1
|
Xu Y, Li J, Xu W, Fan X, Yang S, Yin Y, Zhu J, Zhou D, Feng L, Zha C, Wang X, Lv Y, Wang L. Elucidating Interfacial Carrier Transfer Dynamics for Circularly Polarized Emission in Self-Assembled Perovskite Heterostructures. ACS NANO 2025; 19:15030-15039. [PMID: 40204749 DOI: 10.1021/acsnano.5c01450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
By integrating carrier transfer with spin-selectivity in mixed-dimensional perovskites heterostructures (HSs), exceptional chiroptical behaviors can be activated, offering avenues for advanced applications in spintronics and quantum information technologies. However, the critical role of interface effects in this photophysical process remains insufficiently explored. We demonstrate the fabrication of self-assembled chiral 2D/achiral nanocrystal (NC) HSs with different morphologies and chiroptical activities. Using femtosecond transient reflection spectroscopy, the underlying interface-dependent carrier transfer was unraveled. Spin-polarized holes generated in the chiral 2D component can transfer within an ultrafast time scale of ∼362 fs across the coherent heterointerface, inducing circularly polarized luminescence (CPL) in the intrinsically achiral NCs with a high Pc of ∼10.3%. Furthermore, interfacial halide exchange can be utilized to extend the CPL wavelength from green to near-infrared. Our findings reveal the correlation between interfacial properties, charge transfer, and CPL activity, providing insights for the development of high-quality HSs with optimized optical properties.
Collapse
Affiliation(s)
- Yao Xu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jian Li
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wenheng Xu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Xinlian Fan
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Shuai Yang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Yao Yin
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jijie Zhu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Dawei Zhou
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing 210096, China
| | - Linbo Feng
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Chenyang Zha
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yan Lv
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Lin Wang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
2
|
Wei K, Zhou T, Jiang Y, Sun C, Liu Y, Li S, Liu S, Fu X, Hu C, Tian S, Yang Y, Fu X, AlMasoud N, Qaid SMH, Nazeeruddin MK, Hsu HY, Li WD, Kim JT, Long R, Zhang W, Chen J, Yuan M. Perovskite heteroepitaxy for high-efficiency and stable pure-red LEDs. Nature 2025; 638:949-956. [PMID: 39972133 DOI: 10.1038/s41586-024-08503-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 12/09/2024] [Indexed: 02/21/2025]
Abstract
Ultrasmall CsPbI3 perovskite quantum dots (QDs) are the most promising candidates for realizing efficient and stable pure-red perovskite light-emitting diodes (PeLEDs)1-5. However, it is challenging for ultrasmall CsPbI3 QDs to retain their solution-phase properties when they assemble into conductive films, greatly hindering their device application3,6. Here we report an approach for in situ deposit stabilized ultrasmall CsPbI3 QD conductive solids, by constructing CsPbI3 QD/quasi-two-dimensional (quasi-2D) perovskite heteroepitaxy. The well-aligned periodic array of edge-oriented ligands at heterointerface triggers a substantial octahedral tilting in a critical layer thickness of CsPbI3 QDs, which heightens the Gibbs free energy difference between the tilted-CsPbI3 and δ-CsPbI3 leading to thermodynamic stabilization of CsPbI3 QDs. The approach allows us to fabricate stabilized CsPbI3 QD conductive films with tunable emission covering the entire red spectral region from 600 nm to 710 nm. Here we report the pure-red PeLEDs with narrow electroluminescence peak centred at 630 nm, matching the Rec. 2100 standard for ultrahigh-definition display. The champion device exhibits a certified external quantum efficiency of 24.6% and a half-lifetime of 6,330 min, ranking as one of the most efficient and stable pure-red PeLED reported to date. The approach is also compatible with large-area manufacturing, enabling 1 cm2 PeLED to exhibit the best external quantum efficiency of 20.5% at 630 nm.
Collapse
Affiliation(s)
- Keyu Wei
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, People's Republic of China
| | - Tong Zhou
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, People's Republic of China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, People's Republic of China
| | - Yuanzhi Jiang
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, People's Republic of China
| | - Changjiu Sun
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, People's Republic of China
| | - Yulong Liu
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, People's Republic of China
| | - Saisai Li
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, People's Republic of China
| | - Siyu Liu
- Ultrafast Electron Microscopy Laboratory, Key Laboratory of Weak-Light Nonlinear Photonics (Ministry of Education), School of Physics, Nankai University, Tianjin, People's Republic of China
| | - Xinliang Fu
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, People's Republic of China
| | - Cejun Hu
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, People's Republic of China
| | - Shun Tian
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yingguo Yang
- School of Microelectronics, Fudan University, Shanghai, People's Republic of China
| | - Xuewen Fu
- Ultrafast Electron Microscopy Laboratory, Key Laboratory of Weak-Light Nonlinear Photonics (Ministry of Education), School of Physics, Nankai University, Tianjin, People's Republic of China
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Saif M H Qaid
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Khaja Nazeeruddin
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hsien-Yi Hsu
- School of Energy and Environment and Department of Materials Science and Engineering and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong, People's Republic of China
| | - Wen-Di Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Ji Tae Kim
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, People's Republic of China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, People's Republic of China.
| | - Jun Chen
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, People's Republic of China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, People's Republic of China.
| | - Mingjian Yuan
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, People's Republic of China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, People's Republic of China.
