1
|
Rodrigues MV, Ferreira A, Ramirez-Montoya M, Oliveira RA, Defaix R, Kis P, Cabral V, Bronze MR, Xavier KB, Ventura MR. Manipulation and quantification of the levels of Autoinducer-2 quorum sensing signal in the mouse gut. Bioorg Chem 2025; 157:108274. [PMID: 39986109 DOI: 10.1016/j.bioorg.2025.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/31/2025] [Accepted: 02/12/2025] [Indexed: 02/24/2025]
Abstract
Quorum Sensing is a signalling mechanism used by bacteria to regulate gene expression as a function of population density, enabling them to engage in group behaviours. Autoinducer-2 (AI-2) is the most ubiquitously produced quorum sensing signal among bacterial species and it is unique in its capability of fostering cell-cell signalling across species from different phyla in multispecies communities. Alterations of AI-2 levels in the mouse gut can change the composition of the major gut microbiota phyla, but given the chemical instability of this signal, its quantification in intestinal samples and in vivo manipulation are challenging. Here, we optimised a Gas Chromatography - Mass Spectrometry (GC-MS) method to detect and quantify AI-2 in intestinal samples. Using a newly synthesised deuterated AI-2 molecule as the internal standard for AI-2 quantification, we quantified the levels of AI-2 in the cecum of conventionally raised mice with a complex microbiota. Moreover, we used a commensal Klebsiella sp. with probiotic potential to manipulate AI-2 levels in the mouse gut. We showed that mice colonised with mutants of this commensal Klebsiella sp. can be used to manipulate the levels of AI-2 in the mouse gut in both mono-colonised animals and those with a complex microbiota following recovery from antibiotic treatment. Overall, our results show that the analytical approach proposed here allows for robust and specific direct measurements of AI-2 in mouse caecal samples and can also be applied to other complex biological samples containing AI-2 aiming to study the role of quorum sensing signalling in microbiota communities.
Collapse
Affiliation(s)
- Miguel V Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, 2780-157 Oeiras, Portugal
| | - António Ferreira
- iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, 2780-157 Oeiras, Portugal
| | | | - Rita A Oliveira
- Gulbenkian Institute for Molecular Medicine, 2781-901 Oeiras, Portugal; Duchossois Family Institute, The University of Chicago, 5801 S Ellis Ave, Chicago, IL 60637, USA; Department of Medicine, Section of Infectious Diseases & Global Health, University of Chicago Medicine, 5841 S Maryland Ave, Chicago, IL 60637, USA
| | - Raphaël Defaix
- Gulbenkian Institute for Molecular Medicine, 2781-901 Oeiras, Portugal
| | - Peter Kis
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, 2780-157 Oeiras, Portugal; Institute of Chemistry, Slovak Academy of Sciences, SK-845 38 Bratislava, Slovakia
| | - Vitor Cabral
- Gulbenkian Institute for Molecular Medicine, 2781-901 Oeiras, Portugal
| | - M Rosário Bronze
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, 2780-157 Oeiras, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Karina B Xavier
- iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, 2780-157 Oeiras, Portugal
| | - M Rita Ventura
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
2
|
Ding W, Cheng Y, Liu X, Zhu Z, Wu L, Gao J, Lei W, Li Y, Zhou X, Wu J, Gao Y, Ling Z, Jiang R. Harnessing the human gut microbiota: an emerging frontier in combatting multidrug-resistant bacteria. Front Immunol 2025; 16:1563450. [PMID: 40165964 PMCID: PMC11955657 DOI: 10.3389/fimmu.2025.1563450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Antimicrobial resistance (AMR) has become a major and escalating global health threat, undermining the effectiveness of current antibiotic and antimicrobial therapies. The rise of multidrug-resistant bacteria has led to increasingly difficult-to-treat infections, resulting in higher morbidity, mortality, and healthcare costs. Tackling this crisis requires the development of novel antimicrobial agents, optimization of current therapeutic strategies, and global initiatives in infection surveillance and control. Recent studies highlight the crucial role of the human gut microbiota in defending against AMR pathogens. A balanced microbiota protects the body through mechanisms such as colonization resistance, positioning it as a key ally in the fight against AMR. In contrast, gut dysbiosis disrupts this defense, thereby facilitating the persistence, colonization, and dissemination of resistant pathogens. This review will explore how gut microbiota influence drug-resistant bacterial infections, its involvement in various types of AMR-related infections, and the potential for novel microbiota-targeted therapies, such as fecal microbiota transplantation, prebiotics, probiotics, phage therapy. Elucidating the interactions between gut microbiota and AMR pathogens will provide critical insights for developing novel therapeutic strategies to prevent and treat AMR infections. While previous reviews have focused on the general impact of the microbiota on human health, this review will specifically look at the latest research on the interactions between the gut microbiota and the evolution and spread of AMR, highlighting potential therapeutic strategies.
Collapse
Affiliation(s)
- Wenwen Ding
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhangcheng Zhu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingbin Wu
- Department of Intensive Care Unit, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Jie Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Yating Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, United States
- Stanford Diabetes Research Center, Stanford, CA, United States
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Jian Wu
- Department of Clinical Laboratory, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Yongtao Gao
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruilai Jiang
- Department of Intensive Care Unit, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| |
Collapse
|
3
|
Yin Q, da Silva AC, Zorrilla F, Almeida AS, Patil KR, Almeida A. Ecological dynamics of Enterobacteriaceae in the human gut microbiome across global populations. Nat Microbiol 2025; 10:541-553. [PMID: 39794474 PMCID: PMC11790488 DOI: 10.1038/s41564-024-01912-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025]
Abstract
Gut bacteria from the Enterobacteriaceae family are a major cause of opportunistic infections worldwide. Given their prevalence among healthy human gut microbiomes, interspecies interactions may play a role in modulating infection resistance. Here we uncover global ecological patterns linked to Enterobacteriaceae colonization and abundance by leveraging a large-scale dataset of 12,238 public human gut metagenomes spanning 45 countries. Machine learning analyses identified a robust gut microbiome signature associated with Enterobacteriaceae colonization status, consistent across health states and geographic locations. We classified 172 gut microbial species as co-colonizers and 135 as co-excluders, revealing a genus-wide signal of colonization resistance within Faecalibacterium and strain-specific co-colonization patterns of the underexplored Faecalimonas phoceensis. Co-exclusion is linked to functions involved in short-chain fatty acid production, iron metabolism and quorum sensing, while co-colonization is linked to greater functional diversity and metabolic resemblance to Enterobacteriaceae. Our work underscores the critical role of the intestinal environment in the colonization success of gut-associated opportunistic pathogens with implications for developing non-antibiotic therapeutic strategies.
Collapse
Affiliation(s)
- Qi Yin
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- College of Public Health, Chongqing Medical University, Chongqing, China
| | - Ana C da Silva
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Francisco Zorrilla
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Ana S Almeida
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Kiran R Patil
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Alexandre Almeida
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Rebelo M, Bom J, Borges AC, Marques R, Pereira M, Leocádio AS, Vieira L, Ribeiro A, Vale L, Santos I, Crisóstomo S, Nunes V, Franco M, Vieira A, Pinto P, Machado AR, Demengeot J. Streamlining model organisms facilities operation: The benefits of a unified management structure. Lab Anim 2025; 59:11-22. [PMID: 40017410 DOI: 10.1177/00236772241309744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
This article is dedicated to elucidating and showcasing the concept of a unified Core Facility for laboratory animals within a research institute specialized in basic biology and biomedical research. In many research centres, animal facilities operate as autonomous entities. Here, we discuss that the centralization of all animal model units within a consolidated organizational framework offers a multitude of benefits in terms of communication with a variety of institutional stakeholders, including the Direction Board, Operational Logistics (Maintenance, Lab Operations and Safety Units), Procurement and Accounting Offices, Research Funding Affairs, Institutional Communication, and IT Units. This integrated approach facilitates the implementation of consistent policies and service pricing strategies. Moreover, it promotes staff flexibility across species, allows for responsiveness to evolving research dynamics, emergence of new scientific areas and infrastructure challenges. This concept also inspires technical advancement within the animal facilities, supports training in Laboratory Animal Science, stimulates the standardization of animal welfare practices, and instils a culture of care transversal to all animal models, ultimately enhancing overall animal welfare. This strategy facilitated the integration of non-vertebrate animals and plant models into the Core Facility. Despite significant differences from vertebrate models, this expansion presented advantages, such as incorporation of specialized staff into a larger organizational structure, offering them new opportunities for skill development and enhancing the overall flexibility of the Core Facility's operations.
Collapse
Affiliation(s)
| | - Joana Bom
- Instituto Gulbenkian de Ciência, Lisbon, Portugal
| | - Ana C Borges
- Instituto Gulbenkian de Ciência, Lisbon, Portugal
| | - Rute Marques
- Instituto Gulbenkian de Ciência, Lisbon, Portugal
| | | | | | | | - Ana Ribeiro
- Instituto Gulbenkian de Ciência, Lisbon, Portugal
| | - Liliana Vale
- Instituto Gulbenkian de Ciência, Lisbon, Portugal
| | - Inês Santos
- Instituto Gulbenkian de Ciência, Lisbon, Portugal
| | | | - Vera Nunes
- Instituto Gulbenkian de Ciência, Lisbon, Portugal
| | - Maysa Franco
- Instituto Gulbenkian de Ciência, Lisbon, Portugal
| | | | - Pedro Pinto
- Instituto Gulbenkian de Ciência, Lisbon, Portugal
| | - Ana R Machado
- Universidade NOVA de Lisboa, NOVA Medical School, Lisbon, Portugal
| | | |
Collapse
|
5
|
Almási ÉDH, Eisenhard L, Osbelt L, Lesker TR, Vetter AC, Knischewski N, Bielecka AA, Gronow A, Muthukumarasamy U, Wende M, Tawk C, Neumann-Schaal M, Brönstrup M, Strowig T. Klebsiella oxytoca facilitates microbiome recovery via antibiotic degradation and restores colonization resistance in a diet-dependent manner. Nat Commun 2025; 16:551. [PMID: 39789003 PMCID: PMC11717976 DOI: 10.1038/s41467-024-55800-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Competition among bacteria for carbohydrates is pivotal for colonization resistance (CR). However, the impact of Western-style diets on CR remains unclear. Here we show how the competition between Klebsiella oxytoca and Klebsiella pneumoniae is modulated by consuming one of three Western-style diets characterized by high-starch, high-sucrose, or high-fat/high-sucrose content. In vivo competition experiments in ampicillin-treated mice reveal that K. oxytoca promotes K. pneumoniae decolonization on all dietary backgrounds. However, mice on the high-fat/high-sucrose diet show reduced pathogen clearance. Microbiome analysis reveals that the combination of Western-style diets and ampicillin treatment synergize in microbiome impairment, particularly noticeable in the presence of high dietary fat content. The diet-independent degradation of ampicillin in the gut lumen by K. oxytoca beta-lactamases facilitates rapid commensal outgrowth, which is required for subsequent pathogen clearance. Our findings provide insights into how diet modulates functional microbiome recovery and K. oxytoca-mediated pathogen elimination from the gut.
Collapse
Affiliation(s)
- Éva D H Almási
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Lea Eisenhard
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Lisa Osbelt
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Till Robin Lesker
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Anna C Vetter
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Nele Knischewski
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Agata Anna Bielecka
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Achim Gronow
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Uthayakumar Muthukumarasamy
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Marie Wende
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Caroline Tawk
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Meina Neumann-Schaal
- Bacterial Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.
- Center for Individualized Infection Medicine, Hannover, Germany.
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany.
| |
Collapse
|
6
|
Dong Q, Harper S, McSpadden E, Son SS, Allen MM, Lin H, Smith RC, Metcalfe C, Burgo V, Woodson C, Sundararajan A, Rose A, McMillin M, Moran D, Little J, Mullowney MW, Sidebottom AM, Fortier LC, Shen A, Pamer EG. Protection against Clostridioides difficile disease by a naturally avirulent strain. Cell Host Microbe 2025; 33:59-70.e4. [PMID: 39610252 PMCID: PMC11731898 DOI: 10.1016/j.chom.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/24/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024]
Abstract
Clostridioides difficile is a leading cause of healthcare infections. Gut dysbiosis promotes C. difficile infection (CDI) and CDIs promote gut dysbiosis, leading to frequent CDI recurrence. Although therapies preventing recurrent CDI have been developed, including live biotherapeutic products, existing therapies are costly and do not prevent primary infections. Here, we show that an avirulent C. difficile isolate, ST1-75, protects mice from developing colitis induced by a virulent R20291 strain when coinfected at a 1:1 ratio. In metabolic analyses, avirulent ST1-75 depletes amino acids more rapidly than virulent R20291 and supplementation with amino acids ablates this competitive advantage, indicating that ST1-75 limits the growth of virulent R20291 through amino acid depletion. Overall, our study identifies inter-strain nutrient depletion as a potentially exploitable mechanism to reduce the incidence of CDI and reveals that the ST1-75 strain may be a biotherapeutic agent that can prevent CDI in high-risk patients.
