1
|
Wang C, Tian Z, Luan X, Zhang H, Zhang Y, Yang M. Distribution of antibiotic resistance genes on chromosomes, plasmids and phages in aerobic biofilm microbiota under antibiotic pressure. J Environ Sci (China) 2025; 156:647-659. [PMID: 40412963 DOI: 10.1016/j.jes.2024.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 05/27/2025]
Abstract
The objective of this study is to quantitatively reveal the main genetic carrier of antibiotic resistance genes (ARGs) for blocking their environmental dissemination. The distribution of ARGs in chromosomes, plasmids, and phages for understanding their respective contributions to the development of antimicrobial resistance in aerobic biofilm consortium under increasing stresses of oxytetracycline, streptomycin, and tigecycline were revealed based on metagenomics analysis. Results showed that the plasmids harbored 49.2 %-83.9 % of resistomes, which was higher (p < 0.001) than chromosomes (2.0 %-35.6 %), and no ARGs were detected in phage contigs under the strict alignment standard of over 80 % identity used in this study. Plasmids and chromosomes tended to encode different types of ARGs, whose abundances all increased with the hike of antibiotic concentrations, and the variety of ARGs encoded by plasmids (14 types and 64 subtypes) was higher than that (11 types and 27 subtypes) of chromosomes. The dosing of the three antibiotics facilitated the transposition and recombination of ARGs on plasmids, mediated by transposable and integrable transfer elements, which increased the co-occurrence of associated and unassociated ARGs. The results quantitatively proved that plasmids dominate the proliferation of ARGs in aerobic biofilm driven by antibiotic selection, which should be a key target for blocking ARG dissemination.
Collapse
Affiliation(s)
- Chen Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Tian
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiao Luan
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Hong Zhang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yu Zhang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Cui ZH, He Q, Li ZP, Deng Y, Liao XP, Zhang C, Sun J, Ren H, Han L. A hydrogel-based composite facilitates efficient and recyclable tetracycline biodegradation in aquatic environments. ENVIRONMENTAL RESEARCH 2025; 276:121524. [PMID: 40180264 DOI: 10.1016/j.envres.2025.121524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Tetracycline antibiotics residues pose significant health risks to individual and public health by their cytotoxicity and promotion on antibiotic resistance spread. Tet(X4) is a newly-identified tetracycline-inactivating enzyme that efficiently eliminates all antibiotics within tetracycline class. To address the limitations of Tet(X4)-based approaches in suboptimal stability and cost-efficiency balance in realistic environments, this study established a hydrogel-based composite to encapsulate the Tet(X4) for efficiently and economically eliminating the tetracycline residues in aqueous environments. Herein, we synthesized a composite comprising carboxymethyl chitosan (CC), agarose (Ag), Tet(X4), Fe3O4, and CaO2. It maintained 73.1 ± 9.4 %, 50.0 ± 2.8 % and 58.9 ± 0.6 % of enzymatic activity with desirable tolerance to UV, and ionic strength. By exploring the properties of composites, we found that 3 % Tet(X4) in a 1.0 g weighted composite with average diameters of 5.0 mm could efficiently degrade tetracycline residues. Additionally, the magnetic components in the composite conferred recyclability to the Tet(X4)-dependent biodegradation for multiple use, maximally reducing the costs. The composite endowed the promising applicability of Tet(X4) to eradicate approximately 85 % the residual tetracyclines in various aqueous environments, including tap water, lakes, pharmaceutical wastewater, and livestock sewage. Mouse experiments showed that the as-prepared composites are totally safe and will not cause metabolic and immune abnormalities. Taken together, this study constructed a feasible platform to render the Tet(X4)-mediated tetracycline removal more stable and recyclable, highlighting encapsulation with the nanocarriers as a promising strategy to facilitate the enzymatic degradation of antibiotic residues with enhanced efficiency, stability and recyclability.
Collapse
Affiliation(s)
- Ze-Hua Cui
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Qian He
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhi-Peng Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Yao Deng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Ping Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Chaoqun Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Hao Ren
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Lu Han
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Huang Y, Zong S, Xu D, He J, Zhang Y, Qian M, Li Y, Guo B, Han J, Qu D. Metagenomic analysis reveals differences in antibiotic resistance and transmission risks across various poultry farming models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 980:179519. [PMID: 40300492 DOI: 10.1016/j.scitotenv.2025.179519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/02/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025]
Abstract
As living standards in rural areas continue to improve, farmers are increasingly seeking to diversify their farming models beyond monoculture farming. However, the differences in bacterial resistance and the associated transmission risks between monoculture poultry farming and integrated poultry farming remain poorly understood. This study utilizes metagenomic methods to examine the distribution and transmission of antibiotic resistance across three types of farms in Zhejiang Province, as well as to investigate the horizontal transmission mechanisms of plasmid-mediated blaNDM within these agricultural systems. An analysis of 26 environmental samples and 12 saliva samples from six poultry farms with different models has revealed that integrated poultry farms exhibit a more complex microbial composition and more severe resistance compared to monoculture farms. Furthermore, a blaNDM positive plasmid pndm-CD with complex conjugation transfer region was found in the integrated farms. The insertion sequence (IS) ISCR1 present in the upstream of blaNDM has the potential to promote its spread, while the downstream complex structure IS26-blaCTX-M-IS2-qnrB-TinR-ΔISKrA14 enhances the resistance of the host to β-lactam antibiotics, and improves the competition potential of the host bacteria in the anti-antibiotic environment. This research offers the first metagenomic analysis of the differences in bacterial resistance and transmission risks between various poultry farming models. These results offer a solid theoretical basis for managing the spread of antibiotic resistance in mixed chicken and duck farming operations. Additionally, they are significant for ensuring the health of agricultural workers and the hygiene safety of the poultry meat supply chain.
Collapse
Affiliation(s)
- Yanru Huang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China
| | - Shuaizhou Zong
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China
| | - Dingting Xu
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 311100, Zhejiang, People's Republic of China
| | - Jiwei He
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China
| | - Yaru Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China
| | - Min Qian
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China
| | - Yuxing Li
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China
| | - Bohai Guo
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China
| | - Jianzhong Han
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China
| | - Daofeng Qu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| |
Collapse
|
4
|
Haeili M, Aghajanzadeh M, Moghaddasi K, Omrani M, Ghodousi A, Cirillo DM. Emergence of transferable tigecycline and eravacycline resistance gene tet(X4) in Escherichia coli isolates from Iran. Sci Rep 2025; 15:16581. [PMID: 40360684 PMCID: PMC12075785 DOI: 10.1038/s41598-025-98206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/10/2025] [Indexed: 05/15/2025] Open
Abstract
Tigecycline (TGC) and eravacycline (ERV) are critical last-resort antibiotics used to treat complicated infections caused by extensively drug-resistant Gram-negative bacteria particularly carbapenem- and colistin-resistant Enterobacterales. The recent emergence of plasmid-mediated TGC resistance gene tet(X) in Enterobacterales of both animal and human origins represents a significant public health threat. In this study, we characterized tet(X4)-bearing Escherichia coli isolates recovered from cattle fecal samples in Iran. A total of 395 fecal samples obtained from calves were screened for tigecycline-resistant (TGC-R) E. coli by inoculating in to selective culture media containing tigecycline. The presence of tet(X) gene among the recovered TGC-R enteric bacteria was assessed using PCR. Genetic relatedness of the tet(X)-bearing strains was analyzed via ERIC-PCR. Three tet(X)-bearing strains were further characterized by whole genome sequencing (WGS) using Illumina platform. The transferability and stability of tet(X)-bearing elements were evaluated by conjugation assay and successive subculturing on antibiotic-free culture media respectively. A total of five tet(X)-positive E. coli isolates exhibiting high-level resistance to tigecycline (MIC = 64 mg/L) and eravacycline (MIC > 8 mg/L) were recovered and categorized in to two groups (n = 4, n = 1) based on ERIC-PCR and antimicrobial susceptibility patterns. WGS analysis identified tet(X4) variant in three isolates, which belonged to sequence types ST224 (n = 2) and ST10 (n = 1). ResFinder database analysis revealed coexistence of tet(X4) with multiple antibiotic resistance genes including aadA, aph, blaCTX-M-15 and /or blaTEM-1B, floR, cmlA, dfrA, sul and qnrS/mutations in gyrA and parC genes. The tet(X4)-positive E. coli isolates contained the IncX1 and p0111 (strains B52 and R37) or IncX1, IncQ1, IncI1-I(α) and IncFII/IncFIA/IncFIB (strain M55) replicon types according to PlasmidFinder analysis. The tet(X4) gene was successfully mobilized to tigecycline -susceptible recipient E. coli isolates through conjugation assay and demonstrated high stability persisting over 10 consecutive passages in antibiotic-free media in both transconjugants and their donors. This study reports, for the first time in Iran, the emergence of transferrable high-level tigecycline/eravacycline resistance gene tet(X4) in E. coli isolates. Given the public health implications, control measures should be implemented to regulate the use of tetracyclines and potentially phenicols in food animals to prevent emergence and further transmission of such superbugs along the animal- environment -human chain.
Collapse
Affiliation(s)
- Mehri Haeili
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Mahdi Aghajanzadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Maryam Omrani
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Arash Ghodousi
- IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | | |
Collapse
|
5
|
Beech MJ, Toma EC, Smith HG, Trush MM, Ang JHJ, Wong MY, Wong CHJ, Ali HS, Butt Z, Goel V, Duarte F, Farley AJM, Walsh TR, Schofield CJ. Binding assays enable discovery of Tet(X) inhibitors that combat tetracycline destructase resistance. Chem Sci 2025:d5sc00964b. [PMID: 40342919 PMCID: PMC12056667 DOI: 10.1039/d5sc00964b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/16/2025] [Indexed: 05/11/2025] Open
Abstract
The Tet(X) flavin-dependent monooxygenases enable tetracycline antibiotic resistance by catalysing inactivating hydroxylation, so preventing inhibition of bacterial ribosomes. Tet(X) resistance is growing rapidly, threatening the efficacy of important last-resort tetracyclines such as tigecycline. Tet(X) inhibitors have potential to protect tetracyclines in combination therapies, but their discovery has been hampered by lack of high-throughput assays. We report the development of an efficient fluorescence polarisation Tet(X) binding assay employing a tetramethylrhodamine-glycyl-minocycline conjugate that enables inhibitor discovery. The assay was applied to tetracycline substrates and reported inhibitors, providing insight into their binding modes. Screening of a bioactive molecule library identified novel Tet(X) inhibitors, including psychoactive phenothiazine derivatives and the 5-HT4 agonist tegaserod, the activities of which were validated by turnover assays. Crystallographic studies of Tet(X4)-inhibitor complexes reveal two new inhibitor binding modes, importantly providing evidence for active site binding of Tet(X) inhibitors that do not share structural similarity with tetracycline substrates. In some cases, potentiation of tigecycline activity was observed in bacteria expressing Tet(X4). The combined results provide non-tetracycline scaffolds for development of potent Tet(X) inhibitors and highlight the need to evaluate the impact of non-antibiotics on antimicrobial resistance.
Collapse
Affiliation(s)
- Matthew J Beech
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3TA UK
| | - Edmond C Toma
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3TA UK
| | - Helen G Smith
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3TA UK
| | - Maria M Trush
- Department of Biology and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3RE UK
| | - Jit H J Ang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR) 10, Biopolis Road Singapore 138670 Singapore
| | - Mei Y Wong
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR) 10, Biopolis Road Singapore 138670 Singapore
| | - Chung H J Wong
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR) 10, Biopolis Road Singapore 138670 Singapore
| | - Hafiz S Ali
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3TA UK
| | - Zakia Butt
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3TA UK
| | - Viha Goel
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3TA UK
| | - Fernanda Duarte
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3TA UK
| | - Alistair J M Farley
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3TA UK
| | - Timothy R Walsh
- Department of Biology and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3RE UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Oxford OX1 3TA UK
| |
Collapse
|
6
|
Wu H, Ren Y, Zhang J, Xue J, Chen L, Chen H, Yang X, Wang H. Research progress of LpxC inhibitor on Gram-negative bacteria. Eur J Med Chem 2025; 289:117440. [PMID: 40020426 DOI: 10.1016/j.ejmech.2025.117440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
UDP-3-O-acyl-N-acetylglucosamine deacetylase (LpxC) is a metalloprotein that utilizes zinc as a cofactor. LpxC plays a crucial role in catalyzing the synthesis of Lipid A, a major component of the outer membrane lipopolysaccharide in Gram-negative (G-) bacteria, and LpxC shares no common amino acid sequence with various mammalian enzyme proteins. LpxC is essential for the survival of Gram-negative bacteria, making it a promising target for the antibacterial drug development. In recent years, numerous LpxC inhibitors have been reported, which can be broadly categorized into hydroxamic acid and non-hydroxamic acid based on their structural characteristics. Although no LpxC inhibitors are currently available on the market, several candidate small molecules are anticipated to enter clinical trials. The current manuscript offers a comprehensive review of the structures, enzyme catalytic mechanisms, and research progress of novel LpxC inhibitors, with the objective of providing insights and directions for future research in the development of LpxC inhibitors as new antibacterial agents.
