1
|
Kavanagh NL, Kinnevey PM, Brennan GI, O’Connell B, Goering RV, Coleman DC. Co-carriage of diverse vancomycin-resistant Enterococcus faecium ST80-lineages by 70% of patients in an Irish hospital. JAC Antimicrob Resist 2025; 7:dlaf065. [PMID: 40309497 PMCID: PMC12039289 DOI: 10.1093/jacamr/dlaf065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025] Open
Abstract
Background Vancomycin-resistant Enterococcus faecium (VREfm) are significant nosocomial pathogens. Irish VREfm comprise diverse vanA-encoding ST80-complex type (CT) lineages. Recent studies indicate that within-patient VREfm diversity could confound surveillance. This study investigated the intra-host VREfm genetic diversity among colonized Irish hospital patients. Methods Rectal VREfm (n = 150) from 10 patients (15 isolates each) were investigated by WGS, core-genome MLST and split k-mer (SKA)-SNP analysis. Plasmids and vanA-transposons from 39 VREfm representative of CTs identified were resolved by hybrid assembly of short-read (Illumina) and long-read (Oxford Nanopore Technologies) sequences. Plasmid relatedness was assessed based on Mash distances. Thirty vancomycin-susceptible E. faecium (VSEfm) from four VREfm-positive patients were also investigated. Results All isolates were clade A1 and most were ST80 (VREfm, 147/150; VSEfm, 25/30). Seventy-percent of patients (7/10) harboured either two (n = 4), three (n = 2) or four (n = 1) VREfm CTs. Individual patient isolate pairs from different CTs differed significantly (median SKA-SNPs 2933), but differences were minimal between isolate pairs of the same CT (median SKA-SNPs 0). In total, 193 plasmids were identified in 39 VREfm investigated. Near-identical plasmids (≥99.5% average nucleotide identity) were identified in divergent CTs from multiple patients. Most VREfm (28/39, 72%) harboured vanA on closely related transferable, linear plasmids. Divergent CTs within individual patients harboured either indistinguishable vanA-transposons or vanA-transposons with distinct organizational iterations. Four VSEfm from different CTs investigated harboured similar plasmids to VREfm. Conclusion VREfm within-host diversity is highly prevalent in Irish hospital patients, which complicates surveillance. Linear plasmids play an important role in the emergence of Irish VREfm.
Collapse
Affiliation(s)
- Nicole L Kavanagh
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Lincoln Place, Dublin D02 F859, Ireland
| | - Peter M Kinnevey
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Lincoln Place, Dublin D02 F859, Ireland
| | - Grainne I Brennan
- Department of Clinical Microbiology, St. James’s Hospital, Dublin, Ireland
- National MRSA Reference Laboratory, St. James’s Hospital, Dublin, Ireland
| | - Brian O’Connell
- Department of Clinical Microbiology, St. James’s Hospital, Dublin, Ireland
- National MRSA Reference Laboratory, St. James’s Hospital, Dublin, Ireland
| | - Richard V Goering
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA
| | - David C Coleman
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Lincoln Place, Dublin D02 F859, Ireland
| |
Collapse
|
2
|
Ju X, Xiong P, Yan Z, Chen G, Cai C, Zhang R. Emergence of carbapenem-resistant Citrobacter spp. across human, animal, and water environments in China. Int J Antimicrob Agents 2025; 65:107463. [PMID: 39952445 DOI: 10.1016/j.ijantimicag.2025.107463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
OBJECTIVE With the rise of carbapenem-resistant Citrobacter spp. (CRC), it is essential to investigate their distribution and resistance characteristics across diverse ecological niches. This study aims to collect CRCs from humans, animals, and water environments to analyze their epidemiology, genetic characteristics, and resistance mechanisms, providing insights into transmission dynamics. METHODS CRCs were isolated from different samples using methods including filtration, enrichment, screening, and purification. Antimicrobial susceptibility tests were conducted using the broth microdilution method. Transconjugation experiments were performed through filter mating. Whole genome sequencing and bioinformatics analysis were carried out to analyze genomic features of CRCs. RESULTS Total of 171 CRCs were isolated from diverse Chinese provinces between 2016 and 2023. All strains are classified into seven Citrobacter species. Citrobacter freundii is the most common (76.02%), with ST116 and ST22 being the predominant strains. Among all strains, 63.16% carried blaNDM-1, and 41.52% carried blaKPC-2. Hospital wastewater was the primary source of CRCs harbouring two carbapenemase genes, with the most prevalent combination being blaNDM-1 and blaKPC-2 (85.71%, 24/28). All strains showed multi-drug resistance, with over 95% resistant to various carbapenems. Transconjugation experiments showed that carbapenemase genes in the majority of CRCs were located on the plasmids and can be transferred to the recipient strains. Phylogenetic analysis displayed that clonal transmission was observed among a few CRCs. CONCLUSIONS Multiple mobile genetic elements mediate the spread and prevalence of carbapenem resistance in Citrobacter spp. Monitoring carbapenemase genes and CRCs across ecological niches is needed to controlling carbapenem resistance, particularly in high-risk sources like hospital wastewater.
Collapse
Affiliation(s)
- Xiaoyang Ju
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Panfeng Xiong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zelin Yan
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Gongxiang Chen
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Chang Cai
- College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, Zhejiang, China.
| | - Rong Zhang
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Sherry NL, Lee JYH, Giulieri SG, Connor CH, Horan K, Lacey JA, Lane CR, Carter GP, Seemann T, Egli A, Stinear TP, Howden BP. Genomics for antimicrobial resistance-progress and future directions. Antimicrob Agents Chemother 2025:e0108224. [PMID: 40227048 DOI: 10.1128/aac.01082-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
Antimicrobial resistance (AMR) is a critical global public health threat, with bacterial pathogens of primary concern. Pathogen genomics has revolutionized the study of bacterial pathogens and provided deep insights into the mechanisms and dissemination of AMR, with the precision of whole-genome sequencing informing better control strategies. However, generating actionable data from genomic surveillance and diagnostic efforts requires integration at the public health and clinical interface that goes beyond academic efforts to identify resistance mechanisms, undertake post hoc analyses of outbreaks, and share data after research publications. In addition to timely genomics data, consideration also needs to be given to epidemiological sampling frames, analysis, and reporting mechanisms that meet International Organization for Standardization (ISO) standards and generation of reports that are interpretable and actionable for public health and clinical "end-users." Importantly, ensuring all countries have equitable access to data and technology is critical, through timely data sharing following the FAIR principles (findable, accessible, interoperable, and re-usable). In this review, we describe (i) advances in genomic approaches for AMR research and surveillance to understand emergence, evolution, and transmission of AMR and the key requirements to enable this work and (ii) discuss emerging and future applications of genomics at the clinical and public health interface, including barriers to implementation. Harnessing advances in genomics-enhanced AMR research and embedding robust and reproducible workflows within clinical and public health practice promises to maximize the impact of pathogen genomics for AMR globally in the coming decade.
Collapse
Affiliation(s)
- Norelle L Sherry
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Antimicrobial Resistance, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases and Immunology, Austin Health, Heidelberg, Victoria, Australia
| | - Jean Y H Lee
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Monash Health, Clayton, Victoria, Australia
| | - Stefano G Giulieri
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital, , Melbourne, Victoria, Australia
| | - Christopher H Connor
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kristy Horan
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jake A Lacey
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Courtney R Lane
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Antimicrobial Resistance, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
| | - Glen P Carter
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Torsten Seemann
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
| | - Adrian Egli
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Timothy P Stinear
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Benjamin P Howden
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Antimicrobial Resistance, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases and Immunology, Austin Health, Heidelberg, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Microbiology Department, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Mills EG, Hewlett K, Smith AB, Griffith MP, Pless L, Sundermann AJ, Harrison LH, Zackular JP, Van Tyne D. Bacteriocin production facilitates nosocomial emergence of vancomycin-resistant Enterococcus faecium. Nat Microbiol 2025; 10:871-881. [PMID: 40119148 PMCID: PMC11964922 DOI: 10.1038/s41564-025-01958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/14/2025] [Indexed: 03/24/2025]
Abstract
Gastrointestinal colonization by the nosocomial pathogen vancomycin-resistant Enterococcus faecium (VREfm) can lead to bloodstream infections with high mortality rates. Shifts in VREfm lineages found within healthcare settings occur, but reasons underlying these changes are not understood. Here we sequenced 710 VREfm clinical isolates collected between 2017 and 2022 from a large tertiary care centre. Genomic analyses revealed a polyclonal VREfm population, although 46% of isolates formed genetically related clusters, suggesting a high transmission rate. Comparing these data to a global collection of 15,631 publicly available VREfm genomes collected between 2002 and 2022 identified replacement of the sequence type (ST) 17 VREfm lineage by emergent ST80 and ST117 lineages at the local and global level. Comparative genomic and functional analyses revealed that emergent lineages encoded bacteriocin T8, which conferred a competitive advantage over bacteriocin T8-negative strains in vitro and upon colonization of the mouse gut. Bacteriocin T8 carriage was also strongly associated with strain emergence in the global genome collection. These data suggest that bacteriocin T8-mediated competition may have contributed to VREfm lineage replacement.