Collapse
Affiliation(s)
- Qiwen Dong
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA.
| | - Stephen Harper
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Emma McSpadden
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Sophie S Son
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL 60637, USA
| | - Marie-Maude Allen
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Rita C Smith
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Carolyn Metcalfe
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Victoria Burgo
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Che Woodson
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | | | - Amber Rose
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Mary McMillin
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - David Moran
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Jessica Little
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | | | | | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA
| | - Eric G Pamer
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Zhang Q, Zhu Q, Xiao Y, Yu Q, Shi S. Co-housing with Tibetan chickens improved the resistance of Arbor Acres chickens to Salmonella enterica serovar Enteritidis infection by altering their gut microbiota composition. J Anim Sci Biotechnol 2025; 16:2. [PMID: 39748400 PMCID: PMC11697627 DOI: 10.1186/s40104-024-01132-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Salmonella enterica serovar Enteritidis (S. Enteritidis) is a global foodborne pathogen that poses a significant threat to human health, with poultry being the primary reservoir host. Therefore, addressing S. Enteritidis infections in poultry is crucial to protect human health and the poultry industry. In this study, we investigated the effect of co-housing Arbor Acres (AA) chickens, a commercial breed susceptible to S. Enteritidis, with Tibetan chickens, a local breed resistant to S. Enteritidis infection, on the resistance of the latter to the pathogen. RESULTS Ninety-six 1-day-old Tibetan chickens and 96 1-day-old AA chickens were divided into a Tibetan chicken housed alone group (n = 48), an AA chicken housed alone group (n = 48), and a co-housed group (48 birds from each breed for 2 cages). All birds were provided the same diet, and the experimental period lasted 14 d. At d 7, all chickens were infected with S. Enteritidis, and samples were collected at 1-, 3-, and 7-day-post-infection. We found that the body weight of AA chickens significantly increased when co-housed with Tibetan chickens at 1- and 3-day-post-infection (P < 0.05). In addition, the cecal S. Enteritidis load in AA chickens was significantly reduced at 1-, 3-, and 7-day-post-infection (P < 0.05). Furthermore, the inflammatory response in AA chickens decreased, as evidenced by the decreased expression of pro-inflammatory cytokines NOS2, TNF-α, IL-8, IL-1β, and IFN-γ in their cecal tonsils (P < 0.05). Co-housing with Tibetan chickens significantly increased the height of villi and number of goblet cells (P < 0.05), as well as the expression of claudin-1 (P < 0.05), a tight junction protein, in the jejunum of AA chickens. Further analysis revealed that co-housing altered the gut microbiota composition in AA chickens; specifically, the relative abundances of harmful microbes, such as Intestinimonas, Oscillibacter, Tuzzerella, Anaerotruncus, Paludicola, and Anaerofilum were reduced (P < 0.05). CONCLUSIONS Our findings indicate that co-housing with Tibetan chickens enhanced the resistance of AA chickens to S. Enteritidis infection without compromising the resistance of Tibetan chickens. This study provides a novel approach for Salmonella control in practical poultry production.
Collapse
Affiliation(s)
- Qianyun Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Institute of Poultry Sciences, Yangzhou, China
| | - Qidong Zhu
- Jiangsu Institute of Poultry Sciences, Yangzhou, China
| | - Yunqi Xiao
- Jiangsu Institute of Poultry Sciences, Yangzhou, China
| | - Qinghua Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| | - Shourong Shi
- Jiangsu Institute of Poultry Sciences, Yangzhou, China.
| |
Collapse
|
8
|
Wu X, Borjihan Q, Su Y, Bai H, Hu X, Wang X, Kang J, Dong A, Yang YW. Supramolecular Switching-Enabled Quorum Sensing Trap for Pathogen-Specific Recognition and Eradication to Treat Enteritis. J Am Chem Soc 2024; 146:35402-35415. [PMID: 39665393 DOI: 10.1021/jacs.4c14424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Intestinal bacterial infections have become a significant threat to human health. However, the current typical antibiotic-based therapies not only contribute to drug resistance but also disrupt gut microbiota balance, resulting in additional adverse effects on life activities. There is an urgent need to develop new antibacterial materials that selectively eliminate pathogenic bacteria without disrupting beneficial bacterial communities or promoting drug resistance. Herein, we utilize bacterial quorum sensing (QS), a universal mechanism for regulating community behavior, to develop a supramolecular QS trap by encapsulating cucurbit[7]uril (CB[7]) on 1-vinyl-3-pentylimidazolium bromide ([VPIM]Br) to form a supramolecular switch ([VPIM]Br⊂CB[7]) through host-guest interactions followed by grafting it onto bacterial cell surfaces using atom transfer radical polymerization. Subsequently, the matched pathogens are recognized and aggregated through interbacterial QS signals. Furthermore, the addition of amantadine (AD) facilitates the release of [VPIM]Br by competitive binding of CB[7] on [VPIM]Br⊂CB[7] for sterilization. This QS trap specifically triggers the self-aggregation and efficient elimination of matched bacteria. The [VPIM]Br⊂CB[7]-based trap can increase the diversity and abundance of intestinal microorganisms in mice, effectively treating Escherichia coli K88-induced intestinal damage without perturbing gut microbiota balance. This supramolecular-switched QS trap opens up a promising avenue to specifically recognize and eradicate pathogens for the antibiotic-free treatment of intestinal bacterial infections and other inflammatory diseases.
Collapse
Affiliation(s)
- Xiaojie Wu
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Road, Hohhot 010021, P. R. China
| | - Qinggele Borjihan
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, Inner Mongolia, P. R. China
| | - Yueying Su
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Road, Hohhot 010021, P. R. China
| | - Haoran Bai
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Road, Hohhot 010021, P. R. China
| | - Xinshang Hu
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Road, Hohhot 010021, P. R. China
| | - Xin Wang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jing Kang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Road, Hohhot 010021, P. R. China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Road, Hohhot 010021, P. R. China
| | - Ying-Wei Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
9
|
Doranga S, Krogfelt KA, Cohen PS, Conway T. Nutrition of Escherichia coli within the intestinal microbiome. EcoSal Plus 2024; 12:eesp00062023. [PMID: 38417452 PMCID: PMC11636361 DOI: 10.1128/ecosalplus.esp-0006-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/03/2023] [Indexed: 03/01/2024]
Abstract
In this chapter, we update our 2004 review of "The Life of Commensal Escherichia coli in the Mammalian Intestine" (https://doi.org/10.1128/ecosalplus.8.3.1.2), with a change of title that reflects the current focus on "Nutrition of E. coli within the Intestinal Microbiome." The earlier part of the previous two decades saw incremental improvements in understanding the carbon and energy sources that E. coli and Salmonella use to support intestinal colonization. Along with these investigations of electron donors came a better understanding of the electron acceptors that support the respiration of these facultative anaerobes in the gastrointestinal tract. Hundreds of recent papers add to what was known about the nutrition of commensal and pathogenic enteric bacteria. The fact that each biotype or pathotype grows on a different subset of the available nutrients suggested a mechanism for succession of commensal colonizers and invasion by enteric pathogens. Competition for nutrients in the intestine has also come to be recognized as one basis for colonization resistance, in which colonized strain(s) prevent colonization by a challenger. In the past decade, detailed investigations of fiber- and mucin-degrading anaerobes added greatly to our understanding of how complex polysaccharides support the hundreds of intestinal microbiome species. It is now clear that facultative anaerobes, which usually cannot degrade complex polysaccharides, live in symbiosis with the anaerobic degraders. This concept led to the "restaurant hypothesis," which emphasizes that facultative bacteria, such as E. coli, colonize the intestine as members of mixed biofilms and obtain the sugars they need for growth locally through cross-feeding from polysaccharide-degrading anaerobes. Each restaurant represents an intestinal niche. Competition for those niches determines whether or not invaders are able to overcome colonization resistance and become established. Topics centered on the nutritional basis of intestinal colonization and gastrointestinal health are explored here in detail.
Collapse
Affiliation(s)
- Sudhir Doranga
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Karen A. Krogfelt
- Department of Science and Environment, Pandemix Center Roskilde University, Roskilde, Denmark
| | - Paul S. Cohen
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Tyrrell Conway
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
10
|
Cherrak Y, Salazar MA, Näpflin N, Malfertheiner L, Herzog MKM, Schubert C, von Mering C, Hardt WD. Non-canonical start codons confer context-dependent advantages in carbohydrate utilization for commensal E. coli in the murine gut. Nat Microbiol 2024; 9:2696-2709. [PMID: 39160293 PMCID: PMC11445065 DOI: 10.1038/s41564-024-01775-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 07/04/2024] [Indexed: 08/21/2024]
Abstract
Resource competition is a driver of gut microbiota composition. Bacteria can outcompete metabolically similar rivals through the limitation of shared growth-fuelling nutrients. The mechanisms underlying this remain unclear for bacteria with identical sets of metabolic genes. Here we analysed the lactose utilization operon in the murine commensal Escherichia coli 8178. Using in vitro and in vivo approaches, we showed that translation of the lactose utilization repressor gene lacI from its native non-canonical GTG start codon increases the basal expression of the lactose utilization cluster, enhancing adaptation to lactose consumption. Consequently, a strain carrying the wild type lacI GTG start codon outperformed the lacI ATG start codon mutant in the mouse intestine. This advantage was attenuated upon limiting host lactose intake through diet shift or altering the mutant frequency, emphasizing the context-dependent effect of a single nucleotide change on the bacterial fitness of a common member of the gut microbiota. Coupled with a genomic analysis highlighting the selection of non-ATG start codons in sugar utilization regulator genes across the Enterobacteriaceae family, our data exposed an unsuspected function of non-canonical start codons in metabolic competition.
Collapse
Affiliation(s)
- Yassine Cherrak
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| | - Miguel Angel Salazar
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Nicolas Näpflin
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Lukas Malfertheiner
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Mathias K-M Herzog
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Christopher Schubert
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Christian von Mering
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Khan R, Wali S, Khan S, Munir S, Pari B, Yousuf AM, Almutawif YA. Isolation and characterization of pathogenic Klebsiella pneumoniae strains from lettuce: a potential source of antibiotic resistance and development of a mathematical model for ANOVA results. Front Microbiol 2024; 15:1473055. [PMID: 39380681 PMCID: PMC11459608 DOI: 10.3389/fmicb.2024.1473055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction This study aimed to evaluate the prevalence of Klebsiella pneumoniae contamination in raw lettuce from Risalpur, Pakistan, and to analyze the antibiotic susceptibility profiles of the isolated strains. The presence of foodborne pathogens such as K. pneumoniae poses significant public health risks, particularly in regions with suboptimal hygiene practices and improper food handling. Methods Lettuce samples were collected from various sources in Risalpur and screened for K. pneumoniae. Antimicrobial susceptibility testing was performed to evaluate the effectiveness of various antibiotics against the isolated strains. Statistical analyses, including ANOVA and linear regression, were conducted to assess differences in inhibition zones and to predict antibiotic effectiveness based on concentration. Results The results revealed a significant prevalence of K. pneumoniae in the lettuce samples, highlighting the risks associated with poor hygiene, transportation, storage, and contaminated irrigation water. The isolated strains exhibited high susceptibility to gentamicin but demonstrated notable resistance to doxycycline, vancomycin, and ticarcillin. Multidrug-resistant (MDR) strains were identified. ANOVA showed significant differences in inhibition zones, and the linear regression model predicted a Zone of Inhibition based on antibiotic concentration (β0 = 10.6667, β1 = 0.4556). Discussion The identification of MDR strains of K. pneumoniae underscores the urgent need for enhanced antibiotic stewardship and food safety protocols to manage foodborne pathogens. Improved hygiene practices throughout the food production and supply chain are critical to mitigate health risks and address the challenge of growing antibiotic resistance.
