1
|
Vijayrajratnam S, Patkowski JB, Khorsandi J, Beatty WL, Kannaiah S, Hasanovic A, O'Connor TJ, Costa TRD, Vogel JP. Optimized Legionella expression strain for affinity purification of His-tagged membrane proteins eliminates major multimeric contaminant. Microbiol Spectr 2025:e0322224. [PMID: 40387337 DOI: 10.1128/spectrum.03222-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/10/2025] [Indexed: 05/20/2025] Open
Abstract
Polyhistidine tags are frequently used for isolating proteins through nickel-nitrilotriacetic acid (Ni-NTA) affinity purification. However, proteins rich in histidine can also bind to the Ni-NTA resin, leading to contamination of the purification with undesired proteins. While attempting to purify the Legionella pneumophila Dot/Icm type IVB secretion system complex for single particle analysis, we encountered an unknown contaminant protein that bound to the Ni-NTA resin and formed uniform particles visible in negative stain electron microscopy (EM). Mass spectrometry identified this protein, which is encoded by the Legionella gene lpg1596 as a homolog of enoyl-CoA hydratase. Modeling of Lpg1596 revealed surface-exposed histidine clusters, which likely explains its ability to bind to the Ni-NTA resin. Moreover, since enoyl-CoA hydratase homologs are known to multimerize, multimers of Lpg1596 would be large enough to be visible by negative stain EM. To address the problematic issue of Lpg1596 binding to the Ni-NTA resin, we constructed and analyzed a L. pneumophila ∆lpg1596 mutant strain. Notably, Ni-NTA affinity purification of lysates from the ∆lpg1596 strain did not contain the contaminant protein or generate observable particles. Since the ∆lpg1596 mutant strain exhibited replication capabilities similar to the wild-type L. pneumophila in macrophages, its deletion will likely not affect pathogenesis studies. To facilitate the deletion of lpg1596 in other Legionella strains, we developed a set of natural transformation vectors with various antibiotic resistance markers. In summary, we present a strategy for removing a common Ni-NTA resin binding protein contaminant in L. pneumophila, which improves single particle analysis outcomes.IMPORTANCENi-NTA purifications are a common method for isolating proteins with a His-tag, but they have a drawback: they often enrich unwanted proteins that are rich in histidines, which can contaminate the sample. We identified one such contaminant in Legionella pneumophila, a protein with homology to enoyl-CoA hydratases (Lpg1596). This protein binds to the Ni-NTA resin and forms particles that are observable in electron microscope (EM) images, interfering with the analysis. By removing the gene responsible for making this protein (lpg1596), the problem was solved, and no unwanted particles appeared in the EM images. The ∆lpg1596 mutant strain is the first optimized strain for purifying His-tagged membrane proteins from Legionella, which can be used for further studies like single particle analysis.
Collapse
Affiliation(s)
| | - Jonasz B Patkowski
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Joshua Khorsandi
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wandy L Beatty
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri, USA
| | | | - Ahmet Hasanovic
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri, USA
| | - Tamara J O'Connor
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tiago R D Costa
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Joseph P Vogel
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Heydari S, Liu J. High-throughput cryo-electron tomography enables multiscale visualization of the inner life of microbes. Curr Opin Struct Biol 2025; 93:103065. [PMID: 40381356 DOI: 10.1016/j.sbi.2025.103065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/20/2025]
Abstract
Cryo-electron tomography (cryo-ET) is an advanced and rapidly evolving imaging technique that enables three-dimensional visualization of biological structures in their native state. Although cryo-ET has historically faced significant challenges, including limited applications, tedious data acquisition, labor-intensive image processing, and lower resolution when compared with single particle cryo-electron microscopy (cryo-EM), recent breakthroughs in hardware and software development have significantly improved the entire cryo-ET workflow to enable higher throughput and resolution. These advances have accelerated discoveries in structural and cellular biology, particularly in microbiology, where cryo-ET has unveiled unprecedented insights into the inner life of microbes. This review presents pivotal advances propelling high-throughput cryo-ET and the visualization of microbial architecture. As innovations in imaging technologies, workflow automation, and computational methods continue progressing rapidly, cryo-ET is expected to be increasingly utilized across various fields of life sciences, shaping the future of biological research and biomedical discoveries.
Collapse
Affiliation(s)
- Samira Heydari
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
3
|
Breidenstein A, Svedberg D, Ter Beek J, Berntsson RPA. Advances in Protein Structure Prediction Highlight Unexpected Commonalities Between Gram-positive and Gram-negative Conjugative T4SSs. J Mol Biol 2025; 437:168924. [PMID: 39746464 DOI: 10.1016/j.jmb.2024.168924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
Despite recent advances in our understanding of the structure and function of conjugative Type 4 Secretion Systems (T4SSs), there is still only very scarce data available for the ones from Gram-positive (G+) bacteria. This is a problem, as conjugative T4SSs are main drivers for the spread of antibiotic resistance genes and virulence factors. Here, we aim to increase our understanding of G+ systems, by using bioinformatic approaches to identify proteins that are conserved in all conjugative T4SS machineries and reviewing the current knowledge available for these components. We then combine this information with the most recent advances in structure prediction technologies to propose a structural model for a G+ T4SS from the model system encoded on pCF10. By doing so, we show that conjugative G+ T4SSs likely have more in common with their Gram-negative counterparts than previously expected, and we highlight the potential of predicted structural models to serve as a starting point for experimental design.
Collapse
Affiliation(s)
- Annika Breidenstein
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden; Wallenberg Centre for Molecular Medicine & Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Dennis Svedberg
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden; Wallenberg Centre for Molecular Medicine & Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Josy Ter Beek
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden; Wallenberg Centre for Molecular Medicine & Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.
| | - Ronnie P-A Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden; Wallenberg Centre for Molecular Medicine & Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.
| |
Collapse
|
4
|
Maffo-Woulefack R, Ali AM, Laroussi H, Cappèle J, Romero-Saavedra F, Ramia N, Robert E, Mathiot S, Soler N, Roussel Y, Fronzes R, Huebner J, Didierjean C, Favier F, Leblond-Bourget N, Douzi B. Elucidating assembly and function of VirB8 cell wall subunits refines the DNA translocation model in Gram-positive T4SSs. SCIENCE ADVANCES 2025; 11:eadq5975. [PMID: 39841841 PMCID: PMC11753425 DOI: 10.1126/sciadv.adq5975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
Bacterial type IV secretion systems (T4SSs) are widespread nanomachines specialized in the transport across the cell envelope of various types of molecules including mobile genetic elements during conjugation. Despite their prevalence in Gram-positive bacteria, including relevant pathogens, their assembly and functioning remain unknown. This study addresses these gaps by investigating VirB8 proteins, known to be central components of conjugative T4SSs in Gram-positive bacteria. However, the functional packing and precise role of VirB8 in T4SSs biology remain undefined. Our findings elucidate the nature of VirB8 proteins as cell wall components, where they multimerize and exhibit a conserved assembly pattern, distinct from VirB8 in Gram-negative bacteria. We also demonstrate that VirB8 proteins interact with other T4SS subunits and DNA, indicating their pivotal role in the building of the DNA translocation channel across the cell wall. We lastly propose a distinct architecture for conjugative T4SSs in Gram-positive bacteria compared to their Gram-negative counterparts, possibly attributed to the differences in the cell wall structure.
Collapse
Affiliation(s)
| | | | - Haifa Laroussi
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| | - Julien Cappèle
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France
| | - Felipe Romero-Saavedra
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig-Maximillians University, Munich, Germany
| | - Nancy Ramia
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| | - Emilie Robert
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| | | | - Nicolas Soler
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| | - Yvonne Roussel
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| | - Rémi Fronzes
- Institut Européen de Chimie et Biologie, University of Bordeaux, Pessac, France
- CNRS UMR 5234 Microbiologie Fondamentale et Pathogénicité, Bordeaux, France
| | - Johannes Huebner
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig-Maximillians University, Munich, Germany
| | | | | | | | | |
Collapse
|
5
|
Steiner S, Roy CR. CRISPR-Cas9-based approaches for genetic analysis and epistatic interaction studies in Coxiella burnetii. mSphere 2024; 9:e0052324. [PMID: 39560384 DOI: 10.1128/msphere.00523-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024] Open
Abstract
Coxiella burnetii is an obligate intracellular bacterial pathogen that replicates to high numbers in an acidified lysosome-derived vacuole. Intracellular replication requires the Dot/Icm type IVB secretion system, which translocates over 100 different effector proteins into the host cell. Screens employing random transposon mutagenesis have identified several C. burnetii effectors that play an important role in intracellular replication; however, the difficulty in conducting directed mutagenesis has been a barrier to the systematic analysis of effector mutants and to the construction of double mutants to assess epistatic interactions between effectors. Here, two CRISPR-Cas9 technology-based approaches were developed to study C. burnetii phenotypes resulting from targeted gene disruptions. CRISPRi was used to silence gene expression and demonstrated that silencing of effectors or Dot/Icm system components resulted in phenotypes similar to those of transposon insertion mutants. A CRISPR-Cas9-mediated cytosine base editing protocol was developed to generate targeted loss-of-function mutants through the introduction of premature stop codons into C. burnetii genes. Cytosine base editing successfully generated double mutants in a single step. A double mutant deficient in both cig57 and cig2 had a robust and additive intracellular replication defect when compared to either single mutant, which is consistent with Cig57 and Cig2 functioning in independent pathways that both contribute to a vacuole that supports C. burnetii replication. Thus, CRISPR-Cas9-based technologies expand the genetic toolbox for C. burnetii and will facilitate genetic studies aimed at investigating the mechanisms this pathogen uses to replicate inside host cells. IMPORTANCE Understanding the genetic mechanisms that enable C. burnetii to replicate in mammalian host cells has been hampered by the difficulty in making directed mutations. Here, a reliable and efficient system for generating targeted loss-of-function mutations in C. burnetii using a CRISPR-Cas9-assisted base editing approach is described. This technology was applied to make double mutants in C. burnetii that enabled the genetic analysis of two genes that play independent roles in promoting the formation of vacuoles that support intracellular replication. This advance will accelerate the discovery of mechanisms important for C. burnetii host infection and disease.
Collapse
Affiliation(s)
- Samuel Steiner
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Craig R Roy
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Romanov KA, O'Connor TJ. Legionella pneumophila, a Rosetta stone to understanding bacterial pathogenesis. J Bacteriol 2024; 206:e0032424. [PMID: 39636264 PMCID: PMC11656745 DOI: 10.1128/jb.00324-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Legionella pneumophila is an environmentally acquired pathogen that causes respiratory disease in humans. While the discovery of L. pneumophila is relatively recent compared to other bacterial pathogens, over the past 50 years, L. pneumophila has emerged as a powerhouse for studying host-pathogen interactions. In its natural habitat of fresh water, L. pneumophila interacts with a diverse array of protozoan hosts and readily evolve to expand their host range. This has led to the accumulation of the most extensive arsenal of secreted virulence factors described for a bacterial pathogen and their ability to infect humans. Within amoebae and human alveolar macrophages, the bacteria replicate within specialized membrane-bound compartments, establishing L. pneumophila as a model for studying intracellular vacuolar pathogens. In contrast, the virulence factors required for intracellular replication are specifically tailored to individual host cells types, allowing the pathogen to adapt to variation between disparate niches. The broad host range of this pathogen, combined with the extensive diversity and genome plasticity across the Legionella genus, has thus established this bacterium as an archetype to interrogate pathogen evolution, functional genomics, and ecology. In this review, we highlight the features of Legionella that establish them as a versatile model organism, new paradigms in bacteriology and bacterial pathogenesis resulting from the study of Legionella, as well as current and future questions that will undoubtedly expand our understanding of the complex and intricate biology of the microbial world.