Collapse
Affiliation(s)
- Han Wu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China; Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, 100081, China
| | - Yixin Ren
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, 100081, China; Institute of National Security, Minzu University of China, Beijing, 100081, China
| | - Jungan Zhang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, 100081, China
| | - Jingsu Xue
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, 100081, China; Institute of National Security, Minzu University of China, Beijing, 100081, China
| | - Lulu Chen
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, 100081, China; Institute of National Security, Minzu University of China, Beijing, 100081, China
| | - Hongtong Chen
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Hao Wang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China; Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, 100081, China; Institute of National Security, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
7
|
Yao C, Jin L, Wang Q, Wang M, Wang R, Cai M, Song K, Wang H. Unraveling the evolution and global transmission of high level tigecycline resistance gene tet(X). ENVIRONMENT INTERNATIONAL 2025; 199:109499. [PMID: 40311233 DOI: 10.1016/j.envint.2025.109499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/07/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
An increasing number of tet(X) variants conferring tigecycline resistance have been reported, posing a threat to clinical treatment of multi-drug resistance bacteria as tigecycline serves as the last-resort antibiotic. In this study, a total of 721 tet(X)-like sequences were retrieved from public database and clinical isolates. All currently known tet(X) variants including newly identified variants tet(X49) to tet(X57) in our study were integrated into a database. tet(X) variants were detected in 17 countries and phylogenetically classified into 3 types: Type A, Type B and Type C, among which Type-C variants exhibited higher level tigecycline resistance. Most of Type-C variants were plasmid-mediated (65.31 %, 352/539), mainly carried by IncX1 (16.19 %, 57/352) and IncFIA/IncFIB/IncX1 (15.63 %, 55/352) plasmids. Type-C variants have achieved global spread by a two-stage expansion within 15 years. Bayesian analysis revealed that Type-C variants originated from Riemerella anatipestifer-carried Type-A variants, followed by a transfer to Escherichia and Acinetobacter strains, leading to a sharp rise of Type-C variants. Type-A variants were primarily borne in Riemerella anatipestifer and Bacteroides spp. tet(X) emerged in animal source, and gradually spread to humans and the environment. tet(X3), tet(X4) and tet(X6) were found co-occurred with more than ten antimicrobial resistance genes including blaNDM, blaOXA, floR, sul2, tet(M) and tet(Q). Temporal changes of transfer networks of tet(X) variants, IS elements and plasmids revealed that IS elements especially ISVsa3 facilitated the expansion of tet(X). Our findings highlight the substantial transmission risk of Type-C tet(X) variants. Persistent surveillance of the global transmission and evolutionary trend of tet(X) is essential.
Collapse
Affiliation(s)
- Chaoqun Yao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Longyang Jin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Meng Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Meng Cai
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Kaiwen Song
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
8
|
Zhai W, Liu L, Kang J, Xiao M, Wang Y, Wang Y, Shen Y, Wu C, Shen J, Wang Y, Liu D. The co-occurrence of tet(X4) and tmexCD2-toprJ2 mediated tigecycline resistance in Raoultella ornithinolytica. J Glob Antimicrob Resist 2025; 42:100-104. [PMID: 39984042 DOI: 10.1016/j.jgar.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/23/2025] Open
Abstract
OBJECTIVES This study aimed to characterize the co-occurrence of the tigecycline resistance determinants tet(X4) and tmexCD2-toprJ2 in a Raoultella ornithinolytica isolate collected from a pig rectal swab at the slaughterhouse. METHODS The R. ornithinolytica isolate WS60 was subjected to antimicrobial susceptibility testing. Whole-genome sequencing (WGS) was performed to analyze the genetic features of the plasmids carrying tet(X4) and tmexCD2-toprJ2. Additionally, a conjugation assay was conducted to evaluate the transferability of these plasmids, followed by a 15-day stability test to assess the persistence of the two resistance determinants. RESULTS R. ornithinolytica WS60 exhibited high-level tigecycline resistance, with a minimum inhibitory concentration (MIC) of 32 μg/mL, and was also resistant to ampicillin, ampicillin-sulbactam, chloramphenicol, tetracycline, sulfamethoxazole-trimethoprim, florfenicol, and streptomycin. WGS analysis revealed that WS60 harbored three plasmids, including a 384,249-bp tmexCD2-toprJ2-carrying IncQ plasmid (pWS60-1) and a 78,159-bp tet(X4)-carrying IncFII plasmid (pWS60-2). Interestingly, pWS60-2 was identical to several plasmids found in Klebsiella spp. isolated from animals, animal-derived food, and humans. Moreover, pWS60-2 was successfully transferred to Klebsiella spp. via conjugation, whereas pWS60-1 failed to transfer. Notably, no significant fitness cost was observed in the transconjugants carrying pWS60-2. Additionally, a 15-day stability assay demonstrated that both resistance determinants were stably maintained in the bacterial population without significant loss, underscoring their persistence over time. CONCLUSIONS This is the first report of the co-occurrence of tet(X4) and tmexCD2-toprJ2 in R. ornithinolytica. Enhanced surveillance in slaughterhouses, along with targeted interventions, should be implemented to mitigate the potential spread of mobile tigecycline resistance throughout the food production chain.
Collapse
Affiliation(s)
- Weishuai Zhai
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lu Liu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jijun Kang
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mengjin Xiao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yiqing Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yao Wang
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, China
| | - Yingbo Shen
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Congming Wu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianzhong Shen
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Wang
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dejun Liu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
9
|
Sun RY, Long XL, Ruan YL, Wang XR, Wu XH, Sun J, Liao XP, Liu YH, Ren H, Lian XL. The pet café is a neglected site for transmission of antimicrobial-resistant Escherichia coli in urban life. Microb Genom 2025; 11:001412. [PMID: 40408139 PMCID: PMC12102497 DOI: 10.1099/mgen.0.001412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/10/2025] [Indexed: 05/25/2025] Open
Abstract
The process of urbanization has brought with it several novel lifestyles, but it remains to be seen whether such lifestyles are the potential driver behind the spread of antimicrobial resistance (AMR) in modern society. Hence, this study employs the pet café as a proof of concept to observe how one pathway of AMR transmission occurs within a megacity. A total of 111 samples were collected from consumers, workers, animals and the surrounding environment from three pet cafés in Guangzhou, and 163 bacterial strains were isolated, with Escherichia coli (n=60) being the most dominant species. The sequence type and genomic diversity of E. coli were observed in all three cafés. Notably, 19 highly related ST328 strains were isolated in a single pet café from both workers (skin and faeces) and animals (faeces), suggesting transmission between distinct hosts. The number of SNPs between ST328 E. coli isolated in this study and strains from other provinces in China was minimal, with the possibility of clonal transmission. In terms of AMR, 90% of the isolates exhibited resistance to at least three distinct classes of antimicrobials (multidrug resistance). Multiple antimicrobial resistance genes (ARGs) such as tet(X4) were detected in this study, and plasmid, especially hybrid plasmid, is the main transmission vector of these ARGs. Our findings highlight that the pet café is a neglected site for the transfer of ARGs among Enterobacteriaceae, with a propensity for continuous contamination through either clonal or horizontal transmission of ARGs.
Collapse
Affiliation(s)
- Ruan-Yang Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Xiao-Ling Long
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Ya-Li Ruan
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Xi-Ran Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Xiao-Hui Wu
- Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, PR China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, PR China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, PR China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, PR China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Hao Ren
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, PR China
| | - Xin-Lei Lian
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, PR China
| |
Collapse
|
10
|
Gao H, Wang B, Li M, Zhou P, Wu C, Wan C, Shen L, Fu J, Han W, Zhou Y, Yu F. Emergence and dissemination of multidrug-resistant Klebsiella pneumoniae harboring the novel tmexCD-toprJ RND efflux pump operon. Front Cell Infect Microbiol 2025; 15:1579880. [PMID: 40370409 PMCID: PMC12075523 DOI: 10.3389/fcimb.2025.1579880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
The global emergence of multidrug-resistant (MDR) Klebsiella pneumoniae, particularly carbapenem-resistant K. pneumoniae (CRKP), presents a severe public health threat, limiting available treatment options. Tigecycline and eravacycline, have been considered a last-resort therapeutic against MDR Enterobacteriaceae. However, strains were resistant to these antibiotics increased recently. The tmexCD-toprJ, a plasmid-encoded resistance-nodulation-division (RND)-type efflux pump, has emerged as a critical factor conferring resistance to tigecycline and eravacycline. In this study, we reported the emergence of 11 CRKP isolates harboring tmexCD-toprJ, isolated from two lung transplant patients in a tertiary hospital in eastern China. Most of the isolates (82%) exhibited high-level resistance to tigecycline and eravacycline, along with other common antibiotics. Whole-genome sequencing (WGS) and phylogenetic analysis indicated these strains are not clonal, and resistance phenotypes were associated with the tmexCD-toprJ operon and other crucial resistance elements. We also found the tmexCD-toprJ operon was located on a conjugative plasmid, sharing high sequence similarity with the operon identified in Pseudomonas aeruginosa. Our results showed that the tmexCD-toprJ-harboring plasmid is efficiently transferable, which contributes to the dissemination of tigecycline and eravacycline resistance. At the same time, the plasmid can coexist with the blaKPC-2 -carrying plasmid, which may cause multidrug resistance. The emergence of tmexCD-toprJ-positive CRKP in lung transplant patients highlights the potential for rapid nosocomial dissemination and reduced treatment efficacy of last-line antimicrobials. Our findings emphasize the need for enhanced genomic surveillance, infection control measures, and alternative therapeutic strategies to combat the spread of tmexCD-toprJ-mediated resistance in clinical settings.
Collapse
Affiliation(s)
- Haojin Gao
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bingjie Wang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meilan Li
- Department of Respiratory Intensive Care Unit, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peiyao Zhou
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunyang Wu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cailing Wan
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Shen
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiana Fu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weihua Han
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Zhou
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fangyou Yu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Xu Q, Hou J, Schwarz S, Chai J, Lin L, Ma C, Zhu Y, Zhang W. Emergence of a novel high-level tigecycline resistance gene tet(X6) variant coexisting with tet(X2) and two tet(X) copies in a Sphingobacterium sp. Antimicrob Agents Chemother 2025; 69:e0175824. [PMID: 40062858 PMCID: PMC11963530 DOI: 10.1128/aac.01758-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
Affiliation(s)
- Qiu Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jie Hou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Jiyun Chai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Longhua Lin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Caiping Ma
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yao Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wanjiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
12
|
Xing H, Zhang L, Li C, Schwarz S, Li D, Du XD. Identification of a mepR mutation associated with tigecycline resistance in a clinical Staphylococcus aureus isolate. J Antimicrob Chemother 2025; 80:1059-1066. [PMID: 39913246 DOI: 10.1093/jac/dkaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/22/2025] [Indexed: 04/03/2025] Open
Abstract
OBJECTIVES To identify the role and function of mepR variants in conferring resistance to tigecycline in clinical Staphylococcus aureus. METHODS The identification of the mepR and mepA variants in S. aureus DMB26a was performed by whole-genome sequencing and Blast alignment. The effects of the mepRD and mepAD variants of DMB26a on tigecycline susceptibility were evaluated through deletion and complementation analyses, as well as the determination of gene expression levels by RT-qPCR. Minimal inhibitory concentrations (MICs) for DMB26a and its mutants were determined by antimicrobial susceptibility testing. RESULTS A mepR variant, designated mepRD, and a mepA variant, designated mepAD, were identified in the clinical tigecycline-resistant S. aureus isolate DMB26a, which showed 78.72% and 84.92% amino acid identity to the MepR and MepA proteins of S. aureus NCTC 8325-4, respectively. Our findings revealed that deletion of mepA in the tigecycline-susceptible S. aureus RN4220 did not lead to a decrease in the MIC of tigecycline, and that there was also no change in the tigecycline MIC after the complementation with mepAD. Furthermore, we constructed a mepR + mepA deletion strain of S. aureus RN4220 and complemented it with mepRD + mepAD. In that case, a 4-fold increase in the tigecycline MIC was observed in S. aureus RN4220ΔmepR + mepA-pLI50_mepRD + mepAD compared with S. aureus RN4220ΔmepR + mepA. In addition, the relative expression of mepAD was increased 6-fold under the regulation of mepRD. CONCLUSIONS This study provides the identification of a mepR variant contributing indirectly to tigecycline resistance via mediating increased expression of mepA in a clinical S. aureus isolate.
Collapse
Affiliation(s)
- Hongjie Xing
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Likuan Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Chenglong Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre of Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Dexi Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| |
Collapse
|
13
|
Hao J, Zhang J, He X, Wang Y, Su J, Long J, Zhang L, Guo Z, Zheng Y, Wang M, Sun Y. Unveiling the silent threat: A comprehensive review of Riemerella anatipestifer - From pathogenesis to drug resistance. Poult Sci 2025; 104:104915. [PMID: 40020410 PMCID: PMC11919424 DOI: 10.1016/j.psj.2025.104915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/03/2025] [Accepted: 02/16/2025] [Indexed: 03/03/2025] Open
Abstract
Riemeralla anatipestifer, a predominant bacterium with multidrug resistance, has caused tremendous economic losses in the poultry farming industry. However, there are few studies on its identification, pathogenic mechanisms, and virulence factors and effective and systematic prevention and control strategies. The emergence and spread of antibacterial resistance has prompted increased focus on R. anatipestifer. However, studies on the mechanisms underlying gene aggregation and dissemination are lacking. This review summarizes recent studies on R. anatipestifer and explores its epidemiology, pathobiology, serotype classification, and preventive and treatment measures. Our findings illuminate the characteristics of virulence-related and drug resistance factors that have pivotal roles in the pathogenesis of R. anatipestifer infection. This study provides a comprehensive reference and guidance for in-depth research on R. anatipestifer.
