1
|
He K, Li B, Nie J, Hou Y, Huan C, Hong M, Du J, Chen Y, Tang J, Yi C, Feng Y, Liu S, Wu S, Liu M, Zhang H, Guo Y, Wu R, Li J, Liu X, Liu Y, Wei Z, Liao L, Li B, Duan X. Two-Dimensional Cr 3Te 4/WS 2/Fe 3GeTe 2/WTe 2 Magnetic Memory with Field-Free Switching and Low Power Consumption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419939. [PMID: 39950430 DOI: 10.1002/adma.202419939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/22/2025] [Indexed: 04/03/2025]
Abstract
Spin-orbit torque (SOT) magnetic memory technology has garnered significant attention due to its ability to enable field-free switching of magnets with strong perpendicular magnetic anisotropy (PMA). However, concerns regarding power consumption of SOT-memory are persisting. Here, this work proposes a method to construct magnetic tunnel junction (MTJ) by transferring chemically vapor-deposited two-dimensional (2D) Cr3Te4/WS2 van der Waals (vdW) heterostructures onto 2D Fe3GeTe2 (FGT) magnet. The robustness and tunability of 2D magnets allow MTJs to exhibit non-volatility, multiple output states, and impressive cycling durability. MTJs with thin WS2 barriers (fewer than six layers) exhibit a linear tunneling effect, achieving a low resistance-area product (RA) of 15.5 kΩ·µm2 using bilayer WS2, which facilitats low-power operation. Furthermore, the different 2D magnets display a significant anti-parallel window of up to 8 kOe. SOT-memory based on the typical MTJ demonstrates a low write consumption of 0.3 mJ and read consumption of 9.7 nJ, marking a significant advancement in 2D vdW SOT-memory. This research has pointed out a new direction for constructing low power consumption SOT-memory with PMA field-free switching.
Collapse
Affiliation(s)
- Kun He
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bailing Li
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University, Beijing, 100871, China
| | - Jianhang Nie
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Yanglong Hou
- School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University, Beijing, 100871, China
| | - Changmeng Huan
- Chip Manufacturing Department, Hunan Sanan Semiconductor Co., Ltd., Changsha, 410082, China
| | - Min Hong
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jiantao Du
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Jingmei Tang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Chen Yi
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ya Feng
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shaojun Liu
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Sumei Wu
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Miaomiao Liu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Hongmei Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yukun Guo
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ruixia Wu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jia Li
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xingqiang Liu
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Yuan Liu
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Lei Liao
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Bo Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
| | - Xidong Duan
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
2
|
Yao F, Multian V, Watanabe K, Taniguchi T, Gutiérrez-Lezama I, Morpurgo AF. Spin-Valve Effect in Junctions with a Single Ferromagnet. NANO LETTERS 2025; 25:3549-3555. [PMID: 39968960 DOI: 10.1021/acs.nanolett.4c06301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Spin valves are essential components in spintronic memory devices whose conductance is modulated by controlling spin-polarized electron tunnelling through the alignment of the magnetization in ferromagnetic elements. Whereas conventional spin valves unavoidably require at least two ferromagnetic elements, here we demonstrate a van der Waals spin valve based on a tunnel junction that comprises only one such ferromagnetic layer. Our devices combine an Fe3GeTe2 electrode acting as a spin injector together with a paramagnetic tunnel barrier, formed by a CrBr3 multilayer operated above its Curie temperature. We show that these devices exhibit a conductance modulation with values comparable to those of conventional spin valves. A quantitative analysis of the magnetoconductance that accounts for the field-induced magnetization of CrBr3, including the effect of exchange interaction, confirms that the spin valve effect originates from the paramagnetic response of the barrier, in the absence of spontaneous magnetization in CrBr3.
Collapse
Affiliation(s)
- Fengrui Yao
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
- Group of Applied Physics, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Volodymyr Multian
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
- Group of Applied Physics, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
- Advanced Materials Nonlinear Optical Diagnostics lab, Institute of Physics, NAS of Ukraine, 46 Nauky pr., 03028 Kyiv, Ukraine
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Ignacio Gutiérrez-Lezama
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
- Group of Applied Physics, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Alberto F Morpurgo
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
- Group of Applied Physics, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| |
Collapse
|
3
|
Wang X, Wang C, Wang Y, Ye C, Rahman A, Zhang M, Son S, Tan J, Zhang Z, Ji W, Park JG, Zhang KX. Artificially Creating Emergent Interfacial Antiferromagnetism and Its Manipulation in a Magnetic van der Waals Heterostructure. ACS NANO 2025; 19:8108-8117. [PMID: 40034036 DOI: 10.1021/acsnano.4c16450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
van der Waals (vdW) magnets, with their two-dimensional (2D) atomic structures, provide a unique platform for exploring magnetism on the nanoscale. Although there have been numerous reports on their diverse quantum properties, the emergent interfacial magnetism─artificially created at the interface between two layered magnets─remains largely unexplored. This work presents observations of such emergent interfacial magnetism at the ferromagnet-antiferromagnet interface in a vdW heterostructure. We report the discovery of an intermediate Hall resistance plateau in the anomalous Hall loop indicative of emergent interfacial antiferromagnetism fostered by the heterointerface. This plateau can be stabilized and further manipulated under varying pressures but collapses at high pressures over 10 GPa. Our theoretical calculations reveal that charge transfer at the interface is pivotal in establishing the interlayer antiferromagnetic spin-exchange interaction. This work illuminates the previously unexplored emergent interfacial magnetism at a vdW interface comprising a ferromagnetic metal and an antiferromagnetic insulator and highlights its gradual evolution under increasing pressure. These findings enrich the portfolio of emergent interfacial magnetism and support further investigations of vdW magnetic interfaces and the development of next-generation spintronic devices.
Collapse
Affiliation(s)
- Xiangqi Wang
- Testing Center, Jihua Laboratory, Foshan 528000, China
| | - Cong Wang
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, School of Physics, Renmin University of China, Beijing 100872, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China
| | - Yupeng Wang
- Deep Space Exploration Laboratory, The Centre for Physical Experiments and CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Chunhui Ye
- Deep Space Exploration Laboratory, The Centre for Physical Experiments and CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Azizur Rahman
- Deep Space Exploration Laboratory, The Centre for Physical Experiments and CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Min Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Suhan Son
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, South Korea
- Center for Quantum Materials, Department of Physics and Astronomy, Seoul National University, Seoul 08826, South Korea
- Institute of Applied Physics, Seoul National University, Seoul 08826, South Korea
| | - Jun Tan
- Testing Center, Jihua Laboratory, Foshan 528000, China
| | - Zengming Zhang
- Deep Space Exploration Laboratory, The Centre for Physical Experiments and CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Wei Ji
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, School of Physics, Renmin University of China, Beijing 100872, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China
| | - Je-Geun Park
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, South Korea
- Center for Quantum Materials, Department of Physics and Astronomy, Seoul National University, Seoul 08826, South Korea
- Institute of Applied Physics, Seoul National University, Seoul 08826, South Korea
| | - Kai-Xuan Zhang
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, South Korea
- Center for Quantum Materials, Department of Physics and Astronomy, Seoul National University, Seoul 08826, South Korea
- Institute of Applied Physics, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
4
|
Wu H, Yang L, Zhang G, Jin W, Xiao B, Yu J, Annas A, Zhang W, Wang K, Chang H. Thermally-Stable Temperature-Independent Tunneling Magnetoresistance in all van der Waals Fe 3GaTe 2/GaSe/Fe 3GaTe 2 Magnetic Tunnel Junctions. SMALL METHODS 2025; 9:e2401117. [PMID: 39901655 DOI: 10.1002/smtd.202401117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/16/2025] [Indexed: 02/05/2025]
Abstract
Thermal stability is of great significance for the next-generation two-dimensional (2D) non-volatile spintronic devices. Typically, as the temperature increases, the spin polarization of materials decreases rapidly following the Bloch 𝑇3/2 law in low-temperature regions, resulting in a rapid decrease in the tunneling magnetoresistance (TMR) of the magnetic tunnel junction (MTJ). Owing to the thermal effects induced by current during the writing processes, even small temperature fluctuations can result in significant variations in the TMR of MTJs, hindering their practical applications. In this paper, all-van der Waals Fe3GaTe2/GaSe/Fe3GaTe2 (FGaT/GaSe/FGaT) MTJ devices are constructed, achieving a TMR ratio of 47% at low temperatures and 17% at room temperature. Importantly, the TMR ratio remains stable within a temperature range from 2 to 160 K, breaking the Bloch 𝑇3/2 law. The temperature-independent TMR is highly related to the enhanced perpendicular magnetic anisotropy (PMA) with reduced dimensionality is demonstrated. This work paves a promising path to achieve high-performance, thermally stable 2D spintronic memory chips.