Collapse
Affiliation(s)
- Katerina A. Romanov
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tamara J. O'Connor
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Vijayrajratnam S, Milek S, Maggi S, Ashen K, Ferrell M, Hasanovic A, Holgerson A, Kannaiah S, Singh M, Ghosal D, Jensen GJ, Vogel JP. Membrane association and polar localization of the Legionella pneumophila T4SS DotO ATPase mediated by two nonredundant receptors. Proc Natl Acad Sci U S A 2024; 121:e2401897121. [PMID: 39352935 PMCID: PMC11474061 DOI: 10.1073/pnas.2401897121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024] Open
Abstract
The Legionella pneumophila Dot/Icm type IVB secretion system (T4BSS) is a large, multisubunit complex that exports a vast array of substrates into eukaryotic host cells. DotO, a distant homolog of the T4ASS ATPase VirB4, associates with the bacterial inner membrane despite lacking hydrophobic transmembrane domains. Employing a genetic approach, we found DotO's membrane association is mediated by three inner-membrane Dot/Icm components, IcmT, and a combined DotJ-DotI complex (referred to as DotJI). Although deletion of icmT or dotJI individually does not affect DotO's membrane association, the simultaneous inactivation of all three genes results in increased amounts of soluble DotO. Nevertheless, deleting each receptor separately profoundly affects positioning of DotO, disrupting its link with the Dot/Icm complex at the bacterial poles, rendering the receptors nonredundant. Furthermore, a collection of dotO point mutants that we isolated established that DotO's N-terminal domain interacts with the membrane receptors and is involved in dimerization, whereas DotO's C-terminal ATPase domain primarily contributes to the protein's formation of oligomers. Modeling data revealed the complex interaction between DotO and its receptors is responsible for formation of DotO's unique "hexamer of dimers" configuration, which is a defining characteristic of VirB4 family members.
Collapse
Affiliation(s)
| | - Sonja Milek
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, Zurich8008, Switzerland
| | - Stefano Maggi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT84602
| | - Kaleigh Ashen
- Department of Molecular Microbiology, Washington University, St. Louis, MO63110
| | - Micah Ferrell
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI48824
| | - Ahmet Hasanovic
- Department of Molecular Microbiology, Washington University, St. Louis, MO63110
| | - Agnieszka Holgerson
- Department of Molecular Microbiology, Washington University, St. Louis, MO63110
| | | | - Manpreet Singh
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC3010, Australia
- Australian Research Council (ARC) Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC3010, Australia
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC3010, Australia
- Australian Research Council (ARC) Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC3010, Australia
| | - Grant J. Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT84602
| | - Joseph P. Vogel
- Department of Molecular Microbiology, Washington University, St. Louis, MO63110
| |
Collapse
|
8
|
Torres-Escobar A, Wilkins A, Juárez-Rodríguez MD, Circu M, Latimer B, Dragoi AM, Ivanov SS. Iron-depleting nutritional immunity controls extracellular bacterial replication in Legionella pneumophila infections. Nat Commun 2024; 15:7848. [PMID: 39245746 PMCID: PMC11381550 DOI: 10.1038/s41467-024-52184-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
The accidental human pathogen Legionella pneumophila (Lp) is the etiological agent for a severe atypical pneumonia known as Legionnaires' disease. In human infections and animal models of disease alveolar macrophages are the primary cellular niche that supports bacterial replication within a unique intracellular membrane-bound organelle. The Dot/Icm apparatus-a type IV secretion system that translocates ~300 bacterial proteins within the cytosol of the infected cell-is a central virulence factor required for intracellular growth. Mutant strains lacking functional Dot/Icm apparatus are transported to and degraded within the lysosomes of infected macrophages. The early foundational work from Dr. Horwitz's group unequivocally established that Legionella does not replicate extracellularly during infection-a phenomenon well supported by experimental evidence for four decades. Our data challenges this paradigm by demonstrating that macrophages and monocytes provide the necessary nutrients and support robust Legionella extracellular replication. We show that the previously reported lack of Lp extracellular replication is not a bacteria intrinsic feature but rather a result of robust restriction by serum-derived nutritional immunity factors. Specifically, the host iron-sequestering protein Transferrin is identified here as a critical suppressor of Lp extracellular replication in an iron-dependent manner. In iron-overload conditions or in the absence of Transferrin, Lp bypasses growth restriction by IFNγ-primed macrophages though extracellular replication. It is well established that certain risk factors associated with development of Legionnaires' disease, such as smoking, produce a chronic pulmonary environment of iron-overload. Our work indicates that iron-overload could be an important determinant of severe infection by allowing Lp to overcome nutritional immunity and replicate extracellularly, which in turn would circumvent intracellular cell intrinsic host defenses. Thus, we provide evidence for nutritional immunity as a key underappreciated host defense mechanism in Legionella pathogenesis.
Collapse
Affiliation(s)
- Ascención Torres-Escobar
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Ashley Wilkins
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
- Bacterial Physiology and Metabolism Unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - María D Juárez-Rodríguez
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Magdalena Circu
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Brian Latimer
- Innovative North Louisiana Experimental Therapeutics program (INLET), Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Ana-Maria Dragoi
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
- Innovative North Louisiana Experimental Therapeutics program (INLET), Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Stanimir S Ivanov
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA.
| |
Collapse
|
9
|
Keck C, Enninga J, Swistak L. Caught in the act: In situ visualization of bacterial secretion systems by cryo-electron tomography. Mol Microbiol 2024; 121:636-645. [PMID: 37975530 DOI: 10.1111/mmi.15186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 11/19/2023]
Abstract
Bacterial secretion systems, such as the type 3, 4, and 6 are multiprotein nanomachines expressed at the surface of pathogens with Gram-negative like envelopes. They are known to be crucial for virulence and to translocate bacteria-encoded effector proteins into host cells to manipulate cellular functions. This facilitates either pathogen attachment or invasion of the targeted cell. Effector proteins also promote evasion of host immune recognition. Imaging by cryo-electron microscopy in combination with structure determination has become a powerful approach to understand how these nanomachines work. Still, questions on their assembly, the precise secretion mechanisms, and their direct involvement in pathogenicity remain unsolved. Here, we present an overview of the recent developments in in situ cryo-electron microscopy. We discuss its potential for the investigation of the role of bacterial secretion systems during the host-bacterial crosstalk at the molecular level. These in situ studies open new perspectives for our understanding of secretion system structure and function.
Collapse
Affiliation(s)
- Camille Keck
- Dynamics of Host-Pathogen Interactions, Institut Pasteur, Université de Paris Cité, CNRS UMR3691, Paris, France
| | - Jost Enninga
- Dynamics of Host-Pathogen Interactions, Institut Pasteur, Université de Paris Cité, CNRS UMR3691, Paris, France
| | - Léa Swistak
- Dynamics of Host-Pathogen Interactions, Institut Pasteur, Université de Paris Cité, CNRS UMR3691, Paris, France
| |
Collapse
|
10
|
Masuda S, Gan P, Kiguchi Y, Anda M, Sasaki K, Shibata A, Iwasaki W, Suda W, Shirasu K. Uncovering microbiomes of the rice phyllosphere using long-read metagenomic sequencing. Commun Biol 2024; 7:357. [PMID: 38538803 PMCID: PMC10973392 DOI: 10.1038/s42003-024-05998-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 02/29/2024] [Indexed: 12/14/2024] Open
Abstract
The plant microbiome is crucial for plant growth, yet many important questions remain, such as the identification of specific bacterial species in plants, their genetic content, and location of these genes on chromosomes or plasmids. To gain insights into the genetic makeup of the rice-phyllosphere, we perform a metagenomic analysis using long-read sequences. Here, 1.8 Gb reads are assembled into 26,067 contigs including 142 circular sequences. Within these contigs, 669 complete 16S rRNA genes are clustered into 166 bacterial species, 121 of which show low identity (<97%) to defined sequences, suggesting novel species. The circular contigs contain novel chromosomes and a megaplasmid, and most of the smaller circular contigs are defined as novel plasmids or bacteriophages. One circular contig represents the complete chromosome of a difficult-to-culture bacterium Candidatus Saccharibacteria. Our findings demonstrate the efficacy of long-read-based metagenomics for profiling microbial communities and discovering novel sequences in plant-microbiome studies.
Collapse
Affiliation(s)
- Sachiko Masuda
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Pamela Gan
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Yuya Kiguchi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Cooperative Major in Advanced Health Science, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Mizue Anda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Sasaki
- Institute for Sustainable Agro‑ecosystem Services, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Japan International Research Center for Agricultural Sciences, Ibaraki, Japan
| | - Arisa Shibata
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Suda
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan.
- Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
11
|
Costa TRD, Patkowski JB, Macé K, Christie PJ, Waksman G. Structural and functional diversity of type IV secretion systems. Nat Rev Microbiol 2024; 22:170-185. [PMID: 37814112 PMCID: PMC11290344 DOI: 10.1038/s41579-023-00974-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Considerable progress has been made in recent years in the structural and molecular biology of type IV secretion systems in Gram-negative bacteria. The latest advances have substantially improved our understanding of the mechanisms underlying the recruitment and delivery of DNA and protein substrates to the extracellular environment or target cells. In this Review, we aim to summarize these exciting structural and molecular biology findings and to discuss their functional implications for substrate recognition, recruitment and translocation, as well as the biogenesis of extracellular pili. We also describe adaptations necessary for deploying a breadth of processes, such as bacterial survival, host-pathogen interactions and biotic and abiotic adhesion. We highlight the functional and structural diversity that allows this extremely versatile secretion superfamily to function under different environmental conditions and in different bacterial species. Additionally, we emphasize the importance of further understanding the mechanism of type IV secretion, which will support us in combating antimicrobial resistance and treating type IV secretion system-related infections.
Collapse
Affiliation(s)
- Tiago R D Costa
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College, London, UK.
| | - Jonasz B Patkowski
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College, London, UK
| | - Kévin Macé
- Institute of Structural and Molecular Biology, Birkbeck and UCL, London, UK
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes and CNRS, Rennes, France
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX, USA.
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, Birkbeck and UCL, London, UK.
| |
Collapse
|
12
|
Wimmi S, Balinovic A, Brianceau C, Pintor K, Vielhauer J, Turkowyd B, Helbig C, Fleck M, Langenfeld K, Kahnt J, Glatter T, Endesfelder U, Diepold A. Cytosolic sorting platform complexes shuttle type III secretion system effectors to the injectisome in Yersinia enterocolitica. Nat Microbiol 2024; 9:185-199. [PMID: 38172622 PMCID: PMC10769875 DOI: 10.1038/s41564-023-01545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
Bacteria use type III secretion injectisomes to inject effector proteins into eukaryotic target cells. Recruitment of effectors to the machinery and the resulting export hierarchy involve the sorting platform. These conserved proteins form pod structures at the cytosolic interface of the injectisome but are also mobile in the cytosol. Photoactivated localization microscopy in Yersinia enterocolitica revealed a direct interaction of the sorting platform proteins SctQ and SctL with effectors in the cytosol of live bacteria. These proteins form larger cytosolic protein complexes involving the ATPase SctN and the membrane connector SctK. The mobility and composition of these mobile pod structures are modulated in the presence of effectors and their chaperones, and upon initiation of secretion, which also increases the number of injectisomes from ~5 to ~18 per bacterium. Our quantitative data support an effector shuttling mechanism, in which sorting platform proteins bind to effectors in the cytosol and deliver the cargo to the export gate at the membrane-bound injectisome.