| |
Collapse
|
3
|
Wu X, Pathoor N, Xu X, Omagari S, Takagi T, Vacha M. Real-Time Structural Dynamics at the 3D/2D Perovskite Interface in CsPbBr 3/PEA 2PbBr 4 Nano-heterostructures. NANO LETTERS 2025; 25:291-298. [PMID: 39691065 DOI: 10.1021/acs.nanolett.4c05021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Three-dimensional (3D) and two-dimensional (2D) perovskite hybrid systems, known for their exceptional optoelectronic properties and stability, are revolutionizing optoelectronic materials research. However, fundamental physics of the 3D/2D interfaces and their dynamics remain poorly understood. We use fluorescence microspectroscopy to study the photoluminescence (PL) properties of 3D/2D nano-heterostructures of CsPbBr3/PEA2PbBr4 formed by postgrowth self-assembly. The in situ PL spectra uncover the presence of new structural phases, quasi-2D PEA2Csn-1PbnBr3n+1 layers of varying n, at the 3D/2D interface and demonstrate their reversible restructuring under light excitation at room temperature. The restructuring is a result of layer-by-layer cation diffusion at the epitaxial interfaces, manifested as reversible spectral shifts occurring on a time scale of seconds. Such dynamics ultimately leads to optimized distribution of the quasi-2D phases in the system for efficient energy transfer from the 2D to the 3D phases. Our findings provide new insights into controlling energy flow in 3D/2D perovskites for next-generation optoelectronic devices.
Collapse
Affiliation(s)
- Xiayan Wu
- Department of Materials Science and Engineering, Institute of Science Tokyo, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan
- Department of Physical Science and Technology, Lingnan Normal University, Zhanjiang 524048, China
| | - Nithin Pathoor
- Department of Materials Science and Engineering, Institute of Science Tokyo, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan
| | - Xin Xu
- Department of Materials Science and Engineering, Institute of Science Tokyo, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan
| | - Shun Omagari
- Department of Materials Science and Engineering, Institute of Science Tokyo, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan
| | - Toranosuke Takagi
- Department of Materials Science and Engineering, Institute of Science Tokyo, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan
| | - Martin Vacha
- Department of Materials Science and Engineering, Institute of Science Tokyo, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
4
|
Zhao S, Zhang JX, Xu CF, Ma Y, Luo JH, Lin H, Shi Y, Wang XD, Liao LS. Programmable In-Situ Co-Assembly of Organic Multi-Block Nanowires for Cascade Optical Waveguides. Angew Chem Int Ed Engl 2024; 63:e202412712. [PMID: 39168820 DOI: 10.1002/anie.202412712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Organic heterostructures (OHs) with multi-segments exhibit special optoelectronic properties compared with monomeric structures. Nevertheless, the synthesis of multi-block heterostructures remains challenging due to compatibility issues between segment parts, which restricts their application in optical waveguides and integrated optics. Herein, we demonstrate programmable in-situ co-assembly engineering, combining multi-step spontaneous self-assembly processes to promote the synthesis of multi-block heterostructures with a rational arrangement of three or more segments. The rational design of segments enables exciton manipulation and ensures optical waveguides and proper output among the multi-segment OHs. This work enables the controllable growth of segments within multi-block OHs, providing a pathway to construct complex OHs for the rational development of future optical applications.
Collapse
Affiliation(s)
- Shuai Zhao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, 215123, Suzhou, Jiangsu, PR China
| | - Jia-Xuan Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, 215123, Suzhou, Jiangsu, PR China
| | - Chao-Fei Xu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, 215123, Suzhou, Jiangsu, PR China
| | - Yingxin Ma
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, 215123, Suzhou, Jiangsu, PR China
| | - Jia-Hua Luo
- Department of Electrical and Electronic Engineering, Xi'an Jiaotong-Liverpool University, 215123, Suzhou, Jiangsu, P. R. China
| | - Hongtao Lin
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255000, Zibo, Shandong, P. R. China
| | - Yingli Shi
- Department of Electrical and Electronic Engineering, Xi'an Jiaotong-Liverpool University, 215123, Suzhou, Jiangsu, P. R. China
| | - Xue-Dong Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, 215123, Suzhou, Jiangsu, PR China
| | - Liang-Sheng Liao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, 215123, Suzhou, Jiangsu, PR China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078, Macau, SAR, PR China
| |
Collapse
|
5
|
Zhao G, Chen Y, Cong S, Li L, Wang C, Du X, Liu R, Lu J, Liu Y, Chen G, Zhang S, Zhang L, Rummeli MH, Zou G. Coordination-regulated epitaxial growth for 2D/3D perovskite vertical alignment heterostructure. Sci Bull (Beijing) 2024; 69:3201-3205. [PMID: 39244422 DOI: 10.1016/j.scib.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/24/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Affiliation(s)
- Guoxiang Zhao
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123, China; School of Advanced Energy, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yuan Chen
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Shan Cong
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123, China.
| | - Lutao Li
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123, China
| | - Chen Wang
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123, China; College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xinyu Du
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123, China
| | - Ruirui Liu
- Center for Electron Microscopy, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jing Lu
- Center for Electron Microscopy, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yu Liu
- Department of Fundamental Research, Weiqiao Lightweight Research Center at Soochow, Suzhou 215021, China
| | - Gaoyuan Chen
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Sihan Zhang
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123, China
| | - Liya Zhang
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123, China
| | - Mark Hermann Rummeli
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123, China; Institute of Environmental Technology, VSB-Technical University of Ostrava, Ostrava 70833, Czech Republic; Institute for Materials Chemistry, IFW Dresden, Dresden 01069, Germany.