Collapse
Affiliation(s)
- Ruby Khan
- Department of System Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Saima Wali
- Department of Microbiology, Women University Mardan, Mardan, Pakistan
| | - Sumbal Khan
- Khyber Girls Medical College, Peshawar, Pakistan
| | - Shaista Munir
- Department of Microbiology, Women University Mardan, Mardan, Pakistan
| | - Bakht Pari
- Government College of Nursing, Lady Reading Hospital, Peshawar, KP, Pakistan
| | - Amjad M. Yousuf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Yahya A. Almutawif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
12
|
Pamer EG. Gut microbes fend off harmful bacteria by depriving them of nutrients. Nature 2024; 633:774-775. [PMID: 39294279 DOI: 10.1038/d41586-024-02803-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
|
13
|
Furuichi M, Kawaguchi T, Pust MM, Yasuma-Mitobe K, Plichta DR, Hasegawa N, Ohya T, Bhattarai SK, Sasajima S, Aoto Y, Tuganbaev T, Yaginuma M, Ueda M, Okahashi N, Amafuji K, Kiridoshi Y, Sugita K, Stražar M, Avila-Pacheco J, Pierce K, Clish CB, Skelly AN, Hattori M, Nakamoto N, Caballero S, Norman JM, Olle B, Tanoue T, Suda W, Arita M, Bucci V, Atarashi K, Xavier RJ, Honda K. Commensal consortia decolonize Enterobacteriaceae via ecological control. Nature 2024; 633:878-886. [PMID: 39294375 PMCID: PMC11424487 DOI: 10.1038/s41586-024-07960-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/19/2024] [Indexed: 09/20/2024]
Abstract
Persistent colonization and outgrowth of potentially pathogenic organisms in the intestine can result from long-term antibiotic use or inflammatory conditions, and may perpetuate dysregulated immunity and tissue damage1,2. Gram-negative Enterobacteriaceae gut pathobionts are particularly recalcitrant to conventional antibiotic treatment3,4, although an emerging body of evidence suggests that manipulation of the commensal microbiota may be a practical alternative therapeutic strategy5-7. Here we isolated and down-selected commensal bacterial consortia from stool samples from healthy humans that could strongly and specifically suppress intestinal Enterobacteriaceae. One of the elaborated consortia, comprising 18 commensal strains, effectively controlled ecological niches by regulating gluconate availability, thereby re-establishing colonization resistance and alleviating Klebsiella- and Escherichia-driven intestinal inflammation in mice. Harnessing these activities in the form of live bacterial therapies may represent a promising solution to combat the growing threat of proinflammatory, antimicrobial-resistant Enterobacteriaceae infection.
Collapse
Affiliation(s)
- Munehiro Furuichi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takaaki Kawaguchi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Marie-Madlen Pust
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Keiko Yasuma-Mitobe
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Damian R Plichta
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Naomi Hasegawa
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Ohya
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shakti K Bhattarai
- Department of Microbiology and Physiological Systems, Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
| | - Satoshi Sasajima
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshimasa Aoto
- JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo, Japan
| | - Timur Tuganbaev
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- Human Biology Microbiome Quantum Research Center (Bio2Q), Keio University, Tokyo, Japan
| | - Mizuki Yaginuma
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Ueda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyuki Okahashi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Kimiko Amafuji
- JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kiridoshi
- JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo, Japan
| | - Kayoko Sugita
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Martin Stražar
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julian Avila-Pacheco
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kerry Pierce
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Clary B Clish
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashwin N Skelly
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Masahira Hattori
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Cooperative Major in Advanced Health Science, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | - Takeshi Tanoue
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Wataru Suda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Cooperative Major in Advanced Health Science, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Makoto Arita
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Biology Microbiome Quantum Research Center (Bio2Q), Keio University, Tokyo, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Vanni Bucci
- Department of Microbiology and Physiological Systems, Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
| | - Koji Atarashi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Biology Microbiome Quantum Research Center (Bio2Q), Keio University, Tokyo, Japan
| | - Ramnik J Xavier
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
| | - Kenya Honda
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Human Biology Microbiome Quantum Research Center (Bio2Q), Keio University, Tokyo, Japan.
| |
Collapse
|
14
|
Vornhagen J, Rao K, Bachman MA. Gut community structure as a risk factor for infection in Klebsiella pneumoniae-colonized patients. mSystems 2024; 9:e0078624. [PMID: 38975759 PMCID: PMC11334466 DOI: 10.1128/msystems.00786-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
The primary risk factor for infection with members of the Klebsiella pneumoniae species complex is prior gut colonization, and infection is often caused by the colonizing strain. Despite the importance of the gut as a reservoir for infectious K. pneumoniae, little is known about the association between the gut microbiome and infection. To explore this relationship, we undertook a case-control study comparing the gut community structure of K. pneumoniae-colonized intensive care and hematology/oncology patients. Cases were K. pneumoniae-colonized patients infected by their colonizing strain (N = 83). Controls were K. pneumoniae-colonized patients who remained asymptomatic (N = 149). First, we characterized the gut community structure of K. pneumoniae-colonized patients agnostic to case status. Next, we determined that gut community data is useful for classifying cases and controls using machine learning models and that the gut community structure differed between cases and controls. K. pneumoniae relative abundance, a known risk factor for infection, had the greatest feature importance, but other gut microbes were also informative. Finally, we show that integration of gut community structure with bacterial genotype data enhanced the ability of machine learning models to discriminate cases and controls. Interestingly, inclusion of patient clinical variables failed to improve the ability of machine learning models to discriminate cases and controls. This study demonstrates that including gut community data with K. pneumoniae-derived biomarkers improves our ability to classify infection in K. pneumoniae-colonized patients.IMPORTANCEColonization is generally the first step in pathogenesis for bacteria with pathogenic potential. This step provides a unique window for intervention since a given potential pathogen has yet to cause damage to its host. Moreover, intervention during the colonization stage may help alleviate the burden of therapy failure as antimicrobial resistance rises. Yet, to understand the therapeutic potential of interventions that target colonization, we must first understand the biology of colonization and if biomarkers at the colonization stage can be used to stratify infection risk. The bacterial genus Klebsiella includes many species with varying degrees of pathogenic potential. Members of the K. pneumoniae species complex have the highest pathogenic potential. Patients colonized in their gut by these bacteria are at higher risk of subsequent infection with their colonizing strain. However, we do not understand if other members of the gut microbiota can be used as a biomarker to predict infection risk. In this study, we show that the gut microbiota differs between colonized patients who develop an infection versus those who do not. Additionally, we show that integrating gut microbiota data with bacterial factors improves the ability to classify infections. Surprisingly, patient clinical factors were not useful for classifying infections alone or when added to microbiota-based models. This indicates that the bacterial genotype and the microbial community in which it exists may determine the progression to infection. As we continue to explore colonization as an intervention point to prevent infections in individuals colonized by potential pathogens, we must develop effective means for predicting and stratifying infection risk.
Collapse
Affiliation(s)
- Jay Vornhagen
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Krishna Rao
- Department of Internal Medicine/Infectious Diseases Division, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael A. Bachman
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology & Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
15
|
Shi H, Newton DP, Nguyen TH, Estrela S, Sanchez J, Tu M, Ho PY, Zeng Q, DeFelice B, Sonnenburg J, Huang KC. Nutrient competition predicts gut microbiome restructuring under drug perturbations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606863. [PMID: 39211277 PMCID: PMC11360974 DOI: 10.1101/2024.08.06.606863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Human gut commensal bacteria are routinely exposed to various stresses, including therapeutic drugs, and collateral effects are difficult to predict. To systematically interrogate community-level effects of drug perturbations, we screened stool-derived in vitro communities with 707 clinically relevant small molecules. Across ∼5,000 community-drug interaction conditions, compositional and metabolomic responses were predictably impacted by nutrient competition, with certain species exhibiting improved growth due to adverse impacts on competitors. Changes to community composition were generally reversed by reseeding with the original community, although occasionally species promotion was long-lasting, due to higher-order interactions, even when the competitor was reseeded. Despite strong selection pressures, emergence of resistance within communities was infrequent. Finally, while qualitative species responses to drug perturbations were conserved across community contexts, nutrient competition quantitatively affected their abundances, consistent with predictions of consumer-resource models. Our study reveals that quantitative understanding of the interaction landscape, particularly nutrient competition, can be used to anticipate and potentially mitigate side effects of drug treatment on the gut microbiota.
Collapse
|
16
|
Kirkwood K, Van Dyke T, Kirkwood C, Zhang L, Panezai J, Duran-Pinedo A, Figgins E, Ryan L, Frias-Lopez J, Diamond G. Topical Vitamin D Prevents Bone Loss and Inflammation in a Mouse Model. J Dent Res 2024; 103:908-915. [PMID: 39104028 PMCID: PMC11465324 DOI: 10.1177/00220345241259417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024] Open
Abstract
There is a strong association between vitamin D levels and periodontal disease based on numerous epidemiological studies. We have previously shown that experimental deficiency of serum vitamin D in mice leads to gingival inflammation and alveolar bone loss. Treatment of cultured oral epithelial cells with the active form of vitamin D, 1,25(OH)2 vitamin D3 (1,25(OH)2D3), inhibits the extracellular growth and intracellular invasion of bacteria associated with periodontal disease. Maintenance of periodontal health may be due in part to the anti-inflammatory activities of vitamin D. Furthermore, this hormone can induce the expression of an antimicrobial peptide in cultured oral epithelial cells. We have shown that oral epithelial cells are capable of converting inactive vitamin D to the active form, suggesting that topical treatment of the oral epithelium with inactive vitamin D could prevent the development of periodontitis. We subjected mice to ligature-induced periodontitis (LIP), followed by daily treatment with inactive vitamin D or 1,25(OH)2D3. Treatment with both forms led to a reduction in ligature-induced bone loss and inflammation. Gingival tissues obtained from vitamin D-treated LIP showed production of specialized proresolving mediators (SPM) of inflammation. To examine the mechanism, we demonstrated that apical treatment of 3-dimensional cultures of primary gingival epithelial cells with vitamin D prevented lipopolysaccharide-induced secretion of proinflammatory cytokines and led to a similar production of SPM. Analysis of the oral microbiome of the mice treated with vitamin D showed significant changes in resident bacteria, which reflects a shift toward health-associated species. Together, our results show that topical treatment of oral tissues with inactive vitamin D can lead to the maintenance of periodontal health through the regulation of a healthy microbiome and the stimulation of resolution of inflammation. This strongly supports the development of a safe and effective vitamin D-based topical treatment or preventive agent for periodontal inflammation and disease.
Collapse
Affiliation(s)
- K.L. Kirkwood
- Department of Oral Biology, University at Buffalo, Buffalo, New York, USA
| | - T.E. Van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection and Immunity, Faculty of Medicine, Harvard University, Cambridge, MA, USA
| | - C.L. Kirkwood
- Department of Oral Biology, University at Buffalo, Buffalo, New York, USA
| | - L. Zhang
- Department of Oral Biology, University at Buffalo, Buffalo, New York, USA
| | - J. Panezai
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA
| | - A.E. Duran-Pinedo
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - E.L. Figgins
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - L.K. Ryan
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
- Division of Infectious Disease and Global Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - J.J. Frias-Lopez
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - G. Diamond
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA
| |
Collapse
|
17
|
Osbelt L, Almási ÉDH, Wende M, Kienesberger S, Voltz A, Lesker TR, Muthukumarasamy U, Knischewski N, Nordmann E, Bielecka AA, Giralt-Zúñiga M, Kaganovitch E, Kühne C, Baier C, Pietsch M, Müsken M, Greweling-Pils MC, Breinbauer R, Flieger A, Schlüter D, Müller R, Erhardt M, Zechner EL, Strowig T. Klebsiella oxytoca inhibits Salmonella infection through multiple microbiota-context-dependent mechanisms. Nat Microbiol 2024; 9:1792-1811. [PMID: 38862602 PMCID: PMC11222139 DOI: 10.1038/s41564-024-01710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/22/2024] [Indexed: 06/13/2024]
Abstract
The Klebsiella oxytoca species complex is part of the human microbiome, especially during infancy and childhood. K. oxytoca species complex strains can produce enterotoxins, namely, tilimycin and tilivalline, while also contributing to colonization resistance (CR). The relationship between these seemingly contradictory roles is not well understood. Here, by coupling ex vivo assays with CRISPR-mutagenesis and various mouse models, we show that K. oxytoca provides CR against Salmonella Typhimurium. In vitro, the antimicrobial activity against various Salmonella strains depended on tilimycin production and was induced by various simple carbohydrates. In vivo, CR against Salmonella depended on toxin production in germ-free mice, while it was largely toxin-independent in mice with residual microbiota. This was linked to the relative levels of toxin-inducing carbohydrates in vivo. Finally, dulcitol utilization was essential for toxin-independent CR in gnotobiotic mice. Together, this demonstrates that nutrient availability is key to both toxin-dependent and substrate-driven competition between K. oxytoca and Salmonella.
Collapse
Affiliation(s)
- Lisa Osbelt
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
- ESF International Graduate School on Analysis, Imaging and Modelling of Neuronal and Inflammatory Processes, Otto-von-Guericke University, Magdeburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Éva D H Almási
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Marie Wende
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
- ESF International Graduate School on Analysis, Imaging and Modelling of Neuronal and Inflammatory Processes, Otto-von-Guericke University, Magdeburg, Germany
| | - Sabine Kienesberger
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz, Graz, Austria
| | - Alexander Voltz
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Till R Lesker
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | - Nele Knischewski
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Elke Nordmann
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Agata A Bielecka
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - María Giralt-Zúñiga
- Institute for Biology-Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eugen Kaganovitch
- Institute for Biology-Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Caroline Kühne
- Institute for Biology-Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claas Baier
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Michael Pietsch
- Division of Enteropathogenic Bacteria and Legionella (FG11)/National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Rolf Breinbauer
- BioTechMed-Graz, Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella (FG11)/National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Dirk Schlüter
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF),Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Rolf Müller
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Center for Infection Research (DZIF),Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Marc Erhardt
- Institute for Biology-Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Ellen L Zechner
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz, Graz, Austria
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
- German Center for Infection Research (DZIF),Partner Site Hannover-Braunschweig, Braunschweig, Germany.
