1
|
He L, Mao M, Ge H, Zhang J, Zhang J, Yan Q. lafK contributes the regulation of swarming motility of Pseudomonas plecoglossicida and bacterial-host interaction. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110071. [PMID: 39637951 DOI: 10.1016/j.fsi.2024.110071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Flagella-mediated swarming motility plays a crucial role in facilitating the rapid colonization and dissemination of bacterial within the host. The swarming motility of Pseudomonas plecoglossicida is intricately associated with its lateral flagella, and notably, the lateral flagella system of P. plecoglossicida encompasses a transcriptional regulator known as LafK. However, the regulatory role of LafK and its impact on bacteria-host interactions remain to be elucidated. In this study, we systematically investigated the regulatory role of LafK by constructing lafK deletion strain on the biological characteristics, virulence, and pathogenic process of P. plecoglossicida, as well as its impact on the host immune response. Our findings demonstrated that the deletion of lafK led to a significant down-regulation in the expression of type III secretion system-associated genes within the lateral flagella of P. plecoglossicida, consequently impairing bacterial swarming motility, biofilm formation, adhesion, and chemotaxis ability. Furthermore, in vitro infection experiments demonstrated that the deletion of lafK resulted in a diminished pathogenicity of P. plecoglossicida through down-regulation of flagella-related genes, thereby triggering an expedited immune response for bacterial clearance, and subsequently leading to reduced bacterial load within the host and attenuated tissue damage during infection. In summary, this study presents a novel theoretical framework for elucidating the regulatory mechanism of virulence in P. plecoglossicida.
Collapse
Affiliation(s)
- Li He
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Meiqin Mao
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Hui Ge
- Fisheries Research Institute of Fujian, Xiamen, Fujian, 361000, China
| | - Jiaonan Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China
| | - Jiaolin Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China.
| |
Collapse
|
2
|
Kim JK, Sapkota A, Roh T, Jo EK. The intricate interactions between inflammasomes and bacterial pathogens: Roles, mechanisms, and therapeutic potentials. Pharmacol Ther 2025; 265:108756. [PMID: 39581503 DOI: 10.1016/j.pharmthera.2024.108756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/06/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Inflammasomes are intracellular multiprotein complexes that consist of a sensor, an adaptor, and a caspase enzyme to cleave interleukin (IL)-1β and IL-18 into their mature forms. In addition, caspase-1 and -11 activation results in the cleavage of gasdermin D to form pores, thereby inducing pyroptosis. Activation of the inflammasome and pyroptosis promotes host defense against pathogens, whereas dysregulation of the inflammasome can result in various pathologies. Inflammasomes exhibit versatile microbial signal detection, directly or indirectly, through cellular processes, such as ion fluctuations, reactive oxygen species generation, and the disruption of intracellular organelle function; however, bacteria have adaptive strategies to manipulate the inflammasome by altering microbe-associated molecular patterns, intercepting innate pathways with secreted effectors, and attenuating inflammatory and cell death responses. In this review, we summarize recent advances in the diverse roles of the inflammasome during bacterial infections and discuss how bacteria exploit inflammasome pathways to establish infections or persistence. In addition, we highlight the therapeutic potential of harnessing bacterial immune subversion strategies against acute and chronic bacterial infections. A more comprehensive understanding of the significance of inflammasomes in immunity and their intricate roles in the battle between bacterial pathogens and hosts will lead to the development of innovative strategies to address emerging threats posed by the expansion of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Asmita Sapkota
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Taylor Roh
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Barczyk A, Six P, Rivoal M, Devos C, Dezitter X, Cornu-Choi MJ, Huard K, Pellegrini E, Cusack S, Dubuquoy L, Millet R, Leleu-Chavain N. 4-Anilinoquinazoline Derivatives as the First Potent NOD1-RIPK2 Signaling Pathway Inhibitors at the Nanomolar Range. J Med Chem 2024; 67:19304-19322. [PMID: 39444201 DOI: 10.1021/acs.jmedchem.4c01713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Inflammation is a defense mechanism that restores tissue damage and eliminates pathogens. Among the pattern recognition receptors that recognize danger or pathogenic signals, nucleotide oligomerization domains 1 and 2 (NOD1/2) have been identified to play an important role in innate immunity responses, and inhibition of NOD1 could be interesting to treat severe infections and inflammatory diseases. In this work, we identified the first selective NOD1 versus NOD2 pathway inhibitors at the nanomolar range based on a 4-anilinoquinazoline scaffold. We demonstrated that NOD1 inhibition occurs through the inhibition of receptor interacting protein kinase 2 (RIPK2), which is involved in its downstream signaling pathways. Compound 37 demonstrates no cytotoxicity, a selectivity for RIPK2 over epithelial and vascular endothelial growth factor receptors (EGFR/VEGFR), and a capacity to reduce pro-inflammatory cytokine IL-8 secretion. The structure of the RIPK2-compound 37 complex was resolved by crystallography. The 4-anilinoquinazoline scaffold offers novel perspectives to design NOD1-RIPK2 signaling inhibitors.