Collapse
Affiliation(s)
- Emma G Mills
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Katharine Hewlett
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alexander B Smith
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marissa P Griffith
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lora Pless
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander J Sundermann
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lee H Harrison
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph P Zackular
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Microbial Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Macesic N, Cottingham H, Wisniewski JA, Blakeway LV, Theegala R, Pragastis K, Stewardson A, Bass P, Gritt M, Spilsbury S, Del Rosario-Kelly D, Dennison A, Spelman DW, Jenney AW, Peleg AY. Hospital Enterococcus faecium demonstrates distinct environmental and patient reservoirs: a genomic point prevalence survey. Infect Control Hosp Epidemiol 2025; 46:1-4. [PMID: 40114494 PMCID: PMC12034451 DOI: 10.1017/ice.2025.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/18/2024] [Accepted: 01/22/2025] [Indexed: 03/22/2025]
Abstract
We assessed the hospital environment as a reservoir of vancomycin-resistant E. faecium (VRE) and compared environmental VRE isolates to bloodstream infection E. faecium isolates. We identified distinct environmental and patient reservoirs, with the environment dominated by vanB VRE. Environment-clinical reservoir spillover accounted for 292/895 (33%) of putative transmission links.
Collapse
Affiliation(s)
- Nenad Macesic
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
- Infection Prevention & Healthcare Epidemiology, Alfred Health, Melbourne, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Hugh Cottingham
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Jessica A. Wisniewski
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Luke V. Blakeway
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Ravali Theegala
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Katherine Pragastis
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Andrew Stewardson
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
- Infection Prevention & Healthcare Epidemiology, Alfred Health, Melbourne, Australia
| | - Pauline Bass
- Infection Prevention & Healthcare Epidemiology, Alfred Health, Melbourne, Australia
| | - Megan Gritt
- Infection Prevention & Healthcare Epidemiology, Alfred Health, Melbourne, Australia
| | - Stephanie Spilsbury
- Infection Prevention & Healthcare Epidemiology, Alfred Health, Melbourne, Australia
| | | | | | - Denis W. Spelman
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
- Microbiology Unit, Alfred Health, Melbourne, Australia
| | - Adam W.J. Jenney
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
- Microbiology Unit, Alfred Health, Melbourne, Australia
| | - Anton Y. Peleg
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Australia
| |
Collapse
|
6
|
Grieshop MP, Behr AA, Bowden S, Lin JD, Molari M, Reynolds GZ, Brooks EF, Doyle B, Rodriguez-Nava G, Salinas JL, Banaei N, Bhatt AS. Replicative selfish genetic elements are driving rapid pathogenic adaptation of Enterococcus faecium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.16.643550. [PMID: 40161577 PMCID: PMC11952509 DOI: 10.1101/2025.03.16.643550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Understanding how healthcare-associated pathogens adapt in clinical environments can inform strategies to reduce their burden. Here, we investigate the hypothesis that insertion sequences (IS), prokaryotic transposable elements, are a dominant mediator of rapid genomic evolution in healthcare-associated pathogens. Among 28,207 publicly available pathogen genomes, we find high copy numbers of the replicative ISL3 family in healthcare-associated Enterococcus faecium, Streptococcus pneumoniae and Staphylococcus aureus. In E. faecium, the ESKAPE pathogen with the highest IS density, we find that ISL3 proliferation has increased in the last 30 years. To enable better identification of structural variants, we long read-sequenced a new, single hospital collection of 282 Enterococcal infection isolates collected over three years. In these samples, we observed extensive, ongoing structural variation of the E. faecium genome, largely mediated by active replicative ISL3 elements. To determine if ISL3 is actively replicating in clinical timescales in its natural, gut microbiome reservoir, we long read-sequenced a collection of 28 longitudinal stool samples from patients undergoing hematopoietic cell transplantation, whose gut microbiomes were dominated by E. faecium. We found up to six structural variants of a given E. faecium strain within a single stool sample. Examining longitudinal samples from one individual in further detail, we find ISL3 elements can replicate and move to specific positions with profound regulatory effects on neighboring gene expression. In particular, we identify an ISL3 element that upon insertion replaces an imperfect -35 promoter sequence at a folT gene locus with a perfect -35 sequence, which leads to substantial upregulation of expression of folT, driving highly effective folate scavenging. As a known folate auxotroph, E. faecium depends on other members of the microbiota or diet to supply folate. Enhanced folate scavenging may enable E. faecium to thrive in the setting of microbiome collapse that is common in HCT and other critically ill patients. Together, ISL3 expansion has enabled E. faecium to rapidly evolve in healthcare settings, and this likely contributes to its metabolic fitness and may strongly influence its ongoing trajectory of genomic evolution.
Collapse
Affiliation(s)
- Matthew P Grieshop
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford, CA, USA
- Stanford University School of Medicine, Stanford, CA, USA
| | - Aaron A Behr
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Sierra Bowden
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Jordan D Lin
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
| | - Marco Molari
- Swiss Institute of Bioinformatics, Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Gabriella Zm Reynolds
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
| | - Erin F Brooks
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
- Current Address: School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Boryana Doyle
- Stanford University School of Medicine, Stanford, CA, USA
| | - Guillermo Rodriguez-Nava
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - Jorge L Salinas
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - Niaz Banaei
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
- Clinical Microbiology Laboratory, Stanford University Medical Center, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Stanford, CA, USA
| |
Collapse
|
7
|
Mody L, Gibson KE, Cassone M, Vijayasiri G, Clement T, Snitkin E, Saint S, Krein SL, Janevic MR, Thiel J, Ridenour J, Nguyen A, Hicks O, Bej TA, El Chakhtoura NG, Min L, Galecki A, Greene T, Roghmann MC, Chigurupati L, Perez F, Jump RLP. Epidemiology and transmission dynamics of multidrug-resistant organisms in nursing homes within the United States. Nat Commun 2025; 16:2487. [PMID: 40082431 PMCID: PMC11906779 DOI: 10.1038/s41467-025-57566-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
Nursing home (NH) residents in the United States routinely attend interactive visits for services such as therapy or dialysis, creating opportunities for pathogen transmission. A paucity of studies exist which delineate spread of pathogens beyond residents' in-room environment. In this prospective cohort study, we recruited 197 newly-admitted residents across three Veterans Affairs NHs to characterize multidrug-resistant organism (MDRO) prevalence, acquisition, and transmission. Participant hands, nares, groin, and seven environmental surfaces were swabbed during 758 regularly scheduled in-room visits; participant hands, healthcare personnel hands, and equipment were swabbed during 345 unscheduled interactive visits. We demonstrate that baseline MDRO colonization and new acquisition is common, and one in six interactive visits result in MDRO transmission. Whole genome sequencing on a subset of participants enabled us to identify sources of transmission where it was unknown using microbiologic methods alone. Our results illustrate MDRO transmission pathways and highlight the need for innovative, multidisciplinary interventions.
