, deep generative models can transform conventional forward design into inverse design. Many recent studies on the implementation of deep learning in mechanical metamaterials are highly specialized, and their pros and cons may not be immediately evident. This critical review provides a comprehensive overview of the capabilities of deep learning in property prediction, geometry generation, and inverse design of mechanical metamaterials. Additionally, this review highlights the potential of leveraging deep learning to create universally applicable datasets, intelligently designed metamaterials, and material intelligence. This article is expected to be valuable not only to researchers working on mechanical metamaterials but also those in the field of materials informatics.
Collapse
Affiliation(s)
- Xiaoyang Zheng
- Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, 305-0047, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8573, Japan
| | - Xubo Zhang
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8573, Japan
| | - Ta-Te Chen
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, 305-0047, Japan
| | - Ikumu Watanabe
- Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, 305-0047, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8573, Japan
| |
Collapse
|
33
|
Liu J, Liu J, Zhang X, Liu X, Zhang C. Customizing Three-Dimensional Elastic Barium Titanate Sponge for Intelligent Piezoelectric Sensing. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37908068 DOI: 10.1021/acsami.3c12921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Piezoelectric energy harvesters (PEHs) with porous structures, such as piezoelectric elastic sponges, exhibit high force-to-electricity conversion efficiencies owing to their excellent compression recovery properties. However, conventional preparation methods are limited to producing bulk-form sponge-like PEHs and fail to create more elaborate three-dimensional (3D) structures that could enhance conversion efficiency. Herein, we invent a composite ink consisting of waterborne polyurethane (WPU), barium titanate (BTO), and cellulose nanofibers (CNFs) that is suitable for direct ink writing (DIW) 3D printing. This ink, when coupled with freeze-drying, allows the customization of piezoelectric sponges with functional 3D structures. The printed lattice sponge exhibits remarkable compression recovery of 70% and a notably high relative sensitivity of 9.83 mV/kPa*wt % (where *wt % denotes the BTO content) across a wide pressure range of 2.98-37 kPa, which is approximately three times broader than those of other composite piezoelectric pressure sensors based on BTO or piezoceramic (PZT) materials. Furthermore, a customized 3D piezoelectric sponge with a "boomerang" configuration is utilized as an anisotropic bending sensor on the wrist for intelligently monitoring the stroke posture and programming scientific training for table tennis players. This study highlights a versatile strategy for constructing elastic sponges with high piezoelectricity and designing 3D PEH functional structures that can be applied to flexible self-powered intelligent sensing systems.
Collapse
Affiliation(s)
- Jingfeng Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Jintao Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Xuan Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Xingang Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
34
|
He Q, Zeng Y, Jiang L, Wang Z, Lu G, Kang H, Li P, Bethers B, Feng S, Sun L, Sun P, Gong C, Jin J, Hou Y, Jiang R, Xu W, Olevsky E, Yang Y. Growing recyclable and healable piezoelectric composites in 3D printed bioinspired structure for protective wearable sensor. Nat Commun 2023; 14:6477. [PMID: 37838708 PMCID: PMC10576793 DOI: 10.1038/s41467-023-41740-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/18/2023] [Indexed: 10/16/2023] Open
Abstract
Bionic multifunctional structural materials that are lightweight, strong, and perceptible have shown great promise in sports, medicine, and aerospace applications. However, smart monitoring devices with integrated mechanical protection and piezoelectric induction are limited. Herein, we report a strategy to grow the recyclable and healable piezoelectric Rochelle salt crystals in 3D-printed cuttlebone-inspired structures to form a new composite for reinforcement smart monitoring devices. In addition to its remarkable mechanical and piezoelectric performance, the growth mechanisms, the recyclability, the sensitivity, and repairability of the 3D-printed Rochelle salt cuttlebone composite were studied. Furthermore, the versatility of composite has been explored and applied as smart sensor armor for football players and fall alarm knee pads, focusing on incorporated mechanical reinforcement and electrical self-sensing capabilities with data collection of the magnitude and distribution of impact forces, which offers new ideas for the design of next-generation smart monitoring electronics in sports, military, aerospace, and biomedical engineering.