Collapse
Affiliation(s)
- Hao Wu
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Li Yang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Gaojie Zhang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wen Jin
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bichen Xiao
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jie Yu
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ahmed Annas
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Wenfeng Zhang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen R&D Center of Huazhong University of Science and Technology (HUST), Shenzhen, 518000, China
| | - Kaiyou Wang
- State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haixin Chang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen R&D Center of Huazhong University of Science and Technology (HUST), Shenzhen, 518000, China
| |
Collapse
|
5
|
Wang X, Zhang L, He M, Li Q, Song W, Yang K, Wang S, Taniguchi T, Watanabe K, Zhang L, Shi W, Cheng Y, Qu Z, Pan J, Wang Z. Large Tunneling Magnetoresistance in Nonvolatile 2D Hybrid Spin Filters. PHYSICAL REVIEW LETTERS 2025; 134:077001. [PMID: 40053991 DOI: 10.1103/physrevlett.134.077001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/24/2025] [Indexed: 03/09/2025]
Abstract
Ferromagnetic semiconductors offer an efficient way to achieve high spin polarization via spin filtering effect. Large tunneling magnetoresistance (TMR) can then be realized when multiple spin filters are put in series, as recently demonstrated in van der Waals 2D A-type antiferromagnets such as CrI_{3} and CrSBr. However, the interlayer antiferromagnetic ground state of these magnets inherently results in a high resistance state at zero field, and this volatile behavior limits potential applications. Here we fabricate hybrid spin filters using 2D ferromagnetic metal Fe_{3}GeTe_{2} and semiconductor CrBr_{3}, which are nonvolatile as two magnets are magnetically decoupled. We achieve large TMR of around 100%, with its temperature dependence well fitted by the extended Jullière model. Additionally, the devices allow spin injection tuned through bias voltage, and TMR polarity reversals are observed. Our work opens a new route to develop 2D magnetic semiconductor based spintronics.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Xi'an Jiaotong University, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Materials and Mesoscopic Physics, School of Physics, Xi'an 710049, China
| | - Lihao Zhang
- Xi'an Jiaotong University, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Materials and Mesoscopic Physics, School of Physics, Xi'an 710049, China
| | - Miao He
- Hefei Institutes of Physical Science, Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Science Island Branch of Graduate School, Hefei 230026, China
| | - Qi Li
- Nanjing Tech University, Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing 211816, China
| | - Wenqin Song
- Fudan University, State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Shanghai 200433, China
| | - Kunlin Yang
- Fudan University, State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Shanghai 200433, China
| | - Shuxi Wang
- Xi'an Jiaotong University, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Materials and Mesoscopic Physics, School of Physics, Xi'an 710049, China
| | - Takashi Taniguchi
- National Institute for Materials Science, Research Center for Materials Nanoarchitectonics, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- National Institute for Materials Science, Research Center for Electronic and Optical Materials, Tsukuba 305-0044, Japan
| | - Lei Zhang
- Xi'an Jiaotong University, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Materials and Mesoscopic Physics, School of Physics, Xi'an 710049, China
| | - Wu Shi
- Fudan University, State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Shanghai 200433, China
- Fudan University, Zhangjiang Fudan International Innovation Center, Shanghai 201210, China
| | - Yingchun Cheng
- Yanshan University, State Key Lab of Metastable Materials Science and Technology, Qinhuangdao 066004, China
| | - Zhe Qu
- Hefei Institutes of Physical Science, Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Science Island Branch of Graduate School, Hefei 230026, China
| | - Jie Pan
- Xi'an Jiaotong University, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Materials and Mesoscopic Physics, School of Physics, Xi'an 710049, China
| | - Zhe Wang
- Xi'an Jiaotong University, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Materials and Mesoscopic Physics, School of Physics, Xi'an 710049, China
| |
Collapse
|
6
|
Obata R, Sun H, Samanta K, Shahed NA, Kosugi M, Kikkawa T, Abdallah A, Watanabe K, Taniguchi T, Suenaga K, Saitoh E, Maruyama S, Hirakawa K, Belashchenko KD, Tsymbal EY, Haruyama J. Pseudotunnel Magnetoresistance in Twisted van der Waals Fe 3GeTe 2 Homojunctions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411459. [PMID: 39757443 DOI: 10.1002/adma.202411459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/24/2024] [Indexed: 01/07/2025]
Abstract
Twistronics, a novel engineering approach involving the alignment of van der Waals (vdW) integrated two-dimensional materials at specific angles, has recently attracted significant attention. Novel nontrivial phenomena have been demonstrated in twisted vdW junctions (the so-called magic angle), such as unconventional superconductivity, topological phases, and magnetism. However, there have been only few reports on integrated vdW layers with large twist angles θt, such as twisted interfacial Josephson junctions using high-temperature superconductors. Herein, vdW homojunctions of the thin-magnetic flakes, Fe3GeTe2 (FGT), with large θt ranging from 0° to 90°, without inserting any tunnel barriers are assembled. Nevertheless, these vdW homojunctions exhibit tunnel-magnetoresistance (TMR) like behavior (pseudo-TMR (PTMR) effect) with the ratios highly sensitive to the θt values, revealing that the vdW gap at the junction interface between the twisted FGT layers behaves like a tunnel barrier and the θt serves a control parameter for PTMR by drastically varying magnitudes of the lattice-mismatch and the subsequent appearance of antiferromagnetic (AFM) spin alignment. First-principles calculations considering vacuum gaps indicate strong dependence of TMR on the θt driven by the sixfold screw rotational symmetry of bulk FGT. The present homojunctions hold promise as a platform for novel AFM spin-dependent phenomena and spintronic applications.