Collapse
Affiliation(s)
- Stephan Wimmi
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Alexander Balinovic
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- SYNMIKRO, Center for Synthetic Microbiology, Marburg, Germany
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
- Institute for Microbiology and Biotechnology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Corentin Brianceau
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katherine Pintor
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jan Vielhauer
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Bartosz Turkowyd
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- SYNMIKRO, Center for Synthetic Microbiology, Marburg, Germany
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
- Institute for Microbiology and Biotechnology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Carlos Helbig
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Moritz Fleck
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katja Langenfeld
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jörg Kahnt
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Ulrike Endesfelder
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- SYNMIKRO, Center for Synthetic Microbiology, Marburg, Germany.
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA.
- Institute for Microbiology and Biotechnology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- SYNMIKRO, Center for Synthetic Microbiology, Marburg, Germany.
| |
Collapse
|
13
|
Diepold A. Defining Assembly Pathways by Fluorescence Microscopy. Methods Mol Biol 2024; 2715:383-394. [PMID: 37930541 DOI: 10.1007/978-1-0716-3445-5_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Bacterial secretion systems are among the largest protein complexes in prokaryotes and display remarkably complex architectures. Their assembly often follows clearly defined pathways. Deciphering these pathways not only reveals how bacteria accomplish to build these large functional complexes but can provide crucial information on the interactions and subcomplexes within secretion systems, their distribution within the bacterium, and even functional insights. Fluorescence microscopy provides a powerful tool for biological imaging, which presents an interesting method to accurately define the biogenesis of macromolecular complexes using fluorescently labeled components. Here, I describe the use of this method to decipher the assembly pathway of bacterial secretion systems.
Collapse
Affiliation(s)
- Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
14
|
Zehra M, Heo J, Chung JM, Durie CL. Comparative Analysis of T4SS Molecular Architectures. J Microbiol Biotechnol 2023; 33:1543-1551. [PMID: 37528551 PMCID: PMC10772558 DOI: 10.4014/jmb.2307.07006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
The recently published high-resolution R388 T4SS structure provides exciting new details about the complete complex of T4SS, including the components making up the stalk and arches, numerous symmetry mismatches between regions of the complex, and an intriguing interpretation of the closed stalk and radial symmetry of the inner membrane complex, which is related to pilus biogenesis assembly. However, there are a few unidentified densities in the electron microscopy map and portions of the identified component sequences for which the structure is not yet known. It is also unclear how well this minimized DNA-transporting T4SS predicts the structure of other T4SSs, such as expanded systems and those that transport proteins rather than DNA. In this review, we evaluate what can be inferred from the recent high-resolution structure of the R388 T4SS with respect to the Cag and Dot/Icm systems. These systems were selected because, given what is currently known about these systems, we expect them to present most structural differences compared to the R388 T4SS structure. Furthermore, we discuss bacterial physiology and diversity, the T4SS structures and their variations between different bacterial species. These insights may prove beneficial for researchers who elucidate the structure and functions of T4SS in different bacterial species.
Collapse
Affiliation(s)
- Mishghan Zehra
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Jiwon Heo
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si 14662, Gyeonggi, Republic of Korea
| | - Jeong Min Chung
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si 14662, Gyeonggi, Republic of Korea
| | - Clarissa L Durie
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
15
|
Cabezón E, Valenzuela-Gómez F, Arechaga I. Primary architecture and energy requirements of Type III and Type IV secretion systems. Front Cell Infect Microbiol 2023; 13:1255852. [PMID: 38089815 PMCID: PMC10711112 DOI: 10.3389/fcimb.2023.1255852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Many pathogens use Type III and Type IV protein secretion systems to secrete virulence factors from the bacterial cytosol into host cells. These systems operate through a one-step mechanism. The secreted substrates (protein or nucleo-protein complexes in the case of Type IV conjugative systems) are guided to the base of the secretion channel, where they are directly delivered into the host cell in an ATP-dependent unfolded state. Despite the numerous disparities between these secretion systems, here we have focused on the structural and functional similarities between both systems. In particular, on the structural similarity shared by one of the main ATPases (EscN and VirD4 in Type III and Type IV secretion systems, respectively). Interestingly, these ATPases also exhibit a structural resemblance to F1-ATPases, which suggests a common mechanism for substrate secretion. The correlation between structure and function of essential components in both systems can provide significant insights into the molecular mechanisms involved. This approach is of great interest in the pursuit of identifying inhibitors that can effectively target these systems.
Collapse
Affiliation(s)
- Elena Cabezón
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria- CSIC, Santander, Spain
| | | | - Ignacio Arechaga
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria- CSIC, Santander, Spain
| |
Collapse
|
16
|
Tran SC, McClain MS, Cover TL. Role of the CagY antenna projection in Helicobacter pylori Cag type IV secretion system activity. Infect Immun 2023; 91:e0015023. [PMID: 37638724 PMCID: PMC10501215 DOI: 10.1128/iai.00150-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/07/2023] [Indexed: 08/29/2023] Open
Abstract
Helicobacter pylori strains containing the cag pathogenicity island (PAI) are associated with the development of gastric adenocarcinoma and peptic ulcer disease. The cag PAI encodes a secreted effector protein (CagA) and a type IV secretion system (Cag T4SS). Cag T4SS activity is required for the delivery of CagA and non-protein substrates into host cells. The Cag T4SS outer membrane core complex (OMCC) contains a channel-like domain formed by helix-loop-helix elements (antenna projections, AP) from 14 copies of the CagY protein (a VirB10 ortholog). Similar VirB10 antenna regions are present in T4SS OMCCs from multiple bacterial species and are predicted to span the outer membrane. In this study, we investigated the role of the CagY antenna region in Cag T4SS OMCC assembly and Cag T4SS function. An H. pylori mutant strain with deletion of the entire CagY AP (∆AP) retained the capacity to produce CagY and assemble an OMCC, but it lacked T4SS activity (CagA translocation and IL-8 induction in AGS gastric epithelial cells). In contrast, a mutant strain with Gly-Ser substitutions in the unstructured CagY AP loop retained Cag T4SS activity. Mutants containing CagY AP loops with shortened lengths were defective in CagA translocation and exhibited reduced IL-8-inducing activity compared to control strains. These data indicate that the CagY AP region is required for Cag T4SS activity and that Cag T4SS activity can be modulated by altering the length of the CagY AP unstructured loop.
Collapse
Affiliation(s)
- Sirena C. Tran
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
17
|
Meir A, Macé K, Vegunta Y, Williams SM, Waksman G. Substrate recruitment mechanism by gram-negative type III, IV, and VI bacterial injectisomes. Trends Microbiol 2023; 31:916-932. [PMID: 37085348 DOI: 10.1016/j.tim.2023.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 04/23/2023]
Abstract
Bacteria use a wide arsenal of macromolecular substrates (DNA and proteins) to interact with or infect prokaryotic and eukaryotic cells. To do so, they utilize substrate-injecting secretion systems or injectisomes. However, prior to secretion, substrates must be recruited to specialized recruitment platforms and then handed over to the secretion apparatus for secretion. In this review, we provide an update on recent advances in substrate recruitment and delivery by gram-negative bacterial recruitment platforms associated with Type III, IV, and VI secretion systems.
Collapse
Affiliation(s)
- Amit Meir
- Institute of Structural and Molecular Biology, Birkbeck and UCL, Malet Street, London WC1E 7HX, UK; Current address: MRC Centre for Virus Research, School of Infection and Immunity, University of Glasgow, Glasgow, UK.
| | - Kévin Macé
- Institute of Structural and Molecular Biology, Birkbeck and UCL, Malet Street, London WC1E 7HX, UK
| | - Yogesh Vegunta
- Institute of Structural and Molecular Biology, Birkbeck and UCL, Malet Street, London WC1E 7HX, UK
| | - Sunanda M Williams
- Institute of Structural and Molecular Biology, Birkbeck and UCL, Malet Street, London WC1E 7HX, UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, Birkbeck and UCL, Malet Street, London WC1E 7HX, UK; Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
18
|
Shepherd DC, Kaplan M, Vankadari N, Kim KW, Larson CL, Dutka P, Beare PA, Krzymowski E, Heinzen RA, Jensen GJ, Ghosal D. Morphological remodeling of Coxiella burnetii during its biphasic developmental cycle revealed by cryo-electron tomography. iScience 2023; 26:107210. [PMID: 37485371 PMCID: PMC10362272 DOI: 10.1016/j.isci.2023.107210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/05/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Coxiella burnetii is an obligate zoonotic bacterium that targets macrophages causing a disease called Q fever. It has a biphasic developmental life cycle where the extracellular and metabolically inactive small cell variant (SCV) transforms inside the host into the vegetative large cell variant (LCV). However, details about the morphological and structural changes of this transition are still lacking. Here, we used cryo-electron tomography to image both SCV and LCV variants grown either under axenic conditions or purified directly from host cells. We show that SCVs are characterized by equidistant stacks of inner membrane that presumably facilitate the transition to LCV, a transition coupled with the expression of the Dot/Icm type IVB secretion system (T4BSS). A class of T4BSS particles were associated with extracellular densities possibly involved in host infection. Also, SCVs contained spherical multilayered membrane structures of different sizes and locations suggesting no connection to sporulation as once assumed.
Collapse
Affiliation(s)
- Doulin C. Shepherd
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Mohammed Kaplan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Naveen Vankadari
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Ki Woo Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- School of Ecology and Environmental System, Kyungpook National University, Sangju, Korea
| | - Charles L. Larson
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Przemysław Dutka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Division od Chemistry and Chemical Engineering, California Institute of Technology, 1200 California Boulevard, Pasadena, CA 91125, USA
| | - Paul A. Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Edward Krzymowski
- Department of Physics and Astronomy, Brigham Young University, Provo, UT 84604, USA
| | - Robert A. Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Grant J. Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84604, USA
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
19
|
Abstract
The versatile type IV secretion system (T4SS) nanomachine plays a pivotal role in bacterial pathogenesis and the propagation of antibiotic resistance determinants throughout microbial populations. In addition to paradigmatic DNA conjugation machineries, diverse T4SSs enable the delivery of multifarious effector proteins to target prokaryotic and eukaryotic cells, mediate DNA export and uptake from the extracellular milieu, and in rare examples, facilitate transkingdom DNA translocation. Recent advances have identified new mechanisms underlying unilateral nucleic acid transport through the T4SS apparatus, highlighting both functional plasticity and evolutionary adaptations that enable novel capabilities. In this review, we describe the molecular mechanisms underscoring DNA translocation through diverse T4SS machineries, emphasizing the architectural features that implement DNA exchange across the bacterial membrane and license transverse DNA release across kingdom boundaries. We further detail how recent studies have addressed outstanding questions surrounding the mechanisms by which nanomachine architectures and substrate recruitment strategies contribute to T4SS functional diversity.