| | - Guifu Zou
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123, China; School of Advanced Energy, Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
6
|
Fang Z, Wang G, Guan C, Zhang J, Xiang Q. Reducing Dielectric Confinement Effect Enhances Carrier Separation in Two-Dimensional Hybrid Perovskite Photocatalysts. Angew Chem Int Ed Engl 2024; 63:e202411219. [PMID: 39020249 DOI: 10.1002/anie.202411219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/19/2024]
Abstract
Two-dimensional organic-inorganic hybrid perovskites (OIHPs) with alternating structure of the organic and inorganic layers have a natural quantum well structure. The difference of dielectric constants between organic and inorganic layers in this structure results in the enhancement of dielectric confinement effect, which exhibits a large exciton binding energy and hinders the separation of electron-hole pairs. Herein, a strategy to reduce the dielectric confinement effect by narrowing the dielectric difference between organic amine molecule and [PbBr6]4- octahedron is put forward. The Ethanolamine (EOA) contains hydroxyl groups, resulting in the positive and negative charge centers of O and H non-overlapping, which generated a larger polarity and dielectric constant. The reduced dielectric constant produces a smaller exciton binding energy (71.03 meV) of (C2H7NO)2PbBr4 ((EOA)2PbBr4) than (C8H11N)2PbBr4 ((PEA)2PbBr4 (156.07 meV), and promotes the dissociation of electrons and holes. The increasing of lifetime of photogenerated carrier in (EOA)2PbBr4 are proved by femtosecond transient absorption spectra. Density functional theory (DFT) calculations have also indicated that the small energy shift of the total density of states (DOS) between the C/H/N and the Pb/Br in (EOA)2PbBr4 favors the separation of electrons and holes. In addition, this work demonstrates the application of (PEA)2PbBr4 and (EOA)2PbBr4 in the field of photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Zhaohui Fang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of, Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Guohong Wang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, PR China
| | - Chen Guan
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of, Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Jianjun Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, P. R. China
| | - Quanjun Xiang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of, Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
7
|
Kou Y, Liu M, Zhou Q, Lin R, Yu H, Hou M, Ming J, Tang Y, Elzatahry AA, Zhang F, Zhao D, Li X. Fluorine Doping Mediated Epitaxial Growth of NaREF 4 on TiO 2 for Boosting NIR Light Utilization in Bioimaging and Photodynamic Therapy. Angew Chem Int Ed Engl 2024; 63:e202405132. [PMID: 39223903 DOI: 10.1002/anie.202405132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 09/04/2024]
Abstract
By integrating TiO2 with rare earth upconversion nanocrystals (NaREF4), efficient energy transfer can be achieved between the two subunits under near-infrared (NIR) excitation, which hold tremendous potential in the fields of photocatalysis, photodynamic therapy (PDT), etc. However, in the previous studies, the combination of TiO2 with NaREF4 is a non-epitaxial random blending mode, resulting in a diminished energy transfer efficiency between the NaREF4 and TiO2. Herein, we present a fluorine doping-mediated epitaxial growth strategy for the synthesis of TiO2-NaREF4 heteronanocrystals (HNCs). Due to the epitaxial growth connection, NaREF4 can transfer energy through phonon-assisted pathway to TiO2, which is more efficient than the traditional indirect secondary photon excitation. Additionally, F doping brings oxygen vacancies in the TiO2 subunit, which further introduces new impurity energy levels in the intrinsic band gap of TiO2 subunit, and facilitates the energy transfer through phonon-assisted method from NaREF4 to TiO2. As a proof of concept, TiO2-NaGdF4 : Yb,Tm@NaYF4@NaGdF4 : Nd@NaYF4 HNCs were rationally constructed. Taking advantage of the dual-model up- and downconversion luminescence of the delicately designed multi-shell structured NaREF4 subunit, highly efficient photo-response capability of the F-doped TiO2 subunit and the efficient phonon-assisted energy transfer between them, the prepared HNCs provide a distinctive nanoplatform for bioimaging-guided NIR-triggered PDT.
Collapse
Affiliation(s)
- Yufang Kou
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Minchao Liu
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Qiaoyu Zhou
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Runfeng Lin
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Hongyue Yu
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Mengmeng Hou
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Jiang Ming
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Yi Tang
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Ahmed A Elzatahry
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, 2713, Qatar
| | - Fan Zhang
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Dongyuan Zhao
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Xiaomin Li
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
8
|
Wang H, Ning M, Wang Q, Liang Y, Li S, Li Z, Wang L, Wang Y, Jiang L. High-performance ultraviolet detector based on self-assembled 3D/2D perovskite heterostructure. RSC Adv 2024; 14:27323-27331. [PMID: 39193308 PMCID: PMC11349043 DOI: 10.1039/d4ra05576d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024] Open
Abstract
Heterogeneous assembly of metal halide perovskites (MHPs) structures offers convenience for promoting the interfacial properties of perovskite heterojunctions, which have been widely used in the new generation of photoelectric devices. In this study, three-dimensional (3D) CsPbBr3 quantum dots (CPB QDs) were epitaxially grown on two-dimensional (2D) (BA)2PbBr4 nanoplates (BPB NPs) via self-assembly in a toluene mixing solution. The morphological, structural, and optical properties of the synthesized structure reveal that a highly-qualified interface and coherence were formed between the two different perovskites. These heterostructures (HSs) facilitate the separation and transportation of electrons and holes in opposite directions. Based on this property, a high-performance ultraviolet light detector was fabricated by depositing a layer of CPB@BPB film on a textured silicon (T-Si) substrate. The prepared CPB@BPB/T-Si detector has shown enhanced properties i.e. quick response time, high responsivity (6.9 A W-1), high detection rate (3.17 × 109 jones), and low detection limit (0.24 μW cm-2). This enhanced performance could be attributed to the large light-absorbing area, effective carrier transport channels in BPB NPs, and improved interfacial properties of the CPB@BPB HS.