Collapse
Affiliation(s)
- Reiji Obata
- Faculty of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa, 252-5258, Japan
| | - Haiming Sun
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Kartik Samanta
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE, USA, 68588
| | - Naafis Ahnaf Shahed
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE, USA, 68588
| | - Mioko Kosugi
- Faculty of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa, 252-5258, Japan
| | - Takashi Kikkawa
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Alaa Abdallah
- Faculty of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa, 252-5258, Japan
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Kazu Suenaga
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Eiji Saitoh
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE, USA, 68588
- Institute for AI and Beyond, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- WPI Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
- Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki, 319-1195, Japan
| | - Shigeo Maruyama
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuhiko Hirakawa
- Institute for Industrial Sciences, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo, 153-8505, Japan
| | - Kirill D Belashchenko
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE, USA, 68588
| | - Evgeny Y Tsymbal
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE, USA, 68588
| | - Junji Haruyama
- Faculty of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa, 252-5258, Japan
- Institute for Industrial Sciences, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo, 153-8505, Japan
| |
Collapse
|
7
|
Hadke S, Kang MA, Sangwan VK, Hersam MC. Two-Dimensional Materials for Brain-Inspired Computing Hardware. Chem Rev 2025; 125:835-932. [PMID: 39745782 DOI: 10.1021/acs.chemrev.4c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Recent breakthroughs in brain-inspired computing promise to address a wide range of problems from security to healthcare. However, the current strategy of implementing artificial intelligence algorithms using conventional silicon hardware is leading to unsustainable energy consumption. Neuromorphic hardware based on electronic devices mimicking biological systems is emerging as a low-energy alternative, although further progress requires materials that can mimic biological function while maintaining scalability and speed. As a result of their diverse unique properties, atomically thin two-dimensional (2D) materials are promising building blocks for next-generation electronics including nonvolatile memory, in-memory and neuromorphic computing, and flexible edge-computing systems. Furthermore, 2D materials achieve biorealistic synaptic and neuronal responses that extend beyond conventional logic and memory systems. Here, we provide a comprehensive review of the growth, fabrication, and integration of 2D materials and van der Waals heterojunctions for neuromorphic electronic and optoelectronic devices, circuits, and systems. For each case, the relationship between physical properties and device responses is emphasized followed by a critical comparison of technologies for different applications. We conclude with a forward-looking perspective on the key remaining challenges and opportunities for neuromorphic applications that leverage the fundamental properties of 2D materials and heterojunctions.
Collapse
Affiliation(s)
- Shreyash Hadke
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Min-A Kang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinod K Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
Kim WK, Kim N, Park MH, Shin YH, Cho GY, Kim G, Yu WJ. High Electrical Conductance in Magnetic Emission Junction of Fe 3GeTe 2/ZnO/Ni Heterostructure via Selective Spin Emission through ZnO Ohmic Barrier. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2409822. [PMID: 39580672 DOI: 10.1002/adma.202409822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/30/2024] [Indexed: 11/26/2024]
Abstract
The insulator is essential for magnetic tunneling junction (MTJ) that increases magnetoresistance (MR) by decoupling magnetization directions between two ferromagnets. However, wide bandgap tunnel barrier blocks the thermionic emission of electrons, significantly reducing electrical conductance through MTJ. Here, a magnetic emission junction (MEJ) is demonstrated for the first time using an Fe3GeTe2 (FGT)/ZnO/Ni heterostructure with very high electrical conductance. The conduction band of ZnO (electron affinity 4.6 eV) aligns with Fermi levels (EF) of FGT (4.47 eV) and Ni (4.58 eV) ferromagnets and forms an Ohmic barrier, enabling free spin-electron emission through ZnO barrier and high electrical conductance. In contrast to the typical positive MR in MTJ by majority spin tunneling, negative MR is observed in FGT/ZnO/Ni MEJ. The minority spin electrons of Ni, with maximum states near the EF, are dominantly emitted to FGT over the ZnO barrier, while majority spin electrons of Ni, with maximum states below the EF, are blocked by it. In the FGT/FGT/ZnO/Ni heterostructure, the MR ratio is further increased by combining positive and negative MR at the MTJ (FGT/FGT) and MEJ (FGT/ZnO/Ni), respectively. As a result, FGT-MEJ exhibits 10-1000 orders higher conductance than other 2D-MTJs, while MR ratio remains similar to other 2D-MTJs.
Collapse
Affiliation(s)
- Whan Kyun Kim
- Department of Semiconductor and Display Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Semiconductor R&D center, Samsung Electronics, Hwaseong, 18448, Republic of Korea
| | - Namgun Kim
- Department of Semiconductor and Display Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Semiconductor R&D center, Samsung Electronics, Hwaseong, 18448, Republic of Korea
| | - Mi Hyang Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yong Ha Shin
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ga Young Cho
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Giheon Kim
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Woo Jong Yu
- Department of Semiconductor and Display Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
9
|
Zhang G, Wu H, Yang L, Chen Z, Jin W, Xiao B, Zhang W, Song C, Chang H. Above-Room-Temperature Ferromagnetism Regulation in Two-Dimensional Heterostructures by van der Waals Interfacial Magnetochemistry. J Am Chem Soc 2024; 146:34070-34079. [PMID: 39614815 DOI: 10.1021/jacs.4c13391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Most methods for regulating physical and chemical properties of materials involve the breaking and formation of chemical bonds, which inevitably change local structures. Two-dimensional (2D) ferromagnets are critical for spintronic memory and quantum devices, but most of them maintain ferromagnetism at low temperature, and multiaspect control of 2D ferromagnetism at room temperature or above is still missing. Here, we report a nondestructive, van der Waals (vdW) interfacial magnetochemistry strategy for above-room-temperature, multiaspect 2D ferromagnetism regulation. By vdW coupling nonmagnetic MoS2, WSe2, or Bi1.5Sb0.5Te1.7Se1.3 with 2D vdW ferromagnet Fe3GaTe2, the Curie temperature is enhanced up to 400 K, best for 2D ferromagnets, with 26.8% tuning of room-temperature perpendicular magnetic anisotropy and an unconventional anomalous Hall effect up to 340 K. These phenomena originate from changes in magnetic exchange interactions and magnetic anisotropy energy by interfacial charge transfer and spin-orbit coupling. This work opens a pathway for engineering multifunctional 2D heterostructures by vdW interfacial magnetochemistry.
Collapse
Affiliation(s)
- Gaojie Zhang
- State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Wu
- State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Yang
- State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zheng Chen
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wen Jin
- State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bichen Xiao
- State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenfeng Zhang
- State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen 518000, China
| | - Changsheng Song
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haixin Chang
- State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen 518000, China
| |
Collapse
|
10
|
Pan J, Zhang YF, Zhang YY, Du S. Engineering Two-Dimensional Magnetic Heterostructures: A Theoretical Perspective. NANO LETTERS 2024; 24:14909-14923. [PMID: 39556418 DOI: 10.1021/acs.nanolett.4c04251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Two-dimensional (2D) magnetic materials have attracted great attention due to their promise for applications in future high-speed, low-energy quantum computing and memory devices. By integrating 2D magnetic materials with other magnetic or nonmagnetic materials to form heterostructures, the synergistic effects of interlayer orbital hybridization, spin-orbit coupling, and symmetry breaking can surpass the performance of single-layer materials and lead to novel physical phenomena. This review provides a comprehensive theoretical analysis of engineering 2D magnetic heterostructures, emphasizing the fundamental physics of interlayer interactions and the resulting enhancements and novel properties. It reviews the mechanisms and progress in tuning the magnetic ordering, enhancing the Curie temperature (Tc) and modulating properties such as topological magnetic structures, spin polarization, electronic band topology, valley polarization, and magnetoelectric coupling through the construction of 2D magnetic heterostructures. Additionally, this review discusses the current challenges faced by 2D magnetic heterostructures, aiming to guide the future design of higher-performance magnetic heterostructures.
Collapse
Affiliation(s)
- Jinbo Pan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Fang Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Yang Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shixuan Du
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
11
|
Zhu W, Sun J, Cheng Y, Bai H, Han L, Wang Y, Song C, Pan F. Photoresponsive Two-Dimensional Magnetic Junctions for Reconfigurable In-Memory Sensing. ACS NANO 2024; 18:27009-27015. [PMID: 39288273 DOI: 10.1021/acsnano.4c09735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Magnetic tunneling junctions (MTJs) lie in the core of magnetic random access memory, holding promise in integrating memory and computing to reduce hardware complexity, transition latency, and power consumption. However, traditional MTJs are insensitive to light, limiting their functionality in in-memory sensing─a crucial component for machine vision systems in artificial intelligence applications. Herein, the convergence of magnetic memory with optical sensing capabilities is achieved in the all-two-dimensional (2D) magnetic junction Fe3GaTe2/WSe2/Fe3GaTe2, which combines 2D magnetism and optoelectronic properties. The clean intrinsic band gap and prominent photoresponse of interlayer WSe2 endow the tunneling barrier with optical tunability. The on-off states of junctions and the magnetoresistance can be flexibly controlled by the intensity of the optical signal at room temperature. Based on the optical-tunable magnetoresistance in all-2D magnetic junctions, a machine vision system with the architecture of in-memory sensing and computing is constructed, which possesses high performance in image recognition. Our work exhibits the advantages of 2D magneto-electronic devices and extends the application scenarios of magnetic memory devices in artificial intelligence.