Collapse
Affiliation(s)
- Mackenzie E. Ryan
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Prashant P. Damke
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, Kentucky, USA
| | - Carrie L. Shaffer
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, Kentucky, USA
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
20
|
Murthy AC, Aleksanyan N, Morton GM, Toyoda HC, Kalashyan M, Chen S, Ragucci AE, Broulidakis MP, Swerdlow KJ, Bui MNN, Muccioli M, Berkmen MB. Characterization of ConE, the VirB4 Homolog of the Integrative and Conjugative Element ICE Bs1 of Bacillus subtilis. J Bacteriol 2023; 205:e0003323. [PMID: 37219457 PMCID: PMC10294652 DOI: 10.1128/jb.00033-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Conjugation is a major form of horizontal gene transfer, contributing to bacterial evolution and the acquisition of new traits. During conjugation, a donor cell transfers DNA to a recipient through a specialized DNA translocation channel classified as a type IV secretion system (T4SS). Here, we focused on the T4SS of ICEBs1, an integrative and conjugative element in Bacillus subtilis. ConE, encoded by ICEBs1, is a member of the VirB4 family of ATPases, the most conserved component of T4SSs. ConE is required for conjugation and localizes to the cell membrane, predominantly at the cell poles. In addition to Walker A and B boxes, VirB4 homologs have conserved ATPase motifs C, D, and E. Here, we created alanine substitutions in five conserved residues within or near ATPase motifs in ConE. Mutations in all five residues drastically decreased conjugation frequency but did not affect ConE protein levels or localization, indicating that an intact ATPase domain is critical for DNA transfer. Purified ConE is largely monomeric with some oligomers and lacks enzymatic activity, suggesting that ATP hydrolysis may be regulated or require special solution conditions. Finally, we investigated which ICEBs1 T4SS components interact with ConE using a bacterial two-hybrid assay. ConE interacts with itself, ConB, and ConQ, but these interactions are not required to stabilize ConE protein levels and largely do not depend on conserved residues within the ATPase motifs of ConE. The structure-function characterization of ConE provides more insight into this conserved component shared by all T4SSs. IMPORTANCE Conjugation is a major form of horizontal gene transfer and involves the transfer of DNA from one bacterium to another through the conjugation machinery. Conjugation contributes to bacterial evolution by disseminating genes involved in antibiotic resistance, metabolism, and virulence. Here, we characterized ConE, a protein component of the conjugation machinery of the conjugative element ICEBs1 of the bacterium Bacillus subtilis. We found that mutations in the conserved ATPase motifs of ConE disrupt mating but do not alter ConE localization, self-interaction, or levels. We also explored which conjugation proteins ConE interacts with and whether these interactions contribute to stabilizing ConE. Our work contributes to the understanding of the conjugative machinery of Gram-positive bacteria.
Collapse
Affiliation(s)
- Anastasia C. Murthy
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Naira Aleksanyan
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Georgeanna M. Morton
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Hunter C. Toyoda
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Meri Kalashyan
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Sirui Chen
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Adelyn E. Ragucci
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
- Cancer Immunology and Virology Department, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Matthew P. Broulidakis
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Kyle J. Swerdlow
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Minh N. N. Bui
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Maria Muccioli
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Melanie B. Berkmen
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Larson CL, Pullman W, Beare PA, Heinzen RA. Identification of Type 4B Secretion System Substrates That Are Conserved among Coxiella burnetii Genomes and Promote Intracellular Growth. Microbiol Spectr 2023; 11:e0069623. [PMID: 37199620 PMCID: PMC10269450 DOI: 10.1128/spectrum.00696-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023] Open
Abstract
Coxiella burnetii is a Gram-negative pathogen that infects a variety of mammalian hosts. Infection of domesticated ewes can cause fetal abortion, whereas acute human infection normally manifests as the flu-like illness Q fever. Successful host infection requires replication of the pathogen within the lysosomal Coxiella-containing vacuole (CCV). The bacterium encodes a type 4B secretion system (T4BSS) that delivers effector proteins into the host cell. Disruption of C. burnetii T4BSS effector export abrogates CCV biogenesis and bacterial replication. Over 150 C. burnetii T4BSS substrates have been designated often based on heterologous protein translocation by the Legionella pneumophila T4BSS. Cross-genome comparisons predict that many of these T4BSS substrates are truncated or absent in the acute-disease reference strain C. burnetii Nine Mile. This study investigated the function of 32 proteins conserved among diverse C. burnetii genomes that are reported to be T4BSS substrates. Despite being previously designated T4BSS substrates, many of the proteins were not translocated by C. burnetii when expressed fused to the CyaA or BlaM reporter tags. CRISPR interference (CRISPRi) indicated that of the validated C. burnetii T4BSS substrates, CBU0122, CBU1752, CBU1825, and CBU2007 promote C. burnetii replication in THP-1 cells and CCV biogenesis in Vero cells. When expressed in HeLa cells tagged at its C or N terminus with mCherry, CBU0122 localized to the CCV membrane and the mitochondria, respectively. Collectively, these data further define the repertoire of bona fide C. burnetii T4BSS substrates. IMPORTANCE Coxiella burnetii secretes effector proteins via a T4BSS that are required for successful infection. Over 150 C. burnetii proteins are reported to be T4BSS substrates and often by default considered putative effectors, but few have assigned functions. Many C. burnetii proteins were designated T4BSS substrates using heterologous secretion assays in L. pneumophila and/or have coding sequences that are absent or pseudogenized in clinically relevant C. burnetii strains. This study examined 32 previously reported T4BSS substrates that are conserved among C. burnetii genomes. Of the proteins tested that were previously designated T4BSS substrates using L. pneumophila, most were not exported by C. burnetii. Several T4BSS substrates that were validated in C. burnetii also promoted pathogen intracellular replication and one trafficked to late endosomes and the mitochondria in a manner suggestive of effector activity. This study identified several bona fide C. burnetii T4BSS substrates and further refined the methodological criteria for their designation.
Collapse
Affiliation(s)
- Charles L. Larson
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
- Innate Immunity and Pathogenesis Section, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Willis Pullman
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Paul A. Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
- Genomics Research Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Robert A. Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
22
|
Boamah D, Gilmore M, Bourget S, Ghosh A, Hossain M, Vogel J, Cava F, O’Connor T. Peptidoglycan deacetylation controls type IV secretion and the intracellular survival of the bacterial pathogen Legionella pneumophila. Proc Natl Acad Sci U S A 2023; 120:e2119658120. [PMID: 37252954 PMCID: PMC10266036 DOI: 10.1073/pnas.2119658120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/18/2023] [Indexed: 06/01/2023] Open
Abstract
Peptidoglycan is a critical component of the bacteria cell envelope. Remodeling of the peptidoglycan is required for numerous essential cellular processes and has been linked to bacterial pathogenesis. Peptidoglycan deacetylases that remove the acetyl group of the N-acetylglucosamine (NAG) subunit protect bacterial pathogens from immune recognition and digestive enzymes secreted at the site of infection. However, the full extent of this modification on bacterial physiology and pathogenesis is not known. Here, we identify a polysaccharide deacetylase of the intracellular bacterial pathogen Legionella pneumophila and define a two-tiered role for this enzyme in Legionella pathogenesis. First, NAG deacetylation is important for the proper localization and function of the Type IVb secretion system, linking peptidoglycan editing to the modulation of host cellular processes through the action of secreted virulence factors. As a consequence, the Legionella vacuole mis-traffics along the endocytic pathway to the lysosome, preventing the formation of a replication permissive compartment. Second, within the lysosome, the inability to deacetylate the peptidoglycan renders the bacteria more sensitive to lysozyme-mediated degradation, resulting in increased bacterial death. Thus, the ability to deacetylate NAG is important for bacteria to persist within host cells and in turn, Legionella virulence. Collectively, these results expand the function of peptidoglycan deacetylases in bacteria, linking peptidoglycan editing, Type IV secretion, and the intracellular fate of a bacterial pathogen.
Collapse
Affiliation(s)
- David Boamah
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Michael C. Gilmore
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå90187, Sweden
| | - Sarah Bourget
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Anushka Ghosh
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Mohammad J. Hossain
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Joseph P. Vogel
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
| | - Felipe Cava
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå90187, Sweden
| | - Tamara J. O’Connor
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD21205
| |
Collapse
|
23
|
Dutka P, Liu Y, Maggi S, Ghosal D, Wang J, Carter SD, Zhao W, Vijayrajratnam S, Vogel JP, Jensen GJ. Structure and Function of the Dot/Icm T4SS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533729. [PMID: 36993699 PMCID: PMC10055428 DOI: 10.1101/2023.03.22.533729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The Legionella pneumophila Dot/Icm type IV secretion system (T4SS) delivers effector proteins into host cells during infection. Despite its significance as a potential drug target, our current understanding of its atomic structure is limited to isolated subcomplexes. In this study, we used subtomogram averaging and integrative modeling to construct a nearly-complete model of the Dot/Icm T4SS accounting for seventeen protein components. We locate and provide insights into the structure and function of six new components including DotI, DotJ, DotU, IcmF, IcmT, and IcmX. We find that the cytosolic N-terminal domain of IcmF, a key protein forming a central hollow cylinder, interacts with DotU, providing insight into previously uncharacterized density. Furthermore, our model, in combination with analyses of compositional heterogeneity, explains how the cytoplasmic ATPase DotO is connected to the periplasmic complex via interactions with membrane-bound DotI/DotJ proteins. Coupled with in situ infection data, our model offers new insights into the T4SS-mediated secretion mechanism.
Collapse
Affiliation(s)
- Przemysław Dutka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yuxi Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Stefano Maggi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Debnath Ghosal
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Present address: Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Jue Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Stephen D. Carter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Present address: MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Wei Zhao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Joseph P. Vogel
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Grant J. Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| |
Collapse
|
24
|
Daveri A, Benigno V, van der Meer JR. Characterization of an atypical but widespread type IV secretion system for transfer of the integrative and conjugative element (ICEclc) in Pseudomonas putida. Nucleic Acids Res 2023; 51:2345-2362. [PMID: 36727472 PMCID: PMC10018362 DOI: 10.1093/nar/gkad024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/23/2022] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Conjugation of DNA relies on multicomponent protein complexes bridging two bacterial cytoplasmic compartments. Whereas plasmid conjugation systems have been well documented, those of integrative and conjugative elements (ICEs) have remained poorly studied. We characterize here the conjugation system of the ICEclc element in Pseudomonas putida UWC1 that is a model for a widely distributed family of ICEs. By in frame deletion and complementation, we show the importance on ICE transfer of 22 genes in a 20-kb conserved ICE region. Protein comparisons recognized seven homologs to plasmid type IV secretion system components, another six homologs to frequent accessory proteins, and the rest without detectable counterparts. Stationary phase imaging of P. putida ICEclc with in-frame fluorescent protein fusions to predicted type IV components showed transfer-competent cell subpopulations with multiple fluorescent foci, largely overlapping in dual-labeled subcomponents, which is suggestive for multiple conjugation complexes per cell. Cross-dependencies between subcomponents in ICE-type IV secretion system assembly were revealed by quantitative foci image analysis in a variety of ICEclc mutant backgrounds. In conclusion, the ICEclc family presents an evolutionary distinct type IV conjugative system with transfer competent cells specialized in efficient transfer.