Collapse
Affiliation(s)
- Haiyan Wang
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
- School of Electronics and Information, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
| | - Mengxin Ning
- School of Electronics and Information, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
| | - Qiaohe Wang
- School of Electronics and Information, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
| | - Yachuan Liang
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
- School of Electronics and Information, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
| | - Sen Li
- School of Electronics and Information, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
| | - Zijiong Li
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
| | - Lingli Wang
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
| | - Yan Wang
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
- School of Electronics and Information, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
| | - Liying Jiang
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
- School of Electronics and Information, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
| |
Collapse
|
9
|
Pang H, Du S, Deng J, Kong W, Zhao Y, Zheng B, Ma L. Enhancing Carrier Transport in 2D/3D Perovskite Heterostructures through Organic Cation Fluorination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401797. [PMID: 38577831 DOI: 10.1002/smll.202401797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Indexed: 04/06/2024]
Abstract
The interfacial 2D/3D perovskite heterostructures have attracted extensive attention due to their unique ability to combine the high stability of 2D perovskites with the remarkable efficiency of 3D perovskites. However, the carrier transport mechanism within the 2D/3D perovskite heterostructures remains unclear. In this study, the carrier transport dynamics in 2D/3D perovskite heterostructures through a variety of time-resolved spectroscopic measurements is systematically investigated. Time-resolved photoluminescence results reveal nanosecond hole transfer from the 3D to 2D perovskites, with enhanced efficiency through the introduction of fluorine atoms on the phenethylammonium (PEA) cation. Transient absorption measurements unveil the ultrafast picosecond electron and energy transfer from 2D to 3D perovskites. Furthermore, it is demonstrated that the positioning of fluorination on the PEA cations effectively regulates the efficiency of charge and energy transfer within the heterostructures. These insightful findings shed light on the underlying carrier transport mechanism and underscore the critical role of cation fluorination in optimizing carrier transport within 2D/3D perovskite heterostructure-based devices.
Collapse
Affiliation(s)
- Haoran Pang
- School of Physics and Optoelectronic Engineering, Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shijie Du
- School of Physics and Optoelectronic Engineering, Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou, 510006, China
| | - Junpeng Deng
- School of Physics and Optoelectronic Engineering, Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wei Kong
- School of Physics and Optoelectronic Engineering, Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yilun Zhao
- School of Physics and Optoelectronic Engineering, Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bohong Zheng
- School of Physics and Optoelectronic Engineering, Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lin Ma
- School of Physics and Optoelectronic Engineering, Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
10
|
Ma K, Sun J, Dou L. Advances and challenges in molecular engineering of 2D/3D perovskite heterostructures. Chem Commun (Camb) 2024; 60:7824-7842. [PMID: 38963168 DOI: 10.1039/d4cc02299h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Organic-inorganic hybrid perovskites have been intensively studied in past decades due to their outstanding performance in solar cells and other optoelectronic devices. Recently, the emergence of two-dimensional/three-dimensional (2D/3D) heterojunctions have enabled many solar cell devices with >25% power conversion efficiency, driven by advances in our understanding of the structural and photophysical properties of the heterojunctions and our ability to control these properties through organic cation configuration in 2D perovskites. In this feature article, we discuss a fundamental understanding of structural characteristics and the carrier dynamics in the 2D/3D heterojunctions and their impact factors. We further elaborate the design strategies for the molecular configuration of organic cations to achieve thorough management of these properties. Finally, recent advances in 2D/3D heterostructures in solar cells, light-emitting devices and photodetectors are highlighted, which translate fundamental understandings to device applications and also reveal the remaining challenges in ligand design for the next generation of stable devices. Future development prospects and related challenges are also provided, with wide perspectives and insightful thoughts.
Collapse
Affiliation(s)
- Ke Ma
- Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Jiaonan Sun
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
11
|
Li Y, Li F, Yu Z, Tamilavan V, Oh CM, Jeong WH, Shen X, Lee S, Du X, Yang E, Ahn Y, Hwang IW, Lee BR, Park SH. Effective Small Organic Molecule as a Defect Passivator for Highly Efficient Quasi-2D Perovskite Light-Emitting Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308847. [PMID: 38174599 DOI: 10.1002/smll.202308847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/13/2023] [Indexed: 01/05/2024]
Abstract
The use of a small organic molecular passivator is proven to be a successful strategy for producing higher-performing quasi-2D perovskite light-emitting diodes (PeLEDs). The small organic molecule can passivate defects on the grain surround and surface of perovskite crystal structures, preventing nonradiative recombination and charge trapping. In this study, a new small organic additive called 2, 8-dibromodibenzofuran (diBDF) is reported and examines its effectiveness as a passivating agent in high-performance green quasi-2D PeLEDs. The oxygen atom in diBDF, acting as a Lewis base, forms coordination bonds with uncoordinated Pb2+, so enhancing the performance of the device. In addition, the inclusion of diBDF in the quasi-2D perovskite results in a decrease in the abundance of low-n phases, hence facilitating efficient carrier mobility. Consequently, PeLED devices with high efficiency are successfully produced, exhibiting an external quantum efficiency of 19.9% at the emission wavelength of 517 nm and a peak current efficiency of 65.0 cd A-1.