Collapse
Affiliation(s)
- Wenxuan Zhu
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084,China
| | - Jiacheng Sun
- Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084,China
| | - Yuan Cheng
- Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084,China
- Department of Electronic Engineering, Tsinghua University, Beijing 100084,China
| | - Hua Bai
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084,China
| | - Lei Han
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084,China
| | - Yuyan Wang
- Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084,China
| | - Cheng Song
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084,China
| | - Feng Pan
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084,China
| |
Collapse
|
12
|
Wu H, Yang L, Zhang G, Jin W, Xiao B, Zhang W, Chang H. Robust Magnetic Proximity Induced Anomalous Hall Effect in a Room Temperature van der Waals Ferromagnetic Semiconductor Based 2D Heterostructure. SMALL METHODS 2024; 8:e2301524. [PMID: 38295050 DOI: 10.1002/smtd.202301524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/04/2024] [Indexed: 02/02/2024]
Abstract
Developing novel high-temperature van der Waals ferromagnetic semiconductor materials and investigating their interface coupling effects with 2D topological semimetals are pivotal for advancing next-generation spintronic and quantum devices. However, most van der Waals ferromagnetic semiconductors exhibit ferromagnetism only at low temperatures, limiting the proximity research on their interfaces with topological semimetals. Here, an intrinsic, van der Waals layered room-temperature ferromagnetic semiconductor crystal, FeCr0.5Ga1.5Se4 (FCGS), is reported with a Curie temperature (TC) as high as 370 K, setting a new record for van der Waals ferromagnetic semiconductors. The saturation magnetization at low temperature (2 K) and room temperature (300 K) reaches 8.2 and 2.7 emu g-1, respectively. Furthermore, FCGS possesses a bandgap of ≈1.2 eV, which is comparable to the widely used commercial silicon. The FCGS/graphene 2D heterostructure exhibits an impeccably smooth and gapless interface, thereby inducing a robust van der Waals magnetic proximity coupling effect between FCGS and graphene. After the proximity coupling, graphene undergoes a charge carrier transition from electrons to holes, accompanied by a transition from non-magnetic to ferromagnetic transport behavior with robust anomalous Hall effect (AHE). Notably, the van der Waals magnetic proximity-induced AHE remains robust even up to 400 K.
Collapse
Affiliation(s)
- Hao Wu
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Li Yang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Gaojie Zhang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- Shenzhen R&D Center of Huazhong University of Science and Technology (HUST), Shenzhen, 518000, China
| | - Wen Jin
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Bichen Xiao
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Wenfeng Zhang
- Shenzhen R&D Center of Huazhong University of Science and Technology (HUST), Shenzhen, 518000, China
| | - Haixin Chang
- Shenzhen R&D Center of Huazhong University of Science and Technology (HUST), Shenzhen, 518000, China
| |
Collapse
|
13
|
Halder A, Nell D, Sihi A, Bajaj A, Sanvito S, Droghetti A. Half-Metallic Transport and Spin-Polarized Tunneling through the van der Waals Ferromagnet Fe 4GeTe 2. NANO LETTERS 2024; 24:9221-9228. [PMID: 39037057 PMCID: PMC11299226 DOI: 10.1021/acs.nanolett.4c01479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
We examine the coherent spin-dependent transport properties of the van der Waals (vdW) ferromagnet Fe4GeTe2 using density functional theory combined with the nonequilibrium Green's function method. Our findings reveal that the conductance perpendicular to the layers is half-metallic, meaning that it is almost entirely spin-polarized. This property persists from the bulk to a single layer, even under significant bias voltages and with spin-orbit coupling. Additionally, using dynamical mean field theory for quantum transport, we demonstrate that electron correlations are important for magnetic properties but minimally impact the conductance, preserving almost perfect spin-polarization. Motivated by these results, we then study the tunnel magnetoresistance (TMR) in a magnetic tunnel junction consisting of two Fe4GeTe2 layers with the vdW gap acting as an insulating barrier. We predict a TMR ratio of ∼500%, which can be further enhanced by increasing the number of Fe4GeTe2 layers in the junction.
Collapse
Affiliation(s)
- Anita Halder
- School
of Physics and CRANN, Trinity College, Dublin 2, Ireland
- Department
of Physics, SRM University − AP, Amaravati 522 502, Andhra Pradesh, India
| | - Declan Nell
- School
of Physics and CRANN, Trinity College, Dublin 2, Ireland
| | - Antik Sihi
- School
of Physics and CRANN, Trinity College, Dublin 2, Ireland
| | - Akash Bajaj
- School
of Physics and CRANN, Trinity College, Dublin 2, Ireland
| | - Stefano Sanvito
- School
of Physics and CRANN, Trinity College, Dublin 2, Ireland
| | - Andrea Droghetti
- School
of Physics and CRANN, Trinity College, Dublin 2, Ireland
- Institute
for Superconducting and Other Innovative Materials for Devices, Italian
National Research Council (CNR-SPIN), G.
D’Annunzio University, Chieti 66100, Italy
| |
Collapse
|
14
|
Choi GS, Park S, An ES, Bae J, Shin I, Kang BT, Won CJ, Cheong SW, Lee HW, Lee GH, Cho WJ, Kim JS. Highly Efficient Room-Temperature Spin-Orbit-Torque Switching in a Van der Waals Heterostructure of Topological Insulator and Ferromagnet. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400893. [PMID: 38520060 DOI: 10.1002/advs.202400893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Indexed: 03/25/2024]
Abstract
All-Van der Waals (vdW)-material-based heterostructures with atomically sharp interfaces offer a versatile platform for high-performing spintronic functionalities at room temperature. One of the key components is vdW topological insulators (TIs), which can produce a strong spin-orbit-torque (SOT) through the spin-momentum locking of their topological surface state (TSS). However, the relatively low conductance of the TSS introduces a current leakage problem through the bulk states of the TI or the adjacent ferromagnetic metal layers, reducing the interfacial charge-to-spin conversion efficiency (qICS). Here, a vdW heterostructure is used consisting of atomically-thin layers of a bulk-insulating TI Sn-doped Bi1.1Sb0.9Te2S1 and a room-temperature ferromagnet Fe3GaTe2, to enhance the relative current ratio on the TSS up to ≈20%. The resulting qICS reaches ≈1.65 nm-1 and the critical current density Jc ≈0.9 × 106 Acm-2 at 300 K, surpassing the performance of TI-based and heavy-metal-based SOT devices. These findings demonstrate that an all-vdW heterostructure with thickness optimization offers a promising platform for efficient current-controlled magnetization switching at room temperature.