- Center for Individualized Infection Medicine, Hannover, Germany.
| |
Collapse
|
18
|
Woelfel S, Silva MS, Stecher B. Intestinal colonization resistance in the context of environmental, host, and microbial determinants. Cell Host Microbe 2024; 32:820-836. [PMID: 38870899 DOI: 10.1016/j.chom.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
Microbial communities that colonize the human gastrointestinal (GI) tract defend against pathogens through a mechanism known as colonization resistance (CR). Advances in technologies such as next-generation sequencing, gnotobiotic mouse models, and bacterial cultivation have enhanced our understanding of the underlying mechanisms and the intricate microbial interactions involved in CR. Rather than being attributed to specific microbial clades, CR is now understood to arise from a dynamic interplay between microbes and the host and is shaped by metabolic, immune, and environmental factors. This evolving perspective underscores the significance of contextual factors, encompassing microbiome composition and host conditions, in determining CR. This review highlights recent research that has shifted its focus toward elucidating how these factors interact to either promote or impede enteric infections. It further discusses future research directions to unravel the complex relationship between host, microbiota, and environmental determinants in safeguarding against GI infections to promote human health.
Collapse
Affiliation(s)
- Simon Woelfel
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Marta Salvado Silva
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Bärbel Stecher
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany; German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany.
| |
Collapse
|
19
|
Cherrak Y, Salazar MA, Yilmaz K, Kreuzer M, Hardt WD. Commensal E. coli limits Salmonella gut invasion during inflammation by producing toxin-bound siderophores in a tonB-dependent manner. PLoS Biol 2024; 22:e3002616. [PMID: 38865418 PMCID: PMC11168627 DOI: 10.1371/journal.pbio.3002616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/05/2024] [Indexed: 06/14/2024] Open
Abstract
The gastrointestinal tract is densely colonized by a polymicrobial community known as the microbiota which serves as primary line of defence against pathogen invasion. The microbiota can limit gut-luminal pathogen growth at different stages of infection. This can be traced to specific commensal strains exhibiting direct or indirect protective functions. Although these mechanisms hold the potential to develop new approaches to combat enteric pathogens, they remain far from being completely described. In this study, we investigated how a mouse commensal Escherichia coli can outcompete Salmonella enterica serovar Typhimurium (S. Tm). Using a salmonellosis mouse model, we found that the commensal E. coli 8178 strain relies on a trojan horse trap strategy to limit S. Tm expansion in the inflamed gut. Combining mutants and reporter tools, we demonstrated that inflammation triggers the expression of the E. coli 8178 antimicrobial microcin H47 toxin which, when fused to salmochelin siderophores, can specifically alter S. Tm growth. This protective function was compromised upon disruption of the E. coli 8178 tonB-dependent catecholate siderophore uptake system, highlighting a previously unappreciated crosstalk between iron intake and microcin H47 activity. By identifying the genetic determinants mediating S. Tm competition, our work not only provides a better mechanistic understanding of the protective function displayed by members of the gut microbiota but also further expands the general contribution of microcins in bacterial antagonistic relationships. Ultimately, such insights can open new avenues for developing microbiota-based approaches to better control intestinal infections.
Collapse
Affiliation(s)
- Yassine Cherrak
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Miguel Angel Salazar
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Koray Yilmaz
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Markus Kreuzer
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Dong Q, Harper S, McSpadden E, Son SS, Allen MM, Lin H, Smith RC, Metcalfe C, Burgo V, Woodson C, Sundararajan A, Rose A, McMillin M, Moran D, Little J, Mullowney M, Sidebottom AM, Shen A, Fortier LC, Pamer EG. Protection against Clostridioides difficile disease by a naturally avirulent C. difficile strain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592814. [PMID: 38766138 PMCID: PMC11100753 DOI: 10.1101/2024.05.06.592814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Clostridioides difficile (C. difficile) strains belonging to the epidemic BI/NAP1/027 (RT027) group have been associated with increased transmissibility and disease severity. In addition to the major toxin A and toxin B virulence factors, RT027 strains also encode the CDT binary toxin. Our lab previously identified a toxigenic RT027 isolate, ST1-75, that is avirulent in mice despite densely colonizing the colon. Here, we show that coinfecting mice with the avirulent ST1-75 and virulent R20291 strains protects mice from colitis due to rapid clearance of the virulent strain and persistence of the avirulent strain. Although avirulence of ST1-75 is due to a mutation in the cdtR gene, which encodes a response regulator that modulates the production of all three C. difficile toxins, the ability of ST1-75 to protect against acute colitis is not directly attributable to the cdtR mutation. Metabolomic analyses indicate that the ST1-75 strain depletes amino acids more rapidly than the R20291 strain and supplementation with amino acids ablates ST1-75's competitive advantage, suggesting that the ST1-75 strain limits the growth of virulent R20291 bacteria by amino acid depletion. Since the germination kinetics and sensitivity to the co-germinant glycine are similar for the ST1-75 and R20291 strains, our results identify the rapidity of in vivo nutrient depletion as a mechanism providing strain-specific, virulence-independent competitive advantages to different BI/NAP1/027 strains. They also suggest that the ST1-75 strain may, as a biotherapeutic agent, enhance resistance to CDI in high-risk patients.
Collapse
Affiliation(s)
- Qiwen Dong
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Stephen Harper
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Emma McSpadden
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Sophie S. Son
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, Illinois, USA
| | - Marie-Maude Allen
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Rita C. Smith
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Carolyn Metcalfe
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Victoria Burgo
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Che Woodson
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | | | - Amber Rose
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Mary McMillin
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - David Moran
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Jessica Little
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Michael Mullowney
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | | | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric G. Pamer
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
21
|
Almási ÉDH, Knischewski N, Osbelt L, Muthukumarasamy U, El Mouali Y, Vialetto E, Beisel CL, Strowig T. An adapted method for Cas9-mediated editing reveals the species-specific role of β-glucoside utilization driving competition between Klebsiella species. J Bacteriol 2024; 206:e0031723. [PMID: 38353529 PMCID: PMC10955844 DOI: 10.1128/jb.00317-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/26/2024] [Indexed: 03/22/2024] Open
Abstract
Cas9-based gene editing tools have revolutionized genetics, enabling the fast and precise manipulation of diverse bacterial species. However, widely applicable genetic tools for non-model gut bacteria are unavailable. Here, we present a two-plasmid Cas9-based system designed for gene deletion and knock-in complementation in three members of the Klebsiella oxytoca species complex (KoSC), which we applied to study the genetic factors underlying the role of these bacteria in competition against Klebsiella pneumoniae. Firstly, the system allowed efficient and precise full-length gene deletion via enhanced lambda Red expression. Furthermore, we tested the efficiency of two independent, functionally validated complementation strategies. Ultimately, the insertion of universal "bookmark" targets during gene deletion subsequently allows the most optimal genetic complementation in K. oxytoca, Klebsiella michiganensis, and Klebsiella grimontii. This approach offers a significant advantage by enabling the use of a single high-efficiency "bookmark" for complementing other loci or strains, eliminating the need for site-specific design. We revealed that the carbohydrate permease CasA is critical in ex vivo assays for K. pneumoniae inhibition by K. oxytoca but is neither sufficient nor required for K. michiganensis and K. grimontii. Thus, the adaptation of state-of-the-art genetic tools to KoSC allows the identification of species-specific functions in microbial competition. IMPORTANCE Cas9-based gene editing tools have revolutionized bacterial genetics, yet, their application to non-model gut bacteria is frequently hampered by various limitations. We utilized a two-plasmid Cas9-based system designed for gene deletion in Klebsiella pneumoniae and demonstrate after optimization its utility for gene editing in three members of the Klebsiella oxytoca species complex (KoSC) namely K. oxytoca, Klebsiella michiganensis, and Klebsiella grimontii. We then adapted a recently developed protocol for functional complementation based on universal "bookmark" targets applicable to all tested species. In summary, species-specific adaptation of state-of-the-art genetic tools allows efficient gene deletion and complementation in type strains as well as natural isolates of KoSC members to study microbial interactions.
Collapse
Affiliation(s)
- Éva d. H. Almási
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Nele Knischewski
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Lisa Osbelt
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | | | - Youssef El Mouali
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Elena Vialetto
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Chase L. Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- Medical Faculty, University of Würzburg, Würzburg, Germany
| | - Till Strowig
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- Center for Individualized Infection Medicine, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany
| |
Collapse
|
22
|
Wu L, Wang XW, Tao Z, Wang T, Zuo W, Zeng Y, Liu YY, Dai L. Data-driven prediction of colonization outcomes for complex microbial communities. Nat Commun 2024; 15:2406. [PMID: 38493186 PMCID: PMC10944475 DOI: 10.1038/s41467-024-46766-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
Microbial interactions can lead to different colonization outcomes of exogenous species, be they pathogenic or beneficial in nature. Predicting the colonization of exogenous species in complex communities remains a fundamental challenge in microbial ecology, mainly due to our limited knowledge of the diverse mechanisms governing microbial dynamics. Here, we propose a data-driven approach independent of any dynamics model to predict colonization outcomes of exogenous species from the baseline compositions of microbial communities. We systematically validate this approach using synthetic data, finding that machine learning models can predict not only the binary colonization outcome but also the post-invasion steady-state abundance of the invading species. Then we conduct colonization experiments for commensal gut bacteria species Enterococcus faecium and Akkermansia muciniphila in hundreds of human stool-derived in vitro microbial communities, confirming that the data-driven approaches can predict the colonization outcomes in experiments. Furthermore, we find that while most resident species are predicted to have a weak negative impact on the colonization of exogenous species, strongly interacting species could significantly alter the colonization outcomes, e.g., Enterococcus faecalis inhibits the invasion of E. faecium invasion. The presented results suggest that the data-driven approaches are powerful tools to inform the ecology and management of microbial communities.
Collapse
Affiliation(s)
- Lu Wu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xu-Wen Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Zining Tao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shandong Agricultural University, Tai'an, China
| | - Tong Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wenlong Zuo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yu Zeng
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
23
|
Rosli NA, Al-Maleki AR, Loke MF, Tay ST, Rofiee MS, Teh LK, Salleh MZ, Vadivelu J. Exposure of Helicobacter pylori to clarithromycin in vitro resulting in the development of resistance and triggers metabolic reprogramming associated with virulence and pathogenicity. PLoS One 2024; 19:e0298434. [PMID: 38446753 PMCID: PMC10917248 DOI: 10.1371/journal.pone.0298434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/23/2024] [Indexed: 03/08/2024] Open
Abstract
In H. pylori infection, antibiotic-resistance is one of the most common causes of treatment failure. Bacterial metabolic activities, such as energy production, bacterial growth, cell wall construction, and cell-cell communication, all play important roles in antimicrobial resistance mechanisms. Identification of microbial metabolites may result in the discovery of novel antimicrobial therapeutic targets and treatments. The purpose of this work is to assess H. pylori metabolomic reprogramming in order to reveal the underlying mechanisms associated with the development of clarithromycin resistance. Previously, four H. pylori isolates were induced to become resistant to clarithromycin in vitro by incrementally increasing the concentrations of clarithromycin. Bacterial metabolites were extracted using the Bligh and Dyer technique and analyzed using metabolomic fingerprinting based on Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (LC-Q-ToF-MS). The data was processed and analyzed using the MassHunter Qualitative Analysis and Mass Profiler Professional software. In parental sensitivity (S), breakpoint isolates (B), and induced resistance isolates (R) H. pylori isolates, 982 metabolites were found. Furthermore, based on accurate mass, isotope ratios, abundances, and spacing, 292 metabolites matched the metabolites in the Agilent METLIN precise Mass-Personal Metabolite Database and Library (AM-PCDL). Several metabolites associated with bacterial virulence, pathogenicity, survival, and proliferation (L-leucine, Pyridoxone [Vitamine B6], D-Mannitol, Sphingolipids, Indoleacrylic acid, Dulcitol, and D-Proline) were found to be elevated in generated resistant H. pylori isolates when compared to parental sensitive isolates. The elevated metabolites could be part of antibiotics resistance mechanisms. Understanding the fundamental metabolome changes in the course of progressing from clarithromycin-sensitive to breakpoint to resistant in H. pylori clinical isolates may be a promising strategy for discovering novel alternatives therapeutic targets.