Collapse
Affiliation(s)
- Ying Li
- Department of Physics, Pukyong National University, Busan, 48513, Republic of Korea
- Institute of Energy Transport and Fusion Research, Pukyong National University, Busan, 48513, Republic of Korea
| | - Fuqiang Li
- Department of Physics, Pukyong National University, Busan, 48513, Republic of Korea
- Institute of Energy Transport and Fusion Research, Pukyong National University, Busan, 48513, Republic of Korea
| | - Zhongkai Yu
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | | | - Chang-Mok Oh
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Woo Hyeon Jeong
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Xinyu Shen
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK
| | - Seongbeom Lee
- Department of Physics, Pukyong National University, Busan, 48513, Republic of Korea
| | - Xiangrui Du
- Department of Physics, Pukyong National University, Busan, 48513, Republic of Korea
- Institute of Energy Transport and Fusion Research, Pukyong National University, Busan, 48513, Republic of Korea
| | - Eunhye Yang
- Department of Physics, Pukyong National University, Busan, 48513, Republic of Korea
- Institute of Energy Transport and Fusion Research, Pukyong National University, Busan, 48513, Republic of Korea
| | - Yoomi Ahn
- Department of Physics, Pukyong National University, Busan, 48513, Republic of Korea
- Institute of Energy Transport and Fusion Research, Pukyong National University, Busan, 48513, Republic of Korea
| | - In-Wook Hwang
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Bo Ram Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sung Heum Park
- Department of Physics, Pukyong National University, Busan, 48513, Republic of Korea
- Institute of Energy Transport and Fusion Research, Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
12
|
Chen Q, Cao J, Yang Z, Wang Z, Wang J, Yu S, Hao C, Wang N, Li H, Huang X. Heterointerface engineering of layered double hydroxide/MAPbBr 3 heterostructures enabling tunable synapse behaviors in a two-terminal optoelectronic device. NANOSCALE HORIZONS 2024; 9:1023-1029. [PMID: 38602167 DOI: 10.1039/d4nh00066h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Solution-processable semiconductor heterostructures enable scalable fabrication of high performance electronic and optoelectronic devices with tunable functions via heterointerface control. In particular, artificial optical synapses require interface manipulation for nonlinear signal processing. However, the limited combinations of materials for heterostructure construction have restricted the tunability of synaptic behaviors with simple device configurations. Herein, MAPbBr3 nanocrystals were hybridized with MgAl layered double hydroxide (LDH) nanoplates through a room temperature self-assembly process. The formation of such heterostructures, which exhibited an epitaxial relationship, enabled effective hole transfer from MAPbBr3 to LDH, and greatly reduced the defect states in MAPbBr3. Importantly, the ion-conductive nature of LDH and its ability to form a charged surface layer even under low humidity conditions allowed it to attract and trap holes from MAPbBr3. This imparted tunable synaptic behaviors and short-term plasticity (STP) to long-term plasticity (LTP) transition to a two-terminal device based on the LDH-MAPbBr3 heterostructures. The further neuromorphic computing simulation under varying humidity conditions showcased their potential in learning and recognition tasks under ambient conditions. Our work presents a new type of epitaxial heterostructure comprising metal halide perovskites and layered ion-conductive materials, and provides a new way of realizing charge-trapping induced synaptic behaviors.
Collapse
Affiliation(s)
- Qian Chen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Jiacheng Cao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Zhiwei Yang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, China
| | - Zeyi Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, China
| | - Jian Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, China
| | - Shilong Yu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, China
| | - Chenjie Hao
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, China
| | - Nana Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, China
| | - Hai Li
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, China
| | - Xiao Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, China
| |
Collapse
|
13
|
Min H, Wang N, Chen N, Tong Y, Wang Y, Wang J, Liu J, Wang S, Wu X, Yang P, Shi H, Zhuo C, Chen Q, Li J, Zhang D, Lu X, Zhu C, Peng Q, Zhu L, Chang J, Huang W, Wang J. Spin coating epitaxial heterodimensional tin perovskites for light-emitting diodes. NATURE NANOTECHNOLOGY 2024; 19:632-637. [PMID: 38216685 DOI: 10.1038/s41565-023-01588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/29/2023] [Indexed: 01/14/2024]
Abstract
Environmentally friendly tin (Sn) perovskites have received considerable attention due to their great potential for replacing their toxic lead counterparts in applications of photovoltaics and light-emitting diodes (LEDs). However, the device performance of Sn perovskites lags far behind that of lead perovskites, and the highest reported external quantum efficiencies of near-infrared Sn perovskite LEDs are below 10%. The poor performance stems mainly from the numerous defects within Sn perovskite crystallites and grain boundaries, leading to serious non-radiative recombination. Various epitaxy methods have been introduced to obtain high-quality perovskites, although their sophisticated processes limit the scalable fabrication of functional devices. Here we demonstrate that epitaxial heterodimensional Sn perovskite films can be fabricated using a spin-coating process, and efficient LEDs with an external quantum efficiency of 11.6% can be achieved based on these films. The film is composed of a two-dimensional perovskite layer and a three-dimensional perovskite layer, which is highly ordered and has a well-defined interface with minimal interfacial areas between the different dimensional perovskites. This unique nanostructure is formed through direct spin coating of the perovskite precursor solution with tryptophan and SnF2 additives onto indium tin oxide glass. We believe that our approach will provide new opportunities for further developing high-performance optoelectronic devices based on heterodimensional perovskites.
Collapse
Affiliation(s)
- Hao Min
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Nana Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Nana Chen
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Yunfang Tong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Yujiao Wang
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Jiaqi Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Jinglong Liu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Saixue Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Xiao Wu
- Department of Physics, The Chinese University of Hong Kong, Hong Kong, China
| | - Pinghui Yang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Haokun Shi
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Chunxue Zhuo
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Qi Chen
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Jingwei Li
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Daliang Zhang
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, Hong Kong, China
| | - Chao Zhu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
| | - Qiming Peng
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Lin Zhu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Jin Chang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China.