Collapse
Affiliation(s)
- Gyu Seung Choi
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Sungyu Park
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Eun-Su An
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Juhong Bae
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Inseob Shin
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Beom Tak Kang
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Choong Jae Won
- Center for Complex Phase of Materials, Max Planck POSTECH/Korea Research Initiative, Pohang, 37673, Republic of Korea
- Laboratory for Pohang Emergent Materials, Department of Physics, POSTECH, Pohang, 37673, Republic of Korea
| | - Sang-Wook Cheong
- Center for Complex Phase of Materials, Max Planck POSTECH/Korea Research Initiative, Pohang, 37673, Republic of Korea
- Laboratory for Pohang Emergent Materials, Department of Physics, POSTECH, Pohang, 37673, Republic of Korea
- Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA
| | - Hyun-Woo Lee
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Gil-Ho Lee
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Won Joon Cho
- Device Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Jun Sung Kim
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| |
Collapse
|
15
|
Guo Y, Zhang Y, Liu QL, Zhou Z, He J, Yuan S, Heine T, Wang J. Laser-Induced Ultrafast Spin Injection in All-Semiconductor Magnetic CrI 3/WSe 2 Heterobilayer. ACS NANO 2024; 18:11732-11739. [PMID: 38670539 PMCID: PMC11080996 DOI: 10.1021/acsnano.3c12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
Spin injection stands out as a crucial method employed for initializing, manipulating, and measuring the spin states of electrons, which are fundamental to the creation of qubits in quantum computing. However, ensuring efficient spin injection while maintaining compatibility with standard semiconductor processing techniques is a significant challenge. Herein, we demonstrate the capability of inducing an ultrafast spin injection into a WSe2 layer from a magnetic CrI3 layer on a femtosecond time scale, achieved through real-time time-dependent density functional theory calculations upon a laser pulse. Following the peak of the magnetic moment in the CrI3 sublayer, the magnetic moment of the WSe2 layer reaches a maximum of 0.89 μB (per unit cell containing 4 WSe2 and 1 CrI3 units). During the spin dynamics, spin-polarized excited electrons transfer from the WSe2 layer to the CrI3 layer via type-II band alignment. The large spin splitting in conduction bands and the difference in the number of spin-polarized local unoccupied states available in the CrI3 layer lead to a net spin in the WSe2 layer. Furthermore, we confirmed that the number of available states, the spin-flip process, and the laser pulse parameters play important roles during the spin injection process. This work highlights the dynamic and rapid nature of spin manipulation in layered all-semiconductor systems, offering significant implications for the development and enhancement of quantum information processing technologies.
Collapse
Affiliation(s)
- Yilv Guo
- Key
Laboratory of Quantum Materials and Devices of Ministry of Education,
School of Physics, Southeast University, Nanjing 211189, People’s Republic of China
- Faculty
of Chemistry and Food Chemistry, TU Dresden, Dresden 01069, Germany
| | - Yehui Zhang
- Key
Laboratory of Quantum Materials and Devices of Ministry of Education,
School of Physics, Southeast University, Nanjing 211189, People’s Republic of China
| | - Qing Long Liu
- Faculty
of Chemistry and Food Chemistry, TU Dresden, Dresden 01069, Germany
| | - Zhaobo Zhou
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague 12843, Czech Republic
| | - Junjie He
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague 12843, Czech Republic
| | - Shijun Yuan
- Key
Laboratory of Quantum Materials and Devices of Ministry of Education,
School of Physics, Southeast University, Nanjing 211189, People’s Republic of China
| | - Thomas Heine
- Faculty
of Chemistry and Food Chemistry, TU Dresden, Dresden 01069, Germany
| | - Jinlan Wang
- Key
Laboratory of Quantum Materials and Devices of Ministry of Education,
School of Physics, Southeast University, Nanjing 211189, People’s Republic of China
- Suzhou
Laboratory, Suzhou 215004, People’s Republic
of China
| |
Collapse
|
16
|
Guo L, Hu S, Gu X, Zhang R, Wang K, Yan W, Sun X. Emerging Spintronic Materials and Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301854. [PMID: 37309258 DOI: 10.1002/adma.202301854] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/01/2023] [Indexed: 06/14/2023]
Abstract
The explosive growth of the information era has put forward urgent requirements for ultrahigh-speed and extremely efficient computations. In direct contrary to charge-based computations, spintronics aims to use spins as information carriers for data storage, transmission, and decoding, to help fully realize electronic device miniaturization and high integration for next-generation computing technologies. Currently, many novel spintronic materials have been developed with unique properties and multifunctionalities, including organic semiconductors (OSCs), organic-inorganic hybrid perovskites (OIHPs), and 2D materials (2DMs). These materials are useful to fulfill the demand for developing diverse and advanced spintronic devices. Herein, these promising materials are systematically reviewed for advanced spintronic applications. Due to the distinct chemical and physical structures of OSCs, OIHPs, and 2DMs, their spintronic properties (spin transport and spin manipulation) are discussed separately. In addition, some multifunctionalities due to photoelectric and chiral-induced spin selectivity (CISS) are overviewed, including the spin-filter effect, spin-photovoltaics, spin-light emitting devices, and spin-transistor functions. Subsequently, challenges and future perspectives of using these multifunctional materials for the development of advanced spintronics are presented.
Collapse
Affiliation(s)
- Lidan Guo
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Shunhua Hu
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xianrong Gu
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Rui Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Kai Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Wenjing Yan
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG9 2RD, UK
| | - Xiangnan Sun
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
17
|
Li D, Haldar S, Heinze S. Proposal for All-Electrical Skyrmion Detection in van der Waals Tunnel Junctions. NANO LETTERS 2024; 24:2496-2502. [PMID: 38350134 DOI: 10.1021/acs.nanolett.3c04238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
A major challenge for magnetic skyrmions in atomically thin van der Waals (vdW) materials is reliable skyrmion detection. Here, based on rigorous first-principles calculations, we show that all-electrical skyrmion detection is feasible in two-dimensional vdW magnets via scanning tunneling microscopy (STM) and in planar tunnel junctions. We use the nonequilibrium Green's function method for quantum transport in planar junctions, including self-energy due to electrodes and working conditions, going beyond the standard Tersoff-Hamann approximation. We obtain a very large tunneling anisotropic magnetoresistance (TAMR) around the Fermi energy for a graphite/Fe3GeTe2/germanene/graphite vdW tunnel junction. For atomic-scale skyrmions, the noncollinear magnetoresistance (NCMR) reaches giant values. We trace the origin of the NCMR to spin mixing between spin-up and -down states of pz and dz2 character at the surface atoms. Both TAMR and NCMR are drastically enhanced in tunnel junctions with respect to STM geometry due to orbital symmetry matching at the interface.
Collapse
Affiliation(s)
- Dongzhe Li
- CEMES, Université de Toulouse, CNRS, 29 rue Jeanne Marvig, F-31055 Toulouse, France
| | - Soumyajyoti Haldar
- Institute of Theoretical Physics and Astrophysics, University of Kiel, Leibnizstrasse 15, 24098 Kiel, Germany
| | - Stefan Heinze
- Institute of Theoretical Physics and Astrophysics, University of Kiel, Leibnizstrasse 15, 24098 Kiel, Germany
- Kiel Nano, Surface and Interface Science (KiNSIS), University of Kiel, 24118 Kiel, Germany
| |
Collapse
|
18
|
Singh AK, Gao W, Deb P. Tunable long-range spin transport in a van der Waals Fe 3GeTe 2/WSe 2/Fe 3GeTe 2 spin valve. Phys Chem Chem Phys 2024; 26:895-902. [PMID: 38087955 DOI: 10.1039/d3cp04955h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The seamless integration of two-dimensional (2D) ferromagnetic materials with similar or dissimilar materials can widen the scope of low-power spintronics. In this regard, a vertical van der Waals (vdW) heterostructure of 2D ferromagnets with semiconducting transition metal dichalcogenides (TMDCs) forms magnetic junctions with exceptional stability and electrical control. Interestingly, 2D metallic Fe3GeTe2 (FGT) reveals above room temperature Curie temperatures and has large magneto anisotropy due to spin-orbit coupling. In addition, it also possesses topological states and a large Berry curvature. Herein, we designed the FGT/WSe2/FGT vdW heterostructure with a uniform and sharp interface so that FGT could maintain its inherent electronic properties. Also, the uniform thickness of the barrier provides a smooth flow of spins through the junctions as tunneling exponentially decays with an increasing barrier thickness. However, strong energy-dependent spin polarization is crucial for achieving optimum spin valve properties, such as large tunneling magnetoresistance (TMR) along with the manipulation of the magnitude and sign reversal. We have observed a shifting of high-energy localized minority spin states toward low-energy regions, which causes spin polarization fluctuation between -42.5% and 41% over a wide range of bias voltage. This leads to a negative TMR% of ∼-100% at 0.1 V Å-1 and also a large positive TMR% at 0.2 V Å-1 and -0.4 V Å-1. Besides, the system exhibits a highly tunable large anomalous Hall conductivity (AHC) of 626 S cm-1. Interestingly, such unprecedented electronic behaviour with large and switchable spin polarization, anomalous Hall conductivity and TMR can be incorporated into MTJ devices, which provide electrical control and long-range spin transport. Additionally, the system emerges as a standout candidate in low-power spintronic devices (e.g., MRAM and magnetic sensors) owing to its distinctive energy-dependent electronic structure with a wide range of external bias.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Advanced Functional Materials Laboratory, Department of Physics, Tezpur University (Central University), Tezpur 784028, India.