Collapse
Affiliation(s)
- Naim Asyraf Rosli
- Faculty of Medicine, Department of Medical Microbiology, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Anis Rageh Al-Maleki
- Faculty of Medicine, Department of Medical Microbiology, Universiti Malaya, Kuala Lumpur, Malaysia
- Faculty of Medicine and Health Sciences, Department of Medical Microbiology, Sana’a University, Sana’a, Yemen
| | - Mun Fai Loke
- Camtech Biomedical Pte Ltd, Singapore, Singapore
| | - Sun Tee Tay
- Faculty of Medicine, Department of Medical Microbiology, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mohd Salleh Rofiee
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Selangor, Malaysia
| | - Lay Kek Teh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Selangor, Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Selangor, Malaysia
| | - Jamuna Vadivelu
- Faculty of Medicine, Medical Education Research and Development Unit (MERDU), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Ishnaiwer M, Le Bastard Q, Naour M, Zeman M, Dailly E, Montassier E, Batard E, Dion M. Efficacy of an inulin-based treatment on intestinal colonization by multidrug-resistant E. coli: insight into the mechanism of action. Gut Microbes 2024; 16:2347021. [PMID: 38685762 PMCID: PMC11062366 DOI: 10.1080/19490976.2024.2347021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
Inulin, an increasingly studied dietary fiber, alters intestinal microbiota. The aim of this study was to assess whether inulin decreases intestinal colonization by multidrug resistant E. coli and to investigate its potential mechanisms of action. Mice with amoxicillin-induced intestinal dysbiosis mice were inoculated with extended spectrum beta-lactamase producing E. coli (ESBL-E. coli). The combination of inulin and pantoprazole (IP) significantly reduced ESBL-E. coli fecal titers, whereas pantoprazole alone did not and inulin had a delayed and limited effect. Fecal microbiome was assessed using shotgun metagenomic sequencing and qPCR. The efficacy of IP was predicted by increased abundance of 74 taxa, including two species of Adlercreutzia. Preventive treatments with A. caecimuris or A. muris also reduced ESBL-E. coli fecal titers. Fecal microbiota of mice effectively treated by IP was enriched in genes involved in inulin catabolism, production of propionate and expression of beta-lactamases. They also had increased beta-lactamase activity and decreased amoxicillin concentration. These results suggest that IP act through production of propionate and degradation of amoxicillin by the microbiota. The combination of pantoprazole and inulin is a potential treatment of intestinal colonization by multidrug-resistant E. coli. The ability of prebiotics to promote propionate and/or beta-lactamase producing bacteria may be used as a screening tool to identify potential treatments of intestinal colonization by multidrug resistant Enterobacterales.
Collapse
Affiliation(s)
- Murad Ishnaiwer
- Nantes Université, CHU Nantes, Cibles et médicaments des infections et du cancer, IICiMed, Nantes, France
- College of Applied Sciences, Palestine Polytechnic University, Hebron, Palestine
| | - Quentin Le Bastard
- Nantes Université, CHU Nantes, Cibles et médicaments des infections et du cancer, IICiMed, Nantes, France
- Emergency Department, CHU Nantes, Nantes, France
| | | | - Michal Zeman
- Veterinary Research Institute, Brno, Czech Republic
| | - Eric Dailly
- Nantes Université, CHU Nantes, Cibles et médicaments des infections et du cancer, IICiMed, Nantes, France
- CHU Nantes, Clinical Pharmacology Department, Nantes, France
| | - Emmanuel Montassier
- Nantes Université, CHU Nantes, Cibles et médicaments des infections et du cancer, IICiMed, Nantes, France
- Emergency Department, CHU Nantes, Nantes, France
- Center for Research in Transplantation and Translational Immunology, Nantes Université, Inserm, CHU Nantes, Nantes, France
| | - Eric Batard
- Nantes Université, CHU Nantes, Cibles et médicaments des infections et du cancer, IICiMed, Nantes, France
- Emergency Department, CHU Nantes, Nantes, France
| | - Michel Dion
- Nantes Université, CHU Nantes, Cibles et médicaments des infections et du cancer, IICiMed, Nantes, France
| |
Collapse
|
25
|
Zechner EL, Kienesberger S. Microbiota-derived small molecule genotoxins: host interactions and ecological impact in the gut ecosystem. Gut Microbes 2024; 16:2430423. [PMID: 39558480 PMCID: PMC11581169 DOI: 10.1080/19490976.2024.2430423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
The human intestinal tract is densely colonized by a microbial community that is subject to intense competition. Bacteria in this complex habitat seek to outcompete their neighbors for nutrients and eliminate competitors with antibacterial toxins. Antagonism can be mediated by diverse effectors including toxic proteins and small molecule inhibitors that are released extracellularly or delivered by specialized secretion systems to targeted cells. Two prototypical microbiota-derived enterotoxins, colibactin and tilimycin, and the newly discovered family of indolimines represent an expanding group of non-proteinaceous small molecules which specifically target DNA. In addition to cell killing, they generate mutations and genome instability in intoxicated microbes and host cells alike. They have been studied in detail because of their direct toxicity to human cells and important etiological roles in intestinal pathologies. Increasing evidence, however, reveals that these commensal genotoxins are also mediators of interbacterial antagonism, which impacts gut microbial ecology. In this review, we illustrate the functional versatility of commensal genotoxins in the gut ecosystem.
Collapse
Affiliation(s)
- Ellen L. Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Sabine Kienesberger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| |
Collapse
|
26
|
Deng L, Wang S. Colonization resistance: the role of gut microbiota in preventing Salmonella invasion and infection. Gut Microbes 2024; 16:2424914. [PMID: 39514544 PMCID: PMC11552263 DOI: 10.1080/19490976.2024.2424914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The human gastrointestinal tract is colonized by a complex microbial ecosystem, the gut microbiota, which is pivotal in maintaining host health and mediating resistance to diseases. This review delineates colonization resistance (CR), a critical defensive mechanism employed by the gut microbiota to safeguard against pathogenic bacterial invasions, notably by Salmonella. We detail the mechanisms through which the gut microbiota impedes Salmonella colonization, including nutrient competition, production of antimicrobial peptides, synthesis of microbial-derived metabolites, and modulation of the host immune response. Additionally, we examine how dietary interventions can influence these mechanisms, thereby augmenting the protective role of the gut microbiota. The review also discusses the sophisticated strategies utilized by Salmonella to overcome these microbial defenses. A thorough understanding of these complex interactions between microbial symbionts and pathogens is crucial for the development of innovative therapeutic strategies that enhance CR, aiming to prevent or treat microbial infections effectively.
Collapse
Affiliation(s)
- Lei Deng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
27
|
Tao R, Zong G, Pan Y, Li H, Cheng P, Deng R, Chen W, Wang A, Xia S, Tang W, Lu Y, Wei Z. Clostridium butyricum and Clostridium tyrobutyricum: angel or devil for necrotizing enterocolitis? mSystems 2023; 8:e0073223. [PMID: 37921463 PMCID: PMC10734425 DOI: 10.1128/msystems.00732-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/06/2023] [Indexed: 11/04/2023] Open
Abstract
IMPORTANCE This study sheds light on that treatment with Clostridium tyrobutyricum but not Clostridium butyricum is entitled to protect against necrotizing enterocolitis (NEC) development potentially. The mechanisms behind the opposite effect on NEC may result in different modulation on the level of Akkermansia muciniphila, which is deeply associated with intestinal homoeostasis. Briefly, through improving the abundance of A. muciniphila to alleviate intestinal inflammation and enhance intestinal barrier integrity, C. tyrobutyricum supplement may become a promising therapy for NEC.
Collapse
Affiliation(s)
- Ruizhi Tao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Gangfan Zong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yehua Pan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongxing Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Cheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Deng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shishan Xia
- Ningbo Women and Children's Hospital, Ningbo, China
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
28
|
Spragge F, Bakkeren E, Jahn MT, Araujo EBN, Pearson CF, Wang X, Pankhurst L, Cunrath O, Foster KR. Microbiome diversity protects against pathogens by nutrient blocking. Science 2023; 382:eadj3502. [PMID: 38096285 PMCID: PMC7616675 DOI: 10.1126/science.adj3502] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023]
Abstract
The human gut microbiome plays an important role in resisting colonization of the host by pathogens, but we lack the ability to predict which communities will be protective. We studied how human gut bacteria influence colonization of two major bacterial pathogens, both in vitro and in gnotobiotic mice. Whereas single species alone had negligible effects, colonization resistance greatly increased with community diversity. Moreover, this community-level resistance rested critically upon certain species being present. We explained these ecological patterns through the collective ability of resistant communities to consume nutrients that overlap with those used by the pathogen. Furthermore, we applied our findings to successfully predict communities that resist a novel target strain. Our work provides a reason why microbiome diversity is beneficial and suggests a route for the rational design of pathogen-resistant communities.
Collapse
Affiliation(s)
- Frances Spragge
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, UK
| | - Erik Bakkeren
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, UK
| | - Martin T. Jahn
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, UK
| | | | | | - Xuedan Wang
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, UK
| | - Louise Pankhurst
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, UK
| | - Olivier Cunrath
- CNRS, UMR7242, Biotechnology and cell signaling, University of Strasbourg, Illkirch, France
| | - Kevin R. Foster
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, UK
| |
Collapse
|
29
|
Gjini E, Madec S. Towards a mathematical understanding of invasion resistance in multispecies communities. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231034. [PMID: 38026034 PMCID: PMC10646464 DOI: 10.1098/rsos.231034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Multispecies community composition and dynamics are key to health and disease across biological systems, a prominent example being microbial ecosystems. Explaining the forces that govern diversity and resilience in the microbial consortia making up our body's defences remains a challenge. In this, theoretical models are crucial, to bridge the gap between species dynamics and underlying mechanisms and to develop analytic insight. Here we propose a replicator equation framework to model multispecies dynamics where an explicit notion of invasion resistance of a system emerges and can be studied explicitly. For illustration, we derive the conceptual link between such replicator equation and N microbial species' growth and interaction traits, stemming from micro-scale environmental modification. Within this replicator framework, mean invasion fitness arises, evolves dynamically, and may undergo critical predictable shifts with global environmental changes. This mathematical approach clarifies the key role of this resident system trait for invader success, and highlights interaction principles among N species that optimize their collective resistance to invasion. We propose this model based on the replicator equation as a powerful new avenue to study, test and validate mechanisms of invasion resistance and colonization in multispecies microbial ecosystems and beyond.
Collapse
Affiliation(s)
- Erida Gjini
- Center for Computational and Stochastic Mathematics, Instituto Superior Tecnico, Lisbon, Portugal
| | - Sten Madec
- Laboratory of Mathematics, University of Tours, Tours, France
| |
Collapse
|
30
|
Akritidou T, Akkermans S, Smet C, Gaspari S, Sharma C, Matthews E, Van Impe JFM. Gut microbiota of the small intestine as an antimicrobial barrier against foodborne pathogens: Impact of diet on the survival of S. Typhimurium and L. monocytogenes during in vitro digestion. Food Res Int 2023; 173:113292. [PMID: 37803689 DOI: 10.1016/j.foodres.2023.113292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 10/08/2023]
Abstract
The human gastrointestinal tract employs an assortment of chemical, enzymatic and immune barriers to impede pathogen colonization. An essential component of these barriers is the gut microbiota, which infers protection against ingested pathogens through its colonization resistance mechanisms. Specifically, the gut microbiota of the distal small intestine (ileum) renders a crucial line of defense, given that this location is regarded as an important interaction site. This study aimed to evaluate the impact of the ileal microbiota on the survival of the foodborne pathogens Salmonella enterica serotype Typhimurium and Listeria monocytogenes, utilizing an in vitro digestion model system. Moreover, the effect of diet on the gut microbiota colonization resistance mechanisms was assessed, by comparing a healthy (high fiber/low sugar) and a western diet (low fiber/high sugar). For S. Typhimurium, the results revealed that the digestion of a healthy diet led to a similar inactivation compared to the western diet, with the values of total log reduction being 0.83 and 0.82 log(CFU), respectively; yet the lack of readily accessible nutrients in the healthy diet combined with the acidic shock during gastric digestion caused the induction of stress tolerance to the pathogen. This resulted in increased pathogen survival in the presence of gut microbiota, with S. Typhimurium proliferating during the ileal phase with a maximum specific growth rate of 0.16 1/h. On the contrary, for L. monocytogenes, the healthy diet was associated with a greater inactivation than the western diet (total log reduction values: 3.08 and 1.30 log(CFU), respectively), which appeared strongly influenced by the encounter of the pathogen with the gut microbiota. Regarding the latter, the species Escherichia coli and Bacteroides thetaiotaomicron appeared to be the most prevalent in most cases. Finally, it was also demonstrated that the ileal microbiota colonization resistance mechanisms largely relied on competitive responses. The obtained knowledge of this research can contribute to the development and/or complementation of defensive strategies against pathogen infection, while also underlining the value of in vitro approaches.