Collapse
Affiliation(s)
- Lona Mody
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
- Geriatric Research Education and Clinical Center (GRECC), Veterans' Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| | - Kristen E Gibson
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marco Cassone
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ganga Vijayasiri
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tasmine Clement
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Evan Snitkin
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sanjay Saint
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Veterans' Affairs Center for Clinical Management Research, Ann Arbor, MI, USA
| | - Sarah L Krein
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Veterans' Affairs Center for Clinical Management Research, Ann Arbor, MI, USA
| | - Mary R Janevic
- Department of Health Behavior and Health Equity, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jessica Thiel
- Geriatric Research Education and Clinical Center (GRECC), Veterans' Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Jennifer Ridenour
- Geriatric Research Education and Clinical Center (GRECC), Veterans' Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Alexandria Nguyen
- Geriatric Research Education and Clinical Center (GRECC), VA Northeast Ohio Healthcare System, Cleveland, OH, USA
| | - Oteshia Hicks
- Geriatric Research Education and Clinical Center (GRECC), VA Northeast Ohio Healthcare System, Cleveland, OH, USA
| | - Taissa A Bej
- Geriatric Research Education and Clinical Center (GRECC), VA Northeast Ohio Healthcare System, Cleveland, OH, USA
| | - Nadim G El Chakhtoura
- Geriatric Research Education and Clinical Center (GRECC), VA Northeast Ohio Healthcare System, Cleveland, OH, USA
| | - Lillian Min
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Geriatric Research Education and Clinical Center (GRECC), Veterans' Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Andrzej Galecki
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Todd Greene
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Geriatric Research Education and Clinical Center (GRECC), Veterans' Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Mary-Claire Roghmann
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | - Laxmi Chigurupati
- John D. Dingell Department of Veterans Affairs Medical Center, Detroit, MI, USA
| | - Federico Perez
- Geriatric Research Education and Clinical Center (GRECC), VA Northeast Ohio Healthcare System, Cleveland, OH, USA
| | - Robin L P Jump
- Geriatric Research Education and Clinical Center (GRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Zhou Z, Yang J, Ma J, Shang Z, Fang R, Tian X, Li Q, Ju J. Antarmycins: Discovery, Biosynthesis, Anti-pathogenic Bacterial Activity, and Mechanism of Action from Deep-Sea-Derived Pseudonocardia antarctica. JACS AU 2025; 5:237-249. [PMID: 39886587 PMCID: PMC11775689 DOI: 10.1021/jacsau.4c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 02/01/2025]
Abstract
The rapid emergence of antimicrobial-resistant pathogenic microbes has accelerated the search for novel therapeutic agents. Here we report the discovery of antarmycin A (1), an antibiotic containing a symmetric 16-membered macrodiolide core with two pendant vancosamine moieties, one of which is glucosylated, from deep-sea-derived Pseudonocardia antarctica SCSIO 07407. The biosynthetic gene cluster of 1 was identified on a giant plasmid featuring transferable elements. In-depth biosynthetic investigation enabled us to (i) identify a set of seven genes associated with the product of the vancosamine moiety; (ii) discover two glycosyltransferases dedicated to the transfer of pendant sugars; and (iii) isolate rhamnose-modified antarmycin B (2) and a deglucosylated derivative antarmycin C (3) from genetically engineered mutant strains. Antibacterial assays revealed that 1 displays superior antibacterial properties with potent in vitro activities against the critical priority pathogens, multidrug-resistant Enterococcus faecium and methicillin-resistant Staphylococcus aureus, fast bacterial killing, insusceptibility to antimicrobial resistance, and high in vivo efficiency in infection models. Mechanistic investigations revealed that 1 disrupts the bacterial cell membrane through a mechanism involving interactions between the vancosamine moieties and membrane-embedded phosphatidylglycerol/phosphatidylethanolamine. The results provide insights into the biological generation of vancosamine in natural products and demonstrate the potential of 1 as an effective lead to address the growing antimicrobial resistance threats.
Collapse
Affiliation(s)
- Zhenbin Zhou
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- College
of Oceanology, University of Chinese Academy
of Sciences, Qingdao 266400, China
| | - Jiafan Yang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- College
of Oceanology, University of Chinese Academy
of Sciences, Qingdao 266400, China
| | - Junying Ma
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Zhuo Shang
- Key
Laboratory of Chemical Biology (Ministry of Education), Shandong Basic
Science Research Center (Pharmacy), School of Pharmaceutical Sciences,
Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Runping Fang
- Key
Laboratory of Chemical Biology (Ministry of Education), Shandong Basic
Science Research Center (Pharmacy), School of Pharmaceutical Sciences,
Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xinpeng Tian
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Qinglian Li
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jianhua Ju
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Key
Laboratory of Chemical Biology (Ministry of Education), Shandong Basic
Science Research Center (Pharmacy), School of Pharmaceutical Sciences,
Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
9
|
Wei Y, Palacios Araya D, Palmer KL. Enterococcus faecium: evolution, adaptation, pathogenesis and emerging therapeutics. Nat Rev Microbiol 2024; 22:705-721. [PMID: 38890478 DOI: 10.1038/s41579-024-01058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/20/2024]
Abstract
The opportunistic pathogen Enterococcus faecium colonizes humans and a wide range of animals, endures numerous stresses, resists antibiotic treatment and stubbornly persists in clinical environments. The widespread application of antibiotics in hospitals and agriculture has contributed to the emergence of vancomycin-resistant E. faecium, which causes many hospital-acquired infections. In this Review, we explore recent discoveries about the evolutionary history, the environmental adaptation and the colonization and dissemination mechanisms of E. faecium and vancomycin-resistant E. faecium. These studies provide critical insights necessary for developing novel preventive and therapeutic approaches against vancomycin-resistant E. faecium and also reveal the intricate interrelationships between the environment, the microorganism and the host, providing knowledge that is broadly relevant to how antibiotic-resistant pathogens emerge and endure.
Collapse
Affiliation(s)
- Yahan Wei
- School of Podiatric Medicine, The University of Texas Rio Grande Valley, Harlingen, TX, USA
| | - Dennise Palacios Araya
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Kelli L Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
10
|
Stoesser N, George R, Aiken Z, Phan HTT, Lipworth S, Quan TP, Mathers AJ, De Maio N, Seale AC, Eyre DW, Vaughan A, Swann J, Peto TEA, Crook DW, Cawthorne J, Dodgson A, Walker AS. Genomic epidemiology and longitudinal sampling of ward wastewater environments and patients reveals complexity of the transmission dynamics of bla KPC-carbapenemase-producing Enterobacterales in a hospital setting. JAC Antimicrob Resist 2024; 6:dlae140. [PMID: 39234218 PMCID: PMC11369815 DOI: 10.1093/jacamr/dlae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024] Open
Abstract
Background Healthcare-associated wastewater and asymptomatic patient reservoirs colonized by carbapenemase-producing Enterobacterales (CPE) contribute to nosocomial CPE dissemination, but the characteristics and dynamics of this remain unclear. Methods We systematically sampled wastewater sites (n = 4488 samples; 349 sites) and patients (n = 1247) across six wards over 6-12 months to understand blaKPC-associated CPE (KPC-E) diversity within these reservoirs and transmission in a healthcare setting. Up to five KPC-E-positive isolates per sample were sequenced (Illumina). Recombination-adjusted phylogenies were used to define genetically related strains; assembly and mapping-based approaches were used to characterize antimicrobial resistance genes, insertion sequences (ISs) and Tn4401 types/target site sequences. The accessory genome was evaluated in some of the largest clusters, and those crossing reservoirs. Results Wastewater site KPC-E-positivity was substantial [101/349 sites (28.9%); 228/5601 (4.1%) patients cultured]. Thirteen KPC-E species and 109 strains were identified using genomics, and 24% of wastewater and 26% of patient KPC-E-positive samples harboured one or more strains. Most diversity was explained by the individual niche, suggesting localized factors are important in selection and spread. Tn4401 + flanking target site sequence diversity was greater in wastewater sites (P < 0.001), which might favour Tn4401-associated transposition/evolution. Shower/bath- and sluice/mop-associated sites were more likely to be KPC-E-positive (adjusted OR = 2.69; 95% CI: 1.44-5.01; P = 0.0019; and adjusted OR = 2.60; 95% CI: 1.04-6.52; P = 0.0410, respectively). Different strains had different blaKPC dissemination dynamics. Conclusions We identified substantial and diverse KPC-E colonization of wastewater sites and patients in this hospital setting. Reservoir and niche-specific factors (e.g. microbial interactions, selection pressures), and different strains and mobile genetic elements likely affect transmission dynamics. This should be considered in surveillance and control strategies.