Collapse
Affiliation(s)
- Qingqing He
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, 92182, USA
| | - Yushun Zeng
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Laiming Jiang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, China
| | - Ziyu Wang
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China.
| | - Gengxi Lu
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Haochen Kang
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Pei Li
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
| | - Brandon Bethers
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, 92182, USA
| | - Shengwei Feng
- Department of Civil and Environmental Engineering, University of California, Irvine, California, CA, 92697, USA
| | - Lizhi Sun
- Department of Civil and Environmental Engineering, University of California, Irvine, California, CA, 92697, USA
| | - Peter Sun
- Grossmont College, 8800 Grossmont College Dr, El Cajon, CA, 92020, USA
| | - Chen Gong
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jie Jin
- Canoo Technologies Inc, Torrance, CA, 90503, USA
| | - Yue Hou
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
| | - Runjian Jiang
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, 92182, USA
| | - Wenwu Xu
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, 92182, USA
| | - Eugene Olevsky
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, 92182, USA
| | - Yang Yang
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
35
|
Li X, Zhang Z, Peng Z, Yan X, Hong Y, Liu S, Lin W, Shan Y, Wang Y, Yang Z. Fast and versatile electrostatic disc microprinting for piezoelectric elements. Nat Commun 2023; 14:6488. [PMID: 37838731 PMCID: PMC10576804 DOI: 10.1038/s41467-023-42159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023] Open
Abstract
Nanoparticles, films, and patterns are three critical piezoelectric elements with widespread applications in sensing, actuations, catalysis and energy harvesting. High productivity and large-area fabrication of these functional elements is still a significant challenge, let alone the control of their structures and feature sizes on various substrates. Here, we report a fast and versatile electrostatic disc microprinting, enabled by triggering the instability of liquid-air interface of inks. The printing process allows for fabricating lead zirconate titanate free-standing nanoparticles, films, and micro-patterns. The as-fabricated lead zirconate titanate films exhibit a high piezoelectric strain constant of 560 pm V-1, one to two times higher than the state-of-the-art. The multiplexed tip jetting mode and the large layer-by-layer depositing area can translate into depositing speeds up to 109 μm3 s-1, one order of magnitude faster than current techniques. Printing diversified functional materials, ranging from suspensions of dielectric ceramic and metal nanoparticles, to insulating polymers, to solutions of biological molecules, demonstrates the great potential of the electrostatic disc microprinting in electronics, biotechnology and beyond.
Collapse
Affiliation(s)
- Xuemu Li
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhuomin Zhang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zehua Peng
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiaodong Yan
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Ying Hong
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Shiyuan Liu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Weikang Lin
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yao Shan
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yuanyi Wang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zhengbao Yang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
36
|
Winczewski JP, Arriaga Dávila J, Herrera-Zaldívar M, Ruiz-Zepeda F, Córdova-Castro RM, Pérez de la Vega CR, Cabriel C, Izeddin I, Gardeniers H, Susarrey-Arce A. 3D-Architected Alkaline-Earth Perovskites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307077. [PMID: 37793118 DOI: 10.1002/adma.202307077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/21/2023] [Indexed: 10/06/2023]
Abstract
3D ceramic architectures are captivating geometrical features with an immense demand in optics. In this work, an additive manufacturing (AM) approach for printing alkaline-earth perovskite 3D microarchitectures is developed. The approach enables custom-made photoresists suited for two-photon lithography, permitting the production of alkaline-earth perovskite (BaZrO3 , CaZrO3 , and SrZrO3 ) 3D structures shaped in the form of octet-truss lattices, gyroids, or inspired architectures like sodalite zeolite, and C60 buckyballs with micrometric and nanometric feature sizes. Alkaline-earth perovskite morphological, structural, and chemical characteristics are studied. The optical properties of such perovskite architectures are investigated using cathodoluminescence and wide-field photoluminescence emission to estimate the lifetime rate and defects in BaZrO3 , CaZrO3 , and SrZrO3 . From a broad perspective, this AM methodology facilitates the production of 3D-structured mixed oxides. These findings are the first steps toward dimensionally refined high-refractive-index ceramics for micro-optics and other terrains like (photo/electro)catalysis.