Collapse
Affiliation(s)
- Amélie Barczyk
- Univ. Lille, Inserm, CHU Lille, U1286─INFINITE─Institute for Translational Research in Inflammation, Lille F-59000, France
| | - Perrine Six
- Univ. Lille, Inserm, CHU Lille, U1286─INFINITE─Institute for Translational Research in Inflammation, Lille F-59000, France
| | - Morgane Rivoal
- Univ. Lille, Inserm, CHU Lille, U1286─INFINITE─Institute for Translational Research in Inflammation, Lille F-59000, France
| | - Claire Devos
- Univ. Lille, Inserm, CHU Lille, U1286─INFINITE─Institute for Translational Research in Inflammation, Lille F-59000, France
| | - Xavier Dezitter
- Univ. Lille, Inserm, CHU Lille, U1286─INFINITE─Institute for Translational Research in Inflammation, Lille F-59000, France
| | - Min-Jeong Cornu-Choi
- Univ. Lille, Inserm, CHU Lille, U1286─INFINITE─Institute for Translational Research in Inflammation, Lille F-59000, France
| | - Karine Huard
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, Grenoble Cedex 9 38042, France
| | - Erika Pellegrini
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, Grenoble Cedex 9 38042, France
| | - Stephen Cusack
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, Grenoble Cedex 9 38042, France
| | - Laurent Dubuquoy
- Univ. Lille, Inserm, CHU Lille, U1286─INFINITE─Institute for Translational Research in Inflammation, Lille F-59000, France
| | - Régis Millet
- Univ. Lille, Inserm, CHU Lille, U1286─INFINITE─Institute for Translational Research in Inflammation, Lille F-59000, France
| | - Natascha Leleu-Chavain
- Univ. Lille, Inserm, CHU Lille, U1286─INFINITE─Institute for Translational Research in Inflammation, Lille F-59000, France
| |
Collapse
|
4
|
Tsankov BK, Luchak A, Carr C, Philpott DJ. The effects of NOD-like receptors on adaptive immune responses. Biomed J 2024; 47:100637. [PMID: 37541620 PMCID: PMC10796267 DOI: 10.1016/j.bj.2023.100637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/06/2023] Open
Abstract
It has long been appreciated that cues from the innate immune system orchestrate downstream adaptive immune responses. Although previous work has focused on the roles of Toll-like receptors in this regard, relatively little is known about how Nod-like receptors instruct adaptive immunity. Here we review the functions of different members of the Nod-like receptor family in orchestrating effector and anamnestic adaptive immune responses. In particular, we address the ways in which inflammasome and non-inflammasome members of this family affect adaptive immunity under various infectious and environmental contexts. Furthermore, we identify several key mechanistic questions that studies in this field have left unaddressed. Our aim is to provide a framework through which immunologists in the adaptive immune field may view their questions through an innate-immune lens and vice-versa.
Collapse
Affiliation(s)
- Boyan K Tsankov
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Alexander Luchak
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Charles Carr
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Gruzdev SK, Podoprigora IV, Gizinger OA. Immunology of gut microbiome and liver in non-alcoholic fatty liver disease (NAFLD): mechanisms, bacteria, and novel therapeutic targets. Arch Microbiol 2024; 206:62. [PMID: 38216746 DOI: 10.1007/s00203-023-03752-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 01/14/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world. Most important contributors to its development are diet and obesity. Gut microbiome's importance for immune system and inflammatory pathways more widely accepted as an important component in NAFLD and other liver diseases' pathogenesis. In this article we review potential mechanisms of microbiome alteration of local and systemic immune responses leading to NAFLD's development, and how can modulate them for the treatment. Our review mentions different immune system pathways and microorganisms regulating metabolism, liver inflammation and fibrosis. We specifically point out TLR-4 as a potential key immune pathway activated by bacterial lipopolysaccharides producing pro-inflammatory cytokines in NAFLD. Also, we discuss three endotoxin-producing strains (Enterobacter cloacae B29, Escherichia coli PY102, Klebsiella pneumoniae A7) that can promote NAFLD development via TLR4-dependent immune response activation in animal models and how they potentially contribute to disease progression in humans. Additionally, we discuss their other immune and non-immune mechanisms contributing to NAFLD pathogenesis. In the end we point out gut microbiome researches' future perspective in NAFLD as a potential new target for both diagnostic and treatment.