Collapse
Affiliation(s)
- N Stoesser
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Nuffield Department of Medicine, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - R George
- Department of Microbiology, Manchester University NHS Foundation Trust, Manchester, UK
| | - Z Aiken
- Department of Microbiology, Manchester University NHS Foundation Trust, Manchester, UK
| | - H T T Phan
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - S Lipworth
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - T P Quan
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Nuffield Department of Medicine, Oxford, UK
| | - A J Mathers
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - N De Maio
- Goldman Group, EMBL-European Bioinformatics Institute, Cambridge, UK
| | - A C Seale
- Warwick Medical School - Health Sciences, University of Warwick, Coventry, UK
| | - D W Eyre
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Nuffield Department of Medicine, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - A Vaughan
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - J Swann
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - T E A Peto
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - D W Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Nuffield Department of Medicine, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - J Cawthorne
- Department of Microbiology, Manchester University NHS Foundation Trust, Manchester, UK
| | - A Dodgson
- Department of Microbiology, Manchester University NHS Foundation Trust, Manchester, UK
| | - A S Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Nuffield Department of Medicine, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
11
|
Kavanagh NL, Kinnevey PM, Egan SA, McManus BA, O'Connell B, Brennan GI, Coleman DC. Protracted transmission and persistence of ST80 vancomycin-resistant Enterococcus faecium clonal complex types CT2933, CT2932 and CT1916 in a large Irish hospital: a 39-month whole-genome sequencing study. J Hosp Infect 2024; 151:11-20. [PMID: 38944282 DOI: 10.1016/j.jhin.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Vancomycin-resistant Enterococcus faecium (VREfm) are significant nosocomial pathogens. Sequence type (ST) 80 vanA-encoding VREfm predominate in Irish hospitals, but their transmission is poorly understood. AIMS To investigate transmission and persistence of predominant complex type (CT) VREfm in two wards of an Irish hospital (H1) using whole-genome sequencing, and their intra- and inter-hospital dissemination. METHODS Rectal screening (N = 330, September 2019 to December 2022) and environmental (N = 48, November 2022 to December 2022) E. faecium were investigated. Isolate relatedness was assessed by core-genome multi-locus sequence typing (cgMLST) and core-genome single nucleotide polymorphism (cgSNP) analysis. Likely transmission chains were identified using SeqTrack (https://graphsnp.fordelab.com/graphsnp) using cgSNP data and recovery location. Well-characterized E. faecium (N = 908) from seven Irish hospitals including H1 (June 2017 to July 2022) were also investigated. FINDINGS Conventional MLST assigned isolates to nine STs (ST80, 82%). cgMLST identified three predominant ST80 CTs (CT2933, CT2932 and CT1916) (55% of isolates) of related isolates (≤20 allelic differences). cgSNP analysis differentiated these CTs into multiple distinct closely related genomic clusters (≤10 cgSNPs). Parisimonious network construction identified 55 likely inter- and intra-ward transmissions with epidemiological support between patients ≤30 days involving 73 isolates (≤10 cgSNPs) from seven genomic clusters. Numerous other likely transmissions over longer time periods without evident epidemiological links were identified, suggesting persistence and unidentified reservoirs contribute to dissemination. The three CTs predominated among E. faecium (N = 1286) in seven hospitals, highlighting inter-hospital spread without known epidemiological links. CONCLUSION This study revealed the long-term intra- and inter-hospital dominance of three major CT ST80 VREfm lineages, widespread transmission and persistence, implicating unidentified reservoirs.
Collapse
Affiliation(s)
- N L Kavanagh
- Microbiology Research Unit, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - P M Kinnevey
- Microbiology Research Unit, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - S A Egan
- Microbiology Research Unit, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - B A McManus
- Microbiology Research Unit, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - B O'Connell
- Department of Clinical Microbiology, St James's Hospital, Dublin, Ireland; National MRSA Reference Laboratory, St James's Hospital, Dublin, Ireland
| | - G I Brennan
- Department of Clinical Microbiology, St James's Hospital, Dublin, Ireland; National MRSA Reference Laboratory, St James's Hospital, Dublin, Ireland
| | - D C Coleman
- Microbiology Research Unit, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
12
|
Wan Y, Myall AC, Boonyasiri A, Bolt F, Ledda A, Mookerjee S, Weiße AY, Getino M, Turton JF, Abbas H, Prakapaite R, Sabnis A, Abdolrasouli A, Malpartida-Cardenas K, Miglietta L, Donaldson H, Gilchrist M, Hopkins KL, Ellington MJ, Otter JA, Larrouy-Maumus G, Edwards AM, Rodriguez-Manzano J, Didelot X, Barahona M, Holmes AH, Jauneikaite E, Davies F. Integrated Analysis of Patient Networks and Plasmid Genomes to Investigate a Regional, Multispecies Outbreak of Carbapenemase-Producing Enterobacterales Carrying Both blaIMP and mcr-9 Genes. J Infect Dis 2024; 230:e159-e170. [PMID: 39052705 PMCID: PMC11272044 DOI: 10.1093/infdis/jiae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Carbapenemase-producing Enterobacterales (CPE) are challenging in healthcare, with resistance to multiple classes of antibiotics. This study describes the emergence of imipenemase (IMP)-encoding CPE among diverse Enterobacterales species between 2016 and 2019 across a London regional network. METHODS We performed a network analysis of patient pathways, using electronic health records, to identify contacts between IMP-encoding CPE-positive patients. Genomes of IMP-encoding CPE isolates were overlaid with patient contacts to imply potential transmission events. RESULTS Genomic analysis of 84 Enterobacterales isolates revealed diverse species (predominantly Klebsiella spp, Enterobacter spp, and Escherichia coli); 86% (72 of 84) harbored an IncHI2 plasmid carrying blaIMP and colistin resistance gene mcr-9 (68 of 72). Phylogenetic analysis of IncHI2 plasmids identified 3 lineages showing significant association with patient contacts and movements between 4 hospital sites and across medical specialties, which was missed in initial investigations. CONCLUSIONS Combined, our patient network and plasmid analyses demonstrate an interspecies, plasmid-mediated outbreak of blaIMPCPE, which remained unidentified during standard investigations. With DNA sequencing and multimodal data incorporation, the outbreak investigation approach proposed here provides a framework for real-time identification of key factors causing pathogen spread. Plasmid-level outbreak analysis reveals that resistance spread may be wider than suspected, allowing more interventions to stop transmission within hospital networks.SummaryThis was an investigation, using integrated pathway networks and genomics methods, of the emergence of imipenemase-encoding carbapenemase-producing Enterobacterales among diverse Enterobacterales species between 2016 and 2019 in patients across a London regional hospital network, which was missed on routine investigations.
Collapse
Affiliation(s)
- Yu Wan
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Ashleigh C Myall
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Adhiratha Boonyasiri
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Frances Bolt
- Department of Infectious Diseases, Imperial College Healthcare NHS Trust, London, United Kingdom
- Centre for Antimicrobial Optimisation, Hammersmith Hospital, Imperial College London, London, United Kingdom
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Alice Ledda
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- HCAI, Fungal, AMR, AMU and Sepsis Division, UK Health Security Agency, London, United Kingdom
| | - Siddharth Mookerjee
- Department of Infectious Diseases, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Andrea Y Weiße
- School of Biological Sciences, University of Edinburgh, Scotland, United Kingdom
- School of Informatics, University of Edinburgh, Scotland, United Kingdom
| | - Maria Getino
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Jane F Turton
- HCAI, Fungal, AMR, AMU and Sepsis Division, UK Health Security Agency, London, United Kingdom
| | - Hala Abbas
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Department of Microbiology, North West London Pathology, London, United Kingdom
| | - Ruta Prakapaite
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Akshay Sabnis
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Alireza Abdolrasouli
- Department of Infectious Diseases, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Kenny Malpartida-Cardenas
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Luca Miglietta
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Hugo Donaldson
- Department of Microbiology, North West London Pathology, London, United Kingdom
| | - Mark Gilchrist
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Department of Infectious Diseases, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Katie L Hopkins
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- HCAI, Fungal, AMR, AMU and Sepsis Division, UK Health Security Agency, London, United Kingdom
| | - Matthew J Ellington
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Reference Services Division, UK Health Security Agency, London, United Kingdom
| | - Jonathan A Otter
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Gerald Larrouy-Maumus
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Andrew M Edwards
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jesus Rodriguez-Manzano
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Antimicrobial Optimisation, Hammersmith Hospital, Imperial College London, London, United Kingdom
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Mauricio Barahona
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Alison H Holmes
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Department of Infectious Diseases, Imperial College Healthcare NHS Trust, London, United Kingdom
- Centre for Antimicrobial Optimisation, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Elita Jauneikaite
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Frances Davies
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Department of Infectious Diseases, Imperial College Healthcare NHS Trust, London, United Kingdom
- Department of Microbiology, North West London Pathology, London, United Kingdom
| |
Collapse
|
13
|
Tracy KC, McKaig J, Kinnear C, Millar J, King AA, Read AF, Woods RJ. Reversion to sensitivity explains limited transmission of resistance in a hospital pathogen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597162. [PMID: 38895443 PMCID: PMC11185621 DOI: 10.1101/2024.06.03.597162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Bacterial pathogens that are successful in hospital environments must survive times of intense antibiotic exposure and times of no antibiotic exposure. When these organisms are closely associated with human hosts, they must also transmit from one patient to another for the resistance to spread. The resulting evolutionary dynamics have, in some settings, led to rising levels of resistance in hospitals. Here, we focus on an important but understudied aspect of this dynamic: the loss of resistance when the resistant organisms evolve in environments where the antibiotic pressure is removed. Based on prior data, we hypothesize that resistance arising in the context of strong selection may carry a high cost and revert to sensitivity quickly once the selective pressure is removed. Conversely, resistant isolates that persist through times of no antibiotic pressure should carry a lower cost and revert less quickly. To test this hypothesis, we utilize a genetically diverse set of patient-derived, daptomycin-resistant Enterococcus faecium isolates that include cases of both de novo emergence of resistance within patients and putatively transmitted resistance. Both of these sets of strains have survived periods of antibiotic exposure, but only putatively transmitted resistant strains have survived extended periods without antibiotic exposure. These strains were then allowed to evolve in antibiotic free laboratory conditions. We find that putatively transmitted resistant strains tended to have lower level resistance but that evolution in antibiotic-free conditions resulted in minimal loss of resistance. In contrast, resistance that arose de novo within patients was higher level but exhibited greater declines in resistance in vitro. Sequencing of the experimentally evolved isolates revealed that reversal of high level resistance resulted from evolutionary pathways that were frequently genetically associated with the unique resistance mutations of that strain. Thus, the rapid reversal of high-level resistance was associated with accessible evolutionary pathways where an increase in fitness is associated with decreased resistance. We describe how this rapid loss of resistance may limit the spread of resistance within the hospital and shape the diversity of resistance phenotypes across patients.