Collapse
Affiliation(s)
- Jędrzej P Winczewski
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| | - Joel Arriaga Dávila
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| | - Manuel Herrera-Zaldívar
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja California, México, C.P. 22800, USA
| | - Francisco Ruiz-Zepeda
- National Institute of Chemistry, Hajdrihova 19, Ljubljana, SI-1000, Slovenia
- Department of Physics and Chemistry of Materials, Institute of Metals and Technology, Lepi pot 11, Ljubljana, Slovenia
| | | | | | - Clément Cabriel
- Institut Langevin, ESPCI Paris, CNRS, PSL University, 1 rue Jussieu, Paris, 75005, France
| | - Ignacio Izeddin
- Institut Langevin, ESPCI Paris, CNRS, PSL University, 1 rue Jussieu, Paris, 75005, France
| | - Han Gardeniers
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| | - Arturo Susarrey-Arce
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| |
Collapse
|
37
|
Dadashi A, Azadi M. Multi-objective numerical optimization of 3D-printed polylactic acid bio-metamaterial based on topology, filling pattern, and infill density via fatigue lifetime and mass. PLoS One 2023; 18:e0291021. [PMID: 37756325 PMCID: PMC10529563 DOI: 10.1371/journal.pone.0291021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
Infill parameters are significant with regard to the overall cost and saving material while printing a 3D model. When it comes to printing time, we can decrease the printing time by altering the infill, which also reduces the total process extent. Choosing the right filling parameters affects the strength of the printed model. In this research, the effect of filling density and infill pattern on the fatigue lifetime of cylindrical polylactic acid (PLA) samples was investigated with finite element modeling and analysis. This causes the lattice structure to be considered macro-scale porosity in the additive manufacturing process. Due to the need for multi-objective optimization of several functions at the same time and the inevitable sacrifice of other objectives, the decision was to obtain a set of compromise solutions according to the Pareto-optimal solution technique or the Pareto non-inferior solution approach. As a result, a horizontally printed rectangular pattern with 60% filling was preferred over the four patterns including honeycomb, triangular, regular octagon, and irregular octagon by considering the sum of mass changes and fatigue lifetime changes, and distance from the optimal point, which is the lightest structure with the maximum fatigue lifetime as an objective function with an emphasis on mass as an important parameter in designing scaffolds and biomedical structures. A new structure was also proposed by performing a structural optimization process using computer-aided design tools and also, computer-aided engineering software by Dassault systems. Finally, the selected samples were printed and their 3D printing quality was investigated using field emission scanning electron microscopy inspection.
Collapse
Affiliation(s)
- Ali Dadashi
- Research Laboratory of Advanced Materials Behavior (AMB), Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
| | - Mohammad Azadi
- Research Laboratory of Advanced Materials Behavior (AMB), Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
| |
Collapse
|
38
|
Jiao P, Mueller J, Raney JR, Zheng XR, Alavi AH. Mechanical metamaterials and beyond. Nat Commun 2023; 14:6004. [PMID: 37752150 PMCID: PMC10522661 DOI: 10.1038/s41467-023-41679-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Mechanical metamaterials enable the creation of structural materials with unprecedented mechanical properties. However, thus far, research on mechanical metamaterials has focused on passive mechanical metamaterials and the tunability of their mechanical properties. Deep integration of multifunctionality, sensing, electrical actuation, information processing, and advancing data-driven designs are grand challenges in the mechanical metamaterials community that could lead to truly intelligent mechanical metamaterials. In this perspective, we provide an overview of mechanical metamaterials within and beyond their classical mechanical functionalities. We discuss various aspects of data-driven approaches for inverse design and optimization of multifunctional mechanical metamaterials. Our aim is to provide new roadmaps for design and discovery of next-generation active and responsive mechanical metamaterials that can interact with the surrounding environment and adapt to various conditions while inheriting all outstanding mechanical features of classical mechanical metamaterials. Next, we deliberate the emerging mechanical metamaterials with specific functionalities to design informative and scientific intelligent devices. We highlight open challenges ahead of mechanical metamaterial systems at the component and integration levels and their transition into the domain of application beyond their mechanical capabilities.
Collapse
Affiliation(s)
- Pengcheng Jiao
- Ocean College, Zhejiang University, Zhoushan, Zhejiang, China
| | - Jochen Mueller
- Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jordan R Raney
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaoyu Rayne Zheng
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Amir H Alavi
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
39
|
Almesmari A, Baghous N, Ejeh CJ, Barsoum I, Abu Al-Rub RK. Review of Additively Manufactured Polymeric Metamaterials: Design, Fabrication, Testing and Modeling. Polymers (Basel) 2023; 15:3858. [PMID: 37835907 PMCID: PMC10575114 DOI: 10.3390/polym15193858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Metamaterials are architected cellular materials, also known as lattice materials, that are inspired by nature or human engineering intuition, and provide multifunctional attributes that cannot be achieved by conventional polymeric materials and composites. There has been an increasing interest in the design, fabrication, and testing of polymeric metamaterials due to the recent advances in digital design methods, additive manufacturing techniques, and machine learning algorithms. To this end, the present review assembles a collection of recent research on the design, fabrication and testing of polymeric metamaterials, and it can act as a reference for future engineering applications as it categorizes the mechanical properties of existing polymeric metamaterials from literature. The research within this study reveals there is a need to develop more expedient and straightforward methods for designing metamaterials, similar to the implicitly created TPMS lattices. Additionally, more research on polymeric metamaterials under more complex loading scenarios is required to better understand their behavior. Using the right machine learning algorithms in the additive manufacturing process of metamaterials can alleviate many of the current difficulties, enabling more precise and effective production with product quality.