Collapse
Affiliation(s)
- Stanislav Konstantinovich Gruzdev
- Department of Microbiology V.S. Kiktenko, Medical Institute, Peoples' Friendship University of Russia, Miklukho-Maklaya Str. 6, Moscow, 117198, Russia.
| | - Irina Viktorovna Podoprigora
- Department of Microbiology V.S. Kiktenko, Medical Institute, Peoples' Friendship University of Russia, Miklukho-Maklaya Str. 6, Moscow, 117198, Russia
| | - Oksana Anatolievna Gizinger
- Department of Microbiology V.S. Kiktenko, Medical Institute, Peoples' Friendship University of Russia, Miklukho-Maklaya Str. 6, Moscow, 117198, Russia
| |
Collapse
|
6
|
Abstract
The immune system of multicellular organisms protects them from harmful microbes. To establish an infection in the face of host immune responses, pathogens must evolve specific strategies to target immune defense mechanisms. One such defense is the formation of intracellular protein complexes, termed inflammasomes, that are triggered by the detection of microbial components and the disruption of homeostatic processes that occur during bacterial infection. Formation of active inflammasomes initiates programmed cell death pathways via activation of inflammatory caspases and cleavage of target proteins. Inflammasome-activated cell death pathways such as pyroptosis lead to proinflammatory responses that protect the host. Bacterial infection has the capacity to influence inflammasomes in two distinct ways: activation and perturbation. In this review, we discuss how bacterial activities influence inflammasomes, and we discuss the consequences of inflammasome activation or evasion for both the host and pathogen.
Collapse
Affiliation(s)
- Beatrice I Herrmann
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James P Grayczyk
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
- Current affiliation: Oncology Discovery, Abbvie, Inc., Chicago, Illinois, USA;
| | - Igor E Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Lu S, Li Y, Qian Z, Zhao T, Feng Z, Weng X, Yu L. Role of the inflammasome in insulin resistance and type 2 diabetes mellitus. Front Immunol 2023; 14:1052756. [PMID: 36993972 PMCID: PMC10040598 DOI: 10.3389/fimmu.2023.1052756] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
The inflammasome is a protein complex composed of a variety of proteins in cells and which participates in the innate immune response of the body. It can be activated by upstream signal regulation and plays an important role in pyroptosis, apoptosis, inflammation, tumor regulation, etc. In recent years, the number of metabolic syndrome patients with insulin resistance (IR) has increased year by year, and the inflammasome is closely related to the occurrence and development of metabolic diseases. The inflammasome can directly or indirectly affect conduction of the insulin signaling pathway, involvement the occurrence of IR and type 2 diabetes mellitus (T2DM). Moreover, various therapeutic agents also work through the inflammasome to treat with diabetes. This review focuses on the role of inflammasome on IR and T2DM, pointing out the association and utility value. Briefly, we have discussed the main inflammasomes, including NLRP1, NLRP3, NLRC4, NLRP6 and AIM2, as well as their structure, activation and regulation in IR were described in detail. Finally, we discussed the current therapeutic options-associated with inflammasome for the treatment of T2DM. Specially, the NLRP3-related therapeutic agents and options are widely developed. In summary, this article reviews the role of and research progress on the inflammasome in IR and T2DM.