Collapse
Affiliation(s)
- Theodora Akritidou
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Cindy Smet
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Sotiria Gaspari
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Chahat Sharma
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Eimear Matthews
- Faculty of Biomolecular Science, Technological University Dublin, Ireland
| | - Jan F M Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium.
| |
Collapse
|
31
|
Horrocks V, King OG, Yip AYG, Marques IM, McDonald JAK. Role of the gut microbiota in nutrient competition and protection against intestinal pathogen colonization. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001377. [PMID: 37540126 PMCID: PMC10482380 DOI: 10.1099/mic.0.001377] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
The human gut microbiota can restrict the growth of pathogens to prevent them from colonizing the intestine ('colonization resistance'). However, antibiotic treatment can kill members of the gut microbiota ('gut commensals') and reduce competition for nutrients, making these nutrients available to support the growth of pathogens. This disturbance can lead to the growth and expansion of pathogens within the intestine (including antibiotic-resistant pathogens), where these pathogens can exploit the absence of competitors and the nutrient-enriched gut environment. In this review, we discuss nutrient competition between the gut microbiota and pathogens. We also provide an overview of how nutrient competition can be harnessed to support the design of next-generation microbiome therapeutics to restrict the growth of pathogens and prevent the development of invasive infections.
Collapse
Affiliation(s)
- Victoria Horrocks
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Olivia G. King
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Alexander Y. G. Yip
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Inês Melo Marques
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Julie A. K. McDonald
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
32
|
Gül E, Abi Younes A, Huuskonen J, Diawara C, Nguyen BD, Maurer L, Bakkeren E, Hardt WD. Differences in carbon metabolic capacity fuel co-existence and plasmid transfer between Salmonella strains in the mouse gut. Cell Host Microbe 2023; 31:1140-1153.e3. [PMID: 37348498 DOI: 10.1016/j.chom.2023.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/12/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
Antibiotic resistance plasmids can be disseminated between different Enterobacteriaceae in the gut. Here, we investigate how closely related Enterobacteriaceae populations with similar nutrient needs can co-bloom in the same gut and thereby facilitate plasmid transfer. Using different strains of Salmonella Typhimurium (S.Tm SL1344 and ATCC14028) and mouse models of Salmonellosis, we show that the bloom of one strain (i.e., recipient) from very low numbers in a gut pre-occupied by the other strain (i.e., donor) depends on strain-specific utilization of a distinct carbon source, galactitol or arabinose. Galactitol-dependent growth of the recipient S.Tm strain promotes plasmid transfer between non-isogenic strains and between E. coli and S.Tm. In mice stably colonized by a defined microbiota (OligoMM12), galactitol supplementation similarly facilitates co-existence of two S.Tm strains and promotes plasmid transfer. Our work reveals a metabolic strategy used by Enterobacteriaceae to expand in a pre-occupied gut and provides promising therapeutic targets for resistance plasmids spread.
Collapse
Affiliation(s)
- Ersin Gül
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Andrew Abi Younes
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Jemina Huuskonen
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Cheickna Diawara
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Bidong D Nguyen
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Luca Maurer
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Erik Bakkeren
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
33
|
Schluter J, Djukovic A, Taylor BP, Yan J, Duan C, Hussey GA, Liao C, Sharma S, Fontana E, Amoretti LA, Wright RJ, Dai A, Peled JU, Taur Y, Perales MA, Siranosian BA, Bhatt AS, van den Brink MRM, Pamer EG, Xavier JB. The TaxUMAP atlas: Efficient display of large clinical microbiome data reveals ecological competition in protection against bacteremia. Cell Host Microbe 2023; 31:1126-1139.e6. [PMID: 37329880 PMCID: PMC10527165 DOI: 10.1016/j.chom.2023.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/28/2022] [Accepted: 05/24/2023] [Indexed: 06/19/2023]
Abstract
Longitudinal microbiome data provide valuable insight into disease states and clinical responses, but they are challenging to mine and view collectively. To address these limitations, we present TaxUMAP, a taxonomically informed visualization for displaying microbiome states in large clinical microbiome datasets. We used TaxUMAP to chart a microbiome atlas of 1,870 patients with cancer during therapy-induced perturbations. Bacterial density and diversity were positively associated, but the trend was reversed in liquid stool. Low-diversity states (dominations) remained stable after antibiotic treatment, and diverse communities had a broader range of antimicrobial resistance genes than dominations. When examining microbiome states associated with risk for bacteremia, TaxUMAP revealed that certain Klebsiella species were associated with lower risk for bacteremia localize in a region of the atlas that is depleted in high-risk enterobacteria. This indicated a competitive interaction that was validated experimentally. Thus, TaxUMAP can chart comprehensive longitudinal microbiome datasets, enabling insights into microbiome effects on human health.
Collapse
Affiliation(s)
- Jonas Schluter
- Institute for Systems Genetics, Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Ana Djukovic
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Bradford P Taylor
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jinyuan Yan
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Caichen Duan
- Institute for Systems Genetics, Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Grant A Hussey
- Institute for Systems Genetics, Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Chen Liao
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Sneh Sharma
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Emily Fontana
- Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Luigi A Amoretti
- Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Roberta J Wright
- Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Anqi Dai
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan U Peled
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Ying Taur
- Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | | | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA; Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA; Department of Medicine, Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, CA, USA
| | - Marcel R M van den Brink
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Eric G Pamer
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Joao B Xavier
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
34
|
Coleman S, Unterhauser K, Rezaul K, Ledala N, Lesmes S, Caimano MJ, Zhou Y, Jackson E, Gratalo D, Driscoll MD, Matson AP. High-resolution microbiome analysis reveals exclusionary Klebsiella species competition in preterm infants at risk for necrotizing enterocolitis. Sci Rep 2023; 13:7893. [PMID: 37193703 DOI: 10.1038/s41598-023-34735-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/06/2023] [Indexed: 05/18/2023] Open
Abstract
Intestinal colonization with Klebsiella has been linked to necrotizing enterocolitis (NEC), but methods of analysis usually failed to discriminate Klebsiella species or strains. A novel ~ 2500-base amplicon (StrainID) that spans the 16S and 23S rRNA genes was used to generate amplicon sequence variant (ASV) fingerprints for Klebsiella oxytoca and Klebsiella pneumoniae species complexes (KoSC and KpSC, respectively) and co-occurring fecal bacterial strains from 10 preterm infants with NEC and 20 matched controls. Complementary approaches were used to identify cytotoxin-producing isolates of KoSC. Klebsiella species colonized most preterm infants, were more prevalent in NEC subjects versus controls, and replaced Escherichia in NEC subjects. Single KoSC or KpSC ASV fingerprinted strains dominated the gut microbiota, suggesting exclusionary Klebsiella competition for luminal resources. Enterococcus faecalis was co-dominant with KoSC but present infrequently with KpSC. Cytotoxin-producing KoSC members were identified in most NEC subjects and were less frequent in controls. Few Klebsiella strains were shared between subjects. We conclude that inter-species Klebsiella competition, within an environment of KoSC and E. faecalis cooperation, appears to be an important factor for the development of NEC. Preterm infants seem to acquire Klebsiella primarily through routes other than patient-to-patient transmission.
Collapse
Affiliation(s)
- Spencer Coleman
- Department of Pediatrics, UConn Health, Farmington, CT, USA
- University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | | | - Karim Rezaul
- Department of Pediatrics, UConn Health, Farmington, CT, USA
| | | | - Stephanie Lesmes
- Department of Research, Connecticut Children's Medical Center, Hartford, CT, USA
| | - Melissa J Caimano
- Department of Pediatrics, UConn Health, Farmington, CT, USA
- Department of Medicine, UConn Health, Farmington, CT, USA
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| | - Yanjiao Zhou
- Department of Medicine, UConn Health, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | | | | | - Adam P Matson
- Department of Pediatrics, UConn Health, Farmington, CT, USA.
- Division of Neonatology, Connecticut Children's Medical Center, Hartford, CT, USA.
- Department of Immunology, UConn Health, Farmington, CT, USA.
| |
Collapse
|
35
|
Wu L, Wang XW, Tao Z, Wang T, Zuo W, Zeng Y, Liu YY, Dai L. Data-driven prediction of colonization outcomes for complex microbial communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537502. [PMID: 37131715 PMCID: PMC10153232 DOI: 10.1101/2023.04.19.537502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Complex microbial interactions can lead to different colonization outcomes of exogenous species, be they pathogenic or beneficial in nature. Predicting the colonization of exogenous species in complex communities remains a fundamental challenge in microbial ecology, mainly due to our limited knowledge of the diverse physical, biochemical, and ecological processes governing microbial dynamics. Here, we proposed a data-driven approach independent of any dynamics model to predict colonization outcomes of exogenous species from the baseline compositions of microbial communities. We systematically validated this approach using synthetic data, finding that machine learning models (including Random Forest and neural ODE) can predict not only the binary colonization outcome but also the post-invasion steady-state abundance of the invading species. Then we conducted colonization experiments for two commensal gut bacteria species Enterococcus faecium and Akkermansia muciniphila in hundreds of human stool-derived in vitro microbial communities, confirming that the data-driven approach can successfully predict the colonization outcomes. Furthermore, we found that while most resident species were predicted to have a weak negative impact on the colonization of exogenous species, strongly interacting species could significantly alter the colonization outcomes, e.g., the presence of Enterococcus faecalis inhibits the invasion of E. faecium . The presented results suggest that the data-driven approach is a powerful tool to inform the ecology and management of complex microbial communities.
Collapse
|
36
|
Vornhagen J, Rao K, Bachman MA. Gut community structure as a risk factor for infection in Klebsiella -colonized patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.18.23288742. [PMID: 37131824 PMCID: PMC10153327 DOI: 10.1101/2023.04.18.23288742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The primary risk factor for infection with members of the Klebsiella pneumoniae species complex is prior gut colonization, and infection is often caused by the colonizing strain. Despite the importance of the gut as a reservoir for infectious Klebsiella , little is known about the association between the gut microbiome and infection. To explore this relationship, we undertook a case-control study comparing the gut community structure of Klebsiella -colonized intensive care and hematology/oncology patients. Cases were Klebsiella -colonized patients infected by their colonizing strain (N = 83). Controls were Klebsiella -colonized patients that remained asymptomatic (N = 149). First, we characterized the gut community structure of Klebsiella -colonized patients agnostic to case status. Next, we determined that gut community data is useful for classifying cases and controls using machine learning models and that the gut community structure differed between cases and controls. Klebsiella relative abundance, a known risk factor for infection, had the greatest feature importance but other gut microbes were also informative. Finally, we show that integration of gut community structure with bacterial genotype or clinical variable data enhanced the ability of machine learning models to discriminate cases and controls. This study demonstrates that including gut community data with patient- and Klebsiella -derived biomarkers improves our ability to predict infection in Klebsiella -colonized patients. Importance Colonization is generally the first step in pathogenesis for bacteria with pathogenic potential. This step provides a unique window for intervention since a given potential pathogen has yet to cause damage to its host. Moreover, intervention during the colonization stage may help alleviate the burden of therapy failure as antimicrobial resistance rises. Yet, to understand the therapeutic potential of interventions that target colonization, we must first understand the biology of colonization and if biomarkers at the colonization stage can be used to stratify infection risk. The bacterial genus Klebsiella includes many species with varying degrees of pathogenic potential. Members of the K. pneumoniae species complex have the highest pathogenic potential. Patients colonized in their gut by these bacteria are at higher risk of subsequent infection with their colonizing strain. However, we do not understand if other members of the gut microbiota can be used as a biomarker to predict infection risk. In this study, we show that the gut microbiota differs between colonized patients that develop an infection versus those that do not. Additionally, we show that integrating gut microbiota data with patient and bacterial factors improves the ability to predict infections. As we continue to explore colonization as an intervention point to prevent infections in individuals colonized by potential pathogens, we must develop effective means for predicting and stratifying infection risk.
Collapse
|
37
|
Oliveira RA, Pamer EG. Assembling symbiotic bacterial species into live therapeutic consortia that reconstitute microbiome functions. Cell Host Microbe 2023; 31:472-484. [PMID: 37054670 DOI: 10.1016/j.chom.2023.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Increasing experimental evidence suggests that administering live commensal bacterial species can optimize microbiome composition and lead to reduced disease severity and enhanced health. Our understanding of the intestinal microbiome and its functions has increased over the past two decades largely due to deep sequence analyses of fecal nucleic acids, metabolomic and proteomic assays to measure nutrient use and metabolite production, and extensive studies on the metabolism and ecological interactions of a wide range of commensal bacterial species inhabiting the intestine. Herein, we review new and important findings that have emerged from this work and provide thoughts and considerations on approaches to re-establish and optimize microbiome functions by assembling and administering commensal bacterial consortia.