Collapse
Affiliation(s)
- Andrea Daveri
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Valentina Benigno
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
25
|
Blasey N, Rehrmann D, Riebisch AK, Mühlen S. Targeting bacterial pathogenesis by inhibiting virulence-associated Type III and Type IV secretion systems. Front Cell Infect Microbiol 2023; 12:1065561. [PMID: 36704108 PMCID: PMC9872159 DOI: 10.3389/fcimb.2022.1065561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Infections caused by Gram-negative pathogens pose a major health burden. Both respiratory and gastrointestinal infections are commonly associated with these pathogens. With the increase in antimicrobial resistance (AMR) over the last decades, bacterial infections may soon become the threat they have been before the discovery of antibiotics. Many Gram-negative pathogens encode virulence-associated Type III and Type IV secretion systems, which they use to inject bacterial effector proteins across bacterial and host cell membranes into the host cell cytosol, where they subvert host cell functions in favor of bacterial replication and survival. These secretion systems are essential for the pathogens to cause disease, and secretion system mutants are commonly avirulent in infection models. Hence, these structures present attractive targets for anti-virulence therapies. Here, we review previously and recently identified inhibitors of virulence-associated bacterial secretions systems and discuss their potential as therapeutics.
Collapse
|
26
|
Lai L, Cheung YW, Martinez M, Kixmoeller K, Palao L, Steimle S, Ho MC, Black BE, Lai EM, Chang YW. In Situ Structure Determination of Bacterial Surface Nanomachines Using Cryo-Electron Tomography. Methods Mol Biol 2023; 2646:211-248. [PMID: 36842118 DOI: 10.1007/978-1-0716-3060-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Bacterial surface nanomachines are often refractory to structural determination in their intact form due to their extensive association with the cell envelope preventing them from being properly purified for traditional structural biology methods. Cryo-electron tomography (cryo-ET) is an emerging branch of cryo-electron microscopy that can visualize supramolecular complexes directly inside frozen-hydrated cells in 3D at nanometer resolution, therefore posing a unique capability to study the intact structures of bacterial surface nanomachines in situ and reveal their molecular association with other cellular components. Furthermore, the resolution of cryo-ET is continually improving alongside methodological advancement. Here, using the type IV pilus machine in Myxococcus xanthus as an example, we describe a step-by-step workflow for in situ structure determination including sample preparation and screening, microscope and camera tuning, tilt series acquisition, data processing and tomogram reconstruction, subtomogram averaging, and structural analysis.
Collapse
Affiliation(s)
- Longsheng Lai
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yee-Wai Cheung
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Matthew Martinez
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn Kixmoeller
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leon Palao
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stefan Steimle
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Developmental Transitions Coordinate Assembly of the Coxiella burnetii Dot/Icm Type IV Secretion System. Infect Immun 2022; 90:e0041022. [PMID: 36190257 PMCID: PMC9584302 DOI: 10.1128/iai.00410-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Coxiella burnetii is an obligate intracellular bacterial pathogen that has evolved a unique biphasic developmental cycle. The infectious form of C. burnetii is the dormant small cell variant (SCV), which transitions to a metabolically active large cell variant (LCV) that replicates inside the lysosome-derived host vacuole. A Dot/Icm type IV secretion system (T4SS), which can deliver over 100 effector proteins to host cells, is essential for the biogenesis of the vacuole and intracellular replication. How the distinct C. burnetii life cycle impacts the assembly and function of the Dot/Icm T4SS has remained unknown. Here, we combine advanced cryo-focused ion beam (cryo-FIB) milling and cryo-electron tomography (cryo-ET) imaging to visualize all developmental transitions and the assembly of the Dot/Icm T4SS in situ. Importantly, assembled Dot/Icm machines were not present in the infectious SCV. The appearance of the assembled Dot/Icm machine correlated with the transition of the SCV to the LCV intracellularly. Furthermore, temporal characterization of C. burnetii morphological changes revealed regions of the inner membrane that invaginate to form tightly packed stacks during the LCV-to-SCV transition at late stages of infection, which may enable the SCV-to-LCV transition that occurs upon infection of a new host cell. Overall, these data establish how C. burnetii developmental transitions control critical bacterial processes to promote intracellular replication and transmission.
Collapse
|
28
|
Pseudomonas putida mediates bacterial killing, biofilm invasion and biocontrol with a type IVB secretion system. Nat Microbiol 2022; 7:1547-1557. [PMID: 36123439 PMCID: PMC9519443 DOI: 10.1038/s41564-022-01209-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 07/21/2022] [Indexed: 11/24/2022]
Abstract
Many bacteria utilize contact-dependent killing machineries to eliminate rivals in their environmental niches. Here we show that the plant root colonizer Pseudomonas putida strain IsoF is able to kill a wide range of soil and plant-associated Gram-negative bacteria with the aid of a type IVB secretion system (T4BSS) that delivers a toxic effector into bacterial competitors in a contact-dependent manner. This extends the range of targets of T4BSSs—so far thought to transfer effectors only into eukaryotic cells—to prokaryotes. Bioinformatic and genetic analyses showed that this killing machine is entirely encoded by the kib gene cluster located within a rare genomic island, which was recently acquired by horizontal gene transfer. P. putida IsoF utilizes this secretion system not only as a defensive weapon to kill bacterial competitors but also as an offensive weapon to invade existing biofilms, allowing the strain to persist in its natural environment. Furthermore, we show that strain IsoF can protect tomato plants against the phytopathogen Ralstonia solanacearum in a T4BSS-dependent manner, suggesting that IsoF can be exploited for pest control and sustainable agriculture. Pseudomonas putida uses a type IVB secretion system to kill a broad range of Gram-negative bacteria, invade biofilms and prevent phytopathogen Ralstonia solanacearum infection in tomato plants.
Collapse
|
29
|
Abstract
Bacterial type IV secretion systems (T4SSs) are a versatile group of nanomachines that can horizontally transfer DNA through conjugation and deliver effector proteins into a wide range of target cells. The components of T4SSs in gram-negative bacteria are organized into several large subassemblies: an inner membrane complex, an outer membrane core complex, and, in some species, an extracellular pilus. Cryo-electron tomography has been used to define the structures of T4SSs in intact bacteria, and high-resolution structural models are now available for isolated core complexes from conjugation systems, the Xanthomonas citri T4SS, the Helicobacter pylori Cag T4SS, and the Legionella pneumophila Dot/Icm T4SS. In this review, we compare the molecular architectures of these T4SSs, focusing especially on the structures of core complexes. We discuss structural features that are shared by multiple T4SSs as well as evolutionary strategies used for T4SS diversification. Finally, we discuss how structural variations among T4SSs may confer specialized functional properties.
Collapse
Affiliation(s)
- Michael J. Sheedlo
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Melanie D. Ohi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - D. Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Timothy L. Cover
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
30
|
Abstract
Bacterial conjugation is the fundamental process of unidirectional transfer of DNAs, often plasmid DNAs, from a donor cell to a recipient cell1. It is the primary means by which antibiotic resistance genes spread among bacterial populations2,3. In Gram-negative bacteria, conjugation is mediated by a large transport apparatus—the conjugative type IV secretion system (T4SS)—produced by the donor cell and embedded in both its outer and inner membranes. The T4SS also elaborates a long extracellular filament—the conjugative pilus—that is essential for DNA transfer4,5. Here we present a high-resolution cryo-electron microscopy (cryo-EM) structure of a 2.8 megadalton T4SS complex composed of 92 polypeptides representing 8 of the 10 essential T4SS components involved in pilus biogenesis. We added the two remaining components to the structural model using co-evolution analysis of protein interfaces, to enable the reconstitution of the entire system including the pilus. This structure describes the exceptionally large protein–protein interaction network required to assemble the many components that constitute a T4SS and provides insights on the unique mechanism by which they elaborate pili. Cryo-electron microscopy structures of a 2.8 megadalton bacterial type IV secretion system encoded by the plasmid R388 and comprising 92 polypeptides provide insights into the stepwise mechanism of pilus assembly.
Collapse
|
31
|
Lockwood DC, Amin H, Costa TRD, Schroeder GN. The Legionella pneumophila Dot/Icm type IV secretion system and its effectors. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35639581 DOI: 10.1099/mic.0.001187] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To prevail in the interaction with eukaryotic hosts, many bacterial pathogens use protein secretion systems to release virulence factors at the host–pathogen interface and/or deliver them directly into host cells. An outstanding example of the complexity and sophistication of secretion systems and the diversity of their protein substrates, effectors, is the Defective in organelle trafficking/Intracellular multiplication (Dot/Icm) Type IVB secretion system (T4BSS) of
Legionella pneumophila
and related species.
Legionella
species are facultative intracellular pathogens of environmental protozoa and opportunistic human respiratory pathogens. The Dot/Icm T4BSS translocates an exceptionally large number of effectors, more than 300 per
L. pneumophila
strain, and is essential for evasion of phagolysosomal degradation and exploitation of protozoa and human macrophages as replicative niches. Recent technological advancements in the imaging of large protein complexes have provided new insight into the architecture of the T4BSS and allowed us to propose models for the transport mechanism. At the same time, significant progress has been made in assigning functions to about a third of
L. pneumophila
effectors, discovering unprecedented new enzymatic activities and concepts of host subversion. In this review, we describe the current knowledge of the workings of the Dot/Icm T4BSS machinery and provide an overview of the activities and functions of the to-date characterized effectors in the interaction of
L. pneumophila
with host cells.
Collapse
Affiliation(s)
- Daniel C Lockwood
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, Northern Ireland, UK
| | - Himani Amin
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Tiago R D Costa
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Gunnar N Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, Northern Ireland, UK
| |
Collapse
|
32
|
Jiang F, Shen J, Cheng J, Wang X, Yang J, Li N, Gao N, Jin Q. N-terminal signal peptides facilitate the engineering of PVC complex as a potent protein delivery system. SCIENCE ADVANCES 2022; 8:eabm2343. [PMID: 35486720 PMCID: PMC9054023 DOI: 10.1126/sciadv.abm2343] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Extracellular contractile injection systems (eCISs) are widespread bacterial nanomachines that resemble T4 phage tail. As a typical eCIS, Photorhabdus virulence cassette (PVC) was proposed to inject toxins into eukaryotic cells by puncturing the cell membrane from outside. This makes it an ideal tool for protein delivery in biomedical research. However, how to manipulate this nanocomplex as a molecular syringe is still undetermined. Here, we identify that one group of N-terminal signal peptide (SP) sequences are crucial for the effector loading into the inner tube of PVC complex. By application of genetic operation, cryo-electron microscopy, in vitro translocation assays, and animal experiments, we show that, under the guidance of the SP, numerous prokaryotic and eukaryotic proteins can be loaded into PVC to exert their functions across cell membranes. We therefore might customize PVC as a potent protein delivery nanosyringe for biotherapy by selecting cargo proteins in a broad spectrum, regardless of their species, sizes, and charges.