Collapse
Affiliation(s)
- Shen Lu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yanrong Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhaojun Qian
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Tiesuo Zhao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaogang Weng
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- *Correspondence: Lili Yu, ; Xiaogang Weng,
| | - Lili Yu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, China
- *Correspondence: Lili Yu, ; Xiaogang Weng,
| |
Collapse
|
8
|
Fecal Metagenomics and Metabolomics Identifying Microbial Signatures in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24054855. [PMID: 36902288 PMCID: PMC10002933 DOI: 10.3390/ijms24054855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The frequency of non-alcoholic fatty liver disease (NAFLD) has intensified, creating diagnostic challenges and increasing the need for reliable non-invasive diagnostic tools. Due to the importance of the gut-liver axis in the progression of NAFLD, studies attempt to reveal microbial signatures in NAFLD, evaluate them as diagnostic biomarkers, and to predict disease progression. The gut microbiome affects human physiology by processing the ingested food into bioactive metabolites. These molecules can penetrate the portal vein and the liver to promote or prevent hepatic fat accumulation. Here, the findings of human fecal metagenomic and metabolomic studies relating to NAFLD are reviewed. The studies present mostly distinct, and even contradictory, findings regarding microbial metabolites and functional genes in NAFLD. The most abundantly reproducing microbial biomarkers include increased lipopolysaccharides and peptidoglycan biosynthesis, enhanced degradation of lysine, increased levels of branched chain amino acids, as well as altered lipid and carbohydrate metabolism. Among other causes, the discrepancies between the studies may be related to the obesity status of the patients and the severity of NAFLD. In none of the studies, except for one, was diet considered, although it is an important factor driving gut microbiota metabolism. Future studies should consider diet in these analyses.
Collapse
|
9
|
Liu Y, Xing LH, Li FX, Wang N, Ma YZ, Li JW, Wu YJ, Liang J, Lei YX, Wang XY, Meng FH, Yang YJ, Li GP, Wang X, Yu SX. Mixed lineage kinase-like protein protects against Clostridium perfringens infection by enhancing NLRP3 inflammasome-extracellular traps axis. iScience 2022; 25:105121. [PMID: 36185365 PMCID: PMC9515590 DOI: 10.1016/j.isci.2022.105121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/16/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Abstract
Despite intense research in understanding Clostridium perfringens (C. perfringens) pathogenesis, the mechanisms by which it is cleared from the host are largely unclarified. In C. perfringens gas gangrene and enterocolitis model, Mlkl -/- mice, lacking mixed lineage kinase-like protein (MLKL), are more susceptible to C. perfringens infection. Mlkl deficiency results in a defect in inflammasome activation, and IL-18 and IL-1β releases. Exogenous administration of recombinant IL-18 is able to rescue the susceptibility of Mlkl -/- mice. Notably, K+ efflux-dependent NLRP3 inflammasome signaling downstream of active MLKL promotes bacterial killing and clearance. Interestingly, the defect of bactericidal activity is also mediated by decreased classical extracellular trap formation in the absence of Mlkl. Our results demonstrate that MLKL mediates extracellular trap formation in a NLRP3 inflammasome-dependent manner. These findings highlight the requirement of MLKL for host defense against C. perfringens infection through enhancing NLRP3 inflammasome-extracellular traps axis.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Li-Hua Xing
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Fen-Xin Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Na Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yu-Ze Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Jian-Wei Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yu-Jing Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Jing Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yu-Xin Lei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xue-Yin Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Fan-Hua Meng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yong-Jun Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guang-Peng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China,Corresponding author
| | - Shui-Xing Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China,Corresponding author
| |
Collapse
|
10
|
Kienes I, Johnston EL, Bitto NJ, Kaparakis-Liaskos M, Kufer TA. Bacterial subversion of NLR-mediated immune responses. Front Immunol 2022; 13:930882. [PMID: 35967403 PMCID: PMC9367220 DOI: 10.3389/fimmu.2022.930882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Members of the mammalian Nod-like receptor (NLR) protein family are important intracellular sensors for bacteria. Bacteria have evolved under the pressure of detection by host immune sensing systems, leading to adaptive subversion strategies to dampen immune responses for their benefits. These include modification of microbe-associated molecular patterns (MAMPs), interception of innate immune pathways by secreted effector proteins and sophisticated instruction of anti-inflammatory adaptive immune responses. Here, we summarise our current understanding of subversion strategies used by bacterial pathogens to manipulate NLR-mediated responses, focusing on the well-studied members NOD1/2, and the inflammasome forming NLRs NLRC4, and NLRP3. We discuss how bacterial pathogens and their products activate these NLRs to promote inflammation and disease and the range of mechanisms used by bacterial pathogens to evade detection by NLRs and to block or dampen NLR activation to ultimately interfere with the generation of host immunity. Moreover, we discuss how bacteria utilise NLRs to facilitate immunotolerance and persistence in the host and outline how various mechanisms used to attenuate innate immune responses towards bacterial pathogens can also aid the host by reducing immunopathologies. Finally, we describe the therapeutic potential of harnessing immune subversion strategies used by bacteria to treat chronic inflammatory conditions.