Collapse
Affiliation(s)
- Abdulla Almesmari
- Advanced Digital & Additive Manufacturing Center, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Mechanical Engineering, School of Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Nareg Baghous
- Advanced Digital & Additive Manufacturing Center, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Mechanical Engineering, School of Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Chukwugozie J. Ejeh
- Advanced Digital & Additive Manufacturing Center, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Mechanical Engineering, School of Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Imad Barsoum
- Advanced Digital & Additive Manufacturing Center, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Mechanical Engineering, School of Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Engineering Mechanics, Royal Institute of Technology (KTH), Teknikringen 8, 100 44 Stockholm, Sweden
| | - Rashid K. Abu Al-Rub
- Advanced Digital & Additive Manufacturing Center, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Mechanical Engineering, School of Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
40
|
Shi Y, Tian Y, Guan Y, Kang X, Li Y, Ren K, Wen C, Ning C, Zhou L, Fu R, Tan G. All-Polymer Piezoelectric Elastomer with High Stretchability, Low Hysteresis, Self-Adhesion, and UV-Blocking as Flexible Sensor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43003-43015. [PMID: 37650377 DOI: 10.1021/acsami.3c09065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
All-polymer piezoelectric elastomers that integrate self-powered, soft, and elastic performance are attractive in the fields of flexible wearable electronics and human-machine interfaces. However, a lack of adhesion and UV-blocking performances greatly hinders the potential applications of elastomers in these emerging fields. Here, a high-performance piezoelectric elastomer with piezoelectricity, mechanical robustness, self-adhesion, and UV-resistance was developed by using poly(vinylidene fluoride) (PVDF), acrylonitrile (AN), acrylamide (AAm), and oxidized tannic acid (OTA) (named PPO). In this design, the dipole-dipole interactions between the PVDF and PAN chains promoted the content of β-PVDF, endowing high piezoelectric coefficient (d33, 58 pC/N). Besides, high stretchability (∼500%), supercompressibility (∼98%), low Young's modulus (∼0.02 MPa), and remarkable elasticity (∼13.8% hysteresis ratio) were achieved simultaneously for the elastomers. Inspired by the mussel adhesion chemistry, the OTA containing abundant catechol and quinone groups provided high adhesion (93.26 kPa to wood) and an exceptional UV-blocking property (∼99.9%). In addition, the elastomers can produce a reliable electric signal output (Vocmax = 237 mV) and show a fast response (24 ms) when subjected to external force. Furthermore, the elastomer can be easily assembled as a wearable sensor for human physiological (body pulse and speech identification) monitoring and communication.
Collapse
Affiliation(s)
- Yongdong Shi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yu Tian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Youjun Guan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xinchang Kang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yuanxing Li
- School of Materials Science and Engineering & National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, P. R. China
| | - Kunyu Ren
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Chaoyao Wen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Chengyun Ning
- School of Materials Science and Engineering & National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, P. R. China
| | - Lei Zhou
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Spine Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, P. R. China
| | - Rumin Fu
- School of Materials Science and Engineering & National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, P. R. China
| | - Guoxin Tan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
41
|
Ali M, Bathaei MJ, Istif E, Karimi SNH, Beker L. Biodegradable Piezoelectric Polymers: Recent Advancements in Materials and Applications. Adv Healthc Mater 2023; 12:e2300318. [PMID: 37235849 PMCID: PMC11469082 DOI: 10.1002/adhm.202300318] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/21/2023] [Indexed: 05/28/2023]
Abstract
Recent materials, microfabrication, and biotechnology improvements have introduced numerous exciting bioelectronic devices based on piezoelectric materials. There is an intriguing evolution from conventional unrecyclable materials to biodegradable, green, and biocompatible functional materials. As a fundamental electromechanical coupling material in numerous applications, novel piezoelectric materials with a feature of degradability and desired electrical and mechanical properties are being developed for future wearable and implantable bioelectronics. These bioelectronics can be easily integrated with biological systems for applications, including sensing physiological signals, diagnosing medical problems, opening the blood-brain barrier, and stimulating healing or tissue growth. Therefore, the generation of piezoelectricity from natural and synthetic bioresorbable polymers has drawn great attention in the research field. Herein, the significant and recent advancements in biodegradable piezoelectric materials, including natural and synthetic polymers, their principles, advanced applications, and challenges for medical uses, are reviewed thoroughly. The degradation methods of these piezoelectric materials through in vitro and in vivo studies are also investigated. These improvements in biodegradable piezoelectric materials and microsystems could enable new applications in the biomedical field. In the end, potential research opportunities regarding the practical applications are pointed out that might be significant for new materials research.