Collapse
Affiliation(s)
- Kevin C. Tracy
- Department of Computational Medicine and Bioinformatics, University of Michigan
| | | | - Clare Kinnear
- Department of Internal Medicine, Division of Infectious Disease, University of Michigan
| | - Jess Millar
- Department of Computational Medicine and Bioinformatics, University of Michigan
| | - Aaron A. King
- Department of Ecology and Evolutionary Biology, University of Michigan
- Center for the Study of Complex Systems, University of Michigan
- The Santa Fe Institute
| | - Andrew F. Read
- Department of Biology, Pennsylvania State University
- Department of Entomology, Pennsylvania State University
| | - Robert J. Woods
- Department of Internal Medicine, Division of Infectious Disease, University of Michigan
| |
Collapse
|
14
|
Sundermann AJ, Rangachar Srinivasa V, Mills EG, Griffith MP, Evans E, Chen J, Waggle KD, Snyder GM, Pless LL, Harrison LH, Van Tyne D. Genomic sequencing surveillance of patients colonized with vancomycin-resistant Enterococcus (VRE) improves detection of hospital-associated transmission. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.01.24306710. [PMID: 38746387 PMCID: PMC11092704 DOI: 10.1101/2024.05.01.24306710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background Vancomycin-resistant enterococcal (VRE) infections pose significant challenges in healthcare. Transmission dynamics of VRE are complex, often involving patient colonization and subsequent transmission through various healthcare-associated vectors. We utilized a whole genome sequencing (WGS) surveillance program at our institution to better understand the contribution of clinical and colonizing isolates to VRE transmission. Methods We performed whole genome sequencing on 352 VRE clinical isolates collected over 34 months and 891 rectal screening isolates collected over a 9-month nested period, and used single nucleotide polymorphisms to assess relatedness. We then performed a geo-temporal transmission analysis considering both clinical and rectal screening isolates compared with clinical isolates alone, and calculated 30-day outcomes of patients. Results VRE rectal carriage constituted 87.3% of VRE acquisition, with an average monthly acquisition rate of 7.6 per 1000 patient days. We identified 185 genetically related clusters containing 2-42 isolates and encompassing 69.6% of all isolates in the dataset. The inclusion of rectal swab isolates increased the detection of clinical isolate clusters (from 53% to 67%, P<0.01). Geo-temporal analysis identified hotspot locations of VRE transmission. Patients with clinical VRE isolates that were closely related to previously sampled rectal swab isolates experienced 30-day ICU admission (17.5%), hospital readmission (9.2%), and death (13.3%). Conclusions Our findings describe the high burden of VRE transmission at our hospital and shed light on the importance of using WGS surveillance of both clinical and rectal screening isolates to better understand the transmission of this pathogen. This study highlights the potential utility of incorporating WGS surveillance of VRE into routine hospital practice for improving infection prevention and patient safety.
Collapse
|
15
|
Hourigan D, Stefanovic E, Hill C, Ross RP. Promiscuous, persistent and problematic: insights into current enterococcal genomics to guide therapeutic strategy. BMC Microbiol 2024; 24:103. [PMID: 38539119 PMCID: PMC10976773 DOI: 10.1186/s12866-024-03243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/28/2024] [Indexed: 04/19/2024] Open
Abstract
Vancomycin-resistant enterococci (VRE) are major opportunistic pathogens and the causative agents of serious diseases, such as urinary tract infections and endocarditis. VRE strains mainly include species of Enterococcus faecium and E. faecalis which can colonise the gastrointestinal tract (GIT) of patients and, following growth and persistence in the gut, can transfer to blood resulting in systemic dissemination in the body. Advancements in genomics have revealed that hospital-associated VRE strains are characterised by increased numbers of mobile genetic elements, higher numbers of antibiotic resistance genes and often lack active CRISPR-Cas systems. Additionally, comparative genomics have increased our understanding of dissemination routes among patients and healthcare workers. Since the efficiency of currently available antibiotics is rapidly declining, new measures to control infection and dissemination of these persistent pathogens are urgently needed. These approaches include combinatory administration of antibiotics, strengthening colonisation resistance of the gut microbiota to reduce VRE proliferation through commensals or probiotic bacteria, or switching to non-antibiotic bacterial killers, such as bacteriophages or bacteriocins. In this review, we discuss the current knowledge of the genomics of VRE isolates and state-of-the-art therapeutic advances against VRE infections.
Collapse
Affiliation(s)
- David Hourigan
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland
| | - Ewelina Stefanovic
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Moorepark West, Fermoy, Co. Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland.
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland.
- Teagasc Food Research Centre, Moorepark, Moorepark West, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
16
|
Fukuda A, Nakajima C, Suzuki Y, Usui M. Transferable linezolid resistance genes (optrA and poxtA) in enterococci derived from livestock compost at Japanese farms. J Glob Antimicrob Resist 2024; 36:336-344. [PMID: 38336229 DOI: 10.1016/j.jgar.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
OBJECTIVES Linezolid is a last-resort antimicrobial in human clinical settings to treat multidrug-resistant Gram-positive bacterial infections. Mobile linezolid resistance genes (optrA, poxtA, and cfr) have been detected in various sources worldwide. However, the presence of linezolid-not-susceptible bacteria and mobile linezolid resistance genes in Japan remains uncertain. Therefore, we clarified the existence of linezolid-not-susceptible bacteria and mobile linezolid resistance genes in farm environments in Japan. METHODS Enterococci isolates from faeces compost collected from 10 pig and 11 cattle farms in Japan in 2021 were tested for antimicrobial susceptibility and possession of mobile linezolid resistance genes. Whole-genome sequencing of optrA and/or poxtA genes positive-enterococci was performed. RESULTS Of 103 enterococci isolates, 12 from pig farm compost were not-susceptible (2 resistant and 10 intermediate) to linezolid. These 12 isolates carried mobile linezolid resistance genes on plasmids or chromosomes (5 optrA-positive Enterococcus faecalis, 6 poxtA-positive E. hirae or E. thailandicus, and 1 optrA- and poxtA-positive E. faecium). The genetic structures of optrA- and poxA-carrying plasmids were almost identical to those reported in other countries. These plasmids were capable of transferring among E. faecium and E. faecalis strains. The optrA- and poxtA-positive E. faecium belonged to ST324 (clade A2), a high-risk multidrug-resistant clone. The E. faecalis carrying optrA gene on its chromosome was identified as ST593. CONCLUSIONS Although linezolid is not used in livestock, linezolid-not-susceptible enterococci could be indirectly selected by frequently used antimicrobials, such as phenicols. Moreover, various enterococci species derived from livestock compost may serve as reservoirs of linezolid resistance genes carried on globally disseminated plasmids and multidrug-resistant high-risk clones.