| | - Weibo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Pritam Deb
- Advanced Functional Materials Laboratory, Department of Physics, Tezpur University (Central University), Tezpur 784028, India.
| |
Collapse
|
19
|
Lee JE, Yan S, Oh S, Hwang J, Denlinger JD, Hwang C, Lei H, Mo SK, Park SY, Ryu H. Electronic Structure of Above-Room-Temperature van der Waals Ferromagnet Fe 3GaTe 2. NANO LETTERS 2023; 23:11526-11532. [PMID: 38079244 DOI: 10.1021/acs.nanolett.3c03203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Fe3GaTe2, a recently discovered van der Waals ferromagnet, demonstrates intrinsic ferromagnetism above room temperature, necessitating a comprehensive investigation of the microscopic origins of its high Curie temperature (TC). In this study, we reveal the electronic structure of Fe3GaTe2 in its ferromagnetic ground state using angle-resolved photoemission spectroscopy and density functional theory calculations. Our results establish a consistent correspondence between the measured band structure and theoretical calculations, underscoring the significant contributions of the Heisenberg exchange interaction (Jex) and magnetic anisotropy energy to the development of the high-TC ferromagnetic ordering in Fe3GaTe2. Intriguingly, we observe substantial modifications to these crucial driving factors through doping, which we attribute to alterations in multiple spin-splitting bands near the Fermi level. These findings provide valuable insights into the underlying electronic structure and its correlation with the emergence of high-TC ferromagnetic ordering in Fe3GaTe2.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Max Planck POSTECH Center for Complex Phase Materials, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Shaohua Yan
- Beijing Key Laboratory of Optoelectronic Functional Materials MicroNano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China
| | - Sehoon Oh
- Department of Physics and Origin of Matter and Evolution of Galaxies (OMEG) Institute, Soongsil University, Seoul 06978, Korea
| | - Jinwoong Hwang
- Department of Physics, Kangwon National University, Chuncheon 24341, Korea
| | - Jonathan D Denlinger
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Choongyu Hwang
- Department of Physics, Pusan National University, Busan 46241, Korea
- Quantum Matter Core Facility, Pusan National University, Busan 46241, Korea
| | - Hechang Lei
- Beijing Key Laboratory of Optoelectronic Functional Materials MicroNano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China
| | - Sung-Kwan Mo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Se Young Park
- Department of Physics and Origin of Matter and Evolution of Galaxies (OMEG) Institute, Soongsil University, Seoul 06978, Korea
| | - Hyejin Ryu
- Center for Spintronics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| |
Collapse
|
20
|
Pan ZC, Li D, Ye XG, Chen Z, Chen ZH, Wang AQ, Tian M, Yao G, Liu K, Liao ZM. Room-temperature orbit-transfer torque enabling van der Waals magnetoresistive memories. Sci Bull (Beijing) 2023; 68:2743-2749. [PMID: 37872061 DOI: 10.1016/j.scib.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
The non-volatile magnetoresistive random access memory (MRAM) is believed to facilitate emerging applications, such as in-memory computing, neuromorphic computing and stochastic computing. Two-dimensional (2D) materials and their van der Waals heterostructures promote the development of MRAM technology, due to their atomically smooth interfaces and tunable physical properties. Here we report the all-2D magnetoresistive memories featuring all-electrical data reading and writing at room temperature based on WTe2/Fe3GaTe2/BN/Fe3GaTe2 heterostructures. The data reading process relies on the tunnel magnetoresistance of Fe3GaTe2/BN/Fe3GaTe2. The data writing is achieved through current induced polarization of orbital magnetic moments in WTe2, which exert torques on Fe3GaTe2, known as the orbit-transfer torque (OTT) effect. In contrast to the conventional reliance on spin moments in spin-transfer torque and spin-orbit torque, the OTT effect leverages the natural out-of-plane orbital moments, facilitating field-free perpendicular magnetization switching through interface currents. Our results indicate that the emerging OTT-MRAM is promising for low-power, high-performance memory applications.
Collapse
Affiliation(s)
- Zhen-Cun Pan
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Dong Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xing-Guo Ye
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Zheng Chen
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhao-Hui Chen
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - An-Qi Wang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Mingliang Tian
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China; Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Guangjie Yao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Zhi-Min Liao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China; Hefei National Laboratory, Hefei 230088, China.
| |
Collapse
|
21
|
Zeng X, Ye G, Yang F, Ye Q, Zhang L, Ma B, Liu Y, Xie M, Liu Y, Wang X, Hao Y, Han G. Tunable asymmetric magnetoresistance in an Fe 3GeTe 2/graphite/Fe 3GeTe 2 lateral spin valve. NANOSCALE 2023. [PMID: 38018435 DOI: 10.1039/d3nr04069k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
van der Waals (vdW) ferromagnetic heterojunctions, characterized by an ultraclean device interface and the absence of lattice matching, have emerged as indispensable and efficient building blocks for future spintronic devices. In this study, we present a seldom observed antisymmetric magnetoresistance (MR) behavior with three distinctive resistance states in a lateral van der Waals (vdW) structure comprising Fe3GeTe2 (FGT)/graphite/FGT. In contrast to traditional spin valves governed by the magnetization configurations of ferromagnetic electrodes (FEs), this distinct feature can be attributed to the interaction between FGT and the FGT/graphite interface, which is primarily influenced by the internal spin-momentum locking effect. Furthermore, modulation of the MR behavior is accomplished by employing the coupling between antiferromagnetic and ferromagnetic materials to adjust the coercive fields of two FEs subsequent to the in situ growth of an FGT oxide layer on FGT. This study elucidates the device physics and mechanism of property modulation in lateral spin valves and holds the potential for advancing the development of gate-tunable spintronic devices and next-generation integrated circuits.
Collapse
Affiliation(s)
- Xiangyu Zeng
- Hangzhou Institute of Technology, Xidian University, Hangzhou, 311200, China.
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Ge Ye
- Center for correlated matter and Department of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Fazhi Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qikai Ye
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Liang Zhang
- Research Center for Humanoid Sensing and Perception, Zhejiang Lab, Hangzhou, 311100, China
| | - Boyang Ma
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Yulu Liu
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Mengwei Xie
- Center for correlated matter and Department of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Yan Liu
- Hangzhou Institute of Technology, Xidian University, Hangzhou, 311200, China.
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Xiaozhi Wang
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Yue Hao
- Hangzhou Institute of Technology, Xidian University, Hangzhou, 311200, China.