Collapse
Affiliation(s)
- Mohsin Ali
- Department of Biomedical Sciences and EngineeringKoç UniversityRumelifeneri YoluSarıyerIstanbul34450Turkey
| | - Mohammad Javad Bathaei
- Department of Biomedical Sciences and EngineeringKoç UniversityRumelifeneri YoluSarıyerIstanbul34450Turkey
| | - Emin Istif
- Department of Mechanical EngineeringKoç UniversityRumelifeneri YoluSarıyerIstanbul34450Turkey
- Faculty of Engineering and Natural SciencesKadir Has UniversityCibaliIstanbul34083Turkey
| | - Seyed Nasir Hosseini Karimi
- Koç University Research Center for Translational Research (KUTTAM)Rumelifeneri YoluSarıyerIstanbul34450Turkey
| | - Levent Beker
- Department of Biomedical Sciences and EngineeringKoç UniversityRumelifeneri YoluSarıyerIstanbul34450Turkey
- Department of Mechanical EngineeringKoç UniversityRumelifeneri YoluSarıyerIstanbul34450Turkey
- Koç University Research Center for Translational Research (KUTTAM)Rumelifeneri YoluSarıyerIstanbul34450Turkey
| |
Collapse
|
42
|
Wegert ZJ, Roberts AP, Bandyopadhyay T, Challis VJ. Optimisation of a Multi-Functional Piezoelectric Component for a Climbing Robot. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5076. [PMID: 37512350 PMCID: PMC10384934 DOI: 10.3390/ma16145076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Force sensors on climbing robots give important information to the robot control system, however, off-the-shelf sensors can be both heavy and bulky. We investigate the optimisation of a lightweight integrated force sensor made of piezoelectric material for the multi-limbed climbing robot MAGNETO. We focus on three design objectives for this piezoelectric component. The first is to develop a lightweight component with minimal compliance that can be embedded in the foot of the climbing robot. The second objective is to ensure that the component has sensing capability to replace the off-the-shelf force sensor. Finally, the component should be robust for a range of climbing configurations. To this end, we focus on a compliance minimisation problem with constrained voltage and volume fraction. We present structurally optimised designs that satisfy the three main design criteria and improve upon baseline results from a reference component. Our computational study demonstrates that the optimisation of embedded robotic components with piezoelectric sensing is worthy of future investigation.
Collapse
Affiliation(s)
- Zachary J Wegert
- School of Mathematical Sciences, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Anthony P Roberts
- School of Mathematical Sciences, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Tirthankar Bandyopadhyay
- The Robotics and Autonomous Systems Group, CSIRO, 1 Technology Ct, Pullenvale, QLD 4069, Australia
| | - Vivien J Challis
- School of Mathematical Sciences, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
43
|
Chen H, Wang J, Peng S, Liu D, Yan W, Shang X, Zhang B, Yao Y, Hui Y, Zhou N. A Generalized Polymer Precursor Ink Design for 3D Printing of Functional Metal Oxides. NANO-MICRO LETTERS 2023; 15:180. [PMID: 37439950 PMCID: PMC10344857 DOI: 10.1007/s40820-023-01147-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/01/2023] [Indexed: 07/14/2023]
Abstract
Three-dimensional-structured metal oxides have myriad applications for optoelectronic devices. Comparing to conventional lithography-based manufacturing methods which face significant challenges for 3D device architectures, additive manufacturing approaches such as direct ink writing offer convenient, on-demand manufacturing of 3D oxides with high resolutions down to sub-micrometer scales. However, the lack of a universal ink design strategy greatly limits the choices of printable oxides. Here, a universal, facile synthetic strategy is developed for direct ink writable polymer precursor inks based on metal-polymer coordination effect. Specifically, polyethyleneimine functionalized by ethylenediaminetetraacetic acid is employed as the polymer matrix for adsorbing targeted metal ions. Next, glucose is introduced as a crosslinker for endowing the polymer precursor inks with a thermosetting property required for 3D printing via the Maillard reaction. For demonstrations, binary (i.e., ZnO, CuO, In2O3, Ga2O3, TiO2, and Y2O3) and ternary metal oxides (i.e., BaTiO3 and SrTiO3) are printed into 3D architectures with sub-micrometer resolution by extruding the inks through ultrafine nozzles. Upon thermal crosslinking and pyrolysis, the 3D microarchitectures with woodpile geometries exhibit strong light-matter coupling in the mid-infrared region. The design strategy for printable inks opens a new pathway toward 3D-printed optoelectronic devices based on functional oxides.