Collapse
Affiliation(s)
- Jinzhen Hao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China
| | - Junxuan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaolu He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yefan Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jinyang Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiewen Long
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China
| | - Leyi Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zixing Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yizhang Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China
| | - Mianzhi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China; International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, China
| | - Yongxue Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Zhang L, Ye M, Dong Y, Yuan L, Xiang J, Yu X, Liao Q, Ai Q, Qiu S, Zhang D. Strict relationship between phenotypic and plasmid-associated genotypic of multidrug-resistant Escherichia coli isolated from Taihe Black-Boned Silky Fowl farms. Poult Sci 2025; 104:105082. [PMID: 40158280 PMCID: PMC11997332 DOI: 10.1016/j.psj.2025.105082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025] Open
Abstract
Taihe Black-Boned Silky Fowl (TBSF) is a unique breed in China, characterized by a high concentration of melanin deposited throughout its body. Compared to broiler chickens, many antibiotics exhibit significantly longer withdrawal periods in TBSF. Given that antibiotic exposure is widely recognized as the primary selective pressure driving the persistence and dissemination of antibiotic resistance genes (ARGs) across diverse environments, it is crucial to investigate the occurrence and prevalence of ARGs within TBSF farming systems. In this study, 34 Escherichia coli strains isolated from 22 TBSF farms were subjected to phenotypic and genotypic analyses. The isolates were tested for susceptibility to 28 antimicrobial drugs representing nine antibiotic classes to determine their antimicrobial resistance phenotypes. Draft genome sequences of these E. coli strains were obtained, and the ARGs carried by mobile genetic elements, particularly plasmids, were analyzed for their association with susceptibility phenotype. The genetic context of key ARGs in these E. coli isolates was further characterized. Network analysis was employed to investigate the correlations between ARGs, phenotypes, and drug residues. The results demonstrated that high rates of antimicrobial resistance were observed, with 100 % and 29.4 % of isolates exhibiting resistance to four or more and eight or more antibiotic classes, respectively. According to whole-genome sequencing, a total of 143 ARGs were identified. The antimicrobial resistance phenotypes were consistently correlated with the presence of corresponding ARGs in the 34 E. coli genomes. 100 % of the β-lactams antibiotics resistant mechanism could be attributed to the presence of the resistance gene blaTEM and/or blaOXA-10. Similarly, resistance to tetracyclines, chloramphenicols, aminoglycosides, and fluoroquinolones was fully explained by the presence of tetR and/or tetA, floR and/or cmlA, ant(3'')-IIa, aph(3'')-Ib, aph(6)-Id, aac(3)-IId, and aadA, and qnrS and/or mutant gyrA/parC/mdtH. The majority of these key ARGs were found to be plasmid-associated. This study verified and highlighted the prevalent horizontal gene transfer of ARGs in TBSF farms. Factors such as hygiene status, biosecurity measures, and other environmental conditions might play a more significant role than antimicrobial usage in facilitating the horizontal gene transfer of ARGs in TBSF farms. Appropriate measures should be taken to control the transmission and dissemination of these mobile genetic elements associated ARGs and prevent their entry into the human clinical environment from TBSF breeding environment.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China
| | - Mengjun Ye
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China
| | - Yifan Dong
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China
| | - Lijuan Yuan
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China
| | - Jianjun Xiang
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China
| | - Xiren Yu
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China
| | - Qiegen Liao
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China
| | - Qiushuang Ai
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China
| | - Suyan Qiu
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China
| | - Dawen Zhang
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China.
| |
Collapse
|
15
|
Yang J, Lu Y, Yu J, Cai X, Wang C, Lv L, Moran RA, Zhao X, Hu Z, Deng M, Liu JH. Comprehensive analysis of Enterobacteriaceae IncX plasmids reveals robust conjugation regulators PrfaH, H-NS, and conjugation-fitness tradeoff. Commun Biol 2025; 8:363. [PMID: 40038536 PMCID: PMC11880322 DOI: 10.1038/s42003-025-07782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/19/2025] [Indexed: 03/06/2025] Open
Abstract
Conjugative IncX plasmids are vital for spreading clinically significant antibiotic resistance genes. We identified key factors governing the conjugative process of IncX plasmids, the plasmid encoded activator PrfaH and inhibitor H-NS. Deletion of prfaH completely abolishes conjugative transfer, and the PrfaH binding site is an ops-like sequence located downstream of the prfaH promoter. We solved the crystal structure of PrfaH and identified the residues that likely mediate interactions with its target. The IncX3 plasmid-encoded H-NS inhibits conjugation by directly repressing PrfaH expression, while simultaneously enhancing host fitness. This tradeoff between plasmid conjugation and fitness is indispensable for plasmid persistence in nutrient-deprived environments. The presence of PrfaH paralogs in various antibiotic resistance plasmids suggests its fundamental role in regulating plasmid transfer. Our study not only elucidates the regulatory mechanisms behind the horizontal transfer of IncX plasmids but also highlights PrfaH as a potential target for strategies aimed at combating antimicrobial resistance.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, 510642 Guangzhou, China.
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, 510006, Guangzhou, China.
| | - Yaoyao Lu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, 510642 Guangzhou, China
| | - Jingjing Yu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, 510642 Guangzhou, China
| | - Xinhong Cai
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, 510642 Guangzhou, China
| | - Chengzhen Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, 510642 Guangzhou, China
| | - Luchao Lv
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, 510642 Guangzhou, China
| | - Robert A Moran
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Xilin Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 361102 Xiamen, China
| | - Zhengyi Hu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, 510642 Guangzhou, China
| | - Mingzhen Deng
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, 510642 Guangzhou, China
| | - Jian-Hua Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, 510642 Guangzhou, China.
| |
Collapse
|
16
|
Yang TY, Liu T, Li Y, Wang Z, Chu M, Wang J, Zou M, Liu BT. Characterization of non-typhoidal Salmonella reveals the highly prevalent mcr-1-positive S. 1,4,[5],12:i:- within eggs are derived from chickens. Int J Food Microbiol 2025; 430:111048. [PMID: 39731989 DOI: 10.1016/j.ijfoodmicro.2024.111048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/18/2024] [Accepted: 12/22/2024] [Indexed: 12/30/2024]
Abstract
Salmonella is one of the most common foodborne pathogens. Antimicrobial-resistant Salmonella isolates, especially those resistant to colistin, pose a significant threat to public health worldwide. However, data about the prevalence of mcr-positive Salmonella in animals was few and the dissemination of mcr-positive Salmonella from animals to food, especially eggs, has not been fully addressed. The role of houseflies in the Salmonella transmission has also not been clarified. Here, we analyzed the prevalence and resistance characteristics of mcr-positive Salmonella in 1707 samples of animals (commercial laying hens, broilers, waterfowls and swine), eggs and flies from 23 farms in four cities of China between July 2021 and October 2022. Pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing (WGS) analyses of Salmonella from different sources were further performed. Among animals, waterfowls had the highest isolation rate of Salmonella (18.1 %, 35/193), followed by swine (6.1 %, 23/377), laying hens (4.2 %, 21/505) and broilers (1.4 %, 7/489). Two of the 53 flies (3.8 %) carried Salmonella. The detection rate of Salmonella in eggs from farms was 26.7 %. All mcr-1-positive Salmonella isolates were S. 1,4,[5],12:i:- and were only found in hens (0.2 %) and eggs (11.1 %). PFGE and WGS analyses showed that the mcr-1-positive S. 1,4,[5],12:i:- from commercial laying hens and eggs in the same farm had no single nucleotide polymorphism (SNP) variation, indicating that the mcr-1-positive S. 1,4,[5],12:i:- in eggs were derived from hens. The phylogenomic analysis also showed that the mcr-1-positive S. 1,4,[5],12:i:- isolates from hens and eggs were closely related to previously reported mcr-1-positive Salmonella from human in China, further confirming that such mcr-1-positive Salmonella in animals could transmit to humans via the food chain. Furthermore, the blaCTX-M-1G-positive S. Kentucky isolates from broiler and flies in the same farm had a limited number of variations (5-7 SNPs), proving the clonal transmission of Salmonella between broilers and flies. The S. Kentucky isolates carrying blaCTX-M-1G from broilers were also closely related to the S. Kentucky isolates from chicken meats and humans. Our findings suggest that Salmonella including those carrying mcr-1 in animals could transmit to eggs/meats and potentially trigger human infections. The houseflies can play an important role in the Salmonella transmission within farms. Salmonella carrying mcr in animals and animal products should be monitored regularly and control measures are urgently needed to reduce the dissemination of such pathogens.
Collapse
Affiliation(s)
- Ting-Yu Yang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Tiantian Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan Li
- Qingdao Center for Animal Disease Control and Prevention, Qingdao 266000, China
| | - Zeqing Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Meijun Chu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Junjie Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Ming Zou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Bao-Tao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
17
|
Blake KS, Xue YP, Gillespie VJ, Fishbein SRS, Tolia NH, Wencewicz TA, Dantas G. The tetracycline resistome is shaped by selection for specific resistance mechanisms by each antibiotic generation. Nat Commun 2025; 16:1452. [PMID: 39920134 PMCID: PMC11806011 DOI: 10.1038/s41467-025-56425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/14/2025] [Indexed: 02/09/2025] Open
Abstract
The history of clinical resistance to tetracycline antibiotics is characterized by cycles whereby the deployment of a new generation of drug molecules is quickly followed by the discovery of a new mechanism of resistance. This suggests mechanism-specific selection by each tetracycline generation; however, the evolutionary dynamics of this remain unclear. Here, we evaluate 24 recombinant Escherichia coli strains expressing tetracycline resistance genes from each mechanism (efflux pumps, ribosomal protection proteins, and enzymatic inactivation) in the context of each tetracycline generation. We employ a high-throughput barcode sequencing protocol that can discriminate between strains in mixed culture and quantify their relative abundances. We find that each mechanism is preferentially selected for by specific antibiotic generations, leading to their expansion. Remarkably, the minimum inhibitory concentration associated with individual genes is secondary to resistance mechanism for inter-mechanism relative fitness, but it does explain intra-mechanism relative fitness. These patterns match the history of clinical deployment of tetracycline drugs and resistance discovery in pathogens.
Collapse
Affiliation(s)
- Kevin S Blake
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yao-Peng Xue
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vincent J Gillespie
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Skye R S Fishbein
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Niraj H Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA.
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
18
|
Kürekci C, Lu X, Sahin S, Celil BG, Soyer Y, Yeniköylü F, Wang Z, Li R. Detection and Whole-Genome Analysis of tigecycline resistant Escherichia coli in poultry and meat samples in Türkiye. Poult Sci 2025; 104:104707. [PMID: 39721263 PMCID: PMC11732488 DOI: 10.1016/j.psj.2024.104707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
The emergence and dissemination of tigecyline resistant Enterobacterales (TRE) in animals is a critical issue. This study aimed to investigate the presence of TRE in the gut of healthy avians as well as meat samples. A total of 940 ceacal samples from 94 commercial poultry flocks were collected at slaughter and a total of 335 meat samples [(chicken (n = 159), turkey (n = 4) and beef/lamb (n = 172)] were collected from supermarkets and butcher shops. Out of 960 samples, 146 (19.21 %) samples from chicken farms and 24 (13.3 %) from turkey farms were positive for TRE. Forty-nine Escherichia coli isolates were determined to carry the tet(X4) gene by PCR and exhibited multi-drug resistance. Whole-genome short-read sequencing (WGS) on all tet(X4) positive E. coli isolates and long-read sequencing on a selection of five isolates were carried out. WGS identified four ST types (ST206 being the most dominant, ST609, ST744 and ST189), indicating significant homogeneity among tigecyline resistant E. coli strains. In 47 isolates, the tet(X4) gene was transferrable to E. coli EC600 and it was found to be located on the IncX1 plasmid. Additionally, all tet(X4)-positive E. coli isolates also harbored other resistance genes, including floR, aadA2 and tet(A). In this study, the identification of tet(X4) carrying E. coli in healthy chicken and meats suggests the likely source of food-producing animals for humans. Therefore, active surveillance of critical priority lineages of TRE should focus on to contain the potential public health risk.
Collapse
Affiliation(s)
- Cemil Kürekci
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Türkiye.
| | - Xiaoyu Lu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China; College of Pharmacy and Chemistry and Chemical Engineering, Taizhou University, Taizhou, Jiangsu Province, PR China
| | - Seyda Sahin
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas 58140, Türkiye
| | - Büşra Gülay Celil
- Graduate School of Health Sciences, Hatay Mustafa Kemal University, Hatay, Türkiye
| | - Yeşim Soyer
- Department of Food Engineering, Middle East Technical University, 06800 Cankaya, Ankara, Türkiye
| | - Filiz Yeniköylü
- Department of Food Engineering, Middle East Technical University, 06800 Cankaya, Ankara, Türkiye
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China.
| |
Collapse
|
19
|
Yang S, Su P, Li L, Liu S, Wang Y. Advances and mechanisms of traditional Chinese medicine and its active ingredients against antibiotic-resistant Escherichia coli infections. J Pharm Anal 2025; 15:101117. [PMID: 40026356 PMCID: PMC11871446 DOI: 10.1016/j.jpha.2024.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 03/05/2025] Open
Abstract
In clinical practice, antibiotics have historically been utilized for the treatment of pathogenic bacteria. However, the gradual emergence of antibiotic resistance among bacterial strains has posed a significant challenge to this approach. In 2022, Escherichia coli, a Gram-negative bacterium renowned for its widespread pathogenicity and high virulence, emerged as the predominant pathogenic bacterium in China. The rapid emergence of antibiotic-resistant E. coli strains has rendered antibiotics insufficient to fight E. coli infections. Traditional Chinese medicine (TCM) has made remarkable contributions to the health of Chinese people for thousands of years, and its significant therapeutic effects have been proven in clinical practice. In this paper, we provide a comprehensive review of the advances and mechanisms of TCM and its active ingredients against antibiotic-resistant E. coli infections. First of all, this review introduces the classification, antibiotic resistance characteristics and mechanisms of E. coli. Then, the TCM formulas and extracts are listed along with their active ingredients against E. coli, including extraction solution, minimum inhibitory concentration (MIC), and the antibacterial mechanisms. In addition, there is growing evidence supporting the synergistic therapeutic strategy of combining TCM with antibiotics for the treatment of antibiotic-resistant E. coli infections, and we provide a summary of this evidence and its underlying mechanisms. In conclusion, we present a comprehensive review of TCM and highlight its potential and advantages in the prevention and treatment of E. coli infections. We hold the opinion that TCM will play an important role in global health, pharmaceutical development, and livestock farming in the future.