Collapse
Affiliation(s)
- Ioannis Kienes
- Department of Immunology, University of Hohenheim, Stuttgart, Germany
| | - Ella L. Johnston
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia
| | - Natalie J. Bitto
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia
| | - Maria Kaparakis-Liaskos
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia
| | - Thomas A. Kufer
- Department of Immunology, University of Hohenheim, Stuttgart, Germany
- *Correspondence: Thomas A. Kufer,
| |
Collapse
|
11
|
Liu W, Jiang P, Yang K, Song Q, Yuan F, Liu Z, Gao T, Zhou D, Guo R, Li C, Sun P, Tian Y. Mycoplasma hyopneumoniae Infection Activates the NOD1 Signaling Pathway to Modulate Inflammation. Front Cell Infect Microbiol 2022; 12:927840. [PMID: 35873172 PMCID: PMC9304885 DOI: 10.3389/fcimb.2022.927840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
Mycoplasma hyopneumoniae is a highly contagious pathogen causing porcine enzootic pneumonia, which elicits prolonged inflammatory response modulated by pattern recognition receptors (PRRs). Although significant advances have been achieved in understanding the Toll-Like receptors that recognize M. hyopneumoniae, the role of nucleotide-binding oligomerization domain 1 (NOD1) in M. hyopneumoniae infected cells remains poorly understood. This study revealed that M. hyopneumoniae activates the NOD1-RIP2 pathway and is co-localized with host NOD1 during infection. siRNA knockdown of NOD1 significantly impaired the TRIF and MYD88 pathway and blocked the activation of TNF-α. In contrast, NOD1 overexpression significantly suppressed M. hyopneumoniae proliferation. Furthermore, we for the first time investigated the interaction between M. hyopneumoniae mhp390 and NOD1 receptor, and the results suggested that mhp390 and NOD1 are possibly involved in the recognition of M. hyopneumoniae. These findings may improve our understanding of the interaction between PRRs and M. hyopneumoniae and the function of NOD1 in host defense against M. hyopneumoniae infection.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Pengcheng Jiang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qiqi Song
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Pei Sun
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- *Correspondence: Yongxiang Tian, ; Pei Sun,
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
- *Correspondence: Yongxiang Tian, ; Pei Sun,
| |
Collapse
|
12
|
Wang Y, Liu J, Liu H, Liu L, Gao X, Tong Y, Song S, Yan C. Oxidized PUFAs Increase Susceptibility of Mice to Salmonella Infection by Diminishing Host's Innate Immune Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6407-6417. [PMID: 35588298 DOI: 10.1021/acs.jafc.2c00099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dietary ω-3 PUFAs are highly prone to oxidation, and this may potentially limit their application in the health-promoting field. Here, we sought to investigate whether and how oxidized PUFAs modulate the susceptibility of mice to Salmonella typhimurium (S. Tm) infection. Algae oil (AO) and oxidized algae oil (ox-AO) were administered to the C57BL/6 mice prior to S. Tm infection. Compared to the S. Tm group, ox-AO increased bacterial burden in systemic and intestinal tissues, downregulated host anti-infection responses, and developed worse colitis. In macrophages, ox-AO decreased both phagocytosis of S. Tm and clearance of intracellular bacteria and dampened the activation of mitogen-activated protein kinase (MAPK), NF-κB, and autophagy pathways. Furthermore, ox-AO diminished LPS-induced inflammatory cytokine production and S. Tm induced NLRC4 inflammasome activation. This study reveals that oxidized PUFAs may contribute to the development of enteric infections and regular monitoring of the oxidation status in commercial PUFA supplements to prevent their potential adverse impact on human health.