Collapse
Affiliation(s)
- Hehao Chen
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, People's Republic of China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jizhe Wang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, People's Republic of China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Siying Peng
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, People's Republic of China
| | - Dongna Liu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, People's Republic of China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Wei Yan
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, People's Republic of China
| | - Xinggang Shang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, People's Republic of China
| | - Boyu Zhang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, People's Republic of China
| | - Yuan Yao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, People's Republic of China
| | - Yue Hui
- School of Chemical Engineering and Advanced Materials, the University of Adelaide, Adelaide, 5005, Australia
| | - Nanjia Zhou
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, People's Republic of China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, People's Republic of China.
| |
Collapse
|
44
|
Zhang Z, Li X, Peng Z, Yan X, Liu S, Hong Y, Shan Y, Xu X, Jin L, Liu B, Zhang X, Chai Y, Zhang S, Jen AKY, Yang Z. Active self-assembly of piezoelectric biomolecular films via synergistic nanoconfinement and in-situ poling. Nat Commun 2023; 14:4094. [PMID: 37433769 DOI: 10.1038/s41467-023-39692-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023] Open
Abstract
Piezoelectric biomaterials have attracted great attention owing to the recent recognition of the impact of piezoelectricity on biological systems and their potential applications in implantable sensors, actuators, and energy harvesters. However, their practical use is hindered by the weak piezoelectric effect caused by the random polarization of biomaterials and the challenges of large-scale alignment of domains. Here, we present an active self-assembly strategy to tailor piezoelectric biomaterial thin films. The nanoconfinement-induced homogeneous nucleation overcomes the interfacial dependency and allows the electric field applied in-situ to align crystal grains across the entire film. The β-glycine films exhibit an enhanced piezoelectric strain coefficient of 11.2 pm V-1 and an exceptional piezoelectric voltage coefficient of 252 × 10-3 Vm N-1. Of particular significance is that the nanoconfinement effect greatly improves the thermostability before melting (192 °C). This finding offers a generally applicable strategy for constructing high-performance large-sized piezoelectric bio-organic materials for biological and medical microdevices.
Collapse
Affiliation(s)
- Zhuomin Zhang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xuemu Li
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zehua Peng
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiaodong Yan
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Shiyuan Liu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Ying Hong
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yao Shan
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiaote Xu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Lihan Jin
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Bingren Liu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xinyu Zhang
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Yu Chai
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Shujun Zhang
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW, Australia.
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong.
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong.
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong.
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195-2120, USA.
| | - Zhengbao Yang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
45
|
Wang Z, Ma D, Wang Y, Xie Y, Yu Z, Cheng J, Li L, Sun L, Dong S, Wang H. Kirigami-Origami-Inspired Lead-Free Piezoelectric Ceramics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207059. [PMID: 37096841 PMCID: PMC10265079 DOI: 10.1002/advs.202207059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/19/2023] [Indexed: 05/03/2023]
Abstract
Kirigami- and oirigami-inspired techniques have emerged as effective strategies for material structure design; however, the use of these techniques is usually limited to soft and deformable materials. Piezoelectric ceramics, which are typical functional ceramics, are widely used in electronic and energy devices; however, the processing options for piezoelectric ceramics are limited by their brittleness and feedstock viscosity. Here, a design strategy is proposed for the preparation of lead-free piezoelectric ceramics inspired by kirigami/origami. This strategy involves direct writing printing and control over the external gravity during the calcination process for the preparation of curved and porous piezoelectric ceramics with specific shapes. The sintered BaTiO3 ceramics with curved geometries produced using this strategy exhibit a high piezoelectric constant (d33 = 275 pC N-1 ), which is 45% higher than that of conventionally sintered sheet ceramics. The curved structure of the ceramics is well-suited for use in the human body and it was determined that these curved ceramics can detect pulse signals. This strategy can be applied in the large-scale and low-cost production of other piezoelectric ceramics with various curved shapes and provides a new approach for the preparation of complex-shaped ceramics.