Collapse
Affiliation(s)
- Akira Fukuda
- Department of Health and Environmental Sciences, Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan; International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan; Division of Research Support, Hokkaido University Institute for Vaccine Research and Development, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan; International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan; Division of Research Support, Hokkaido University Institute for Vaccine Research and Development, Sapporo, Japan
| | - Masaru Usui
- Department of Health and Environmental Sciences, Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan.
| |
Collapse
|
17
|
McHugh MP, Pettigrew KA, Taori S, Evans TJ, Leanord A, Gillespie SH, Templeton KE, Holden MTG. Consideration of within-patient diversity highlights transmission pathways and antimicrobial resistance gene variability in vancomycin-resistant Enterococcus faecium. J Antimicrob Chemother 2024; 79:656-668. [PMID: 38323373 PMCID: PMC11090465 DOI: 10.1093/jac/dkae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND WGS is increasingly being applied to healthcare-associated vancomycin-resistant Enterococcus faecium (VREfm) outbreaks. Within-patient diversity could complicate transmission resolution if single colonies are sequenced from identified cases. OBJECTIVES Determine the impact of within-patient diversity on transmission resolution of VREfm. MATERIALS AND METHODS Fourteen colonies were collected from VREfm positive rectal screens, single colonies were collected from clinical samples and Illumina WGS was performed. Two isolates were selected for Oxford Nanopore sequencing and hybrid genome assembly to generate lineage-specific reference genomes. Mapping to closely related references was used to identify genetic variations and closely related genomes. A transmission network was inferred for the entire genome set using Phyloscanner. RESULTS AND DISCUSSION In total, 229 isolates from 11 patients were sequenced. Carriage of two or three sequence types was detected in 27% of patients. Presence of antimicrobial resistance genes and plasmids was variable within genomes from the same patient and sequence type. We identified two dominant sequence types (ST80 and ST1424), with two putative transmission clusters of two patients within ST80, and a single cluster of six patients within ST1424. We found transmission resolution was impaired using fewer than 14 colonies. CONCLUSIONS Patients can carry multiple sequence types of VREfm, and even within related lineages the presence of mobile genetic elements and antimicrobial resistance genes can vary. VREfm within-patient diversity could be considered in future to aid accurate resolution of transmission networks.
Collapse
Affiliation(s)
- Martin P McHugh
- School of Medicine, University of St Andrews, St Andrews, UK
- Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | - Surabhi Taori
- Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Thomas J Evans
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Alistair Leanord
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Scottish Microbiology Reference Laboratories, Glasgow Royal Infirmary, Glasgow, UK
| | | | - Kate E Templeton
- Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
18
|
Madhav A, Bousfield R, Pereira-Dias J, Cormie C, Forrest S, Keane J, Kermack L, Higginson E, Dougan G, Spiers H, Massey D, Sharkey L, Rutter C, Woodward J, Russell N, Amin I, Butler A, Atkinson K, Dymond T, Bartholdson Scott J, Baker S, Gkrania-Klotsas E. A metagenomic prospective cohort study on gut microbiome composition and clinical infection in small bowel transplantation. Gut Microbes 2024; 16:2323232. [PMID: 38439546 PMCID: PMC10936650 DOI: 10.1080/19490976.2024.2323232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Two-thirds of small-bowel transplantation (SBT) recipients develop bacteremia, with the majority of infections occurring within 3 months post-transplant. Sepsis-related mortality occurs in 31% of patients and is commonly caused by bacteria of gut origin, which are thought to translocate across the implanted organ. Serial post-transplant surveillance endoscopies provide an opportunity to study whether the composition of the ileal and colonic microbiota can predict the emergence as well as the pathogen of subsequent clinical infections in the SBT patient population. Five participants serially underwent aspiration of ileal and colonic bowel effluents at transplantation and during follow-up endoscopy either until death or for up to 3 months post-SBT. We performed whole-metagenome sequencing (WMS) of 40 bowel effluent samples and compared the results with clinical infection episodes. Microbiome composition was concordant between participants and timepoint-matched ileal and colonic samples. Four out of five (4/5) participants had clinically significant infections thought to be of gut origin. Bacterial translocation from the gut was observed in 3/5 patients with bacterial infectious etiologies. In all three cases, the pathogens had demonstrably colonized the gut between 1-10 days prior to invasive clinical infection. Recipients with better outcomes received donor grafts with higher alpha diversity. There was an increase in the number of antimicrobial resistance genes associated with longer hospital stay for all participants. This metagenomic study provides preliminary evidence to support the pathogen translocation hypothesis of gut-origin sepsis in the SBT cohort. Ileal and colonic microbiome compositions were concordant; therefore, fecal metagenomic analysis could be a useful surveillance tool for impeding infection with specific gut-residing pathogens.
Collapse
Affiliation(s)
- Archana Madhav
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Rachel Bousfield
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Medicine / Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Joana Pereira-Dias
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Claire Cormie
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Sally Forrest
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jacqueline Keane
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Leanne Kermack
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ellen Higginson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Gordon Dougan
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Harry Spiers
- Department of Medicine / Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Dunecan Massey
- Department of Medicine / Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Lisa Sharkey
- Department of Medicine / Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Charlotte Rutter
- Department of Medicine / Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jeremy Woodward
- Department of Medicine / Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Neil Russell
- Department of Medicine / Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Irum Amin
- Department of Medicine / Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Andrew Butler
- Department of Medicine / Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kayleigh Atkinson
- Department of Medicine / Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Tom Dymond
- Department of Medicine / Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Josefin Bartholdson Scott
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Effrossyni Gkrania-Klotsas
- Department of Medicine / Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
19
|
Li L, Zhang H, Zhang J, Xiao Y, Li Y, Qu J. TEMPORARY REMOVAL: The first investigation of a nosocomial outbreak caused by ST80 vancomycin-resistant Enterococci faecium in China. J Hosp Infect 2023:S0195-6701(23)00356-0. [PMID: 37951417 DOI: 10.1016/j.jhin.2023.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
The publisher regrets that this article has been temporarily removed. A replacement will appear as soon as possible in which the reason for the removal of the article will be specified, or the article will be reinstated. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- L Li
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - H Zhang
- Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong 518033, China
| | - J Zhang
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Y Xiao
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Y Li
- Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong 518033, China.
| | - J Qu
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China.
| |
Collapse
|
20
|
El Zowalaty ME, Lamichhane B, Falgenhauer L, Mowlaboccus S, Zishiri OT, Forsythe S, Helmy YA. Antimicrobial resistance and whole genome sequencing of novel sequence types of Enterococcus faecalis, Enterococcus faecium, and Enterococcus durans isolated from livestock. Sci Rep 2023; 13:18609. [PMID: 37903806 PMCID: PMC10616195 DOI: 10.1038/s41598-023-42838-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/15/2023] [Indexed: 11/01/2023] Open
Abstract
The emergence of antimicrobial-resistant, livestock-associated Enterococcus faecalis represents a public health concern. Here, we report the isolation, molecular detection of virulence and antimicrobial resistance determinants, in addition to the phylogenetic analyses of 20 Enterococcus species using whole genome sequencing analysis of 15 Enterococcus faecalis strains including six strains of three novel sequence types, three Enterococcus faecium and two Enterococcus durans. All strains were isolated from food chain animals in South Africa. Enterococcus strains were isolated on bile aesculin azide agar, followed by identification using MALDI-TOF MS analysis. Antibiotic susceptibility testing was performed using the Kirby-Bauer disk diffusion method. The genomic DNA of the isolates was extracted and sequencing was performed using the Illumina MiSeq platform. Sequence reads were trimmed and de novo assembled. The assembled contigs were analyzed for antimicrobial resistance genes and chromosomal mutations, extra-chromosomal plasmids, and multi-locus sequence type (MLST). Multidrug antimicrobial resistance genes conferring resistance to aminoglycosides (ant(6)-Ia, aph(3')-IIIa, sat4, and spw), lincosamides (lnu(B), lsa(A), and lsa(E)), macrolides (erm(B)), trimethoprim (dfrG) and tetracyclines (tet(L) and tet(M)) were identified. Plasmid replicons were detected in seven E. faecalis and three E. faecium isolates. The sequence type (ST) of each isolate was determined using the Enterococcus PubMLST database. Ten STs were identified in the collection, three of which (ST1240, ST1241, and ST1242) have not been previously reported and are described in the present study for the first time. To compare the sequenced strains to other previously sequenced E. faecalis strains, assembled sequences of E. faecalis from livestock were downloaded from the PubMLST database. Core genome-based phylogenetic analysis was performed using ParSNP. The detection of multiple drug-resistance in Enterococcus including E. faecalis and E. faecium highlights the significance of genomic surveillance to monitor the spread of antimicrobial resistance in food chain animals. In addition, the genome sequences of Enterococcus strains reported in the present study will serve as a reference point for future molecular epidemiological studies of livestock-associated and antibiotic-resistant E. faecalis in Africa. In addition, this study enables the in-depth analysis of E. faecalis genomic structure, as well as provides valuable information on the phenotypic and genotypic antimicrobial resistance, and the pathogenesis of livestock-associated E. faecalis and E. faecium.