Collapse
Affiliation(s)
- Shuo Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lu Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuang Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
20
|
Wu X, Chen G, Wang P, Yang L, Wu Y, Wu G, Li H, Shao B. Co-existence of a novel RND efflux pump tmexC6D6.2-toprJ1b and bla OXA-4 in the extensively drug-resistant Pseudomonas aeruginosa ST233 clone. Int J Food Microbiol 2025; 428:110984. [PMID: 39579523 DOI: 10.1016/j.ijfoodmicro.2024.110984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
The emergence of RND efflux pump gene cluster tmexCD-toprJ threats the clinical use of tigecycline as a last-resort antibiotic. Co-existence of extended spectrum β-lactamases and tmexCD-toprJ can accelerate the emergence of multidrug resistant or extensively drug-resistant Pseudomonas aeruginosa, leading to the production of high-risk clones. This study identified a novel gene cluster, tmexC6D6.2-toprJ1b, on the chromosome of a high-risk ST233 XDR P. aeruginosa from Chinese retail chicken samples. Genetic feature analysis revealed that a tnfxB6-tmexC6D6.2-toprJ1b-strBA-floR-tet(G)-IS6100-sul1-aadA2-int1-intA structure formed a putative transposition unit. tmexC6D6.2-toprJ1b shared high similarity at the nucleotide level with other tmexCD-toprJ gene clusters. tnfxB6 regulator was located downstream from the tmexC6D6.2-toprJ1b gene cluster and it did not affect bacterial resistance phenotype. The expression of tmexC6D6.2-toprJ1b could reduce the growth of E. coli and bring a moderate fitness cost. Further studies are needed to decipher the mechanism of the silencing of tnfxB6 in mediating the high-level resistance of tmexC6D6.2-torpJ1b and continuously monitor the coexistence of the novel tmexCD-toprJ gene cluster and the ESBLs-related resistance genes.
Collapse
Affiliation(s)
- Xuan Wu
- School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, PR China
| | - Guorong Chen
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, PR China; Department of Gastroenterology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100029, PR China
| | - Panpan Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, PR China
| | - Lu Yang
- Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai 200438, PR China
| | - Yige Wu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, PR China; National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Guoquan Wu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Hui Li
- School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, PR China.
| | - Bing Shao
- School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, PR China.
| |
Collapse
|
21
|
Macesic N, Uhlemann AC, Peleg AY. Multidrug-resistant Gram-negative bacterial infections. Lancet 2025; 405:257-272. [PMID: 39826970 DOI: 10.1016/s0140-6736(24)02081-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 01/22/2025]
Abstract
Multidrug-resistant Gram-negative bacterial infections cause significant morbidity and mortality globally. These pathogens easily acquire antimicrobial resistance (AMR), further highlighting their clinical significance. Third-generation cephalosporin-resistant and carbapenem-resistant Enterobacterales (eg, Escherichia coli and Klebsiella spp), multidrug-resistant Pseudomonas aeruginosa, and carbapenem-resistant Acinetobacter baumannii are the most problematic and have been identified as priority pathogens. In response, several new diagnostic technologies aimed at rapidly detecting AMR have been developed, including biochemical, molecular, genomic, and proteomic techniques. The last decade has also seen the licensing of multiple antibiotics that have changed the treatment landscape for these challenging infections.
Collapse
Affiliation(s)
- Nenad Macesic
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC, Australia; Centre to Impact AMR, Monash University, Melbourne, VIC, Australia
| | - Anne-Catrin Uhlemann
- Department of Medicine, Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY, USA
| | - Anton Y Peleg
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC, Australia; Centre to Impact AMR, Monash University, Melbourne, VIC, Australia; Infection Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
22
|
Feng Y, Lu X, Zhao J, Li H, Xu J, Li Z, Wang M, Peng Y, Tian T, Yuan G, Zhang Y, Liu J, Zhang M, Zhu La ALT, Qu G, Mu Y, Guo W, Wu Y, Zhang Y, Wang D, Hu Y, Kan B. Regional antimicrobial resistance gene flow among the One Health sectors in China. MICROBIOME 2025; 13:3. [PMID: 39763003 PMCID: PMC11705761 DOI: 10.1186/s40168-024-01983-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Antimicrobial resistance poses a significant threat to global health, with its spread intricately linked across human, animal, and environmental sectors. Revealing the antimicrobial resistance gene (ARG) flow among the One Health sectors is essential for better control of antimicrobial resistance. RESULTS In this study, we investigated regional ARG transmission among humans, food, and the environment in Dengfeng, Henan Province, China by combining large-scale metagenomic sequencing with culturing of resistant bacterial isolates in 592 samples. A total of 40 ARG types and 743 ARG subtypes were identified, with a predominance of multidrug resistance genes. Compared with microbes from human fecal samples, those from food and environmental samples showed a significantly higher load of ARGs. We revealed that dietary habits and occupational exposure significantly affect ARG abundance. Pseudomonadota, particularly Enterobacteriaceae, were identified as the main ARG carriers shaping the resistome. The resistome in food samples was found more affected by mobile genetic elements (MGEs), whereas in environmental samples, it was more associated with the microbial composition. We evidenced that horizontal gene transfer (HGT) mediated by plasmids and phages, together with strain transmission, particularly those associated with the Enterobacteriaceae members, drive regional ARG flow. Lifestyle, dietary habits, and occupational exposure are all correlated with ARG dissemination and flies and food are important potential sources of ARGs to humans. The widespread mobile carbapenemase gene, OXA-347, carried by non-Enterobacteriaceae bacteria in the human gut microbiota, requires particular attention. Finally, we showed that machine learning models based on microbiome profiles were effective in predicting the presence of carbapenem-resistant strains, suggesting a valuable approach for AMR surveillance. CONCLUSIONS Our study provides a full picture of regional ARG transmission among the One Health sectors in a county-level city in China, which facilitates a better understanding of the complex routes of ARG transmission and highlights new points of focus for AMR surveillance and control. Video Abstract.
Collapse
Affiliation(s)
- Yuqing Feng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xin Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Jiayong Zhao
- Institute of Infectious Disease Prevention and Control, Henan Center for Disease Control and Prevention, Zhengzhou, 450016, China
| | - Hongmin Li
- Dengfeng Center for Disease Control and Prevention, Dengfeng, Zhengzhou, 452470, China
| | - Jialiang Xu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhenpeng Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Mengyu Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yao Peng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Tian Tian
- Dengfeng Center for Disease Control and Prevention, Dengfeng, Zhengzhou, 452470, China
| | - Gailing Yuan
- Dengfeng Center for Disease Control and Prevention, Dengfeng, Zhengzhou, 452470, China
| | - Yuan Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jiaqi Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Meihong Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - A La Teng Zhu La
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Geruo Qu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Yujiao Mu
- Institute of Infectious Disease Prevention and Control, Henan Center for Disease Control and Prevention, Zhengzhou, 450016, China
| | - Wanshen Guo
- Institute of Infectious Disease Prevention and Control, Henan Center for Disease Control and Prevention, Zhengzhou, 450016, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Yuyu Zhang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Dexiang Wang
- Dengfeng Center for Disease Control and Prevention, Dengfeng, Zhengzhou, 452470, China.
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Biao Kan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
23
|
Fang D, Xu T, Li F, Sun Y, Sun J, Yin Y, Zhang H, Wang Z, Liu Y. Methionine-driven methylation modification overcomes plasmid-mediated high-level tigecycline resistance. Nat Commun 2025; 16:417. [PMID: 39762254 PMCID: PMC11704046 DOI: 10.1038/s41467-024-55791-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
Tigecycline is a last-resort antibiotic to treat complicated infections caused by multidrug-resistant pathogens, while the emergence of plasmid-mediated tet(X) family severely compromises its clinical efficacy. Novel antimicrobial strategies not limited to new antibiotics in pharmaceutical pipeline are urgently needed. Herein, we reveal the metabolic disparities between tet(X)-negative and -positive E. coli, including distinct energy demand patterns under tigecycline exposure. In particular, the cysteine and methionine metabolism pathway is remarkably downregulated in tet(X)-positive bacteria. More importantly, we find that the addition of exogenous L-methionine (Met) effectively resensitizes tet(X)-positive pathogens to tigecycline. Our mechanistic analysis demonstrates that exogenous Met promotes intracellular tigecycline accumulation by upregulating bacterial proton motive force. Moreover, Met accelerates the conversion to S-adenosyl-L-methionine, an essential methyl donor, thereby enhancing 5mC methylation modification in the promoter region of tet(X4) gene and reducing its expression. Consistently, the potentiation of Met to tigecycline is abolished in tet(X4)-carrying E. coli Δdcm but restored in dcm-complementary bacteria, which encodes DNA-cytosine methyltransferase. In multiple animal models of infection, Met markedly potentiates the effectiveness of tigecycline against pathogenic E. coli and K. pneumoniae. Overall, this work highlights the therapeutic potential of Met in overcoming plasmid-mediated high-level tigecycline resistance, and provides a new paradigm to enhance antibiotic efficacy by harnessing cellular metabolic networks as well as epigenetic modifications.
Collapse
Affiliation(s)
- Dan Fang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tianqi Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Fulei Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yue Sun
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jingyi Sun
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yanqing Yin
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Haijie Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China.
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.
| |
Collapse
|
24
|
Sun Y, Sun J, Zhao Z, Gao Z, Guo H, Hu T, An L, Gu J, Wang X. The addition of vermiculite reduced antibiotic resistance genes during composting: Novel insights based on reducing host bacteria abundance and inhibiting plasmid-mediated conjugative transfer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123719. [PMID: 39675329 DOI: 10.1016/j.jenvman.2024.123719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/12/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Antibiotic resistance genes (ARGs) are prevalent in raw materials used for composting. The utilization of eco-friendly materials for the removal of ARGs is regarded as an economically effective method. Therefore, this study focused on the impact of incorporating different proportions of vermiculite (0% (CK), 5% (T1), and 10% (T2)) on the dynamics of ARGs during composting. In comparison to CK, the total absolute abundances of ARGs decreased by 14.17% and 31.52% in T1 and T2, respectively. Potential human pathogenic bacteria, including Acinetobacter, Corynebacterium, and Lactobacillus, were identified as core hosts of ARGs. The addition of vermiculite effectively inhibited proliferation of ARG hosts by extending the thermophilic phase of composting and reducing bioavailable copper concentrations. Incorporation of vermiculite decreased the absolute abundances of transposons and integrons, such as intI1 and Tn916/1545, which were significantly positively correlated with most ARGs. Adding vermiculite simultaneously enhanced the removal of common environmental plasmids (e.g., Inc.P, Inc.W), and downregulated expression of genes associated with bacterial conjugation and plasmid replication (e.g., trBbp, trfAp), thereby inhibiting the dissemination of ARGs. Taken together, this study provides novel insights that the incorporation of vermiculite can effectively enhance the reduction rate of ARGs during composting by reducing the host of ARGs and inhibiting their dissemination.
Collapse
Affiliation(s)
- Yifan Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jian Sun
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, 130000, China
| | - Zixuan Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zixuan Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Honghong Guo
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tao Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lu An
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
25
|
Ho CS, Wong CTH, Aung TT, Lakshminarayanan R, Mehta JS, Rauz S, McNally A, Kintses B, Peacock SJ, de la Fuente-Nunez C, Hancock REW, Ting DSJ. Antimicrobial resistance: a concise update. THE LANCET. MICROBE 2025; 6:100947. [PMID: 39305919 DOI: 10.1016/j.lanmic.2024.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 01/04/2025]
Abstract
Antimicrobial resistance (AMR) is a serious threat to global public health, with approximately 5 million deaths associated with bacterial AMR in 2019. Tackling AMR requires a multifaceted and cohesive approach that ranges from increased understanding of mechanisms and drivers at the individual and population levels, AMR surveillance, antimicrobial stewardship, improved infection prevention and control measures, and strengthened global policies and funding to development of novel antimicrobial therapeutic strategies. In this rapidly advancing field, this Review provides a concise update on AMR, encompassing epidemiology, evolution, underlying mechanisms (primarily those related to last-line or newer generation of antibiotics), infection prevention and control measures, access to antibiotics, antimicrobial stewardship, AMR surveillance, and emerging non-antibiotic therapeutic approaches. The Review also discusses the potential roles of artificial intelligence in addressing AMR, including antimicrobial susceptibility testing, AMR surveillance, antimicrobial stewardship, diagnosis, and antimicrobial drug discovery and development. This Review highlights the urgent need for addressing the global effects of AMR and for rapid advancement of relevant technology in this dynamic field.