Collapse
Affiliation(s)
- Rita A Oliveira
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA; Department of Medicine, Section of Infectious Diseases & Global Health, University of Chicago Medicine, Chicago, IL, USA.
| | - Eric G Pamer
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA; Department of Medicine, Section of Infectious Diseases & Global Health, University of Chicago Medicine, Chicago, IL, USA; Department of Microbiology, University of Chicago Medicine, Chicago, IL, USA; Department of Pathology, University of Chicago Medicine, Chicago, IL, USA
| |
Collapse
|
38
|
Oliveira RA, Cabral V, Torcato I, Xavier KB. Deciphering the quorum-sensing lexicon of the gut microbiota. Cell Host Microbe 2023; 31:500-512. [PMID: 37054672 DOI: 10.1016/j.chom.2023.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The enduring coexistence between the gut microbiota and the host has led to a symbiotic relationship that benefits both parties. In this complex, multispecies environment, bacteria can communicate through chemical molecules to sense and respond to the chemical, physical, and ecological properties of the surrounding environment. One of the best-studied cell-to-cell communication mechanisms is quorum sensing. Chemical signaling through quorum sensing is involved in regulating the bacterial group behaviors, often required for host colonization. However, most microbial-host interactions regulated by quorum sensing are studied in pathogens. Here, we will focus on the latest reports on the emerging studies of quorum sensing in the gut microbiota symbionts and on group behaviors adopted by these bacteria to colonize the mammalian gut. Moreover, we address the challenges and approaches to uncover molecule-mediated communication mechanisms, which will allow us to unravel the processes that drive the establishment of gut microbiota.
Collapse
Affiliation(s)
| | - Vitor Cabral
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Inês Torcato
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | | |
Collapse
|
39
|
Heni AC, Fackelmann G, Eibner G, Kreinert S, Schmid J, Schwensow NI, Wiegand J, Wilhelm K, Sommer S. Wildlife gut microbiomes of sympatric generalist species respond differently to anthropogenic landscape disturbances. Anim Microbiome 2023; 5:22. [PMID: 37024947 PMCID: PMC10080760 DOI: 10.1186/s42523-023-00237-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/23/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Human encroachment into nature and the accompanying environmental changes are a big concern for wildlife biodiversity and health. While changes on the macroecological scale, i.e. species community and abundance pattern, are well documented, impacts on the microecological scale, such as the host's microbial community, remain understudied. Particularly, it is unclear if impacts of anthropogenic landscape modification on wildlife gut microbiomes are species-specific. Of special interest are sympatric, generalist species, assumed to be more resilient to environmental changes and which often are well-known pathogen reservoirs and drivers of spill-over events. Here, we analyzed the gut microbiome of three such sympatric, generalist species, one rodent (Proechimys semispinosus) and two marsupials (Didelphis marsupialis and Philander opossum), captured in 28 study sites in four different landscapes in Panama characterized by different degrees of anthropogenic disturbance. RESULTS Our results show species-specific gut microbial responses to the same landscape disturbances. The gut microbiome of P. semispinosus was less diverse and more heterogeneous in landscapes with close contact with humans, where it contained bacterial taxa associated with humans, their domesticated animals, and potential pathogens. The gut microbiome of D. marsupialis showed similar patterns, but only in the most disturbed landscape. P. opossum, in contrast, showed little gut microbial changes, however, this species' absence in the most fragmented landscapes indicates its sensitivity to long-term isolation. CONCLUSION These results demonstrate that wildlife gut microbiomes even in generalist species with a large ecological plasticity are impacted by human encroachment into nature, but differ in resilience which can have critical implications on conservation efforts and One Health strategies.
Collapse
Affiliation(s)
- Alexander Christoph Heni
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081, Ulm, Germany.
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama.
| | - Gloria Fackelmann
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081, Ulm, Germany
| | - Georg Eibner
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081, Ulm, Germany
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Swetlana Kreinert
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081, Ulm, Germany
| | - Julian Schmid
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081, Ulm, Germany
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - Nina Isabell Schwensow
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081, Ulm, Germany
| | - Jonas Wiegand
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081, Ulm, Germany
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081, Ulm, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
40
|
Ding D, Wang B, Zhang X, Zhang J, Zhang H, Liu X, Gao Z, Yu Z. The spread of antibiotic resistance to humans and potential protection strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114734. [PMID: 36950985 DOI: 10.1016/j.ecoenv.2023.114734] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Antibiotic resistance is currently one of the greatest threats to human health. Widespread use and residues of antibiotics in humans, animals, and the environment can exert selective pressure on antibiotic resistance bacteria (ARB) and antibiotic resistance gene (ARG), accelerating the flow of antibiotic resistance. As ARG spreads to the population, the burden of antibiotic resistance in humans increases, which may have potential health effects on people. Therefore, it is critical to mitigate the spread of antibiotic resistance to humans and reduce the load of antibiotic resistance in humans. This review briefly described the information of global antibiotic consumption information and national action plans (NAPs) to combat antibiotic resistance and provided a set of feasible control strategies for the transmission of ARB and ARG to humans in three areas including (a) Reducing the colonization capacity of exogenous ARB, (b) Enhancing human colonization resistance and mitigating the horizontal gene transfer (HGT) of ARG, (c) Reversing ARB antibiotic resistance. With the hope of achieving interdisciplinary one-health prevention and control of bacterial resistance.
Collapse
Affiliation(s)
- Dong Ding
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China; College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Bin Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoan Zhang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junxi Zhang
- NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Huanhuan Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xinxin Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhan Gao
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, China; The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
41
|
Xiao K, Sun Y, Song J, Li L, Mao W, Jiang C. Gut microbiota involved in myocardial dysfunction induced by sepsis. Microb Pathog 2023; 175:105984. [PMID: 36638851 DOI: 10.1016/j.micpath.2023.105984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Myocardial dysfunction is an important complication of sepsis and an important cause of death in sepsis patients. Sepsis will significantly change the composition of gut microbiota, and the destruction of gut microbiota also creates conditions for the occurrence and progression of sepsis. Gut microbiota is an important player in myocardial injury in sepsis. This review elaborates on the possible mechanisms of gut microbiota affecting myocardial injury in sepsis, including short-chain fatty acids, trimethylamine and trimethylamine oxides, various cytokines, and mitochondrial dysfunction. A better understanding of the mechanism could help improve the treatment of sepsis and get a better prognosis for sepsis patients.
Collapse
Affiliation(s)
- Kaihao Xiao
- Department of Neonatology, Zhuhai Women and Children' s Hospital, Zhuhai, 519060, China
| | - Yan Sun
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jiayu Song
- Department of Neonatology, Zhuhai Women and Children' s Hospital, Zhuhai, 519060, China
| | - Lei Li
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Wei Mao
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Chunming Jiang
- Department of Neonatology, Zhuhai Women and Children' s Hospital, Zhuhai, 519060, China.
| |
Collapse
|
42
|
Laganenka L, Lee JW, Malfertheiner L, Dieterich CL, Fuchs L, Piel J, von Mering C, Sourjik V, Hardt WD. Chemotaxis and autoinducer-2 signalling mediate colonization and contribute to co-existence of Escherichia coli strains in the murine gut. Nat Microbiol 2023; 8:204-217. [PMID: 36624229 DOI: 10.1038/s41564-022-01286-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/09/2022] [Indexed: 01/11/2023]
Abstract
Bacteria communicate and coordinate their behaviour at the intra- and interspecies levels by producing and sensing diverse extracellular small molecules called autoinducers. Autoinducer 2 (AI-2) is produced and detected by a variety of bacteria and thus plays an important role in interspecies communication and chemotaxis. Although AI-2 is a major autoinducer molecule present in the mammalian gut and can influence the composition of the murine gut microbiota, its role in bacteria-bacteria and bacteria-host interactions during gut colonization remains unclear. Combining competitive infections in C57BL/6 mice with microscopy and bioinformatic approaches, we show that chemotaxis (cheY) and AI-2 signalling (via lsrB) promote gut colonization by Escherichia coli, which is in turn connected to the ability of the bacteria to utilize fructoselysine (frl operon). We further show that the genomic diversity of E. coli strains with respect to AI-2 signalling allows ecological niche segregation and stable co-existence of different E. coli strains in the mammalian gut.
Collapse
Affiliation(s)
- Leanid Laganenka
- Institute of Microbiology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | - Jae-Woo Lee
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology, Marburg, Germany
| | - Lukas Malfertheiner
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | | | - Lea Fuchs
- Institute of Microbiology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | - Jörn Piel
- Institute of Microbiology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | - Christian von Mering
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology, Marburg, Germany
| | | |
Collapse
|
43
|
Campbell C, Kandalgaonkar MR, Golonka RM, Yeoh BS, Vijay-Kumar M, Saha P. Crosstalk between Gut Microbiota and Host Immunity: Impact on Inflammation and Immunotherapy. Biomedicines 2023; 11:294. [PMID: 36830830 PMCID: PMC9953403 DOI: 10.3390/biomedicines11020294] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Gut microbes and their metabolites are actively involved in the development and regulation of host immunity, which can influence disease susceptibility. Herein, we review the most recent research advancements in the gut microbiota-immune axis. We discuss in detail how the gut microbiota is a tipping point for neonatal immune development as indicated by newly uncovered phenomenon, such as maternal imprinting, in utero intestinal metabolome, and weaning reaction. We describe how the gut microbiota shapes both innate and adaptive immunity with emphasis on the metabolites short-chain fatty acids and secondary bile acids. We also comprehensively delineate how disruption in the microbiota-immune axis results in immune-mediated diseases, such as gastrointestinal infections, inflammatory bowel diseases, cardiometabolic disorders (e.g., cardiovascular diseases, diabetes, and hypertension), autoimmunity (e.g., rheumatoid arthritis), hypersensitivity (e.g., asthma and allergies), psychological disorders (e.g., anxiety), and cancer (e.g., colorectal and hepatic). We further encompass the role of fecal microbiota transplantation, probiotics, prebiotics, and dietary polyphenols in reshaping the gut microbiota and their therapeutic potential. Continuing, we examine how the gut microbiota modulates immune therapies, including immune checkpoint inhibitors, JAK inhibitors, and anti-TNF therapies. We lastly mention the current challenges in metagenomics, germ-free models, and microbiota recapitulation to a achieve fundamental understanding for how gut microbiota regulates immunity. Altogether, this review proposes improving immunotherapy efficacy from the perspective of microbiome-targeted interventions.
Collapse
Affiliation(s)
- Connor Campbell
- Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Mrunmayee R. Kandalgaonkar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Rachel M. Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Beng San Yeoh
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
44
|
Ma B, Gavzy SJ, Saxena V, Song Y, Piao W, Lwin HW, Lakhan R, Iyyathurai J, Li L, France M, Paluskievicz C, Shirkey MW, Hittle L, Munawwar A, Mongodin EF, Bromberg JS. Strain-specific alterations in gut microbiome and host immune responses elicited by tolerogenic Bifidobacterium pseudolongum. Sci Rep 2023; 13:1023. [PMID: 36658194 PMCID: PMC9852428 DOI: 10.1038/s41598-023-27706-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
The beneficial effects attributed to Bifidobacterium are largely attributed to their immunomodulatory capabilities, which are likely to be species- and even strain-specific. However, their strain-specificity in direct and indirect immune modulation remain largely uncharacterized. We have shown that B. pseudolongum UMB-MBP-01, a murine isolate strain, is capable of suppressing inflammation and reducing fibrosis in vivo. To ascertain the mechanism driving this activity and to determine if it is specific to UMB-MBP-01, we compared it to a porcine tropic strain B. pseudolongum ATCC25526 using a combination of cell culture and in vivo experimentation and comparative genomics approaches. Despite many shared features, we demonstrate that these two strains possess distinct genetic repertoires in carbohydrate assimilation, differential activation signatures and cytokine responses signatures in innate immune cells, and differential effects on lymph node morphology with unique local and systemic leukocyte distribution. Importantly, the administration of each B. pseudolongum strain resulted in major divergence in the structure, composition, and function of gut microbiota. This was accompanied by markedly different changes in intestinal transcriptional activities, suggesting strain-specific modulation of the endogenous gut microbiota as a key to immune modulatory host responses. Our study demonstrated a single probiotic strain can influence local, regional, and systemic immunity through both innate and adaptive pathways in a strain-specific manner. It highlights the importance to investigate both the endogenous gut microbiome and the intestinal responses in response to probiotic supplementation, which underpins the mechanisms through which the probiotic strains drive the strain-specific effect to impact health outcomes.
Collapse
Affiliation(s)
- Bing Ma
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Samuel J Gavzy
- Department of Surgery, University of Maryland Medical Center, Baltimore, MD, 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Vikas Saxena
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yang Song
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Wenji Piao
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Hnin Wai Lwin
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ram Lakhan
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jegan Iyyathurai
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lushen Li
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Michael France
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Christina Paluskievicz
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Marina W Shirkey
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lauren Hittle
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Arshi Munawwar
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Emmanuel F Mongodin
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Division of Lung Diseases, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jonathan S Bromberg
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Surgery, University of Maryland Medical Center, Baltimore, MD, 21201, USA.