Collapse
Affiliation(s)
- Mohamed E El Zowalaty
- Veterinary Medicine and Food Security Research Group, Medical Laboratory Sciences Program, Faculty of Health Sciences, Abu Dhabi Women's Campus, Higher Colleges of Technology, Abu Dhabi, 41012, UAE.
| | - Bibek Lamichhane
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Linda Falgenhauer
- Institute of Hygiene and Environmental Medicine, Justus Liebig University Giessen, Biomedical Research Center Seltersberg, Schubertstrasse 81, 35392, Giessen, Germany
| | - Shakeel Mowlaboccus
- Antimicrobial Resistance and Infectious Diseases Research Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
- Department of Microbiology, PathWest Laboratory Medicine-WA, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Oliver T Zishiri
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Westville, Durban, 4000, South Africa
| | - Stephen Forsythe
- Foodmicrobe.com Ltd., Adams Hill, Keyworth, Nottingham, NG12 5GY, UK
| | - Yosra A Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY, 40546, USA.
- Department of Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
21
|
Hackman J, Sheppard C, Phelan J, Jones-Warner W, Sobkowiak B, Shah S, Litt D, Fry NK, Toizumi M, Yoshida LM, Hibberd M, Miller E, Flasche S, Hué S. Phylogenetic inference of pneumococcal transmission from cross-sectional data, a pilot study. Wellcome Open Res 2023; 8:427. [PMID: 38638914 PMCID: PMC11024593 DOI: 10.12688/wellcomeopenres.19219.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 04/20/2024] Open
Abstract
Background: Inference on pneumococcal transmission has mostly relied on longitudinal studies which are costly and resource intensive. Therefore, we conducted a pilot study to test the ability to infer who infected whom from cross-sectional pneumococcal sequences using phylogenetic inference. Methods: Five suspected transmission pairs, for which there was epidemiological evidence of who infected whom, were selected from a household study. For each pair, Streptococcus pneumoniae full genomes were sequenced from nasopharyngeal swabs collected on the same day. The within-host genetic diversity of the pneumococcal population was used to infer the transmission direction and then cross-validated with the direction suggested by the epidemiological records. Results: The pneumococcal genomes clustered into the five households from which the samples were taken. The proportion of concordantly inferred transmission direction generally increased with increasing minimum genome fragment size and single nucleotide polymorphisms. We observed a larger proportion of unique polymorphic sites in the source bacterial population compared to that of the recipient in four of the five pairs, as expected in the case of a transmission bottleneck. The only pair that did not exhibit this effect was also the pair that had consistent discordant transmission direction compared to the epidemiological records suggesting potential misdirection as a result of false-negative sampling. Conclusions: This pilot provided support for further studies to test if the direction of pneumococcal transmission can be reliably inferred from cross-sectional samples if sequenced with sufficient depth and fragment length.
Collapse
Affiliation(s)
- Jada Hackman
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Carmen Sheppard
- Vaccine Preventable Bacteria Section, UK Health Security Agency, London, UK
| | - Jody Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - William Jones-Warner
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Ben Sobkowiak
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Sonal Shah
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - David Litt
- Vaccine Preventable Bacteria Section, UK Health Security Agency, London, UK
| | - Norman K. Fry
- Vaccine Preventable Bacteria Section, UK Health Security Agency, London, UK
- Immunisation & Countermeasures Division, UK Health Security Agency, London, UK
| | - Michiko Toizumi
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Paediatric Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Lay-Myint Yoshida
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Paediatric Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Martin Hibberd
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Elizabeth Miller
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Stefan Flasche
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Stéphane Hué
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
22
|
Zhang Y, Jiang Q, Sun F, Wang J, Wu J, Yao H, Li S, Jiang N, Liu Q, Liu Q, Zhang Y, Zhao Y, Chen C, Cui P, Jin J, Zhang W. Genomic tracking and precise control of Klebsiella pneumoniae transmission in a newly established hospital: a prospective molecular epidemiological study. Int J Antimicrob Agents 2023; 62:106910. [PMID: 37422097 DOI: 10.1016/j.ijantimicag.2023.106910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
OBJECTIVES Carbapenem-resistant Klebsiella pneumoniae (CRKP) pose an emerging clinical threat. We investigated its introduction and transmission in a new hospital, evaluating the effect of whole-genome sequencing (WGS) as an infection control measure. METHODS Based on WGS of identified K. pneumoniae (Kpn) strains, a prospective molecular epidemiological study of nosocomial transmission of CRKP in a newly established Chinese hospital was conducted. RESULTS Between September 2018 and August 2020, 206 Kpn strains were isolated, including 180 CRKP, from 152 patients. The first imported and nosocomial transmission cases were recorded in December 2018 and April 2019, respectively. Overall, 22 nosocomial transmission clusters involving 85 patients were identified, among which 5 were large-size clusters comprising 5-18 patients. Index cases of the large-size clusters were more likely associated with lower Glasgow Coma Scale scores than those of small-size clusters. Furthermore, results of multivariable logistic regression indicated that Kpn tended to transmit more among patients in the ICU [adjusted odds ratio (aOR) = 4.96, 95% confidence interval (CI) 1.97-13.47] and those infected with a ST11 strain (aOR = 8.04, 95% CI 2.51-29.53) or tetracycline-resistant strains (aOR = 17.63, 95% CI 6.32-57.32). However, transmission was less likely in strains bearing the rmpA gene (aOR = 0.12, 95% CI 0.03-0.37). The rate of nosocomial CRKP cases decreased by 2.25 with the intervention of WGS-based infection control. CONCLUSIONS Kpn transmission in the newly established hospital originated from several imported cases. Rates of nosocomial CRKP infection were reduced considerably through precise infection control measures.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qi Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | - Feng Sun
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Wu
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haijun Yao
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shirong Li
- Department of Clinical Laboratory, Huashan Hospital, Fudan University, Shanghai, China
| | - Ning Jiang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Qihui Liu
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yilin Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuanhan Zhao
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Chen
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Cui
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jialin Jin
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Wenhong Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
23
|
Blane B, Coll F, Raven K, Allen O, Kappeler ARM, Pai S, Floto RA, Peacock SJ, Gouliouris T. Impact of a new hospital with close to 100% single-occupancy rooms on environmental contamination and incidence of vancomycin-resistant Enterococcus faecium colonization or infection: a genomic surveillance study. J Hosp Infect 2023; 139:192-200. [PMID: 37451408 DOI: 10.1016/j.jhin.2023.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Vancomycin-resistant Enterococcus faecium (VRE) is a leading cause of nosocomial infection, driven by its ability to spread between patients and persist in the hospital environment. AIM To investigate the impact of a long-established cardiothoracic hospital moving to new premises with close to 100% single-occupancy rooms on the rates of environmental contamination and infection or colonization by VRE. METHODS Prospective environmental surveillance for VRE was conducted at five time-points between April and November 2019, once in the original building, and four times in the new building. Incidence rate ratios (IRRs) of VRE infection/colonization were determined for the one-year period before and after the hospital move, and compared to a nearby hospital. FINDINGS In the original location, the first environmental screen found 29% VRE positivity. The following four screens in the new location showed a significant reduction in positivity (1-6%; P<0.0001). The VRE infection/colonization rates were halved in the new location (IRR: 0.56; 95% confidence interval: 0.38-0.84), compared to the original location, contrasting with an increase in a nearby hospital (1.62; 1.17-2.27) over the same time-period. Genomic analysis of the environmental isolates was consistent with reduced transmission in the new hospital. CONCLUSION The use of single-occupancy rooms was associated with reduced environmental contamination with VRE, and lower transmission and isolation of VRE from clinical samples. The cost-effectiveness of single-occupancy room hospitals in reducing healthcare-associated infections should be reassessed in the context of operational costs of emerging pandemic and increasing antimicrobial resistance threats.
Collapse
Affiliation(s)
- B Blane
- Department of Medicine, Addenbrooke's Hospital, Cambridge, UK.
| | - F Coll
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - K Raven
- Department of Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - O Allen
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - A R M Kappeler
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - S Pai
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - R A Floto
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK; Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - S J Peacock
- Department of Medicine, Addenbrooke's Hospital, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, UK
| | - T Gouliouris
- Department of Medicine, Addenbrooke's Hospital, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, UK
| |
Collapse
|
24
|
Monteiro Marques J, Coelho M, Santana AR, Pinto D, Semedo-Lemsaddek T. Dissemination of Enterococcal Genetic Lineages: A One Health Perspective. Antibiotics (Basel) 2023; 12:1140. [PMID: 37508236 PMCID: PMC10376465 DOI: 10.3390/antibiotics12071140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Enterococcus spp. are commensals of the gastrointestinal tracts of humans and animals and colonize a variety of niches such as water, soil, and food. Over the last three decades, enterococci have evolved as opportunistic pathogens, being considered ESKAPE pathogens responsible for hospital-associated infections. Enterococci's ubiquitous nature, excellent adaptative capacity, and ability to acquire virulence and resistance genes make them excellent sentinel proxies for assessing the presence/spread of pathogenic and virulent clones and hazardous determinants across settings of the human-animal-environment triad, allowing for a more comprehensive analysis of the One Health continuum. This review provides an overview of enterococcal fitness and pathogenic traits; the most common clonal complexes identified in clinical, veterinary, food, and environmental sources; as well as the dissemination of pathogenic genomic traits (virulome, resistome, and mobilome) found in high-risk clones worldwide, across the One Health continuum.