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Genquan Han
- Hangzhou Institute of Technology, Xidian University, Hangzhou, 311200, China.
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| |
Collapse
|
22
|
Zhu W, Zhu Y, Zhou T, Zhang X, Lin H, Cui Q, Yan F, Wang Z, Deng Y, Yang H, Zhao L, Žutić I, Belashchenko KD, Wang K. Large and tunable magnetoresistance in van der Waals ferromagnet/semiconductor junctions. Nat Commun 2023; 14:5371. [PMID: 37666843 PMCID: PMC10477182 DOI: 10.1038/s41467-023-41077-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 08/23/2023] [Indexed: 09/06/2023] Open
Abstract
Magnetic tunnel junctions (MTJs) with conventional bulk ferromagnets separated by a nonmagnetic insulating layer are key building blocks in spintronics for magnetic sensors and memory. A radically different approach of using atomically-thin van der Waals (vdW) materials in MTJs is expected to boost their figure of merit, the tunneling magnetoresistance (TMR), while relaxing the lattice-matching requirements from the epitaxial growth and supporting high-quality integration of dissimilar materials with atomically-sharp interfaces. We report TMR up to 192% at 10 K in all-vdW Fe3GeTe2/GaSe/Fe3GeTe2 MTJs. Remarkably, instead of the usual insulating spacer, this large TMR is realized with a vdW semiconductor GaSe. Integration of semiconductors into the MTJs offers energy-band-tunability, bias dependence, magnetic proximity effects, and spin-dependent optical-selection rules. We demonstrate that not only the magnitude of the TMR is tuned by the semiconductor thickness but also the TMR sign can be reversed by varying the bias voltages, enabling modulation of highly spin-polarized carriers in vdW semiconductors.
Collapse
Affiliation(s)
- Wenkai Zhu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yingmei Zhu
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Tong Zhou
- Department of Physics, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Xianpeng Zhang
- Department of Physics, University of Basel, Basel, Basel-Stadt, CH-4056, Switzerland
| | - Hailong Lin
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qirui Cui
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Faguang Yan
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, China
| | - Ziao Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yongcheng Deng
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, China
| | - Hongxin Yang
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China.
| | - Lixia Zhao
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, China.
- Tiangong University, 300387, Tianjin, China.
| | - Igor Žutić
- Department of Physics, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| | - Kirill D Belashchenko
- Department of Physics and Astronomy, Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| | - Kaiyou Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Beijing Academy of Quantum Information Sciences, 100193, Beijing, China.
| |
Collapse
|
23
|
Choi EM, Kim T, Cho BW, Lee YH. Proximity-Induced Tunable Magnetic Order at the Interface of All-van der Waals-Layered Heterostructures. ACS NANO 2023; 17:15656-15665. [PMID: 37523780 DOI: 10.1021/acsnano.3c02764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Spin-orbit coupling (SOC) plays a crucial role in controlling the spin-charge conversion efficiency, spin torque, and complex magnetic spin structures. In this study, we investigate the interplay between SOC and ferromagnetism in heterostructures of large-SOC and magnetic materials. We highlight the importance of the SOC-proximity effect on magnetic ordering in all-van der Waals-layered heterostructures, specifically Fe3GeTe2(FGT)/monolayer W1-xVxSe2 (x = 0 and 0.05). By increasing the SOC strength, we demonstrate various magnetic orderings induced at the interface of the heterostructure, including spin-flop, spin-flip, and inverted magnetization. Moreover, we show a sharp magnetic switching from antiferromagnetic state to ferromagnetic state in FGT/W0.95V0.05Se2, which is characteristic of the synthetic antiferromagnetic structure. This proof-of-concept result offers the possibility of interface-tailoring spintronics, including two-dimensional magnetoresistive random access memory toggle switching. Our findings provide insight into the design and development of next-generation spintronic devices by exploiting the interplay between SOC and magnetic ordering in all-van der Waals-layered heterostructures.
Collapse
Affiliation(s)
- Eun-Mi Choi
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Taesoo Kim
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Byeong Wook Cho
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young Hee Lee
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Sungkyunkwan University, Suwon 16419, Republic of Korea
- Advanced Facility Center for Quantum Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
24
|
Wang H, Wen Y, Zeng H, Xiong Z, Tu Y, Zhu H, Cheng R, Yin L, Jiang J, Zhai B, Liu C, Shan C, He J. 2D Ferroic Materials for Nonvolatile Memory Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305044. [PMID: 37486859 DOI: 10.1002/adma.202305044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/21/2023] [Indexed: 07/26/2023]
Abstract
The emerging nonvolatile memory technologies based on ferroic materials are promising for producing high-speed, low-power, and high-density memory in the field of integrated circuits. Long-range ferroic orders observed in 2D materials have triggered extensive research interest in 2D magnets, 2D ferroelectrics, 2D multiferroics, and their device applications. Devices based on 2D ferroic materials and heterostructures with an atomically smooth interface and ultrathin thickness have exhibited impressive properties and significant potential for developing advanced nonvolatile memory. In this context, a systematic review of emergent 2D ferroic materials is conducted here, emphasizing their recent research on nonvolatile memory applications, with a view to proposing brighter prospects for 2D magnetic materials, 2D ferroelectric materials, 2D multiferroic materials, and their relevant devices.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yao Wen
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Hui Zeng
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Ziren Xiong
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yangyuan Tu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Hao Zhu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Ruiqing Cheng
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Lei Yin
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jian Jiang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Baoxing Zhai
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Chuansheng Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Chongxin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Hubei Luojia Laboratory, Wuhan, 430079, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
25
|
Jin W, Zhang G, Wu H, Yang L, Zhang W, Chang H. Room-Temperature and Tunable Tunneling Magnetoresistance in Fe 3GaTe 2-Based 2D van der Waals Heterojunctions. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37466234 DOI: 10.1021/acsami.3c06167] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Magnetic tunnel junctions (MTJs) based on van der Waals (vdW) heterostructures with sharp and clean interfaces on the atomic scale are essential for the application of next-generation spintronics. However, the lack of room-temperature intrinsic ferromagnetic crystals with perpendicular magnetic anisotropy has greatly hindered the development of vertical MTJs. The discovery of room-temperature intrinsic ferromagnetic two-dimensional (2D) crystal Fe3GaTe2 has solved the problem and greatly facilitated the realization of practical spintronic devices. Here, we demonstrate a room-temperature MTJ based on a Fe3GaTe2/WS2/Fe3GaTe2 heterostructure for the first time. The tunneling magnetoresistance (TMR) ratio is up to 213% with a high spin polarization of 72% at 10 K, the highest ever reported in Fe3GaTe2-based MTJs up to now. A tunneling spin-valve signal robustly persists at room temperature (300 K) with a bias current down to 10 nA. Moreover, the spin polarization can be modulated by bias current and the TMR shows a sign reversal at a large bias current. Our work sheds light on the potential application of low-energy consumption in all-2D vdW spintronics and offers alternative routes for the electronic control of spintronic devices.