Collapse
Affiliation(s)
- Charlotte S Ho
- Department of Ophthalmology, Western Eye Hospital, London, UK
| | | | - Thet Tun Aung
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Rajamani Lakshminarayanan
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore; Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore
| | - Jodhbir S Mehta
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore; Singapore National Eye Centre, Singapore Eye Research Institute, Singapore
| | - Saaeha Rauz
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Birmingham and Midland Eye Centre, Sandwell and West Birmingham NHS Trust, Birmingham, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Balint Kintses
- Synthetic and System Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, National Laboratory of Biotechnology, Szeged, Hungary; HCEMM-BRC Translational Microbiology Research Group, Szeged, Hungary
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Department of Psychiatry and Department of Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering and Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA.
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
| | - Darren S J Ting
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore; Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Birmingham and Midland Eye Centre, Sandwell and West Birmingham NHS Trust, Birmingham, UK; Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
26
|
Feng J, Jia M, Zhuang Y, Xu Z, Chen Y, Fei J, Xia J, Hong L, Zhang J, Wu H, Chen X, Chen M. Prevalence, transmission and genomic epidemiology of mcr-1-positive colistin-resistant Escherichia coli strains isolated from international airplane waste, local resident fecal and wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177556. [PMID: 39547379 DOI: 10.1016/j.scitotenv.2024.177556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
The emergence and dissemination of mcr-1-positive Escherichia coli (MCRPEC) represent a critical public health threat. Here, we conducted a prospective analysis of MCRPEC isolates from wastewater treatment plants (WWTPs), local residents' fecal (LRF), and international airplane waste (IAW) to investigate their genetic characteristics and transmission patterns circulating in human-environment domains. The MCRPEC prevalence was 2.43 % in WWTPs, 1.37 % in IAW and 0.69 % in LRF. MCRPEC showed substantial genetic diversity, encompassing 61 sequence types (primarily ST1011, ST101, and ST2705), 7 plasmid types (primarily IncI2), 8 phylogroups (primarily A and B1), 9 mcr-1-flanked lineages (primarily L5), 6 clusters (primarily C2 and C4), diverse serotypes, and 61.95 % transposon-containing strains. The mcr-1 gene co-existed with 46 antibiotic resistance genes (ARGs) and 19 virulence factor genes (VFGs). Notably, 6 IncI2 plasmids carried the blaCTX-M, IS1380, and mcr-1 genes. MCRPEC from WWTPs harbored a greater number of ARGs (56.95 ± 5.99) but fewer VFGs (15.03 ± 6.40) compared to those from human-associated sources (LRF and IAW). ST1011, ST2705, IncHI2, and L7 were prevalent in WWTP-derived MCRPEC, whereas IncX4 and L3 were more common in human-derived MCRPEC. Genetic features such as ST101, ST48, IncI2, L4, L5, C2, and C4 were simultaneously present in strains from LRF, IAW, and WWTPs. Core genetic analyses also showed genetically similar MCRPEC strains across various geographic locations. The findings underscore the extensive dissemination, strong environmental adaptation, and clonal transmission of MCRPEC across diverse reservoirs, reinforcing the urgent need for coordinated multisectoral surveillance of human and environment interfaces to effectively mitigate further transmission.
Collapse
Affiliation(s)
- Jun Feng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.
| | - Min Jia
- Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Yuan Zhuang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Zhen Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yong Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jiayi Fei
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jiahui Xia
- Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Liang Hong
- Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Jing Zhang
- Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Huanyu Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xin Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Min Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.
| |
Collapse
|
27
|
Zhang L, Xie J, Qu Z, Duan D, Liu C, Zhang D, Jiang H, Dai X, Jiang Y, Fang X, Wu C. A rapid liquid chromatography-tandem mass spectrometry based method for the detection of Tet(X) resistance gene in Enterobacteriaceae. Front Microbiol 2024; 15:1477740. [PMID: 39712892 PMCID: PMC11659754 DOI: 10.3389/fmicb.2024.1477740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
There is a major public health threat posed by antibiotic resistance around the world. Tigecycline overcomes the resistance mechanisms of traditional tetracyclines and is often seen as the final resort in combating infections caused by bacteria resistant to multiple drugs. However, the introduction of new mobile tet(X) tetracycline destructases is leading to a notable rise in tigecycline resistance. Therefore, a rapid detection method is needed to monitor the spread of tigecycline resistance. In this study, a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to detect tet(X) in bacterial isolates was developed. This method utilized the analysis by LC-MS/MS of metabolite ratios to determine the presence of tet(X). Bacterial suspensions were co-incubated with tigecycline for 1 h, where tet(X) destructase inactivated tigecycline, making a particular metabolite with a 16-Da change in mass. The characterized quantitative ion pairing of tigecycline in the ESI positive mode was observed at 586.1 → 569.1 m/z. The oxygenated tigecycline detection was established at 602.2 → 529.1 m/z. A model was established using 35 tet(X)-positive and 15 tet(X)-negative Enterobacteriaceae strains in this study to optimize the cutoff value. Applying the model to analyze 70 bacterial isolates, the sensitivity of the LC-MS/MS test was 98.9% compared to polymerase chain reaction (PCR), and specificity was 100%. This method is rapid and easy to operate, providing results within 1 h, making it more suitable for routine use in clinical microbiology laboratories.
Collapse
Affiliation(s)
- Liyun Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jie Xie
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Ziyu Qu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Duan Duan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chujun Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Di Zhang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Haiyang Jiang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - You Jiang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Congming Wu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
Wang B, Farhan MHR, Yuan L, Sui Y, Chu J, Yang X, Li Y, Huang L, Cheng G. Transfer dynamics of antimicrobial resistance among gram-negative bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176347. [PMID: 39306135 DOI: 10.1016/j.scitotenv.2024.176347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Antimicrobial resistance (AMR) in gram-negative bacteria (GNBs) is a significant global health concern, exacerbated by mobile genetic elements (MGEs). This review examines the transfer of antibiotic resistance genes (ARGs) within and between different species of GNB facilitated by MGEs, focusing on the roles of plasmids and phages. The impact of non-antibiotic chemicals, environmental factors affecting ARG transfer frequency, and underlying molecular mechanisms of bacterial resistance evolution are also discussed. Additionally, the study critically assesses the impact of fitness costs and compensatory evolution driven by MGEs in host organisms, shedding light on the transfer frequency of ARGs and host evolution within ecosystems. Overall, this comprehensive review highlights the factors and mechanisms influencing ARG movement among diverse GNB species and underscores the importance of implementing holistic One-Health strategies to effectively address the escalating public health challenges associated with AMR.
Collapse
Affiliation(s)
- Bangjuan Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Muhammad Haris Raza Farhan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Linlin Yuan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Sui
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinhua Chu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaohan Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
29
|
Yang B, Yang J, Chen R, Chai J, Wei X, Zhao J, Zhao Y, Deng F, Li Y. Metagenome-Assembled Genomes of Pig Fecal Samples in Nine European Countries: Insights into Antibiotic Resistance Genes and Viruses. Microorganisms 2024; 12:2409. [PMID: 39770612 PMCID: PMC11676251 DOI: 10.3390/microorganisms12122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Gut microbiota plays a crucial role in the health and productivity of pigs. However, the spread of antibiotic resistance genes (ARGs) and viruses within the pig intestinal microbiota poses significant threats to animal and public health. This study utilized 181 pig samples from nine European countries and employed metagenomic assembly methods to investigate the dynamics and distribution of ARGs and viruses within the pig intestinal microbiota, aiming to observing their associations with potential bacterial hosts. We identified 4605 metagenome-assembled genomes (MAGs), corresponding to 19 bacterial phyla, 97 families, 309 genera, and a total of 449 species. Additionally, 44 MAGs were classified as archaea. Analysis of ARGs revealed 276 ARG types across 21 ARG classes, with Glycopeptide being the most abundant ARG class, followed by the class of Multidrug. Treponema D sp016293915 was identified as a primary potential bacterial host for Glycopeptide. Aligning nucleotide sequences with a viral database, we identified 1044 viruses. Among the viral genome families, Peduoviridae and Intestiviridae were the most prevalent, with CAG-914 sp000437895 being the most common potential host species for both. These findings highlight the importance of MAGs in enhancing our understanding of the gut microbiome, revealing microbial diversity, antibiotic resistance, and virus-bacteria interactions. The data analysis for the article was based on the public dataset PRJEB22062 in the European Nucleotide Archive.
Collapse
Affiliation(s)
- Boxuan Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China; (B.Y.); (J.Y.); (R.C.); (J.C.)
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Jianbo Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China; (B.Y.); (J.Y.); (R.C.); (J.C.)
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Routing Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China; (B.Y.); (J.Y.); (R.C.); (J.C.)
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Jianmin Chai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China; (B.Y.); (J.Y.); (R.C.); (J.C.)
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Xiaoyuan Wei
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA; (X.W.); (J.Z.)
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA; (X.W.); (J.Z.)
| | - Yunxiang Zhao
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China;
| | - Feilong Deng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China; (B.Y.); (J.Y.); (R.C.); (J.C.)
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China; (B.Y.); (J.Y.); (R.C.); (J.C.)
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| |
Collapse
|
30
|
Wang Z, Li H. The tigecycline resistance mechanisms in Gram-negative bacilli. Front Cell Infect Microbiol 2024; 14:1471469. [PMID: 39635040 PMCID: PMC11615727 DOI: 10.3389/fcimb.2024.1471469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024] Open
Abstract
Tigecycline, hailed as a pivotal agent in combating multidrug-resistant bacterial infections, confronts obstacles posed by the emergence of resistance mechanisms in Gram-negative bacilli. This study explores the complex mechanisms of tigecycline resistance in Gram-negative bacilli, with a particular focus on the role of efflux pumps and drug modification in resistance. By summarizing these mechanisms, our objective is to provide a comprehensive understanding of tigecycline resistance in Gram-negative bacilli, thereby illuminating the evolving landscape of antimicrobial resistance. This review contributes to the elucidation of current existing tigecycline resistance mechanisms and provides insights into the development of effective strategies to manage the control of antimicrobial resistance in the clinical setting, as well as potential new targets for the treatment of tigecycline-resistant bacterial infections.
Collapse
Affiliation(s)
- Zhiren Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Henan Li
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
31
|
Jarocki VM, Li D, Bogema DR, Yam J, Jenkins C, Hai FI, Djordjevic SP. Comparative genomic analysis of ESBL-selected and non-selected Escherichia coli in Australian wastewater: Elucidating differences in diversity, antimicrobial resistance, and virulence profiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175079. [PMID: 39094658 DOI: 10.1016/j.scitotenv.2024.175079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/07/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
Extended-spectrum β-lactamases (ESBLs)-producing E. coli have been proposed as an indicator bacterium for antimicrobial resistance (AMR) surveillance within a OneHealth framework. However, it is important to understand the effects and potential biases ESBL-selection has on E. coli populations. Utilising whole genome sequencing, this study compared 80 ESBL-selected E. coli isolates with 201 non-selected isolates from Australian wastewater. The findings revealed significant variations between these cohorts in genetic diversity, AMR profiles, and carriage of virulence-associated genes (VAGs), plasmids, and the transmissible Locus of Stress Tolerance (tLST), a genomic island that imparts resistance to extreme heat and chlorination. The study highlights the predominance of certain sequence types (STs), particularly ST131 (75 % clade A), in ESBL-selected isolates (40 % vs 2 %) and overall the ESBL-selected isolates were largely multidrug-resistant (MDR), predominantly carrying genes for resistance to aminoglycosides, extended-spectrum β-lactams, fluoroquinolone, macrolides, sulphonamides/trimethoprim, and tetracyclines. The ESBLs identified were almost exclusively blaCTX-M genes, most commonly blaCTX-M-15 > blaCTX-M-27 > blaCTX-M-14. These were predominately carried on IncF plasmids or chromosomally (always ISEcp1 associated), in equal numbers. In contrast, 80 % of non-selected isolates carried no acquired ARGs, and none carried blaCTX-M genes. In both cohorts, extraintestinal pathogenic E. coli (ExPEC) was the dominate pathotype (35 % total) with few (4 % total) intestinal pathogenic E. coli pathotypes identified (aEPEC > ETEC > EAEC). Nevertheless, some clinically important genes were only identified in the non-selected group, namely tigecycline-resistance gene tet(X4) and AmpC ESBL blaCMY-2. Additionally, the presence of tLST, associated with higher metal resistance gene carriage (Ag, As, Cu, Hg, Ni), in a substantial portion of non-selected isolates (20 % vs 0 %), underscores environmental pressures shaping bacterial populations in wastewater ecosystems. These insights are important for developing comprehensive, less biased genomic surveillance strategies to understand and manage public health threats posed by pathogenic E. coli and AMR.