Collapse
Affiliation(s)
- Zehuan Wang
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
- Institute of Advanced MaterialsHubei Normal UniversityHuangshi435002P. R. China
- School of Materials Science and EngineeringPeking UniversityBeijing100871P. R. China
| | - Denghao Ma
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
- State Key Laboratory for Mechanical Behavior of MaterialsSchool of Electronic and Information EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Yunhan Wang
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Yan Xie
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Zhonghui Yu
- Institute for Advanced StudyShenzhen UniversityShenzhen518051P. R. China
| | - Jin Cheng
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Li Li
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Liang Sun
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Shuxiang Dong
- School of Materials Science and EngineeringPeking UniversityBeijing100871P. R. China
- Institute for Advanced StudyShenzhen UniversityShenzhen518051P. R. China
| | - Hong Wang
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
- Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices & Guangdong Provincial Key Laboratory of Functional Oxide Materials and DevicesSouthern University of Science and TechnologyShenzhen518055P. R. China
| |
Collapse
|
46
|
Ying S, Li J, Huang J, Zhang JH, Zhang J, Jiang Y, Sun X, Pan L, Shi Y. A Flexible Piezocapacitive Pressure Sensor with Microsphere-Array Electrodes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111702. [PMID: 37299605 DOI: 10.3390/nano13111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023]
Abstract
Flexible pressure sensors that emulate the sensation and characteristics of natural skins are of great importance in wearable medical devices, intelligent robots, and human-machine interfaces. The microstructure of the pressure-sensitive layer plays a significant role in the sensor's overall performance. However, microstructures usually require complex and costly processes such as photolithography or chemical etching for fabrication. This paper proposes a novel approach that combines self-assembled technology to prepare a high-performance flexible capacitive pressure sensor with a microsphere-array gold electrode and a nanofiber nonwoven dielectric material. When subjected to pressure, the microsphere structures of the gold electrode deform via compressing the medium layer, leading to a significant increase in the relative area between the electrodes and a corresponding change in the thickness of the medium layer, as simulated in COMSOL simulations and experiments, which presents high sensitivity (1.807 kPa-1). The developed sensor demonstrates excellent performance in detecting signals such as slight object deformations and human finger bending.
Collapse
Affiliation(s)
- Shu Ying
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Jiean Li
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Jinrong Huang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Jia-Han Zhang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Jing Zhang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yongchang Jiang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Xidi Sun
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
47
|
Lu H, Cui H, Lu G, Jiang L, Hensleigh R, Zeng Y, Rayes A, Panduranga MK, Acharya M, Wang Z, Irimia A, Wu F, Carman GP, Morales JM, Putterman S, Martin LW, Zhou Q, Zheng XR. 3D Printing and processing of miniaturized transducers with near-pristine piezoelectric ceramics for localized cavitation. Nat Commun 2023; 14:2418. [PMID: 37105973 PMCID: PMC10140030 DOI: 10.1038/s41467-023-37335-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 03/14/2023] [Indexed: 04/29/2023] Open
Abstract
The performance of ultrasonic transducers is largely determined by the piezoelectric properties and geometries of their active elements. Due to the brittle nature of piezoceramics, existing processing tools for piezoelectric elements only achieve simple geometries, including flat disks, cylinders, cubes and rings. While advances in additive manufacturing give rise to free-form fabrication of piezoceramics, the resultant transducers suffer from high porosity, weak piezoelectric responses, and limited geometrical flexibility. We introduce optimized piezoceramic printing and processing strategies to produce highly responsive piezoelectric microtransducers that operate at ultrasonic frequencies. The 3D printed dense piezoelectric elements achieve high piezoelectric coefficients and complex architectures. The resulting piezoelectric charge constant, d33, and coupling factor, kt, of the 3D printed piezoceramic reach 583 pC/N and 0.57, approaching the properties of pristine ceramics. The integrated printing of transducer packaging materials and 3D printed piezoceramics with microarchitectures create opportunities for miniaturized piezoelectric ultrasound transducers capable of acoustic focusing and localized cavitation within millimeter-sized channels, leading to miniaturized ultrasonic devices that enable a wide range of biomedical applications.
Collapse
Affiliation(s)
- Haotian Lu
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Huachen Cui
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA
- Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangdong, 511453, China
| | - Gengxi Lu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Laiming Jiang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, 90089, USA
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, China
| | - Ryan Hensleigh
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Yushun Zeng
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Adnan Rayes
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Mohanchandra K Panduranga
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Megha Acharya
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Zhen Wang
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Andrei Irimia
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Felix Wu
- Materials Technology R&D, Vehicle Technologies Office, Energy Efficiency and Renewable Energy, U.S. Department of Energy, Washington, DC, 20585, USA
| | - Gregory P Carman
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, 90095, USA
| | - José M Morales
- Ronald Reagan UCLA Medical Center, University of California, Los Angeles, CA, 90095, USA
| | - Seth Putterman
- Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095, USA
| | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Qifa Zhou
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Xiaoyu Rayne Zheng
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
48
|
Chai B, Shi K, Wang Y, Liu Y, Liu F, Jiang P, Sheng G, Wang S, Xu P, Xu X, Huang X. Modulus-Modulated All-Organic Core-Shell Nanofiber with Remarkable Piezoelectricity for Energy Harvesting and Condition Monitoring. NANO LETTERS 2023; 23:1810-1819. [PMID: 36648158 DOI: 10.1021/acs.nanolett.2c04674] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The low piezoelectricity of piezoelectric polymers significantly restricts their applications. Introducing inorganic fillers can slightly improve the piezoelectricity of polymers, whereas it is usually at the cost of flexibility and durability. In this work, using a modulus-modulated core-shell structure strategy, all-organic nanofibers with remarkable piezoelectricity were designed and prepared by a coaxial electrospinning method. It was surprisingly found that the introduction of a nonpiezoelectric polymeric core (e.g., polycarbonate, PC) can result in 110% piezoelectric coefficient (d33) enhancement in a poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) nanofiber. Accordingly, the all-organic PVDF-TrFE@PC core-shell nanofiber exhibits record-high energy-harvesting performance (i.e., 126 V output voltage, 710 mW m-2 power density) among the reported organic piezoelectric materials. In addition, the excellent sensing capability of the core-shell nanofiber enabled us to develop a wireless vibration monitoring and analyzing system, which realizes the real-time vibration detection of a power transformer.