Collapse
Affiliation(s)
- Wen Jin
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen R&D Center of Huazhong University of Science and Technology (HUST), Shenzhen 518000, China
| | - Gaojie Zhang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen R&D Center of Huazhong University of Science and Technology (HUST), Shenzhen 518000, China
| | - Hao Wu
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen R&D Center of Huazhong University of Science and Technology (HUST), Shenzhen 518000, China
- Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Yang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen R&D Center of Huazhong University of Science and Technology (HUST), Shenzhen 518000, China
| | - Wenfeng Zhang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen R&D Center of Huazhong University of Science and Technology (HUST), Shenzhen 518000, China
- Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haixin Chang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen R&D Center of Huazhong University of Science and Technology (HUST), Shenzhen 518000, China
- Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
26
|
Zhao B, Ngaloy R, Ghosh S, Ershadrad S, Gupta R, Ali K, Hoque AM, Karpiak B, Khokhriakov D, Polley C, Thiagarajan B, Kalaboukhov A, Svedlindh P, Sanyal B, Dash SP. A Room-Temperature Spin-Valve with van der Waals Ferromagnet Fe 5 GeTe 2 /Graphene Heterostructure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209113. [PMID: 36641649 DOI: 10.1002/adma.202209113] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The discovery of van der Waals (vdW) magnets opened a new paradigm for condensed matter physics and spintronic technologies. However, the operations of active spintronic devices with vdW ferromagnets are limited to cryogenic temperatures, inhibiting their broader practical applications. Here, the robust room-temperature operation of lateral spin-valve devices using the vdW itinerant ferromagnet Fe5 GeTe2 in heterostructures with graphene is demonstrated. The room-temperature spintronic properties of Fe5 GeTe2 are measured at the interface with graphene with a negative spin polarization. Lateral spin-valve and spin-precession measurements provide unique insights by probing the Fe5 GeTe2 /graphene interface spintronic properties via spin-dynamics measurements, revealing multidirectional spin polarization. Density functional theory calculations in conjunction with Monte Carlo simulations reveal significantly canted Fe magnetic moments in Fe5 GeTe2 along with the presence of negative spin polarization at the Fe5 GeTe2 /graphene interface. These findings open opportunities for vdW interface design and applications of vdW-magnet-based spintronic devices at ambient temperatures.
Collapse
Affiliation(s)
- Bing Zhao
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg, SE-41296, Sweden
| | - Roselle Ngaloy
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg, SE-41296, Sweden
| | - Sukanya Ghosh
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20, Sweden
| | - Soheil Ershadrad
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20, Sweden
| | - Rahul Gupta
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20, Sweden
- Department of Materials Science and Engineering, Uppsala University, Box 35, Uppsala, SE-751 03, Sweden
| | - Khadiza Ali
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg, SE-41296, Sweden
- MAX IV Laboratory, Lund University, Lund, SE-221 00, Sweden
| | - Anamul Md Hoque
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg, SE-41296, Sweden
| | - Bogdan Karpiak
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg, SE-41296, Sweden
| | - Dmitrii Khokhriakov
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg, SE-41296, Sweden
| | - Craig Polley
- MAX IV Laboratory, Lund University, Lund, SE-221 00, Sweden
| | | | - Alexei Kalaboukhov
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg, SE-41296, Sweden
| | - Peter Svedlindh
- Department of Materials Science and Engineering, Uppsala University, Box 35, Uppsala, SE-751 03, Sweden
| | - Biplab Sanyal
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20, Sweden
| | - Saroj P Dash
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg, SE-41296, Sweden
- Graphene Center, Chalmers University of Technology, Göteborg, SE-41296, Sweden
| |
Collapse
|
27
|
Song J, Cao Y, Dong J, Sun M. Superior Thermoelectric Properties of Twist-Angle Superlattice Borophene Induced by Interlayer Electrons Transport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301348. [PMID: 36919623 DOI: 10.1002/smll.202301348] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/18/2023] [Indexed: 06/18/2023]
Abstract
In this paper, the energy bands, interlayer interactions and thermoelectric effects of twisted bilayer borophene (TBB) synthesized on Ag (111) are studied theoretically. The results manifest the advantages of twistronics, where the high electrical conductivity and the large Seebeck coefficient are regulated to the same range, which lead to the significantly increase of figure of merit ZT than that of bilayer borophene (BB) without twist, where the BB without twist is successfully synthesized on Ag (111) film is recently experimental report [Nat. Mater. 2022, 21, 35]. For the TBB synthesized of on Ag (111) film, theoretical analysis demonstrates that TBB and Ag are relatively strongly coupled, and TBB becomes a metallic 2D material, where the top and bottom borophene layers are semiconducting and metallic, respectively. TBB exhibits excellent thermoelectric efficiency due to the charge transfer bonding between the layers, less electron localization, and the regulation of Seebeck coefficient, electrical conductivity, and ZT at the same region of chemical potential and the same temperature by twistronics. The structure-property relationship offers the possibility of applying TBB in thermoelectric devices.
Collapse
Affiliation(s)
- Jizhe Song
- School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yi Cao
- School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jun Dong
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, 710121, P. R. China
| | - Mengtao Sun
- School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
28
|
He X, Zhang C, Zheng D, Li P, Xiao JQ, Zhang X. Nonlocal Spin Valves Based on Graphene/Fe 3GeTe 2 van der Waals Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9649-9655. [PMID: 36753695 PMCID: PMC9951179 DOI: 10.1021/acsami.2c21918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
With recent advances in two-dimensional (2D) ferromagnets with enhanced Curie temperatures, it is possible to develop all-2D spintronic devices with high-quality interfaces using 2D ferromagnets. In this study, we have successfully fabricated nonlocal spin valves with Fe3GeTe2 (FGT) as the spin source and detector and multilayer graphene as the spin transport channel. The nonlocal spin transport signal was found to strongly depend on temperature and disappear at a temperature below the Curie temperature of the FGT flakes, which stemmed from the temperature-dependent ferromagnetism of FGT. The spin injection efficiency was estimated to be about 1%, close to that of conventional nonlocal spin valves with transparent contacts between ferromagnetic electrodes and the graphene channel. In addition, the spin transport signal was found to depend on the direction of the magnetic field and the magnitude of the current, which was due to the strong perpendicular magnetic anisotropy of FGT and the thermal effect, respectively. Our results provide opportunities to extend the applications of van der Waals heterostructures in spintronic devices.
Collapse
Affiliation(s)
- Xin He
- Physical
Science and Engineering Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Chenhui Zhang
- Physical
Science and Engineering Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Dongxing Zheng
- Physical
Science and Engineering Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Peng Li
- State
Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of
China, Chengdu 610054, China
| | - John Q. Xiao
- Department
of Physics and Astronomy, University of
Delaware, Newark, Delaware 19716, United States
| | - Xixiang Zhang
- Physical
Science and Engineering Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
29
|
Wang ZA, Xue W, Yan F, Zhu W, Liu Y, Zhang X, Wei Z, Chang K, Yuan Z, Wang K. Selectively Controlled Ferromagnets by Electric Fields in van der Waals Ferromagnetic Heterojunctions. NANO LETTERS 2023; 23:710-717. [PMID: 36626837 DOI: 10.1021/acs.nanolett.2c04796] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Charge transfer plays a key role at the interfaces of heterostructures, which can affect electronic structures and ultimately the physical properties of the materials. However, charge transfer is difficult to manipulate externally once the interface is formed. The recently discovered van der Waals ferromagnets with atomically sharp interfaces provided a perfect platform for the electrical control of interfacial charge transfer. Here, we report magnetoresistance experiments revealing electrically tunable charge transfer in Fe3GeTe2/Cr2Ge2Te6/Fe3GeTe2 all-magnetic van der Waals heterostructures, which can be exploited to selectively modify the switching fields of the top or bottom Fe3GeTe2 electrodes. The directional charge transfer from metallic Fe3GeTe2 to semiconducting Cr2Ge2Te6 is revealed by first-principles calculations, which remarkably modifies the magnetic anisotropy energy of Fe3GeTe2, leading to the dramatically suppressed coercivity. The electrically selective control of magnetism demonstrated in this study could stimulate the development of spintronic devices based on van der Waals magnets.
Collapse
Affiliation(s)
- Zi-Ao Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weishan Xue
- Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Faguang Yan
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Wenkai Zhu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Yi Liu
- Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Xinhui Zhang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Chang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Yuan
- Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Kaiyou Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|