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China.
- Shaanxi Institute of Flexible Electronics (SIFE), Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, China.
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, China.
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, China.
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China.
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, China.
- Changzhou University, Changzhou, China.
| |
Collapse
|
14
|
Niu T, Chao L, Xia Y, Wang K, Ran X, Huang X, Chen C, Wang J, Li D, Su Z, Hu Z, Gao X, Zhang J, Chen Y. Phase-Pure α-FAPbI 3 Perovskite Solar Cells via Activating Lead-Iodine Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2309171. [PMID: 38104281 DOI: 10.1002/adma.202309171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Narrow bandgap cubic formamidine perovskite (α-FAPbI3 ) is widely studied for its potential to achieve record-breaking efficiency. However, its high preparation difficulty caused by lattice instability is criticized. A popular strategy for stabilizing the α-FAPbI3 lattice is to replace intrinsic FA+ or I- with smaller ions of MA+ , Cs+ , Rb+ , and Br- , whereas this generally leads to broadened optical bandgap and phase separation. Studies show that ions substitution-free phase-pure α-FAPbI3 can achieve intrinsic phase stability. However, the challenging preparation of high-quality films has hindered its further development. Here, a facile synthesis of high-quality MA+ , Cs+ , Rb+ , and Br- -free phase-pure α-FAPbI3 perovskite film by a new solution modification strategy is reported. This enables the activation of lead-iodine (Pb─I) frameworks by forming the coated Pb⋯O network, thus simultaneously promoting spontaneous homogeneous nucleation and rapid phase transition from δ to α phase. As a result, the efficient and stable phase-pure α-FAPbI3 PSC is obtained through a one-step method without antisolvent treatment, with a record efficiency of 23.15% and excellent long-term operating stability for 500 h under continuous light stress.
Collapse
Affiliation(s)
- Tingting Niu
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Lingfeng Chao
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Yingdong Xia
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Kaiyu Wang
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Xueqin Ran
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Xiao Huang
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Changshun Chen
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Jinpei Wang
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Deli Li
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies) Fujian Normal University Fuzhou, Fuzhou, 350117, China
| | - Zhenhuang Su
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Zhelu Hu
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Xingyu Gao
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yonghua Chen
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| |
Collapse
|
15
|
Wu B, Zhang Z, Zheng Z, Cai T, You C, Liu C, Li X, Wang Y, Wang J, Li H, Song E, Cui J, Huang G, Mei Y. Self-Rolled-Up Ultrathin Single-Crystalline Silicon Nanomembranes for On-Chip Tubular Polarization Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306715. [PMID: 37721970 DOI: 10.1002/adma.202306715] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/09/2023] [Indexed: 09/20/2023]
Abstract
Freestanding single-crystalline nanomembranes and their assembly have broad application potential in photodetectors for integrated chips. However, the release and self-assembly process of single-crystalline semiconductor nanomembranes still remains a great challenge in on-chip processing and functional integration, and photodetectors based on nanomembrane always suffer from limited absorption of nanoscale thickness. Here, a non-destructive releasing and rolling process is employed to prepare tubular photodetectors based on freestanding single-crystalline Si nanomembranes. Spontaneous release and self-assembly are achieved by residual strain introduced by lattice mismatch at the epitaxial interface of Si and Ge, and the intrinsic stress and strain distributions in self-rolled-up Si nanomembranes are analyzed experimentally and computationally. The advantages of light trapping and wide-angle optical coupling are realized by tubular geometry. This Si microtube device achieves reliable Ohmic contact and exhibits a photoresponsivity of over 330 mA W-1 , a response time of 370 µs, and a light incident detection angle range of over 120°. Furthermore, the microtubular structure shows a distinct polarization angle-dependent light absorption, with a dichroic ratio of 1.24 achieved at 940 nm. The proposed Si-based microtubes provide new possibilities for the construction of multifunctional chips for integrated circuit ecosystems in the More than Moore era.
Collapse
Affiliation(s)
- Binmin Wu
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai, 200438, P. R. China
| | - Ziyu Zhang
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai, 200438, P. R. China
| | - Zhi Zheng
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai, 200438, P. R. China
| | - Tianjun Cai
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai, 200438, P. R. China
| | - Chunyu You
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai, 200438, P. R. China
| | - Chang Liu
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai, 200438, P. R. China
| | - Xing Li
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai, 200438, P. R. China
| | - Yang Wang
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai, 200438, P. R. China
| | - Jinlong Wang
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai, 200438, P. R. China
| | - Hongbin Li
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai, 200438, P. R. China
| | - Enming Song
- Yiwu Research Institute of Fudan University, Yiwu, 322000, P. R. China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200438, P. R. China
| | - Jizhai Cui
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai, 200438, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, P. R. China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, P. R. China
| | - Gaoshan Huang
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai, 200438, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, P. R. China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, P. R. China
| | - Yongfeng Mei
- Department of Materials Science & State Key Laboratory of ASIC and Systems, Fudan University, Shanghai, 200438, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, P. R. China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
16
|
Tang J, Ge F, Chen J, Zhou D, Zhan G, Liu J, Yuan J, Shi X, Zhao P, Fan X, Su Y, Liu Z, He J, Tang J, Zha C, Zhang L, Song X, Wang L. A Droplet Method for Synthesis of Multiclass Ultrathin Metal Halides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301573. [PMID: 37365697 DOI: 10.1002/smll.202301573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/28/2023] [Indexed: 06/28/2023]
Abstract
2D metal halides have attracted increasing research attention in recent years; however, it is still challenging to synthesize them via liquid-phase methods. Here it is demonstrated that a droplet method is simple and efficient for the synthesis of multiclass 2D metal halides, including trivalent (BiI3 , SbI3 ), divalent (SnI2 , GeI2 ), and monovalent (CuI) ones. In particular, 2D SbI3 is first experimentally achieved, of which the thinnest thickness is ≈6 nm. The nucleation and growth of these metal halide nanosheets are mainly determined by the supersaturation of precursor solutions that are dynamically varying during the solution evaporation. After solution drying, the nanosheets can fall on the surface of many different substrates, which further enables the feasible fabrication of related heterostructures and devices. With SbI3 /WSe2 being a good demonstration, the photoluminescence intensity and photo responsivity of WSe2 is obviously enhanced after interfacing with SbI3 . The work opens a new pathway for 2D metal halides toward widespread investigation and applications.