Collapse
Affiliation(s)
- Feng Jiang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Jiawei Shen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Jiaxuan Cheng
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, P. R. China
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, P. R. China
| | - Xia Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Jianguo Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, P. R. China
| | - Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, P. R. China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, P. R. China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
33
|
The Legionella genus core effectors display functional conservation among orthologs by themselves or combined with an accessory protein. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100105. [PMID: 35059677 PMCID: PMC8760000 DOI: 10.1016/j.crmicr.2022.100105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/03/2022] Open
Abstract
The Legionella genus contains nine core effectors. Three Legionella pneumophila core effectors are required for intracellular growth. The Legionella genus core effectors display functional conservation among orthologs. One Legionella core effector requires an accessory protein to perform its function.
The intracellular pathogen Legionella pneumophila, as well as other Legionella species, utilize the Icm/Dot type-IV secretion system to translocate an exceptionally large and diverse repertoire of effectors into their host cells. However, only nine core effectors were found to be present in all analyzed Legionella species. In this study, we investigated the core effectors, and used intracellular growth complementation to determine whether orthologs of core effectors perform the same function in different Legionella species. We found that three out of the nine L. pneumophila core effectors are required for maximal intracellular growth. Examination of orthologous core effectors from four Legionella species spread over the Legionella phylogenetic tree revealed that most of them perform the same function. Nevertheless, some of the orthologs of the core effector LegA3 did not complement the L. pneumophila legA3 deletion mutant for intracellular growth. LegA3 is encoded as part of an operon together with another gene, which we named legA3C, encoding a non-translocated protein. We found that LegA3 and LegA3C physically interact with each other, are both required for maximal intracellular growth, and the LegA3-LegA3C orthologous pairs from all the Legionella species examined fully complement the L. pneumophila legA3 deletion mutant for intracellular growth. Our results indicate that the Legionella core effectors orthologs generally perform the same function and establish that LegA3 requires LegA3C to fulfill its conserved function.
Collapse
|
34
|
Macé K, Meir A, Lukoyanova N, Liu L, Chetrit D, Hospenthal MK, Roy CR, Waksman G. Proteins DotY and DotZ modulate the dynamics and localization of the type IVB coupling complex of Legionella pneumophila. Mol Microbiol 2021; 117:307-319. [PMID: 34816517 PMCID: PMC9300119 DOI: 10.1111/mmi.14847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 11/30/2022]
Abstract
Legionella pneumophila is an opportunistic pathogen infecting alveolar macrophages and protozoa species. Legionella utilizes a Type IV Secretion System (T4SS) to translocate over 300 effector proteins into its host cell. In a recent study, we have isolated and solved the cryo-EM structure of the Type IV Coupling Complex (T4CC), a large cytoplasmic determinant associated with the inner membrane that recruits effector proteins for delivery to the T4SS for translocation. The T4CC is composed of a DotLMNYZ hetero-pentameric core from which the flexible IcmSW module flexibly protrudes. The DotY and DotZ proteins were newly reported members of this complex and their role remained elusive. In this study, we observed the effect of deleting DotY and DotZ on T4CC stability and localization. Furthermore, we found these two proteins are co-dependent, whereby the deletion of DotY resulted in DotZ absence from the coupling complex, and vice versa. Additional cryo-EM data analysis revealed the dynamic movement of the IcmSW module is modified by the DotY/Z proteins. We therefore determined the likely function of DotY and DotZ and revealed their importance on T4CC function.
Collapse
Affiliation(s)
- Kevin Macé
- Institute of Structural and Molecular Biology, Birkbeck and UCL, London, UK
| | - Amit Meir
- Institute of Structural and Molecular Biology, Birkbeck and UCL, London, UK.,Boyer Center for Molecular Medicine, Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - Natalya Lukoyanova
- Institute of Structural and Molecular Biology, Birkbeck and UCL, London, UK
| | - Luying Liu
- Boyer Center for Molecular Medicine, Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - David Chetrit
- Boyer Center for Molecular Medicine, Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | | | - Craig R Roy
- Boyer Center for Molecular Medicine, Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, Birkbeck and UCL, London, UK.,Institute of Structural and Molecular Biology, University College London, London, UK
| |
Collapse
|
35
|
Kitao T, Kubori T, Nagai H. Recent advances in structural studies of the Legionella pneumophila Dot/Icm type IV secretion system. Microbiol Immunol 2021; 66:67-74. [PMID: 34807482 PMCID: PMC9302130 DOI: 10.1111/1348-0421.12951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022]
Abstract
The intracellular bacterial pathogen Legionella pneumophila utilizes the Dot/Icm type IV secretion system to translocate approximately 300 effector proteins to establish a replicative niche known as the Legionella‐containing vacuole. The Dot/Icm system is classified as a type IVB secretion system, which is evolutionarily closely related to the I‐type conjugation systems and is distinct from type IVA secretion systems, such as the Agrobacterium VirB/D4 system. Although both type IVA and IVB systems directly transport nucleic acids or proteins into the cytosol of recipient cells, the components and architecture of type IVB systems are much more complex than those of type IVA systems. Taking full advantage of rapidly developing cryo‐electron microscopy techniques, the structural details of the transport apparatus and coupling complexes in the Dot/Icm system have been clarified in the past few years. In this review, we summarize recent progress in the structural studies of the L. pneumophila type IVB secretion system and the insights gained into the mechanisms of substrate recognition and transport.
Collapse
Affiliation(s)
- Tomoe Kitao
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Gifu, 501-1194, Japan
| | - Tomoko Kubori
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Gifu, 501-1194, Japan.,G-CHAIN, Gifu University, Gifu, Gifu, 501-1194, Japan
| | - Hiroki Nagai
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Gifu, 501-1194, Japan.,G-CHAIN, Gifu University, Gifu, Gifu, 501-1194, Japan
| |
Collapse
|
36
|
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, is a facultative intracellular pathogen that survives inside phagocytic host cells by establishing a protected replication niche, termed the "Legionella-containing vacuole" (LCV). To form an LCV and subvert pivotal host pathways, L. pneumophila employs a type IV secretion system (T4SS), which translocates more than 300 different effector proteins into the host cell. The L. pneumophila T4SS complex has been shown to span the bacterial cell envelope at the bacterial poles. However, the interactions between the T4SS and the LCV membrane are not understood. Using cryo-focused ion beam milling, cryo-electron tomography, and confocal laser scanning fluorescence microscopy, we show that up to half of the intravacuolar L. pneumophila bacteria tether their cell pole to the LCV membrane. Tethering coincides with the presence and function of T4SSs and likely promotes the establishment of distinct contact sites between T4SSs and the LCV membrane. Contact sites are characterized by indentations in the limiting LCV membrane and localize juxtaposed to T4SS machineries. The data are in agreement with the notion that effector translocation occurs by close membrane contact rather than by an extended pilus. Our findings provide novel insights into the interactions of the L. pneumophila T4SS with the LCV membrane in situ. IMPORTANCE Legionnaires' disease is a life-threatening pneumonia, which is characterized by high fever, coughing, shortness of breath, muscle pain, and headache. The disease is caused by the amoeba-resistant bacterium L. pneumophila found in various soil and aquatic environments and is transmitted to humans via the inhalation of small bacteria-containing droplets. An essential virulence factor of L. pneumophila is a so-called "type IV secretion system" (T4SS), which, by injecting a plethora of "effector proteins" into the host cell, determines pathogen-host interactions and the formation of a distinct intracellular compartment, the "Legionella-containing vacuole" (LCV). It is unknown how the T4SS makes contact to the LCV membrane to deliver the effectors. In this study, we identify indentations in the host cell membrane in close proximity to functional T4SSs localizing at the bacterial poles. Our work reveals first insights into the architecture of Legionella-LCV contact sites.
Collapse
|
37
|
In Situ Visualization of the pKM101-Encoded Type IV Secretion System Reveals a Highly Symmetric ATPase Energy Center. mBio 2021; 12:e0246521. [PMID: 34634937 PMCID: PMC8510550 DOI: 10.1128/mbio.02465-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacterial conjugation systems are members of the type IV secretion system (T4SS) superfamily. T4SSs can be classified as “minimized” or “expanded” based on whether they are composed of a core set of signature subunits or additional system-specific components. Prototypical minimized systems mediating Agrobacterium tumefaciens transfer DNA (T-DNA) and pKM101 and R388 plasmid transfer are built from subunits generically named VirB1 to VirB11 and VirD4. We visualized the pKM101-encoded T4SS in its native cellular context by in situ cryo-electron tomography (CryoET). The T4SSpKM101 is composed of an outer membrane core complex (OMCC) connected by a thin stalk to an inner membrane complex (IMC). The OMCC exhibits 14-fold symmetry and resembles that of the T4SSR388 analyzed previously by single-particle electron microscopy. The IMC is highly symmetrical and exhibits 6-fold symmetry. It is dominated by a hexameric collar in the periplasm and a cytoplasmic complex composed of a hexamer of dimers of the VirB4-like TraB ATPase. The IMC closely resembles equivalent regions of three expanded T4SSs previously visualized by in situ CryoET but differs strikingly from the IMC of the purified T4SSR388, whose cytoplasmic complex instead presents as two side-by-side VirB4 hexamers. Analyses of mutant machines lacking each of the three ATPases required for T4SSpKM101 function supplied evidence that TraBB4 as well as VirB11-like TraG contribute to distinct stages of machine assembly. We propose that the VirB4-like ATPases, configured as hexamers of dimers at the T4SS entrance, orchestrate IMC assembly and recruitment of the spatially dynamic VirB11 and VirD4 ATPases to activate the T4SS for substrate transfer.
Collapse
|
38
|
Shepherd DC, Dalvi S, Ghosal D. From cells to atoms: Cryo-EM as an essential tool to investigate pathogen biology, host-pathogen interaction, and drug discovery. Mol Microbiol 2021; 117:610-617. [PMID: 34592048 DOI: 10.1111/mmi.14820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/18/2023]
Abstract
Electron cryo-microscopy (cryo-EM) has lately emerged as a powerful method in structural biology and cell biology. While cryo-EM single-particle analysis (SPA) is now routinely delivering structures of purified proteins and protein complexes at near-atomic resolution, the use of electron cryo-tomography (cryo-ET), together with subtomogram averaging, is allowing visualization of macromolecular complexes in their native cellular environment, at unprecedented resolution. The unique ability of cryo-EM to provide information at many spatial resolution scales from ångströms to microns makes it an invaluable tool that bridges the classic "resolution-gap" between structural biology and cell biology domains. Like in many other fields of biology, in recent years, cryo-EM has revolutionized our understanding of pathogen biology, host-pathogen interaction and has made significant strides toward structure-based drug discovery. In a very recent example, during the ongoing coronavirus disease (COVID-19) pandemic, the structure of the stabilized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein was deciphered by SPA. This led to the development of multiple vaccines. Alongside, cryo-ET provided key insights into the structure of the native virion, mechanism of its entry, replication, and budding; demonstrating the unrivaled power of cryo-EM in investigating pathogen biology, host-pathogen interaction, and drug discovery. In this review, we showcase a few examples of how different imaging modalities within cryo-EM have enabled the study of microbiology and host-pathogen interaction.