Collapse
Affiliation(s)
- Yuandong Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiaxiu Liu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Huanhuan Liu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lingzhi Liu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xingchen Gao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yuqin Tong
- National Engineering Research Center of Solid-State Brewing, Luzhou Pinchuang Technology Company Limited, Luzhou 646000, China
| | - Shuang Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chunhong Yan
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
13
|
Challagundla N, Saha B, Agrawal-Rajput R. Insights into inflammasome regulation: cellular, molecular, and pathogenic control of inflammasome activation. Immunol Res 2022; 70:578-606. [PMID: 35610534 DOI: 10.1007/s12026-022-09286-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
Maintenance of immune homeostasis is an intricate process wherein inflammasomes play a pivotal role by contributing to innate and adaptive immune responses. Inflammasomes are ensembles of adaptor proteins that can trigger a signal following innate sensing of pathogens or non-pathogens eventuating in the inductions of IL-1β and IL-18. These inflammatory cytokines substantially influence the antigen-presenting cell's costimulatory functions and T helper cell differentiation, contributing to adaptive immunity. As acute and chronic disease conditions may accompany parallel tissue damage, we analyze the critical role of extracellular factors such as cytokines, amyloids, cholesterol crystals, etc., intracellular metabolites, and signaling molecules regulating inflammasome activation/inhibition. We develop an operative framework for inflammasome function and regulation by host cell factors and pathogens. While inflammasomes influence the innate and adaptive immune components' interplay modulating the anti-pathogen adaptive immune response, pathogens may target inflammasome inhibition as a survival strategy. As trapped between health and diseases, inflammasomes serve as promising therapeutic targets and their modus operandi serves as a scientific rationale for devising better therapeutic strategies.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382007, India
| | - Bhaskar Saha
- National Centre for Cell Science, Lab-5, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Reena Agrawal-Rajput
- Immunology lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382007, India.
| |
Collapse
|
14
|
Nozaki K, Li L, Miao EA. Innate Sensors Trigger Regulated Cell Death to Combat Intracellular Infection. Annu Rev Immunol 2022; 40:469-498. [PMID: 35138947 PMCID: PMC9614550 DOI: 10.1146/annurev-immunol-101320-011235] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intracellular pathogens pose a significant threat to animals. In defense, innate immune sensors attempt to detect these pathogens using pattern recognition receptors that either directly detect microbial molecules or indirectly detect their pathogenic activity. These sensors trigger different forms of regulated cell death, including pyroptosis, apoptosis, and necroptosis, which eliminate the infected host cell niche while simultaneously promoting beneficial immune responses. These defenses force intracellular pathogens to evolve strategies to minimize or completely evade the sensors. In this review, we discuss recent advances in our understanding of the cytosolic pattern recognition receptors that drive cell death, including NLRP1, NLRP3, NLRP6, NLRP9, NLRC4, AIM2, IFI16, and ZBP1. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kengo Nozaki
- Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA;
| | - Lupeng Li
- Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA; .,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Edward A Miao
- Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA;
| |
Collapse
|
15
|
Mónaco A, Chilibroste S, Yim L, Chabalgoity JA, Moreno M. Inflammasome activation, NLRP3 engagement and macrophage recruitment to tumor microenvironment are all required for Salmonella antitumor effect. Cancer Immunol Immunother 2022; 71:2141-2150. [PMID: 35061085 DOI: 10.1007/s00262-022-03148-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022]
Abstract
Salmonella-based cancer therapies show great potential in preclinical models, but for most cases the observed antitumor effect is transient. Understanding the basis of the antitumor efficacy might guide the design of improved strains that elicit long-lasting effects, paving the wave for clinical use. Here, we deepened into the role of macrophages and inflammasome activation in the context of Salmonella anti-melanoma effect. We showed inflammasome activation in melanoma cells upon infection, which correlated with cell surface exposure of gasdermin-D (GSDM-D) and calreticulin (CRT) and High mobility group box 1 protein (HMGB-1) release, suggesting immunogenic cell death, particularly pyroptosis. Salmonella infection upregulated levels of Caspase-11 (Casp11) mRNA, but not Nlrp3 or Nlrc4 mRNA, the only described inflammasome receptors engaged by Salmonella, suggesting that non-canonical inflammasome activation could be occurring in melanoma cells. Intratumoral administration of Salmonella to melanoma-bearing mice elicited local inflammasome activation and interleukin-1β (IL-1β) production together with tumor growth retardation and extended survival in wild type but not Caspase-1/11 (Casp1/11) knockout mice despite similar levels of intratumoral IL-1β in the later. Salmonella antitumor activity was also suppressed in melanoma bearing Nlrp3 knockout mice. Salmonella induced macrophage recruitment to the tumor site and infiltrating cells exhibited inflammasome activation. Depletion experiments confirmed that macrophages are also essential for Salmonella anti-melanoma effect. Intratumoral macrophages showed a marked M2/M1 shift soon after treatment but this inflammatory profile is then lost, which could explain the transient effect of therapy. All in all, our results highlight CASP-1/11 axis and macrophages as essential players in Salmonella-based cancer immunotherapy and suggest a possible target for future interventions.