Collapse
Affiliation(s)
- Veronica M Jarocki
- Australian Institute for Microbiology & Infection, University of Technology Sydney, NSW, Australia; Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, NSW, Australia; Cooperative Research Centre for Solving Antimicrobial resistance in Agribusiness, Food and Environment (CRC SAAFE), South Australia, Australia.
| | - Dmitriy Li
- Australian Institute for Microbiology & Infection, University of Technology Sydney, NSW, Australia; Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, NSW, Australia
| | - Daniel R Bogema
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, NSW, Australia; Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, NSW, Australia
| | - Jerald Yam
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, NSW, Australia
| | - Cheryl Jenkins
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, NSW, Australia; Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, NSW, Australia
| | - Faisal I Hai
- School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, NSW, Australia
| | - Steven P Djordjevic
- Australian Institute for Microbiology & Infection, University of Technology Sydney, NSW, Australia; Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, NSW, Australia.
| |
Collapse
|
32
|
Wang Z, Li Y, Wang J, Li S. Tetracycline antibiotics in agricultural soil: Dissipation kinetics, transformation pathways, and structure-related toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175126. [PMID: 39084385 DOI: 10.1016/j.scitotenv.2024.175126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Tetracyclines (TCs) are the most common antibiotics in agricultural soil, due to their widespread usage and strong persistence. Biotic and abiotic degradation of TCs may generate toxic transformation products (TPs), further threatening soil ecological safety. Despite the increasing attention on the environmental behavior of TCs, a systematic review on the dissipation of TCs, evolution of TPs, and structure-toxicity relationship of TCs in agricultural soil remains lacking. This review aimed to provide a comprehensive overview of the environmental fate of TCs in agricultural soil. We first introduced the development history and structural features of different generations of TCs. Then, we comparatively evaluated the dissipation kinetics, transportation pathways, and ecological impacts of three representative TCs, namely tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC), in agricultural soil. The results showed that the dissipation kinetics of TCs generally followed the first-order kinetic model, with the median dissipation half-lives ranging from 20.0 to 38.8 days. Among the three TCs, OTC displayed the lowest dissipation rates due to its structural stability. The typical degradation pathways of TCs in soil included epimerization/isomerization, demethylation, and dehydration. Isomerization and dehydration reactions may lead to the formation of more toxic TPs, while demethylation was accompanied by the alteration of the minimal pharmacophore of TCs thus potentially reducing the toxicity. Toxicological experiments are urgently needed in future to comprehensively evaluate the ecological risks of TCs in agricultural soil.
Collapse
Affiliation(s)
- Zhu Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
33
|
Alav I, Buckner MMC. Non-antibiotic compounds associated with humans and the environment can promote horizontal transfer of antimicrobial resistance genes. Crit Rev Microbiol 2024; 50:993-1010. [PMID: 37462915 PMCID: PMC11523920 DOI: 10.1080/1040841x.2023.2233603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/23/2023] [Accepted: 06/30/2023] [Indexed: 02/15/2024]
Abstract
Horizontal gene transfer plays a key role in the global dissemination of antimicrobial resistance (AMR). AMR genes are often carried on self-transmissible plasmids, which are shared amongst bacteria primarily by conjugation. Antibiotic use has been a well-established driver of the emergence and spread of AMR. However, the impact of commonly used non-antibiotic compounds and environmental pollutants on AMR spread has been largely overlooked. Recent studies found common prescription and over-the-counter drugs, artificial sweeteners, food preservatives, and environmental pollutants, can increase the conjugative transfer of AMR plasmids. The potential mechanisms by which these compounds promote plasmid transmission include increased membrane permeability, upregulation of plasmid transfer genes, formation of reactive oxygen species, and SOS response gene induction. Many questions remain around the impact of most non-antibiotic compounds on AMR plasmid conjugation in clinical isolates and the long-term impact on AMR dissemination. By elucidating the role of routinely used pharmaceuticals, food additives, and pollutants in the dissemination of AMR, action can be taken to mitigate their impact by closely monitoring use and disposal. This review will discuss recent progress on understanding the influence of non-antibiotic compounds on plasmid transmission, the mechanisms by which they promote transfer, and the level of risk they pose.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Michelle M. C. Buckner
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
34
|
Yan Z, Wang P, Wang H, Zhang J, Zhang Y, Wu Y, Zhou H, Li Y, Shen Z, Chen G, Li R, Zhang R. Emergence and genomic epidemiology of tigecycline resistant bacteria of fly origin across urban and rural China. ENVIRONMENT INTERNATIONAL 2024; 193:109099. [PMID: 39476596 DOI: 10.1016/j.envint.2024.109099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/25/2024]
Abstract
Plasmid-mediated tigecycline resistance genes, notably the tet(X) and tmexCD-toprJ genes, have garnered considerable attention due to their transferability. This study aims to investigate the prevalence and resistance mechanisms associated with tet(X) and tmexCD-toprJ in flies, which are important reservoirs of antimicrobial resistance genes. A total of 52 tigecycline resistant bacterial isolates were collected, among which 40 (76.9 %) and 12 (23.1 %) were positive for tet(X) and tmexCD-toprJ, respectively. Tigecycline resistant bacteria were isolated from diverse geographical locations in China, with tet(X4)-positive Escherichia coli and tmexCD1-toprJ1-positive Klebsiella pneumoniae dominant among the isolates. The prevalence of tet(X) in rural area was significantly higher than that in urban area (2.7 % vs. 0.3 %; P < 0.001), while the prevalence of tmexCD1-toprJ1 shows no significant difference between urban and rural areas (0.2 % vs. 0.6 %; P > 0.05). Most tet(X)-positive strains (n = 40, 100.0 %), and 11(91.7 %) of the tmexCD1-toprJ1-positive strains exhibited multi-drug resistance. The IncFIB(Mar)/IncHI1B hybrid plasmid carrying tmexCD1-toprJ1 was identified by whole-genome sequencing analysis, which dominated the transmission of tmexCD1-toprJ1 in K. pneumoniae. Genetic context analysis showed that tmexCD1-toprJ1 was related locally to IS26, and IS26 may exacerbate the spread of tmexCD1-toprJ1 in different bacteria. In addition, the genetic structure of tmexCD1-toprJ1 also contains several antimicrobial resistance genes, including aph(3')-Ic, sul1, blaDHA-1, blaCTX-M-5, etc., conferring resistance to aminoglycosides, sulfonamides, and carbapenems. This study provides insights into the epidemiology and transmission dynamics of tigecycline resistance genes, informing targeted intervention strategies to mitigate antimicrobial resistance dissemination.
Collapse
Affiliation(s)
- Zelin Yan
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Panpan Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hanyu Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Yanyan Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Yuchen Wu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Hongwei Zhou
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhangqi Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Gongxiang Chen
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
35
|
Dai S, Han Z, Liu S, Wang Y, Zhang Y, Yang M. Bacterial hosts and horizontal transfer characteristics of clinically important tet(X)-variant genes in municipal wastewater treatment plants using epicPCR-directed cultivation strategy. WATER RESEARCH 2024; 268:122658. [PMID: 39486342 DOI: 10.1016/j.watres.2024.122658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024]
Abstract
Mobile tet(X)-variant genes confer resistance to a wide range of tetracyclines, including the antibiotic of last-resort, tigecycline, raising significant concerns regarding their potential spread cross-environmental dissemination. However, the bacterial hosts and environmental spread of these genes remain poorly understood. Herein, a retrospective study unveiled the prevalence of tet(X)-variant genes (ranging from tet(X3) to tet(X6)) in activated sludge samples from five municipal wastewater treatment plants (WWTPs) from 2013 to 2021. Among these variants, tet(X4) exhibited the highest detection frequency (100 %) and abundance [(2.48 ± 3.07) × 107 copies/g dry weight] with an increasing trend. An epicPCR-directed cultivation strategy was proposed to facilitate the targeted isolation of tet(X4)-carrying bacterial hosts in activated sludge. This strategy involves the identification of bacterial host profiles using epicPCR and subsequent selective isolating target bacteria. Enterobacteriaceae emerged as the primary bacterial host for tet(X4), alongside previously unreported genera like Providencia, Advenella, and Moheibacter. Subsequent selective isolation of the most abundant Enterobacteriaceae based on the epicPCR-informed host spectrum yielded 39 tet(X4)-carrying Escherichia coli strains from the WWTP. Whole genome sequencing of tet(X4)-positive strains revealed that plasmid-mediated horizontal gene transfer is the primary mechanism driving tet(X4) dissemination. Plasmids including IncFIA(HI1)/IncHI1A/IncHI1B(R27) and IncX1, commonly reported in various clinical and animal settings, were identified as the predominant carriers of tet(X4). E. coli strains harbouring tet(X4) in the WWTP showed substantial genetic similarity to strains from hospital and animal sources, underscoring concerns about the potential risk of across diverse sectors. This study provided the first glimpse of the presence of mobile tet(X)-variants in WWTPs, and highlighted the promise of the epicPCR-directed cultivation strategy for exploring bacterial hosts of clinically important ARGs in different habitats from a One Health perspective.
Collapse
Affiliation(s)
- Shiting Dai
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shihai Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Chen C, Lv Y, Wu T, Liu J, Guo Y, Huang J. Concurrence of Inactivation Enzyme-Encoding Genes tet(X), blaEBR, and estT in Empedobacter Species from Chickens and Surrounding Environments. Foods 2024; 13:3201. [PMID: 39410235 PMCID: PMC11475475 DOI: 10.3390/foods13193201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
The emergence of inactivation enzyme-encoding genes tet(X), blaEBR, and estT challenges the effectiveness of tetracyclines, β-lactams, and macrolides. This study aims to explore the concurrence and polymorphism of their variants in Empedobacter sp. strains from food-producing animals and surrounding environments. A total of eight tet(X) variants, seven blaEBR variants, and seven estT variants were detected in tet(X)-positive Empedobacter sp. strains (6.7%) from chickens, sewage, and soil, including 31 Empedobacter stercoris and 6 novel species of Taxon 1. All of them were resistant to tigecycline, tetracycline, colistin, and ciprofloxacin, and 16.2% were resistant to meropenem, florfenicol, and cefotaxime. The MIC90 of tylosin, tilmicosin, and tildipirosin was 128 mg/L, 16 mg/L, and 8 mg/L, respectively. Cloning expression confirmed that tet(X6) and the novel variants tet(X23), tet(X24), tet(X25), tet(X26), and tet(X26.2) conferred high-level tigecycline resistance, while all of the others exhibited relatively low-level activities or were inactivated. The bacterial relationship was diverse, but the genetic environments of tet(X) and blaEBR were more conserved than estT. An ISCR2-mediated tet(X6) transposition structure, homologous to those of Acinetobacter sp., Proteus sp., and Providencia sp., was also identified in Taxon 1. Therefore, the tet(X)-positive Empedobacter sp. strains may be ignored and pose a serious threat to food safety and public health.
Collapse
Affiliation(s)
- Chong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (C.C.); (Y.L.); (T.W.); (J.L.)
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Yilin Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (C.C.); (Y.L.); (T.W.); (J.L.)
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Taotao Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (C.C.); (Y.L.); (T.W.); (J.L.)
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Jing Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (C.C.); (Y.L.); (T.W.); (J.L.)
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Yanan Guo
- Animal Science Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China;
| | - Jinlin Huang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (C.C.); (Y.L.); (T.W.); (J.L.)
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
37
|
Zhang H, Chen W, Lu X, Liang Y, Quan X, Liu X, Shi T, Yu Y, Li R, Wu H. Emergence and Characterization of the High-Level Tigecycline Resistance Gene tet(X4) in Salmonella enterica Serovar Rissen from Food in China. Foodborne Pathog Dis 2024. [PMID: 39358321 DOI: 10.1089/fpd.2024.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
The plasmid-mediated tet(X4) gene has exhibited a high-level resistance to tigecycline (TGC), which has raised concerns globally regarding antibiotic resistance. Although the widespread tet(X4) has been found widely in Escherichia coli, it is scarcely found in other Enterobacteriaceae. This study aimed to characterize a ST469 Salmonella enterica serovar Rissen (S. Rissen) isolate harboring tet(X4) from pork, which was identified and characterized via antimicrobial susceptibility testing, conjugation assays, plasmid curing testing, whole-genome sequencing, and bioinformatic analysis. Ten ST469 S. Rissen isolates of 223 Salmonella spp. isolates were isolated from food samples in China during 2021-2023. One of 10 S. Rissen isolates, SM2301, carrying tet(X4) conferred high-level resistance to TGC (minimum inhibitory concentration > 8 µg/mL). The tet(X4) could be conjugated into different recipients, including E. coli, S. enteritidis, and K. pneumoniae isolates. Plasmid curing confirmed that tet(X4) was plasmid-mediated. Genetic analysis revealed that the tet(X4) in the SM2301 isolate was located in the IncFIA(HI1)-IncHI1A-IncHI1B(R27) hybrid plasmid, and the structure of tet(X4) was abh-tet(X4)-ISCR2. To the best of our knowledge, this is the first report of a tet(X4)-positive food-derived S. Rissen isolate. The extending bacterial species of tet(X4)-bearing plasmids suggested the increasing transmission risk of the mobile TGC resistance gene tet(X4) beyond E. coli. This study highlights the emerging and evolution risk of novel resistance genes across various bacterial species. Therefore, further surveillance is warranted to monitor the prevalence of tet(X4) in Salmonella spp. and other bacterial species.