Collapse
Affiliation(s)
- Doulin C Shepherd
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Somavally Dalvi
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
39
|
Sheedlo MJ, Durie CL, Chung JM, Chang L, Roberts J, Swanson M, Lacy DB, Ohi MD. Cryo-EM reveals new species-specific proteins and symmetry elements in the Legionella pneumophila Dot/Icm T4SS. eLife 2021; 10:e70427. [PMID: 34519271 PMCID: PMC8486379 DOI: 10.7554/elife.70427] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/14/2021] [Indexed: 01/21/2023] Open
Abstract
Legionella pneumophila is an opportunistic pathogen that causes the potentially fatal pneumonia known as Legionnaires' disease. The pathology associated with infection depends on bacterial delivery of effector proteins into the host via the membrane spanning Dot/Icm type IV secretion system (T4SS). We have determined sub-3.0 Å resolution maps of the Dot/Icm T4SS core complex by single particle cryo-EM. The high-resolution structural analysis has allowed us to identify proteins encoded outside the Dot/Icm genetic locus that contribute to the core T4SS structure. We can also now define two distinct areas of symmetry mismatch, one that connects the C18 periplasmic ring (PR) and the C13 outer membrane cap (OMC) and one that connects the C13 OMC with a 16-fold symmetric dome. Unexpectedly, the connection between the PR and OMC is DotH, with five copies sandwiched between the OMC and PR to accommodate the symmetry mismatch. Finally, we observe multiple conformations in the reconstructions that indicate flexibility within the structure.
Collapse
Affiliation(s)
- Michael J Sheedlo
- Department of Pharmacology, University of MinnesotaMinneapolisUnited States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical CenterNashvilleUnited States
| | - Clarissa L Durie
- Life Sciences Institute, University of MichiganAnn ArborUnited States
| | - Jeong Min Chung
- Life Sciences Institute, University of MichiganAnn ArborUnited States
- Department of Biotechnology, The Catholic University of KoreaGyeonggiRepublic of Korea
| | - Louise Chang
- Life Sciences Institute, University of MichiganAnn ArborUnited States
| | - Jacquelyn Roberts
- Life Sciences Institute, University of MichiganAnn ArborUnited States
| | - Michele Swanson
- Department of Microbiology and Immunology, University Of MichiganAnn ArborUnited States
| | - Dana Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical CenterNashvilleUnited States
- The Veterans Affairs Tennessee Valley Healthcare SystemNasvhilleUnited States
| | - Melanie D Ohi
- Life Sciences Institute, University of MichiganAnn ArborUnited States
- Department of Cell and Developmental Biology, University of MichiganAnn ArborUnited States
| |
Collapse
|
40
|
Cover TL. Tracking bacterial effector protein delivery into host cells. Mol Microbiol 2021; 116:724-728. [PMID: 34250669 DOI: 10.1111/mmi.14784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
Bacterial Type IV secretion systems (T4SSs) are a functionally heterogeneous group of nanomachines that can deliver substrates into a wide range of target cells. The Helicobacter pylori Cag T4SS has an important role in the pathogenesis of gastric cancer. CagA, the only effector protein known to be secreted by the H. pylori Cag T4SS, enters human gastric cells and causes alterations in intracellular signaling that are linked to cancer pathogenesis. Understanding the molecular mechanisms by which CagA is delivered into gastric cells has been hindered by the lack of robust methods for monitoring this process. A publication in this issue of Molecular Microbiology describes a split luciferase assay for monitoring T4SS-mediated translocation of CagA into host cells. The use of this translocation reporter allowed the quantification of CagA translocation in real-time assays, thereby facilitating the analysis of the kinetics of CagA delivery. This system also allowed the tracking of several types of CagA fusion proteins and confirmed that protein unfolding is important for secretion by the Cag T4SS. This commentary discusses T4SS-dependent delivery of H. pylori CagA into host cells and the use of the split luciferase system for monitoring bacterial protein secretion and delivery into target cells.
Collapse
Affiliation(s)
- Timothy L Cover
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
41
|
Foley SL, Kaldhone PR, Ricke SC, Han J. Incompatibility Group I1 (IncI1) Plasmids: Their Genetics, Biology, and Public Health Relevance. Microbiol Mol Biol Rev 2021; 85:e00031-20. [PMID: 33910982 PMCID: PMC8139525 DOI: 10.1128/mmbr.00031-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bacterial plasmids are extrachromosomal genetic elements that often carry antimicrobial resistance (AMR) genes and genes encoding increased virulence and can be transmissible among bacteria by conjugation. One key group of plasmids is the incompatibility group I1 (IncI1) plasmids, which have been isolated from multiple Enterobacteriaceae of food animal origin and clinically ill human patients. The IncI group of plasmids were initially characterized due to their sensitivity to the filamentous bacteriophage If1. Two prototypical IncI1 plasmids, R64 and pColIb-P9, have been extensively studied, and the plasmids consist of unique regions associated with plasmid replication, plasmid stability/maintenance, transfer machinery apparatus, single-stranded DNA transfer, and antimicrobial resistance. IncI1 plasmids are somewhat unique in that they encode two types of sex pili, a thick, rigid pilus necessary for mating and a thin, flexible pilus that helps stabilize bacteria for plasmid transfer in liquid environments. A key public health concern with IncI1 plasmids is their ability to carry antimicrobial resistance genes, including those associated with critically important antimicrobials used to treat severe cases of enteric infections, including the third-generation cephalosporins. Because of the potential importance of these plasmids, this review focuses on the distribution of the plasmids, their phenotypic characteristics associated with antimicrobial resistance and virulence, and their replication, maintenance, and transfer.
Collapse
Affiliation(s)
- Steven L Foley
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Pravin R Kaldhone
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, USA
- Center for Food Safety and Food Science Department, University of Arkansas, Fayetteville, Arkansas, USA
| | - Steven C Ricke
- Meat Science & Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Jing Han
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, USA
| |
Collapse
|
42
|
Allombert J, Jaboulay C, Michard C, Andréa C, Charpentier X, Vianney A, Doublet P. Deciphering Legionella effector delivery by Icm/Dot secretion system reveals a new role for c-di-GMP signaling. J Mol Biol 2021; 433:166985. [PMID: 33845084 DOI: 10.1016/j.jmb.2021.166985] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/22/2021] [Accepted: 03/31/2021] [Indexed: 11/19/2022]
Abstract
Secretion of bacterial effector proteins into host cells plays a key role in bacterial virulence. Yet, the dynamics of the secretion systems activity remains poorly understood, especially when machineries deal with the export of numerous effectors. We address the question of multi-effector secretion by focusing on the Legionella pneumophila Icm/Dot T4SS that translocates a record number of 300 effectors. We set up a kinetic translocation assay, based on the β-lactamase translocation reporter system combined with the effect of the protonophore CCCP. When used for translocation analysis of Icm/Dot substrates constitutively produced by L. pneumophila, this assay allows a fine monitoring of the secretion activity of the T4SS, independently of the expression control of the effectors. We observed that effectors are translocated with a specific timing, suggesting a control of their docking/translocation by the T4SS. Their delivery is accurately organized to allow effective manipulation of the host cell, as exemplified by the sequential translocation of effectors targeting Rab1, namely SidM/DrrA, LidA, LepB. Remarkably, the timed delivery of effectors does not depend only on their interaction with chaperone proteins but implies cyclic-di-GMP signaling, as the diguanylate cyclase Lpl0780/Lpp0809, contributes to the timing of translocation.
Collapse
Affiliation(s)
- J Allombert
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - C Jaboulay
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - C Michard
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - C Andréa
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - X Charpentier
- CIRI, Centre International de Recherche en Infectiologie, (Team: Horigene), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - A Vianney
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France.
| | - P Doublet
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France.
| |
Collapse
|
43
|
Steiner S, Meir A, Roy CR. Coxiella burnetii encodes an LvgA-related protein important for intracellular replication. Cell Microbiol 2021; 23:e13331. [PMID: 33774901 DOI: 10.1111/cmi.13331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 12/29/2022]
Abstract
Coxiella burnetii is a bacterial pathogen that replicates in a specialised lysosome-derived organelle called the Coxiella-containing vacuole (CCV). Establishment of the CCV requires the Dot/Icm type IVB secretion system. A previous transposon mutagenesis screen identified the gene cbu1754 as being important for the intracellular replication of C. burnetii. To understand the function of the protein encoded by cbu1754, CCV maturation and intracellular replication phenotypes of a cbu1754 mutant were analysed. In contrast to vacuoles containing wild-type C. burnetii Nine Mile phase II, vacuoles containing the isogenic cbu1754 mutant were smaller and did not display detectible amounts of the autophagy protein LC3, which indicated a CCV biogenesis defect. The Cbu1754 protein was not efficiently delivered into the host cell cytosol during infection, which indicated this protein is not a Dot/Icm-translocated effector protein. Secondary structure predictions suggested that Cbu1754 could be similar to the Legionella pneumophila LvgA protein, which is a component of the Dot/Icm apparatus. Consistent with this hypothesis, production of Cbu1754 in an L. pneumophila ∆lvgA mutant restored LvgA-dependent activities. The L. pneumophila proteins LvgA, IcmS and IcmW are interacting partners that comprise a subassembly of the coupling protein complex that mediates Dot/Icm-dependent effector translocation. Similarly, the Cbu1754 protein was found to be a component of the chaperone complex containing the C. burnetii proteins IcmS and IcmW. Thus, the Cbu1754 protein is an LvgA-related protein important for Dot/Icm function and intracellular replication of C. burnetii.
Collapse
Affiliation(s)
- Samuel Steiner
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Amit Meir
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Craig R Roy
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
44
|
Long CM, Beare PA, Cockrell DC, Fintzi J, Tesfamariam M, Shaia CI, Heinzen RA. Contributions of lipopolysaccharide and the type IVB secretion system to Coxiella burnetii vaccine efficacy and reactogenicity. NPJ Vaccines 2021; 6:38. [PMID: 33741986 PMCID: PMC7979919 DOI: 10.1038/s41541-021-00296-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/12/2021] [Indexed: 12/15/2022] Open
Abstract
Coxiella burnetii is the bacterial causative agent of the zoonosis Q fever. The current human Q fever vaccine, Q-VAX®, is a fixed, whole cell vaccine (WCV) licensed solely for use in Australia. C. burnetii WCV administration is associated with a dermal hypersensitivity reaction in people with pre-existing immunity to C. burnetii, limiting wider use. Consequently, a less reactogenic vaccine is needed. Here, we investigated contributions of the C. burnetii Dot/Icm type IVB secretion system (T4BSS) and lipopolysaccharide (LPS) in protection and reactogenicity of fixed WCVs. A 32.5 kb region containing 23 dot/icm genes was deleted in the virulent Nine Mile phase I (NMI) strain and the resulting mutant was evaluated in guinea pig models of C. burnetii infection, vaccination-challenge, and post-vaccination hypersensitivity. The NMI ∆dot/icm strain was avirulent, protective as a WCV against a robust C. burnetii challenge, and displayed potentially altered reactogenicity compared to NMI. Nine Mile phase II (NMII) strains of C. burnetii that produce rough LPS, were similarly tested. NMI was significantly more protective than NMII as a WCV; however, both vaccines exhibited similar reactogenicity. Collectively, our results indicate that, like phase I LPS, the T4BSS is required for full virulence by C. burnetii. Conversely, unlike phase I LPS, the T4BSS is not required for vaccine-induced protection. LPS length does not appear to contribute to reactogenicity while the T4BSS may contribute to this response. NMI ∆dot/icm represents an avirulent phase I strain with full vaccine efficacy, illustrating the potential of genetically modified C. burnetii as improved WCVs.