Collapse
Affiliation(s)
- Jin Tang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Feixiang Ge
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jinlian Chen
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Dawei Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Guixiang Zhan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jing Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jiaxiao Yuan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xinyu Shi
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Peiyi Zhao
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xinlin Fan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Yu Su
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Zicong Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jiahao He
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jiaqi Tang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Chenyang Zha
- Institute of Applied Physics and Materials Engineering (IAPME), Zhuhai UM Science & Technology Research Institute (ZUMRI), University of Macau, Taipa, Macau SAR, 999078, China
| | - Linghai Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xuefen Song
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| |
Collapse
|
17
|
Meng Y, Zhong H, Xu Z, He T, Kim JS, Han S, Kim S, Park S, Shen Y, Gong M, Xiao Q, Bae SH. Functionalizing nanophotonic structures with 2D van der Waals materials. NANOSCALE HORIZONS 2023; 8:1345-1365. [PMID: 37608742 DOI: 10.1039/d3nh00246b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The integration of two-dimensional (2D) van der Waals materials with nanostructures has triggered a wide spectrum of optical and optoelectronic applications. Photonic structures of conventional materials typically lack efficient reconfigurability or multifunctionality. Atomically thin 2D materials can thus generate new functionality and reconfigurability for a well-established library of photonic structures such as integrated waveguides, optical fibers, photonic crystals, and metasurfaces, to name a few. Meanwhile, the interaction between light and van der Waals materials can be drastically enhanced as well by leveraging micro-cavities or resonators with high optical confinement. The unique van der Waals surfaces of the 2D materials enable handiness in transfer and mixing with various prefabricated photonic templates with high degrees of freedom, functionalizing as the optical gain, modulation, sensing, or plasmonic media for diverse applications. Here, we review recent advances in synergizing 2D materials to nanophotonic structures for prototyping novel functionality or performance enhancements. Challenges in scalable 2D materials preparations and transfer, as well as emerging opportunities in integrating van der Waals building blocks beyond 2D materials are also discussed.
Collapse
Affiliation(s)
- Yuan Meng
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Hongkun Zhong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Zhihao Xu
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tiantian He
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Justin S Kim
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Sangmoon Han
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Sunok Kim
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Seoungwoong Park
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Yijie Shen
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
- Optoelectronics Research Centre, University of Southampton, Southampton, UK
| | - Mali Gong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Qirong Xiao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Sang-Hoon Bae
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
18
|
Lin Z, Lin Z, Guo Y, Wu H, Song J, Zhang Y, Zhang W, Li H, Hou D, Huang R. Effect of a-SiC xN y:H Encapsulation on the Stability and Photoluminescence Property of CsPbBr 3 Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13071228. [PMID: 37049319 PMCID: PMC10097036 DOI: 10.3390/nano13071228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/12/2023]
Abstract
The effect of a-SiCxNy:H encapsulation layers, which are prepared using the very-high-frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) technique with SiH4, CH4, and NH3 as the precursors, on the stability and photoluminescence of CsPbBr3 quantum dots (QDs) were investigated in this study. The results show that a-SiCxNy:H encapsulation layers containing a high N content of approximately 50% cause severe PL degradation of CsPbBr3 QDs. However, by reducing the N content in the a-SiCxNy:H layer, the PL degradation of CsPbBr3 QDs can be significantly minimized. As the N content decreases from around 50% to 26%, the dominant phase in the a-SiCxNy:H layer changes from SiNx to SiCxNy. This transition preserves the inherent PL characteristics of CsPbBr3 QDs, while also providing them with long-term stability when exposed to air, high temperatures (205 °C), and UV illumination for over 600 days. This method provided an effective and practical approach to enhance the stability and PL characteristics of CsPbBr3 QD thin films, thus holding potential for future developments in optoelectronic devices.
Collapse
Affiliation(s)
- Zewen Lin
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhenxu Lin
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
| | - Yanqing Guo
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
| | - Haixia Wu
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
| | - Jie Song
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
| | - Yi Zhang
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
| | - Wenxing Zhang
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
| | - Hongliang Li
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
| | - Dejian Hou
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
| | - Rui Huang
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
| |
Collapse
|
19
|
Xie R, Zeng X, Jiang ZH, Hu Y, Lee SL. STM Study of the Self-Assembly of Biphenyl-3,3',5,5'-Tetracarboxylic Acid and Its Mixing Behavior with Coronene at the Liquid-Solid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3637-3644. [PMID: 36867761 DOI: 10.1021/acs.langmuir.2c03199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We report a scanning tunneling microscopy (STM) study of the molecular self-assembly of biphenyl-3,3',5,5'-tetracarboxylic acid (BPTC) at the octanoic acid/graphite interface. STM revealed that the BPTC molecules generated stable bilayers and monolayers under high and low sample concentrations, respectively. Besides hydrogen bonds, the bilayers were stabilized by molecular π-stacking, whereas the monolayers were maintained by solvent co-adsorption. A thermodynamically stable Kagomé structure was obtained upon mixing BPTC with coronene (COR), while kinetic trapping of COR in the co-crystal structure was found by the subsequent deposition of COR onto a preformed BPTC bilayer on the surface. Force field calculation was conducted to compare the binding energies of different phases, which helped to provide plausible explanations for the structural stability formed via kinetic and thermodynamic pathways.