Collapse
Affiliation(s)
- Bin Chai
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Department of Polymer Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Kunming Shi
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Department of Polymer Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yalin Wang
- Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yijie Liu
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Department of Polymer Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Fei Liu
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Department of Polymer Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Pingkai Jiang
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Department of Polymer Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Gehao Sheng
- Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Shaojing Wang
- State Grid Shanghai Municipal Electric Power Company, Shanghai 200437, People's Republic of China
| | - Peng Xu
- State Grid Shanghai Municipal Electric Power Company, Shanghai 200437, People's Republic of China
| | - Xiangyi Xu
- State Grid Shanghai Municipal Electric Power Company, Shanghai 200437, People's Republic of China
| | - Xingyi Huang
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Department of Polymer Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
49
|
Engineering zero modes in transformable mechanical metamaterials. Nat Commun 2023; 14:1266. [PMID: 36882441 PMCID: PMC9992356 DOI: 10.1038/s41467-023-36975-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
In the field of flexible metamaterial design, harnessing zero modes plays a key part in enabling reconfigurable elastic properties of the metamaterial with unconventional characteristics. However, only quantitative enhancement of certain properties succeeds in most cases rather than qualitative transformation of the metamaterials' states or/and functionalities, due to the lack of systematic designs on the corresponding zero modes. Here, we propose a 3D metamaterial with engineered zero modes, and experimentally demonstrate its transformable static and dynamic properties. All seven types of extremal metamaterials ranging from null-mode (solid state) to hexa-mode (near-gaseous state) are reported to be reversibly transformed from one state to another, which is verified by the 3D-printed Thermoplastic Polyurethanes prototypes. Tunable wave manipulations are further investigated in 1D-, 2D- and 3D-systems. Our work sheds lights on the design of flexible mechanical metamaterials, which can be potentially extended from the mechanical to the electro-magnetite, the thermal or other types.
Collapse
|
50
|
Han Z, Liu S, Qiu K, Liu J, Zou R, Wang Y, Zhao J, Liu F, Wang Y, Li L. The enhanced ZrO 2 produced by DLP via a reliable plasticizer and its dental application. J Mech Behav Biomed Mater 2023; 141:105751. [PMID: 36921555 DOI: 10.1016/j.jmbbm.2023.105751] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Digital light processing (DLP) is considered as one of the most promising additive manufacturing technologies to process ceramics. However, the potential defects produced in the debinding and sintering process extremely restrict ceramic application. In this work, a plasticizer which effectively inhibits defects of the green body in debinding process was investigated. The effects of plasticizer (Polyethylene glycol 200) on the rheological behavior and curing property of the slurry were discussed. In addition, the debinding process and the mechanical of zirconia parts with different PEG200 contents were studied. Adding 20 vol% PEG200 could efficiently suppress the defects in debinding process, and the flexural strength increased from 302 ± 15 to 1210 ± 25 MPa of the ZrO2 ceramic sintered at 1600 °C. The superior biocompatibility and mechanical property reveal that the DLP zirconia has a promising application prospect of biology dental ceramic prostheses.
Collapse
Affiliation(s)
- Zhuoqun Han
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Shihao Liu
- Shandong Industrial Ceramics Research & Design Institute Co., Ltd., Zibo, 255000, China
| | - Kun Qiu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Jia Liu
- Shandong Industrial Ceramics Research & Design Institute Co., Ltd., Zibo, 255000, China
| | - Rongfang Zou
- Chinese PLA Medical School, Beijing, 100853, China
| | - Yingying Wang
- Shandong Industrial Ceramics Research & Design Institute Co., Ltd., Zibo, 255000, China
| | - Jie Zhao
- Shandong Industrial Ceramics Research & Design Institute Co., Ltd., Zibo, 255000, China
| | - Futian Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| | - Yang Wang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| | - Ling Li
- Shandong Industrial Ceramics Research & Design Institute Co., Ltd., Zibo, 255000, China.
| |
Collapse
|