Collapse
Affiliation(s)
- Amy Mónaco
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Sofía Chilibroste
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucía Yim
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jose Alejandro Chabalgoity
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - María Moreno
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
16
|
Nibbering B, Gerding DN, Kuijper EJ, Zwittink RD, Smits WK. Host Immune Responses to Clostridioides difficile: Toxins and Beyond. Front Microbiol 2022; 12:804949. [PMID: 34992590 PMCID: PMC8724541 DOI: 10.3389/fmicb.2021.804949] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Clostridioides difficile is often resistant to the actions of antibiotics to treat other bacterial infections and the resulting C. difficile infection (CDI) is among the leading causes of nosocomial infectious diarrhea worldwide. The primary virulence mechanism contributing to CDI is the production of toxins. Treatment failures and recurrence of CDI have urged the medical community to search for novel treatment options. Strains that do not produce toxins, so called non-toxigenic C. difficile, have been known to colonize the colon and protect the host against CDI. In this review, a comprehensive description and comparison of the immune responses to toxigenic C. difficile and non-toxigenic adherence, and colonization factors, here called non-toxin proteins, is provided. This revealed a number of similarities between the host immune responses to toxigenic C. difficile and non-toxin proteins, such as the influx of granulocytes and the type of T-cell response. Differences may reflect genuine variation between the responses to toxigenic or non-toxigenic C. difficile or gaps in the current knowledge with respect to the immune response toward non-toxigenic C. difficile. Toxin-based and non-toxin-based immunization studies have been evaluated to further explore the role of B cells and reveal that plasma cells are important in protection against CDI. Since the success of toxin-based interventions in humans to date is limited, it is vital that future research will focus on the immune responses to non-toxin proteins and in particular non-toxigenic strains.
Collapse
Affiliation(s)
- Britt Nibbering
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Dale N Gerding
- Department of Veterans Affairs, Research Service, Edward Hines Jr. VA Hospital, Hines, IL, United States
| | - Ed J Kuijper
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Romy D Zwittink
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Wiep Klaas Smits
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
17
|
Deets KA, Nichols Doyle R, Rauch I, Vance RE. Inflammasome activation leads to cDC1-independent cross-priming of CD8 T cells by epithelial cell-derived antigen. eLife 2021; 10:e72082. [PMID: 34939932 PMCID: PMC8719880 DOI: 10.7554/elife.72082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022] Open
Abstract
The innate immune system detects pathogens and initiates adaptive immune responses. Inflammasomes are central components of the innate immune system, but whether inflammasomes provide sufficient signals to activate adaptive immunity is unclear. In intestinal epithelial cells (IECs), inflammasomes activate a lytic form of cell death called pyroptosis, leading to epithelial cell expulsion and the release of cytokines. Here, we employed a genetic system to show that simultaneous antigen expression and inflammasome activation specifically in IECs is sufficient to activate CD8+ T cells. By genetic elimination of direct T cell priming by IECs, we found that IEC-derived antigens were cross-presented to CD8+ T cells. However, cross-presentation of IEC-derived antigen to CD8+ T cells only partially depended on IEC pyroptosis. In the absence of inflammasome activation, cross-priming of CD8+ T cells required Batf3+ dendritic cells (conventional type one dendritic cells [cDC1]), whereas cross-priming in the presence of inflammasome activation required a Zbtb46+ but Batf3-independent cDC population. These data suggest the existence of parallel inflammasome-dependent and inflammasome-independent pathways for cross-presentation of IEC-derived antigens.
Collapse
Affiliation(s)
- Katherine A Deets
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Randilea Nichols Doyle
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Isabella Rauch
- Department of Molecular Microbiology and Immunology, Oregon Health and Science UniversityPortlandUnited States
| | - Russell E Vance
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Cancer Research Laboratory, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
18
|
Gasdermin D and Beyond - Gasdermin-mediated Pyroptosis in Bacterial Infections. J Mol Biol 2021; 434:167409. [PMID: 34929200 DOI: 10.1016/j.jmb.2021.167409] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022]
Abstract
The discovery of pyroptosis and its subsequent implications in infection and immunity has uncovered a new angle of host-defence against pathogen assault. At its most simple, gasdermin-mediated pyroptosis in bacterial infection would be expected to remove pathogens from the relative safety of the cytosol or pathogen containing vacuole/phagosome whilst inducing a rapid and effective immune response. Differences in gasdermin-mediated pyroptosis between cell types, stimulation conditions, pathogen and even animal species, however, make things more complex. The excessive inflammation associated with the pathogen-induced gasdermin-mediated pyroptosis contributes to a downward spiral in sepsis. With no currently approved effective treatment options for sepsis understanding how gasdermin-mediated pyroptotic pathways are regulated provides an opportunity to identify novel therapeutic candidates against this complex disease. In this review we cover recent advances in the field of gasdermin-mediated pyroptosis with a focus on bacterial infection and sepsis models in the context of humans and other animal species. Importantly we also consider why there is considerable redundancy set into these ancient immune pathways.