Collapse
Affiliation(s)
- Rongbin Xie
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Xingming Zeng
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Zhi-Heng Jiang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Yi Hu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Shern-Long Lee
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong, China
| |
Collapse
|
20
|
Zhu Z, Li Y, Guan Z, Wu Y, Zeng Z, Tsang SW, Liu S, Huang X, Lee CS. Spatial Control of the Hole Accumulation Zone for Hole-Dominated Perovskite Light-Emitting Diodes by Inserting a CsAc Layer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7044-7052. [PMID: 36705641 DOI: 10.1021/acsami.2c19230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Perovskites show efficient electroluminescence and are expected to have wide applications in light-emitting diodes (LEDs). However, owing to the unbalanced electron-hole transport properties of some highly luminescent perovskites, a fundamental challenge is that the exciton recombination zone of perovskite LEDs (PeLEDs) typically overlaps with an accumulation of the major carrier. It is known to reduce the performances of PeLEDs, leading to a reduction of efficiency and operation stability due to Auger recombination. To address this issue in a hole-dominated blue PeLED, we propose to insert a cesium acetate (CsAc) layer between the hole transport layer (HTL) and the hole-dominant perovskite layer. Electronic properties indicate that the hole accumulation zone of the device with the CsAc layer shifts away from the perovskite/ETL interface, i.e., the recombination zone, to the HTL/CsAc interface. Separation of the hole accumulation region and the exciton recombination zones substantially suppresses exciton quenching. Moreover, the CsAc layer can also improve the photophysical properties of the perovskite film by providing an extra Cs source to interact with the defect site of unreacted PbBr2 in the perovskite film and enhance the crystallinity of the perovskite with an enlarged crystal grain size. As a result, the external quantum efficiency (EQE) of the sky-blue PeLEDs shows considerable improvement from 5.3 to 9.2% upon inserting the CsAc layer.
Collapse
Affiliation(s)
- Zhaohua Zhu
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR 000000, P. R. China
- Department of Chemistry, City University of Hong Kong, Kowloon 000000, Hong Kong SAR, P. R. China
| | - Yang Li
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR 000000, P. R. China
- Department of Chemistry, City University of Hong Kong, Kowloon 000000, Hong Kong SAR, P. R. China
| | - Zhiqiang Guan
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR 000000, P. R. China
- Department of Chemistry, City University of Hong Kong, Kowloon 000000, Hong Kong SAR, P. R. China
| | - Yan Wu
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR 000000, P. R. China
- Department of Chemistry, City University of Hong Kong, Kowloon 000000, Hong Kong SAR, P. R. China
| | - Zixin Zeng
- Department of Material Science and Engineering, City University of Hong Kong, Kowloon 000000, Hong Kong SAR, P. R. China
| | - Sai-Wing Tsang
- Department of Material Science and Engineering, City University of Hong Kong, Kowloon 000000, Hong Kong SAR, P. R. China
| | - Shihao Liu
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR 000000, P. R. China
- Department of Chemistry, City University of Hong Kong, Kowloon 000000, Hong Kong SAR, P. R. China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR 000000, P. R. China
- Department of Chemistry, City University of Hong Kong, Kowloon 000000, Hong Kong SAR, P. R. China
| |
Collapse
|
21
|
Zhu Z, Zeng S, Chen Q, Yang L, Wei C, Chen B, Yu H, Li H, Zhang J, Huang X. One-step synthesis of epitaxial 3D/2D metal halide perovskite heterostructures. Chem Commun (Camb) 2022; 58:13775-13778. [PMID: 36426914 DOI: 10.1039/d2cc05150h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Facile and scalable synthesis of perovskite heterostructures with well-controlled heterointerfaces remains challenging. Herein, we developed a simple one-step solution method to prepare 3D/2D CsPbBr3/PEA2PbBr4 perovskite heterostructures with a well-defined epitaxial structure in the gram scale. The formation mechanism was detailed by using in situ time-resolved photoluminescence (PL) spectroscopy analysis. In addition, a series of 3D/2D epitaxial heterostructures were also prepared by changing the organic cations or halogen anions. Due to the effective charge separation and transfer, photodetectors based on the type-II 3D/2D CsPbBr3/PEA2PbBr4 heterostructures showed up to 120 times higher photoresponsivities and 50 times higher on/off ratios compared to devices based on single component perovskites.
Collapse
Affiliation(s)
- Zhaohua Zhu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China. .,Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, P. R. China
| | - Shaoyu Zeng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Qian Chen
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NWPU), 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Lei Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Cong Wei
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, P. R. China
| | - Haidong Yu
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NWPU), 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Hai Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Jian Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiao Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| |
Collapse
|
22
|
De Bastiani M, Grancini G. Rising of halide perovskite epitaxial structures. NATURE MATERIALS 2022; 21:1000-1002. [PMID: 36002719 DOI: 10.1038/s41563-022-01331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
| | - Giulia Grancini
- Department of Chemistry and INSTM, University of Pavia, Pavia, Italy.
| |
Collapse
|