Collapse
Affiliation(s)
- Carrie M Long
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| | - Paul A Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Diane C Cockrell
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jonathan Fintzi
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Mahelat Tesfamariam
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Carl I Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Robert A Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
45
|
Grishin A, Voth K, Gagarinova A, Cygler M. Structural biology of the invasion arsenal of Gram-negative bacterial pathogens. FEBS J 2021; 289:1385-1427. [PMID: 33650300 DOI: 10.1111/febs.15794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022]
Abstract
In the last several years, there has been a tremendous progress in the understanding of host-pathogen interactions and the mechanisms by which bacterial pathogens modulate behavior of the host cell. Pathogens use secretion systems to inject a set of proteins, called effectors, into the cytosol of the host cell. These effectors are secreted in a highly regulated, temporal manner and interact with host proteins to modify a multitude of cellular processes. The number of effectors varies between pathogens from ~ 30 to as many as ~ 350. The functional redundancy of effectors encoded by each pathogen makes it difficult to determine the cellular effects or function of individual effectors, since their individual knockouts frequently produce no easily detectable phenotypes. Structural biology of effector proteins and their interactions with host proteins, in conjunction with cell biology approaches, has provided invaluable information about the cellular function of effectors and underlying molecular mechanisms of their modes of action. Many bacterial effectors are functionally equivalent to host proteins while being structurally divergent from them. Other effector proteins display new, previously unobserved functionalities. Here, we summarize the contribution of the structural characterization of effectors and effector-host protein complexes to our understanding of host subversion mechanisms used by the most commonly investigated Gram-negative bacterial pathogens. We describe in some detail the enzymatic activities discovered among effector proteins and how they affect various cellular processes.
Collapse
Affiliation(s)
- Andrey Grishin
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Kevin Voth
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Alla Gagarinova
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Miroslaw Cygler
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
46
|
Jaboulay C, Godeux AS, Doublet P, Vianney A. Regulatory Networks of the T4SS Control: From Host Cell Sensing to the Biogenesis and the Activity during the Infection. J Mol Biol 2021; 433:166892. [PMID: 33636165 DOI: 10.1016/j.jmb.2021.166892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 02/03/2023]
Abstract
Delivery of effectors, DNA or proteins, that hijack host cell processes to the benefit of bacteria is a mechanism widely used by bacterial pathogens. It is achieved by complex effector injection devices, the secretion systems, among which Type 4 Secretion Systems (T4SSs) play a key role in bacterial virulence of numerous animal and plant pathogens. Considerable progress has recently been made in the structure-function analyses of T4SSs. Nevertheless, the signals and processes that trigger machine assembly and activity during infection, as well as those involved in substrate recognition and transfer, are complex and still poorly understood. In this review, we aim at summarizing the last updates of the knowledge on signaling pathways that regulate the biogenesis and the activity of T4SSs in important bacterial pathogens.
Collapse
Affiliation(s)
- C Jaboulay
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France.
| | - A S Godeux
- CIRI, Centre International de Recherche en Infectiologie, (Team: Horigene), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - P Doublet
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - A Vianney
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| |
Collapse
|
47
|
A multiplex CRISPR interference tool for virulence gene interrogation in Legionella pneumophila. Commun Biol 2021; 4:157. [PMID: 33542442 PMCID: PMC7862264 DOI: 10.1038/s42003-021-01672-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/27/2020] [Indexed: 11/08/2022] Open
Abstract
Catalytically inactive dCas9 imposes transcriptional gene repression by sterically precluding RNA polymerase activity at a given gene to which it was directed by CRISPR (cr)RNAs. This gene silencing technology, known as CRISPR interference (CRISPRi), has been employed in various bacterial species to interrogate genes, mostly individually or in pairs. Here, we developed a multiplex CRISPRi platform in the pathogen Legionella pneumophila capable of silencing up to ten genes simultaneously. Constraints on precursor-crRNA expression were overcome by combining a strong promoter with a boxA element upstream of a CRISPR array. Using crRNAs directed against virulence protein-encoding genes, we demonstrated that CRISPRi is fully functional not only during growth in axenic media, but also during macrophage infection, and that gene depletion by CRISPRi recapitulated the growth defect of deletion strains. By altering the position of crRNA-encoding spacers within the CRISPR array, our platform achieved the gradual depletion of targets that was mirrored by the severity in phenotypes. Multiplex CRISPRi thus holds great promise for probing large sets of genes in bulk in order to decipher virulence strategies of L. pneumophila and other bacterial pathogens.
Collapse
|
48
|
Costa TRD, Harb L, Khara P, Zeng L, Hu B, Christie PJ. Type IV secretion systems: Advances in structure, function, and activation. Mol Microbiol 2021; 115:436-452. [PMID: 33326642 DOI: 10.1111/mmi.14670] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022]
Abstract
Bacterial type IV secretion systems (T4SSs) are a functionally diverse translocation superfamily. They consist mainly of two large subfamilies: (i) conjugation systems that mediate interbacterial DNA transfer and (ii) effector translocators that deliver effector macromolecules into prokaryotic or eukaryotic cells. A few other T4SSs export DNA or proteins to the milieu, or import exogenous DNA. The T4SSs are defined by 6 or 12 conserved "core" subunits that respectively elaborate "minimized" systems in Gram-positive or -negative bacteria. However, many "expanded" T4SSs are built from "core" subunits plus numerous others that are system-specific, which presumptively broadens functional capabilities. Recently, there has been exciting progress in defining T4SS assembly pathways and architectures using a combination of fluorescence and cryoelectron microscopy. This review will highlight advances in our knowledge of structure-function relationships for model Gram-negative bacterial T4SSs, including "minimized" systems resembling the Agrobacterium tumefaciens VirB/VirD4 T4SS and "expanded" systems represented by the Helicobacter pylori Cag, Legionella pneumophila Dot/Icm, and F plasmid-encoded Tra T4SSs. Detailed studies of these model systems are generating new insights, some at atomic resolution, to long-standing questions concerning mechanisms of substrate recruitment, T4SS channel architecture, conjugative pilus assembly, and machine adaptations contributing to T4SS functional versatility.
Collapse
Affiliation(s)
- Tiago R D Costa
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Laith Harb
- Department of Biochemistry and Biophysics and Center for Phage Technology, Texas A&M University, College Station, TX, USA
| | - Pratick Khara
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Lanying Zeng
- Department of Biochemistry and Biophysics and Center for Phage Technology, Texas A&M University, College Station, TX, USA
| | - Bo Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX, USA
| |
Collapse
|
49
|
Sheedlo MJ, Chung JM, Sawhney N, Durie CL, Cover TL, Ohi MD, Lacy DB. Cryo-EM reveals species-specific components within the Helicobacter pylori Cag type IV secretion system core complex. eLife 2020; 9:e59495. [PMID: 32876048 PMCID: PMC7511236 DOI: 10.7554/elife.59495] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of Helicobacter pylori-associated gastric cancer is dependent on delivery of CagA into host cells through a type IV secretion system (T4SS). The H. pylori Cag T4SS includes a large membrane-spanning core complex containing five proteins, organized into an outer membrane cap (OMC), a periplasmic ring (PR) and a stalk. Here, we report cryo-EM reconstructions of a core complex lacking Cag3 and an improved map of the wild-type complex. We define the structures of two unique species-specific components (Cag3 and CagM) and show that Cag3 is structurally similar to CagT. Unexpectedly, components of the OMC are organized in a 1:1:2:2:5 molar ratio (CagY:CagX:CagT:CagM:Cag3). CagX and CagY are components of both the OMC and the PR and bridge the symmetry mismatch between these regions. These results reveal that assembly of the H. pylori T4SS core complex is dependent on incorporation of interwoven species-specific components.
Collapse
Affiliation(s)
- Michael J Sheedlo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical CenterNashvilleUnited States
| | - Jeong Min Chung
- Life Sciences Institute, University of MichiganAnn ArborUnited States
| | - Neha Sawhney
- Department of Medicine, Vanderbilt University School of MedicineNashvilleUnited States
| | - Clarissa L Durie
- Life Sciences Institute, University of MichiganAnn ArborUnited States
| | - Timothy L Cover
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical CenterNashvilleUnited States
- Department of Medicine, Vanderbilt University School of MedicineNashvilleUnited States
- Veterans Affairs Tennessee Valley Healthcare SystemNashvilleUnited States
| | - Melanie D Ohi
- Life Sciences Institute, University of MichiganAnn ArborUnited States
- Department of Cell and Developmental Biology, University of MichiganAnn ArborUnited States
| | - D Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical CenterNashvilleUnited States
- Veterans Affairs Tennessee Valley Healthcare SystemNashvilleUnited States
| |
Collapse
|
50
|
Durie CL, Sheedlo MJ, Chung JM, Byrne BG, Su M, Knight T, Swanson M, Lacy DB, Ohi MD. Structural analysis of the Legionella pneumophila Dot/Icm type IV secretion system core complex. eLife 2020; 9:e59530. [PMID: 32876045 PMCID: PMC7511231 DOI: 10.7554/elife.59530] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/01/2020] [Indexed: 01/21/2023] Open
Abstract
Legionella pneumophila is an opportunistic pathogen that causes the potentially fatal pneumonia Legionnaires' Disease. This infection and subsequent pathology require the Dot/Icm Type IV Secretion System (T4SS) to deliver effector proteins into host cells. Compared to prototypical T4SSs, the Dot/Icm assembly is much larger, containing ~27 different components including a core complex reported to be composed of five proteins: DotC, DotD, DotF, DotG, and DotH. Using single particle cryo-electron microscopy (cryo-EM), we report reconstructions of the core complex of the Dot/Icm T4SS that includes a symmetry mismatch between distinct structural features of the outer membrane cap (OMC) and periplasmic ring (PR). We present models of known core complex proteins, DotC, DotD, and DotH, and two structurally similar proteins within the core complex, DotK and Lpg0657. This analysis reveals the stoichiometry and contact interfaces between the key proteins of the Dot/Icm T4SS core complex and provides a framework for understanding a complex molecular machine.
Collapse
Affiliation(s)
- Clarissa L Durie
- Life Sciences Institute, University of MichiganAnn ArborUnited States
| | - Michael J Sheedlo
- Department of Pathology, Microbiology, and Immunology, Department of Pathology, Vanderbilt University Medical CenterNashvilleUnited States
| | - Jeong Min Chung
- Life Sciences Institute, University of MichiganAnn ArborUnited States
| | - Brenda G Byrne
- Department of Microbiology and Immunology, University of MichiganAnn ArborUnited States
| | - Min Su
- Life Sciences Institute, University of MichiganAnn ArborUnited States
| | - Thomas Knight
- Department of Microbiology and Immunology, University of MichiganAnn ArborUnited States
| | - Michele Swanson
- Department of Microbiology and Immunology, University of MichiganAnn ArborUnited States
| | - D Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Department of Pathology, Vanderbilt University Medical CenterNashvilleUnited States
- The Veterans Affairs Tennessee Valley Healthcare SystemNashvilleUnited States
- Department of Cell and Developmental Biology, University of MichiganAnn ArborUnited States
| | - Melanie D Ohi
- Life Sciences Institute, University of MichiganAnn ArborUnited States
| |
Collapse
|