Collapse
|
19
|
Inflammasome activation by Salmonella. Curr Opin Microbiol 2021; 64:27-32. [PMID: 34563937 DOI: 10.1016/j.mib.2021.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 11/24/2022]
Abstract
Host recognition of bacteria such as Salmonella enterica serovar Typhimurium requires multiple host detection systems to generate complex inflammatory responses which can be cell type specific and has the potential for bacterial subversion of the host. Host detection of Salmonella requires Pattern Recognition Receptors (PRRs) sensing Pathogen Associated Molecular Patterns (PAMPs). These bacteria possess a diverse array of PAMPs including lipopolysaccharide, flagellin, proteins, lipoproteins, DNA, RNA and metabolites which can potentially activate multiple PRRs concurrently in different cell types. Salmonella is sensed by the inflammasome forming cytosolic nucleotide oligomerisation domain leucine rich repeat-like receptor (NLR) PRRs NLRC4 and NLRP3 as well as by the non canonical inflammasome formed by caspase 11 in mice, caspase 4 and 5 in humans. This review will discuss the different inflammasomes and how their activity regulates the host response to Salmonella infection.
Collapse
|
20
|
Souza COS, Ketelut-Carneiro N, Milanezi CM, Faccioli LH, Gardinassi LG, Silva JS. NLRC4 inhibits NLRP3 inflammasome and abrogates effective antifungal CD8 + T cell responses. iScience 2021; 24:102548. [PMID: 34142053 PMCID: PMC8184506 DOI: 10.1016/j.isci.2021.102548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/06/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
The recognition of fungi by intracellular NOD-like receptors (NLRs) induces inflammasome assembly and activation. Although the NLRC4 inflammasome has been extensively studied in bacterial infections, its role during fungal infections is unclear. Paracoccidioidomycosis (PCM) is a pathogenic fungal disease caused by Paracoccidioides brasiliensis. Here, we show that NLRC4 confers susceptibility to experimental PCM by regulating NLRP3-dependent cytokine production and thus protective effector mechanisms. Early after infection, NLRC4 suppresses prostaglandin E2 production, and consequently reduces interleukin (IL)-1β release by macrophages and dendritic cells in the lungs. IL-1β is required to control fungal replication via induction of the nitric oxide synthase 2 (NOS2) pathway. At a later stage of the disease, NLRC4 impacts IL-18 release, dampening robust CD8+IFN-γ+ T cell responses and enhancing mortality of mice. These findings demonstrate that NLRC4 promotes disease by regulating the production of inflammatory cytokines and cellular responses that depend on the NLRP3 inflammasome activity. NLRC4 promotes susceptibility to a highly pathogenic fungus. NLRC4 regulates NLRP3 activity. NLRC4 inhibits early NLRP3/IL-1β/NOS2/NO axis and promotes fungal replication. NLRC4 dampens late IL-18 production, suppressing CD8+IFN-γ+ T cell responses.
Collapse
Affiliation(s)
- Camila O S Souza
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Natália Ketelut-Carneiro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Cristiane M Milanezi
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lúcia H Faccioli
- Department of Clinical Analyses, Toxicology and Bromatological Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz G Gardinassi
- Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - João S Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Fiocruz-Bi-Institutional Translational Medicine Platform, Ribeirão Preto, SP, Brazil
| |
Collapse
|
21
|
Abstract
A fundamental concept in immunology is that the innate immune system initiates or instructs downstream adaptive immune responses. Inflammasomes are central players in innate immunity to pathogens, but how inflammasomes shape adaptive immunity is complex and relatively poorly understood. Here we highlight recent work on the interplay between inflammasomes and adaptive immunity. We address how inflammasome-dependent release of cytokines and antigen activates, shapes or even inhibits adaptive immune responses. We consider how distinct tissue or cellular contexts may alter the effects of inflammasome activation on adaptive immunity and how this contributes to beneficial or detrimental outcomes in infectious diseases, cancer and autoimmunity. We aspire to provide a framework for thinking about inflammasomes and their connection to the adaptive immune response.
Collapse
|