Collapse
Affiliation(s)
- Hongzhi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Wenjie Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Xiaoyu Lu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
| | - Yingying Liang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Xiao Quan
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Xin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Tianqi Shi
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Ying Yu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | | | - Huanyu Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| |
Collapse
|
38
|
Li G, Han L, Xia LJ, Gao A, Li ZP, Zhou SY, Wan L, Deng Y, Zhou TH, Lu XY, Luo Y, Liang DS, Wu GT, Tang SQ, Lian XL, Ren H, Liao XP, Chen L, Sun J. Waterborne polyurethane nanoparticles incorporating linoleic acid as a potential strategy for controlling antibiotic resistance spread in the mammalian intestine. Mater Today Bio 2024; 28:101181. [PMID: 39221217 PMCID: PMC11364912 DOI: 10.1016/j.mtbio.2024.101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/10/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
Plasmid-mediated conjugative transfer of antibiotic resistance genes (ARGs) within the human and animal intestine represents a substantial global health concern. linoleic acid (LA) has shown promise in inhibiting conjugation in vitro, but its in vivo effectiveness in the mammalian intestinal tract is constrained by challenges in efficiently reaching the target site. Recent advancements have led to the development of waterborne polyurethane nanoparticles for improved drug delivery. In this study, we synthesized four waterborne polyurethane nanoparticles incorporating LA (WPU@LA) using primary raw materials, including N-methyldiethanolamine, 2,2'-(piperazine-1,4-diyl) diethanol, isophorone diisocyanate, castor oil, and acetic acid. These nanoparticles, identified as WPU0.89@LA, WPU0.99@LA, WPU1.09@LA, and WPU1.19@LA, underwent assessment for their pH-responsive release property and biocompatibility. Among these, WPU0.99@LA displayed superior pH-responsive release properties and biocompatibility towards Caco-2 and IPEC-J2 cells. In a mouse model, a dosage of 10 mg/kg/day WPU0.99@LA effectively reduced the conjugation of IncX4 plasmids carrying the mobile colistin resistance gene (mcr-1) by more than 45.1-fold. In vivo toxicity assessment demonstrated that 10 mg/kg/day WPU0.99@LA maintains desirable biosafety and effectively preserves gut microbiota homeostasis. In conclusion, our study provides crucial proof-of-concept support, demonstrating that WPU0.99@LA holds significant potential in controlling the spread of antibiotic resistance within the mammalian intestine.
Collapse
Affiliation(s)
- Gong Li
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Lu Han
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Li-Juan Xia
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Ang Gao
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Zhi-Peng Li
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Shi-Ying Zhou
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Lei Wan
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yao Deng
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Tian-Hong Zhou
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xin-Yi Lu
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yang Luo
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Dun-Sheng Liang
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Gui-Ting Wu
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Sheng-Qiu Tang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, PR China
| | - Xin-Lei Lian
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Hao Ren
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xiao-Ping Liao
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Liang Chen
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, 14214, USA
| | - Jian Sun
- Lingnan Guangdong Laboratory of Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, PR China
| |
Collapse
|
39
|
Xu C, Zhang Y, Ma L, Zhang G, Li C, Zhang C, Li Y, Zeng X, Li Y, Dong N. Valnemulin restores colistin sensitivity against multidrug-resistant gram-negative pathogens. Commun Biol 2024; 7:1122. [PMID: 39261709 PMCID: PMC11390741 DOI: 10.1038/s42003-024-06805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
Colistin is one of the last-resort antibiotics in treating infections caused by multidrug-resistant (MDR) pathogens. Unfortunately, the emergence of colistin-resistant gram-negative strains limit its clinical application. Here, we identify an FDA-approved drug, valnemulin (Val), exhibit a synergistic effect with colistin in eradicating both colistin-resistant and colistin-susceptible gram-negative pathogens both in vitro and in the mouse infection model. Furthermore, Val acts synergistically with colistin in eliminating intracellular bacteria in vitro. Functional studies and transcriptional analysis confirm that the combinational use of Val and colistin could cause membrane permeabilization, proton motive force dissipation, reduction in intracellular ATP level, and suppression in bacterial motility, which result in bacterial membrane disruption and finally cell death. Our findings reveal the potential of Val as a colistin adjuvant to combat MDR bacterial pathogens and treat recalcitrant infections.
Collapse
Affiliation(s)
- Chen Xu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yuan Zhang
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Lingman Ma
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guangfen Zhang
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Medical Microbiology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Chunli Li
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Medical Microbiology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Chenjie Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Yunbing Li
- Department of Medical Microbiology, Experimental Center, Suzhou Medical College of Soochow Univesity, Suzhou, China
| | - Xiangkun Zeng
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Medical Microbiology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yuanyuan Li
- Department of Medical Microbiology, Experimental Center, Suzhou Medical College of Soochow Univesity, Suzhou, China.
| | - Ning Dong
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Medical Microbiology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
- Department of Clinical Laboratory, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
40
|
Zhu J, Chen T, Ju Y, Dai J, Zhuge X. Transmission Dynamics and Novel Treatments of High Risk Carbapenem-Resistant Klebsiella pneumoniae: The Lens of One Health. Pharmaceuticals (Basel) 2024; 17:1206. [PMID: 39338368 PMCID: PMC11434721 DOI: 10.3390/ph17091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The rise of antibiotic resistance and the dwindling antimicrobial pipeline have emerged as significant threats to public health. The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a global threat, with limited options available for targeted therapy. The CRKP has experienced various changes and discoveries in recent years regarding its frequency, transmission traits, and mechanisms of resistance. In this comprehensive review, we present an in-depth analysis of the global epidemiology of K. pneumoniae, elucidate resistance mechanisms underlying its spread, explore evolutionary dynamics concerning carbapenem-resistant hypervirulent strains as well as KL64 strains of K. pneumoniae, and discuss recent therapeutic advancements and effective control strategies while providing insights into future directions. By going through up-to-date reports, we found that the ST11 KL64 CRKP subclone with high risk demonstrated significant potential for expansion and survival benefits, likely due to genetic influences. In addition, it should be noted that phage and nanoparticle treatments still pose significant risks for resistance development; hence, innovative infection prevention and control initiatives rooted in One Health principles are advocated as effective measures against K. pneumoniae transmission. In the future, further imperative research is warranted to comprehend bacterial resistance mechanisms by focusing particularly on microbiome studies' application and implementation of the One Health strategy.
Collapse
Affiliation(s)
- Jiaying Zhu
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Taoyu Chen
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangkai Zhuge
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| |
Collapse
|
41
|
Liu X, Liu Y, Ma X, Chen R, Li C, Fu H, Yang Y, Guo K, Zhang X, Liu R, Xu H, Zhu J, Zheng B. Emergence of plasmid-borne tet(X4) resistance gene in clinical isolate of eravacycline- and omadacycline-resistant Klebsiella pneumoniae ST485. Microbiol Spectr 2024; 12:e0049624. [PMID: 39041815 PMCID: PMC11370244 DOI: 10.1128/spectrum.00496-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Omadacycline and eravacycline are gradually being used as new tetracycline antibiotics for the clinical treatment of Gram-negative pathogens. Affected by various tetracycline-inactivating enzymes, there have been reports of resistance to eravacycline and omadacycline in recent years. We isolated a strain carrying the mobile tigecycline resistance gene tet(X4) from the feces of a patient in Zhejiang Province, China. The strain belongs to the rare ST485 sequence type. The isolate was identified as Klebsiella pneumoniae by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The MICs of antimicrobial agents were determined using either the agar dilution method or the micro broth dilution method. The result showed that the isolate was resistant to eravacycline (MIC = 32 mg/L), omadacycline (MIC > 64 mg/L), and tigecycline (MIC > 32 mg/L). Whole-genome sequencing revealed that the tet(X4) resistance gene is located on the IncFII(pCRY) conjugative plasmid. tet(X4) is flanked by ISVsa3, and we hypothesize that this association contributes to the spread of the resistance gene. Plasmids were analyzed by S1-nuclease pulsed-field gel electrophoresis (S1-PFGE), Southern blotting, and electrotransformation experiment. We successfully transferred the plasmid carrying tet(X4) to the recipient bacteria by electrotransformation experiment. Compared with the DH-5α, the MICs of the transformant L3995-DH5α were increased by eight-fold for eravacycline and two-fold higher for omadacycline. Overall, the emergence of plasmid-borne tet(X4) resistance gene in a clinical isolate of K. pneumoniae ST485 underscores the essential requirement for the ongoing monitoring of tet(X4) to prevent and control its further dissemination in China.IMPORTANCEThere are still limited reports on Klebsiella pneumoniae strains harboring tetracycline-resistant genes in China, and K. pneumoniae L3995hy adds a new example to those positive for the tet(X4) gene. Importantly, our study raises concerns that plasmid-mediated resistance to omadacycline and eravacycline may spread further to a variety of ecological and clinical pathogens, limiting the choice of medication for extensively drug-resistant bacterial infections. Therefore, it is important to continue to monitor the prevalence and spread of tet(X4) and other tetracyclines resistance genes in K. pneumoniae and diverse bacterial populations.
Collapse
Affiliation(s)
- Xiaojing Liu
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Yi Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohan Ma
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- The First Affiliated Hospital of Beihua University, Jilin, China
| | - Ruyan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenyu Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongxin Fu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kexin Guo
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoping Zhang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Ruishan Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Junfei Zhu
- Department of Respiratory Medicine, Taizhou Central Hospital, Taizhou, China
| | - Beiwen Zheng
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Research Units of Infectious Diseases and Microecology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
42
|
Wang Q, Wang W, Zhu Q, Shoaib M, Chengye W, Zhu Z, Wei X, Bai Y, Zhang J. The prevalent dynamic and genetic characterization of mcr-1 encoding multidrug resistant Escherichia coli strains recovered from poultry in Hebei, China. J Glob Antimicrob Resist 2024; 38:354-362. [PMID: 38795771 DOI: 10.1016/j.jgar.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/03/2024] [Accepted: 04/02/2024] [Indexed: 05/28/2024] Open
Abstract
OBJECTIVES Colistin is known as the last resort antibiotic to treat the infections caused by multidrug resistant foodborne pathogens. The emergence and widespread dissemination of plasmid-mediated colistin resistance gene mcr-1 in the Escherichia coli (E. coli) incurs potential threat to public health. Here, we investigated the epidemiology, transmission dynamics, and genetic characterization of mcr-1 harbouring E. coli isolates from poultry originated in Hebei Province, China. METHODS A total of 297 faecal samples were collected from the two large poultry farms in Hebei Province, China. The samples were processed for E. coli identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry and 16S rDNA sequencing. Then, the mcr-1 gene harbouring E. coli strains were identified by polymerase chain reaction and subjected to antimicrobial susceptibility testing by broth microdilution assay. The genomic characterization of the isolates was done by whole genome sequencing using the various bioinformatics tools, and multi-locus sequence typing was done by sequence analysis of the seven housekeeping genes. The conjugation experiment was done to check the transferability of mcr-1 along with the plasmid stability testing. RESULTS A total of six mcr-1 E. coli isolates with minimum inhibitory concentration of 4 μg/mL were identified from 297 samples (2.02%). The mcr-1 harbouring E. coli were identified as multidrug resistant and belonged to ST101 (n = 4) and ST410 (n = 2). The genetic environment of mcr-1 presented its position on IncHI2 plasmid in 4 isolates and p0111 in 2 isolates, which is a rarely reported plasmid type for mcr-1. Moreover, both type of plasmids was transferable to recipient J53, and mcr-1 was flanked by 3 mobile elements ISApl1, Tn3, and IS26 forming a novel backbone Tn3-IS26-mcr-1- pap2-ISApl1 on the p0111 plasmid. The phylogenetic analysis shared a common lineage with mcr-1 harbouring isolates from the environment, humans, and animals, which indicate its horizontal spread among the diverse sources, species, and hosts. CONCLUSION This study recommends the one health approach for future surveillance across multiple sources and bacterial species to adopt relevant measures and reduce global resistance crises.
Collapse
Affiliation(s)
- Qing Wang
- College of Veterinary Medicine, Gansu Agricultural University, Anning District, Lanzhou, Gansu Province, PR China; Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, PR China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China
| | - Weiwei Wang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, PR China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China
| | - Qiqi Zhu
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, PR China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China; College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei Province, PR China
| | - Muhammad Shoaib
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, PR China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China
| | - Wang Chengye
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, PR China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China; College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei Province, PR China
| | - Zhen Zhu
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, PR China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China; College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei Province, PR China
| | - Xiaojuan Wei
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, PR China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China
| | - Yubin Bai
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, PR China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China
| | - Jiyu Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Anning District, Lanzhou, Gansu Province, PR China; Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, PR China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China.
| |
Collapse
|
43
|
Pan Y, Zeng J, Zhang L, Hu J, Hao H, Zeng Z, Li Y. The fate of antibiotics and antibiotic resistance genes in Large-Scale chicken farm Environments: Preliminary view of the performance of National veterinary Antimicrobial use reduction Action in Guangdong, China. ENVIRONMENT INTERNATIONAL 2024; 191:108974. [PMID: 39186902 DOI: 10.1016/j.envint.2024.108974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/24/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
In 2018, China implemented the Veterinary Antimicrobial Use Reduction Action to curb the rapid development of antibiotic resistance (AR). However, the AR-related pollutions in animal farms after the reduction policy has been poorly investigated. Here, we performed a comprehensive investigation combining UPLC-MS/MS, metagenomic, and bacterial genomic analyses in eight representative large-scale chicken farms in Guangdong, China. Our results showed that antibiotics and ARGs contaminations were more severe in broiler farms than in layer farms. Notably, diverse tet(X) variants were prevalent in the chicken farms. These tet(X)s was carried by diverse E. coli lineages and obviously correlated with ISCR2 and IS1B transposases. The resistomes in chicken farms was significantly correlated with microbial community, and multiple factor analyses indicated that the joint effect of antibiotics-microbial community-MGEs was the most dominant driver of ARGs. Host tracking identified a variety of ARG bacterial hosts and the co-occurrence of ARGs-MRGs-MGEs. Source tracking indicated that the inherent component represented the main feature of resistomes in different hosts, while ARG transfer between the chicken gut and farm environments were frequent. A multiperspective evaluation of AR risk revealed that the early effect of antibiotic reduction was exhibited by the mitigation of maximum level of risky ARGs, prevalence of environmental AR pathogens, and HGT potential of ARGs mediated by phage structures. Overall, our findings provide insights into the antibiotic and ARG profiles in large-scale chicken farms with different rearing strategies and demonstrate a preliminary view of the performance of antibiotic reduction actions in China.