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
45
|
Zhang N, Liu X, Qi L, Chen J, Qin S, Jin M, Yang X, Liu F, Guo J, Liu J, Wang C, Chen Y. A clinical KPC-producing Klebsiella michiganensis strain carrying IncFII/IncFIA (HI1)/IncFIB (K) multiple replicon plasmid. Front Microbiol 2023; 13:1086296. [PMID: 36687642 PMCID: PMC9845883 DOI: 10.3389/fmicb.2022.1086296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
Klebsiella michiganensis is an increasingly important bacterial pathogen causing nosocomial infections in clinical patients. In this study, we described the molecular and genomic characteristics of a carbapenem-resistant K. michiganensis strain KM166 cultured from a one-month premature baby's blood sample. KM166 showed lower biofilm forming ability in optical density (OD) than K. pneumoniae NTUH-K2044 (0.271 ± 0.027 vs. 0.595 ± 0.054, p = 0.001), and the median lethal dose (0.684 lg CFU/mL) was lower than K. pneumoniae strain NTUH-K2044 (6.679 lg CFU/mL). A IncFII/IncFIA(HI1)/IncFIB(K) multiple replicon plasmid in KM166 was identified carrying three replicon types. It has low homology to Escherichia coli pMRY09-581ECO_1 and the highest homology similarity to the INcFIA/INcFII(p14)-type plasmid in K. michiganensis strain fxq plasmid pB_KPC, suggesting that this multiple replicon plasmid was unlikely to have been transmitted from E. coli and probably a transfer of repFIB replicon genes from other K. michiganensis strains into the INcFIA/INcFII(p14)-type plasmid of KM166 had occurred. Mapping of the gene environment revealed that bla KPC-2 in KM166 plasmid 3 had high identity and same Tn3-tnpR-IS481-bla KPC-2-klcA_1 genomic context structure with K. pneumoniae strain JKP55, plasmid pKPC-J5501, and bla KPC-2-carrying plasmid proved to be autonomously transferred under the help of mobile genetic elements into Escherichia coli 600 by plasmid conjugation experiment. In conclusion, we have characterized a K. michiganensis strain carrying multi-replicon IncFII/IncFIA(HI1)/IncFIB(K) plasmid and bla KPC-2-carrying IncFII(p14)/IncFIA plasmid in this study, which provided insights about the evolutionary diversity of plasmids carried by K. michiganensis.
Collapse
Affiliation(s)
- Na Zhang
- School of Public Health, China Medical University, Shenyang, Liaoning province, China,Department of Emergency Response, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xiong Liu
- Department of Information, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Lihua Qi
- Department of Clinical Laboratory, Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiali Chen
- School of Public Health, China Medical University, Shenyang, Liaoning province, China,Department of Emergency Response, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Shiyu Qin
- Department of Emergency Response, Chinese PLA Center for Disease Control and Prevention, Beijing, China,College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China
| | - Meiling Jin
- School of Public Health, China Medical University, Shenyang, Liaoning province, China,Department of Emergency Response, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xiaojing Yang
- School of Public Health, China Medical University, Shenyang, Liaoning province, China,Department of Emergency Response, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Fangni Liu
- School of Public Health, China Medical University, Shenyang, Liaoning province, China,Department of Emergency Response, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jinpeng Guo
- Department of Emergency Response, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jie Liu
- Department of Clinical Laboratory, Seventh Medical Center of Chinese PLA General Hospital, Beijing, China,Jie Liu,
| | - Changjun Wang
- School of Public Health, China Medical University, Shenyang, Liaoning province, China,Department of Emergency Response, Chinese PLA Center for Disease Control and Prevention, Beijing, China,College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China,Changjun Wang,
| | - Yong Chen
- Department of Emergency Response, Chinese PLA Center for Disease Control and Prevention, Beijing, China,*Correspondence: Yong Chen,
| |
Collapse
|
46
|
Kwan M, Sepulveda M, Alegre ML. Methods to Study TLRs in Transplantation. Methods Mol Biol 2023; 2700:139-149. [PMID: 37603178 DOI: 10.1007/978-1-0716-3366-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Toll-like receptors (TLRs) are key regulators of immune responses, including alloimmune responses. In this chapter, we present protocols to study whether and/or how TLRs can contribute to solid-organ transplant rejection. We describe methods to reduce heterogeneity in microbiome variations between animals before beginning experiments to limit confounding factors, protocols using TLR agonists to prevent anti-CD154/donor splenocyte transfer-mediated tolerance, and recipes to heat-kill microbes or use hosts genetically deficient in TLR-dependent pathways to distinguish between TLR-dependent and live bacteria-dependent effects.
Collapse
Affiliation(s)
- Montserrat Kwan
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, USA
| | - Martin Sepulveda
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, USA
| | - Maria-Luisa Alegre
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
47
|
Vatanen T, Jabbar KS, Ruohtula T, Honkanen J, Avila-Pacheco J, Siljander H, Stražar M, Oikarinen S, Hyöty H, Ilonen J, Mitchell CM, Yassour M, Virtanen SM, Clish CB, Plichta DR, Vlamakis H, Knip M, Xavier RJ. Mobile genetic elements from the maternal microbiome shape infant gut microbial assembly and metabolism. Cell 2022; 185:4921-4936.e15. [PMID: 36563663 PMCID: PMC9869402 DOI: 10.1016/j.cell.2022.11.023] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/30/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022]
Abstract
The perinatal period represents a critical window for cognitive and immune system development, promoted by maternal and infant gut microbiomes and their metabolites. Here, we tracked the co-development of microbiomes and metabolomes from late pregnancy to 1 year of age using longitudinal multi-omics data from a cohort of 70 mother-infant dyads. We discovered large-scale mother-to-infant interspecies transfer of mobile genetic elements, frequently involving genes associated with diet-related adaptations. Infant gut metabolomes were less diverse than maternal but featured hundreds of unique metabolites and microbe-metabolite associations not detected in mothers. Metabolomes and serum cytokine signatures of infants who received regular-but not extensively hydrolyzed-formula were distinct from those of exclusively breastfed infants. Taken together, our integrative analysis expands the concept of vertical transmission of the gut microbiome and provides original insights into the development of maternal and infant microbiomes and metabolomes during late pregnancy and early life.
Collapse
Affiliation(s)
- Tommi Vatanen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Terhi Ruohtula
- New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Jarno Honkanen
- New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | | | - Heli Siljander
- New Children's Hospital, Helsinki University Hospital, Helsinki, Finland; Centre for Military Medicine, Finnish Defence Forces, Riihimäki, Finland
| | - Martin Stražar
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sami Oikarinen
- Department of Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Heikki Hyöty
- Department of Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Fimlab Laboratories, Tampere, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Caroline M Mitchell
- Vincent Obstetrics & Gynecology Department, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Moran Yassour
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Suvi M Virtanen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland; Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland; Center for Child Health Research and Development and Innovation Center, Tampere University Hospital, Tampere, Finland
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Damian R Plichta
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA 02139, USA
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA 02139, USA
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; New Children's Hospital, Helsinki University Hospital, Helsinki, Finland; Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA 02139, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
48
|
Chen Z, Wang Z, Li D, Zhu B, Xia Y, Wang G, Ai L, Zhang C, Wang C. The gut microbiota as a target to improve health conditions in a confined environment. Front Microbiol 2022; 13:1067756. [PMID: 36601399 PMCID: PMC9806127 DOI: 10.3389/fmicb.2022.1067756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Confined environments increase psychological stress and lead to health problems such as abnormal mood and rhythm disruption. However, the mechanism by which confined environments impact health has remained unclear. Significant correlations have been reported between psychological stress and changes in gut microbiota. Therefore, we investigated the effect of a confined environment on the composition of the gut microbiota by 16s rDNA high-throughput sequencing, and analyzed the correlation between gut microbiota and health indicators such as uric acid (UA), sleep, and mood. We found that the gut microbiota of the subjects clustered into two enterotypes (Bi and Bla), and that the groups differed significantly. There were notable differences in the abundances of genera such as Bifidobacterium, Dorea, Ruminococcus_torques_group, Ruminococcus_gnavus_group, Klebsiella, and UCG-002 (p < 0.05). A confined environment significantly impacted the subjects' health indicators. We also observed differences in how the subjects of the two enterotypes adapted to the confined environment. The Bi group showed no significant differences in health indicators before and after confinement; however, the Bla group experienced several health problems after confinement, such as increased UA, anxiety, and constipation, and lack of sleep. Redundancy analysis (RDA) showed that UA, RBC, mood, and other health problems were significantly correlated with the structure of the gut microbiota. We concluded that genera such as UCG-002, Ruminococcus, CAG352, and Ruminococcus_torques_group increased vulnerability to confined environments, resulting in abnormal health conditions. We found that the differences in the adaptability of individuals to confined environments were closely related to the composition of their gut microbiota.
Collapse
Affiliation(s)
- Zheng Chen
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - ZiYing Wang
- Navy Special Medical Center, Naval Medical University, Shanghai, China
| | - Dan Li
- Navy Special Medical Center, Naval Medical University, Shanghai, China
| | - Beiwei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yongjun Xia
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Guangqiang Wang
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Chunhong Zhang
- Navy Special Medical Center, Naval Medical University, Shanghai, China,*Correspondence: Chunhong Zhang,
| | - Chuan Wang
- Navy Special Medical Center, Naval Medical University, Shanghai, China,Chuan Wang,
| |
Collapse
|
49
|
Microbiome-mediated fructose depletion restricts murine gut colonization by vancomycin-resistant Enterococcus. Nat Commun 2022; 13:7718. [PMID: 36513659 PMCID: PMC9748033 DOI: 10.1038/s41467-022-35380-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Multidrug-resistant organisms (MDRO) are a major threat to public health. MDRO infections, including those caused by vancomycin-resistant Enterococcus (VRE), frequently begin by colonization of the intestinal tract, a crucial step that is impaired by the intestinal microbiota. However, the specific members of the microbiota that suppress MDRO colonization and the mechanisms of such protection are largely unknown. Here, using metagenomics and mouse models that mimic the patients' exposure to antibiotics, we identified commensal bacteria associated with protection against VRE colonization. We further found a consortium of five strains that was sufficient to restrict VRE gut colonization in antibiotic treated mice. Transcriptomics in combination with targeted metabolomics and in vivo assays indicated that the bacterial consortium inhibits VRE growth through nutrient depletion, specifically by reducing the levels of fructose, a carbohydrate that boosts VRE growth in vivo. Finally, in vivo RNA-seq analysis of each strain of the consortium in combination with ex vivo and in vivo assays demonstrated that a single bacterium (Olsenella sp.) could recapitulate the effect of the consortium. Our results indicate that nutrient depletion by specific commensals can reduce VRE intestinal colonization, which represents a novel non-antibiotic based strategy to prevent infections caused by this multidrug-resistant organism.
Collapse
|
50
|
Mäklin T, Thorpe HA, Pöntinen AK, Gladstone RA, Shao Y, Pesonen M, McNally A, Johnsen PJ, Samuelsen Ø, Lawley TD, Honkela A, Corander J. Strong pathogen competition in neonatal gut colonisation. Nat Commun 2022; 13:7417. [PMID: 36456554 PMCID: PMC9715557 DOI: 10.1038/s41467-022-35178-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
Opportunistic bacterial pathogen species and their strains that colonise the human gut are generally understood to compete against both each other and the commensal species colonising this ecosystem. Currently we are lacking a population-wide quantification of strain-level colonisation dynamics and the relationship of colonisation potential to prevalence in disease, and how ecological factors might be modulating these. Here, using a combination of latest high-resolution metagenomics and strain-level genomic epidemiology methods we performed a characterisation of the competition and colonisation dynamics for a longitudinal cohort of neonatal gut microbiomes. We found strong inter- and intra-species competition dynamics in the gut colonisation process, but also a number of synergistic relationships among several species belonging to genus Klebsiella, which includes the prominent human pathogen Klebsiella pneumoniae. No evidence of preferential colonisation by hospital-adapted pathogen lineages in either vaginal or caesarean section birth groups was detected. Our analysis further enabled unbiased assessment of strain-level colonisation potential of extra-intestinal pathogenic Escherichia coli (ExPEC) in comparison with their propensity to cause bloodstream infections. Our study highlights the importance of systematic surveillance of bacterial gut pathogens, not only from disease but also from carriage state, to better inform therapies and preventive medicine in the future.
Collapse
Affiliation(s)
- Tommi Mäklin
- grid.7737.40000 0004 0410 2071Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Harry A. Thorpe
- grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Anna K. Pöntinen
- grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Oslo, Norway ,grid.412244.50000 0004 4689 5540Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Rebecca A. Gladstone
- grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Yan Shao
- grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridgeshire UK
| | - Maiju Pesonen
- grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Alan McNally
- grid.6572.60000 0004 1936 7486Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Pål J. Johnsen
- grid.10919.300000000122595234Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ørjan Samuelsen
- grid.412244.50000 0004 4689 5540Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway ,grid.10919.300000000122595234Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Trevor D. Lawley
- grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridgeshire UK
| | - Antti Honkela
- grid.7737.40000 0004 0410 2071Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Jukka Corander
- grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Oslo, Norway ,grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridgeshire UK ,grid.7737.40000 0004 0410 2071Helsinki Institute for Information Technology HIIT, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| |
Collapse
|