Collapse
Affiliation(s)
- Yu Pan
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and Technology, State International Joint Research Center for Animal Health Breeding, Shihezi University, Shihezi 832003, China
| | - Jiaxiong Zeng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Lingxuan Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jianxin Hu
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Haihong Hao
- College of Animal Science and Technology, State International Joint Research Center for Animal Health Breeding, Shihezi University, Shihezi 832003, China; National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenling Zeng
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China.
| | - Yafei Li
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
44
|
Su W, Wang W, Li L, Zhang M, Xu H, Fu C, Pang X, Wang M. Mechanisms of tigecycline resistance in Gram-negative bacteria: A narrative review. ENGINEERING MICROBIOLOGY 2024; 4:100165. [PMID: 39629109 PMCID: PMC11610970 DOI: 10.1016/j.engmic.2024.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 12/06/2024]
Abstract
Tigecycline serves as a critical "final-resort" antibiotic for treating bacterial infections caused by multidrug-resistant bacteria for which treatment options are severely limited. The increasing prevalence of tigecycline resistance, particularly among Gram-negative bacteria, is a major concern. Various mechanisms have been identified as contributors to tigecycline resistance, including upregulation of nonspecific Resistance Nodulation Division (RND) efflux pumps due to mutations in transcriptional regulators, enzymatic modification of tigecycline by monooxygenase enzymes, and mutations affecting tigecycline binding sites. This review aims to consolidate our understanding of tigecycline resistance mechanisms in Gram-negative bacteria and offer insights and perspectives for further drug development.
Collapse
Affiliation(s)
- Wenya Su
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Wenjia Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Ling Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Mengge Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Hai Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Chengzhang Fu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
| | - Xiuhua Pang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
45
|
Jiang C, Yang J, Xiao G, Xiao N, Hu J, Yang Y, Sun Z, Li Y. The IS Vsa3-ORF2- abh- tet(X4) circular intermediate-mediated transmission of tigecycline resistance in Escherichia coli isolates from duck farms. Front Cell Infect Microbiol 2024; 14:1444031. [PMID: 39282498 PMCID: PMC11392914 DOI: 10.3389/fcimb.2024.1444031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
Tigecycline is a last-resort drug used to treat serious infections caused by multidrug-resistant bacteria. tet(X4) is a recently discovered plasmid-mediated tigecycline resistance gene that confers high-level resistance to tigecycline and other tetracyclines. Since the first discovery of tet(X4) in 2019, it has spread rapidly worldwide, and as a consequence, tigecycline has become increasingly ineffective in the clinical treatment of multidrug-resistant infections. In this study, we identified and analyzed tet(X4)-positive Escherichia coli isolates from duck farms in Hunan Province, China. In total, 976 samples were collected from nine duck farms. Antimicrobial susceptibility testing and whole-genome sequencing (WGS) were performed to establish the phenotypes and genotypes of tet(X4)-positive isolates. In addition, the genomic characteristics and transferability of tet(X4) were determined based on bioinformatics analysis and conjugation. We accordingly detected an E. coli strain harboring tet(X4) and seven other resistance genes in duck feces. Multi-locus sequence typing analysis revealed that this isolate belonged to a new clone, and subsequent genetic analysis indicated that tet(X4) was carried in a 4608-bp circular intermediate, flanked by ISVsa3-ORF2-abh elements. Moreover, it exhibited transferability to E. coli C600 with a frequency of 10-5. The detection of tet(X4)-harboring E, coli strains on duck farms enhances our understanding of tigecycline resistance dynamics. The transferable nature of the circular intermediate of tet(X4) contributing to the spread of tigecycline resistance genes poses a substantial threat to healthcare. Consequently, vigilant monitoring and proactive measures are necessary to prevent their spread.
Collapse
Affiliation(s)
- Chao Jiang
- College of Basic Medical Science, Xiangnan University, Chenzhou, Hunan, China
- Technology Research and Development Center of Chenzhou, Xiangnan University, Chenzhou, Hunan, China
| | - Jie Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Gang Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Ning Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Jie Hu
- College of Basic Medical Science, Xiangnan University, Chenzhou, Hunan, China
| | - Yi Yang
- College of Basic Medical Science, Xiangnan University, Chenzhou, Hunan, China
| | - Zhiliang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Yujuan Li
- College of Basic Medical Science, Xiangnan University, Chenzhou, Hunan, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
46
|
He W, Russel J, Klincke F, Nesme J, Sørensen SJ. Insights into the ecology of the infant gut plasmidome. Nat Commun 2024; 15:6924. [PMID: 39138199 PMCID: PMC11322291 DOI: 10.1038/s41467-024-51398-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Plasmids are small DNA molecules that enable bacteria to share beneficial traits, influencing microbial communities. However, their role within the human gut microbiome remains largely unknown. In this study, we investigate the gut microbiomes of 34 mother-child cohorts, employing a plasmid analysis workflow to understand the impact of plasmids on the gut microbiome. We create a plasmid phylogenetic tree, devise a method for assigning plasmid hosts, and examine potential plasmid transfer networks. Our research discovers a wide variety of previously unidentified plasmid sequences, indicating that current databases do not fully represent the gut plasmidome. Interestingly, infants display greater plasmid diversity compared to mothers and other healthy adults. We find that Bacteroidota, a major bacterial phylum, serves as the primary host for gut plasmids and plays a dominant role in gut plasmid transfer events. Additionally, plasmids broaden the genetic capabilities of bacteria, with their influence on bacterial function becoming more apparent as children's gut microbiomes develop. This study sheds light on the role of plasmids in the infant gut microbiome, making a significant contribution to our understanding of plasmid biology.
Collapse
Affiliation(s)
- Wanli He
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
| | - Franziska Klincke
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
| | - Joseph Nesme
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark.
| | - Søren Johannes Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
47
|
Zhu J, Guo P, Zheng Y, Xiang S, Zhao Y, Liu X, Fu C, Zhang Y, Xu H, Li L, Wang W, Wang M. The A226D Mutation of OmpC Leads to Increased Susceptibility to β-Lactam Antibiotics in Escherichia coli. BIOLOGY 2024; 13:600. [PMID: 39194538 DOI: 10.3390/biology13080600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Bacterial resistance to antibiotics can lead to long-lasting, hard-to-cure infections that pose significant threats to human health. One key mechanism of antimicrobial resistance (AMR) is to reduce the antibiotic permeation of cellular membranes. For instance, the lack of outer membrane porins (OMPs) can lead to elevated AMR levels. However, knowledge on whether mutations of OMPs can also influence antibiotic susceptibility is limited. This work aims to address this question and identified an A226D mutation in OmpC, a trimeric OMP, in Escherichia coli. Surveillance studies found that this mutation is present in 50 E. coli strains for which whole genomic sequences are available. Measurement of minimum inhibition concentrations (MICs) found that this mutation leads to a 2-fold decrease in MICs for β-lactams ampicillin and piperacillin. Further survival assays confirmed the role this mutation plays in β-lactam susceptibility. With molecular dynamics, we found that the A226D mutation led to increased overall flexibility of the protein, thus facilitating antibiotic uptake, and that binding with piperacillin was weakened, leading to easier antibiotic penetration. This work reports a novel mutation that plays a role in antibiotic susceptibility, along with mechanistic studies, and further confirms the role of OMPs in bacterial tolerance to antibiotics.
Collapse
Affiliation(s)
- Jiaming Zhu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Peng Guo
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yuting Zheng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Shiqing Xiang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yang Zhao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xinyu Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
| | - Chengzhang Fu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
| | - Hai Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
| | - Ling Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
| | - Wenjia Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
48
|
Ma L, Xie M, Yang Y, Ding X, Li Y, Yan Z, Chan EWC, Chen S, Chen G, Zhang R. Prevalence and genomic characterization of clinical Escherichia coli strains that harbor the plasmid-borne tet(X4) gene in China. Microbiol Res 2024; 285:127730. [PMID: 38805981 DOI: 10.1016/j.micres.2024.127730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024]
Abstract
The tigecycline resistance gene tet(X4) has been widely reported in animals and animal products in some Asian countries including China in recent years but only sporadically detected in human. In this study, we investigated the prevalence and genetic features of tet(X4)-positive clinical E. coli strains. A total of 462 fecal samples were collected from patients in four hospitals located in four provinces in China in 2023. Nine tet(X4)-positive E. coli strains were isolated and subjected to characterization of their genetic and phenotypic features by performing antimicrobial susceptibility test, whole-genome sequencing, bioinformatic and phylogenetic analysis. The majority of the test strains were found to exhibit resistance to multiple antimicrobial agents including tigecycline but remained susceptible to colistin and meropenem. A total of seven different sequence types (STs) and an unknown ST type were identified among the nine tet(X4)-positive strains. Notably, the tet(X4) gene in six out of these nine tet(X4)-positive E. coli strains was located in a IncFIA-HI1A-HI1B hybrid plasmid, which was an tet(X4)-bearing epidemic plasmid responsible for dissemination of the tet(X4) gene in China. Furthermore, the tet(X4) gene in four out of nine tet(X4)-positive E. coli isolates could be successfully transferred to E. coli EC600 through conjugation. In conclusion, this study characterized the epidemic tet(X4)-bearing plasmids and tet(X4)-associated genetic environment in clinical E. coli strains, suggested the importance of continuous surveillance of such tet(X4)-bearing plasmids to control the increasingly widespread dissemination of tigecycline-resistant pathogens in clinical settings in China.
Collapse
Affiliation(s)
- Lan Ma
- Department of Clinical Laboratory, Second Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Miaomiao Xie
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Yongxin Yang
- Department of Clinical Laboratory, Second Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Xinying Ding
- Department of Clinical Laboratory, Zibo First Hospital, Zibo, People's Republic of China
| | - Yuanyuan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Zelin Yan
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China
| | - Edward Wai-Chi Chan
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Sheng Chen
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region.
| | - Gongxiang Chen
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
49
|
Peng K, Liu YX, Sun X, Wang Q, Song L, Wang Z, Li R. Large-scale bacterial genomic and metagenomic analysis reveals Pseudomonas aeruginosa as potential ancestral source of tigecycline resistance gene cluster tmexCD-toprJ. Microbiol Res 2024; 285:127747. [PMID: 38739956 DOI: 10.1016/j.micres.2024.127747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND The global dissemination of the multidrug resistance efflux pump gene cluster tmexCD-toprJ has greatly weakened the effects of multiple antibiotics, including tigecycline. However, the potential origin and transmission mechanisms of the gene cluster remain unclear. METHODS Here, we concluded a comprehensive bioinformatics analysis on integrated 73,498 bacterial genomes, including Pseudomonas spp., Klebsiella spp., Aeromonas spp., Proteus spp., and Citrobacter spp., along with 1,152 long-read metagenomic datasets to trace the origin and propagation of tmexCD-toprJ. RESULTS Our results demonstrated that tmexCD-toprJ was predominantly found in Pseudomonas aeruginosa sourced from human hosts in Asian countries and North American countries. Phylogenetic and genomic feature analyses showed that tmexCD-toprJ was likely evolved from mexCD-oprJ of some special clones of P. aeruginosa. Furthermore, metagenomic analysis confirmed that P. aeruginosa is the only potential ancestral bacterium for tmexCD-toprJ. A putative mobile genetic structure harboring tmexCD-toprJ, int-int-hp-hp-tnfxB-tmexCD-toprJ, was the predominant genetic context of tmexCD-toprJ across various bacterial genera, suggesting that the two integrase genes play a pivotal role in the horizontal transmission of tmexCD-toprJ. CONCLUSIONS Based on these findings, it is almost certain that the tmexCD-toprJ gene cluster was derived from P. aeruginosa and further spread to other bacteria.
Collapse
Affiliation(s)
- Kai Peng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yong-Xin Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Xinran Sun
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qiaojun Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Luyang Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
50
|
Zhu L, Xu Y, Li J, Lin G, Han X, Yi J, Jayaprada T, Zhou Z, Ying Y, Wang M. Environmentally persistent microbial contamination in agricultural soils: High risk of pathogenicity and antibiotic resistance. ENVIRONMENT INTERNATIONAL 2024; 190:108902. [PMID: 39059024 DOI: 10.1016/j.envint.2024.108902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
Persistent microbial contamination commonly occurs in the environment. However, the characteristics and associated risks remain largely unknown. The coexistence of virulence factor genes (VFGs) and "last-resort" antibiotic resistance genes (LARGs) on human bacterial pathogens (HBPs) are notorious, creating ecological concerns and health risks. Herein, we explored the pathogenicity and antibiotic resistance levels of LARG-harboring HBPs in agricultural soils. Our findings revealed a high distribution level of VFGs and LARGs in soils (an absolute abundance up to 4.7 × 107 gene copies/g soil) by quantitative PCR (qPCR). Furthermore, most isolated LARG-harboring HBPs exhibited a 100 % lethality rate to Galleria mellonella. LARG-carrying plasmids had a low fitness cost to their host bacteria, implying the high adaptation of these plasmids within the HBPs. Most importantly, multiple LARG and VFG plasmid fusion and core genetic arrangements suggested that these LARG/VFG-linked plasmids endowed the stable and persistent horizontal spread of these genes in and/or cross the species and environments. This study not only unveiled high risk, multisource, compliance and stability aspects of environmentally persistent microbial contamination but also illuminated the importance of linking the phenotype-genotype-niche colonization of environmental microbial contamination within "One Health" framework.
Collapse
Affiliation(s)
- Lin Zhu
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yongchang Xu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jingpeng Li
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Guoping Lin
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xuezhu Han
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jiaming Yi
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Thilini Jayaprada
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Zhenchao Zhou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yiqian Ying
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Meizhen Wang
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|