Collapse
Affiliation(s)
- Joana Monteiro Marques
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Mariana Coelho
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Andressa Rodrigues Santana
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Daniel Pinto
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Teresa Semedo-Lemsaddek
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
25
|
Permana B, Harris PNA, Runnegar N, Lindsay M, Henderson BC, Playford EG, Paterson DL, Beatson SA, Forde BM. Using Genomics To Investigate an Outbreak of Vancomycin-Resistant Enterococcus faecium ST78 at a Large Tertiary Hospital in Queensland. Microbiol Spectr 2023; 11:e0420422. [PMID: 37191518 PMCID: PMC10269735 DOI: 10.1128/spectrum.04204-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
To investigate an outbreak of vancomycin-resistant Enterococcus faecium (VREfm) sequence type 78 (ST78) in a large tertiary Australian hospital. A collection of 63 VREfm ST78 isolates, identified during a routine genomic surveillance program, were subjected to genomic epidemiological analysis based on whole-genome sequencing (WGS) data. The population structure was reconstructed using phylogenetic analysis, and a collection of publicly available VREfm ST78 genomes were used to provide global context. Core genome single nucleotide polymorphism (SNP) distances and available clinical metadata were used to characterize outbreak clusters and reconstruct transmission events. In silico genotyping confirmed that all study isolates were vanB-type VREfm carrying virulence characteristics of the hospital-associated E. faecium. Phylogenetic analysis identified two distinct phylogenetic clades, only one of which was responsible for a hospital outbreak. Four outbreak subtypes could be defined with examples of recent transmissions. Inference on transmission trees suggested complex transmission routes with unknown environmental reservoirs mediating the outbreak. WGS-based cluster analysis with publicly available genomes identified closely related Australian ST78 and ST203 isolates, highlighting the capacity for WGS to resolve complex clonal relationships between the VREfm lineages. Whole genome-based analysis has provided a high-resolution description of an outbreak of vanB-type VREfm ST78 in a Queensland hospital. Combined routine genomic surveillance and epidemiological analysis have facilitated better understanding of the local epidemiology of this endemic strain, providing valuable insight for better targeted control of VREfm. IMPORTANCE Vancomycin-resistant Enterococcus faecium (VREfm) is a leading cause of health care-associated infections (HAIs) globally. In Australia, the spread of hospital-adapted VREfm is largely driven by a single clonal group (clonal complex [CC]), CC17, to which the lineage ST78 belongs. While implementing a genomic surveillance program in Queensland, we observed increased incidence of ST78 colonizations and infections among patients. Here, we demonstrate the use of real-time genomic surveillance as a tool to support and enhance infection control (IC) practices. Our results show that real-time whole-genome sequencing (WGS) can efficiently disrupt outbreaks by identifying transmission routes that in turn can be targeted using resource-limited interventions. Additionally, we demonstrate that by placing local outbreaks in a global context, high-risk clones can be identified and targeted prior to them becoming established within clinical environments. Finally, the persistence of these organism within the hospital highlights the need for routine genomic surveillance as a management tool to control VRE transmission.
Collapse
Affiliation(s)
- Budi Permana
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, Brisbane, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Australia
- Herston Infectious Diseases Institute, Metro North Health, Brisbane, Australia
| | - Patrick N. A. Harris
- Australian Infectious Disease Research Centre, Faculty of Science, The University of Queensland, Brisbane, Australia
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Pathology Queensland, Central Laboratory, Brisbane, Australia
| | - Naomi Runnegar
- Princess Alexandra–Southside Clinical School, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Infection Management Services, Princess Alexandra Hospital, Brisbane, Australia
| | - Margaret Lindsay
- Infection Management Services, Princess Alexandra Hospital, Brisbane, Australia
| | | | - E. G. Playford
- Infection Management Services, Princess Alexandra Hospital, Brisbane, Australia
| | - David L. Paterson
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Scott A. Beatson
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, Brisbane, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Australia
- Australian Infectious Disease Research Centre, Faculty of Science, The University of Queensland, Brisbane, Australia
| | - Brian M. Forde
- Australian Infectious Disease Research Centre, Faculty of Science, The University of Queensland, Brisbane, Australia
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
26
|
Murik O, Zeevi DA, Mann T, Kashat L, Assous MV, Megged O, Yagupsky P. Whole-Genome Sequencing Reveals Differences among Kingella kingae Strains from Carriers and Patients with Invasive Infections. Microbiol Spectr 2023; 11:e0389522. [PMID: 37195188 PMCID: PMC10269580 DOI: 10.1128/spectrum.03895-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/26/2023] [Indexed: 05/18/2023] Open
Abstract
As a result of the increasing use of sensitive nucleic acid amplification tests, Kingella kingae is being recognized as a common pathogen of early childhood, causing medical conditions ranging from asymptomatic oropharyngeal colonization to bacteremia, osteoarthritis, and life-threatening endocarditis. However, the genomic determinants associated with the different clinical outcomes are unknown. Employing whole-genome sequencing, we studied 125 international K. kingae isolates derived from 23 healthy carriers and 102 patients with invasive infections, including bacteremia (n = 23), osteoarthritis (n = 61), and endocarditis (n = 18). We compared their genomic structures and contents to identify genomic determinants associated with the different clinical conditions. The mean genome size of the strains was 2,024,228 bp, and the pangenome comprised 4,026 predicted genes, of which 1,460 (36.3%) were core genes shared by >99% of the isolates. No single gene discriminated between carried and invasive strains; however, 43 genes were significantly more frequent in invasive isolates, compared to asymptomatically carried organisms, and a few showed a significant differential distribution among isolates from skeletal system infections, bacteremia, and endocarditis. The gene encoding the iron-regulated protein FrpC was uniformly absent in all 18 endocarditis-associated strains but was present in one-third of other invasive isolates. Similar to other members of the Neisseriaceae family, the K. kingae differences in invasiveness and tropism for specific body tissues appear to depend on combinations of multiple virulence-associated determinants that are widely distributed throughout the genome. The potential role of the absence of the FrpC protein in the pathogenesis of endocardial invasion deserves further investigation. IMPORTANCE The wide range of clinical severities exhibited by invasive Kingella kingae infections strongly suggests that isolates differ in their genomic contents, and strains associated with life-threatening endocarditis may harbor distinct genomic determinants that result in cardiac tropism and severe tissue damage. The results of the present study show that no single gene discriminated between asymptomatically carried isolates and invasive strains. However, 43 putative genes were significantly more frequent among invasive isolates than among pharyngeal colonizers. In addition, several genes displayed a significant differential distribution among isolates from bacteremia, skeletal system infections, and endocarditis, suggesting that the virulence and tissue tropism of K. kingae are multifactorial and polygenic, depending on changes in the allele content and genomic organization. Further analysis of these putative genes may identify genomic determinants of the invasiveness of K. kingae and its affinity for specific body tissues and potential targets for a future protective vaccine.
Collapse
Affiliation(s)
- Omer Murik
- Translational Genomics Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - David A. Zeevi
- Translational Genomics Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Tzvia Mann
- Translational Genomics Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Livnat Kashat
- Microbiology Laboratory, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Marc V. Assous
- Microbiology Laboratory, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orli Megged
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Pediatric Department and Infectious Diseases Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Pablo Yagupsky
- Clinical Microbiology Laboratory, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
27
|
Udaondo Z, Abram K, Kothari A, Jun SR. Top-Down Genomic Surveillance Approach To Investigate the Genomic Epidemiology and Antibiotic Resistance Patterns of Enterococcus faecium Detected in Cancer Patients in Arkansas. Microbiol Spectr 2023; 11:e0490122. [PMID: 36995227 PMCID: PMC10269635 DOI: 10.1128/spectrum.04901-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Control of hospital-associated Enterococcus faecium infection is a strenuous task due to the difficulty of identifying transmission routes and the persistence of this nosocomial pathogen despite the implementation of infection control measures that have been successful with other important nosocomial pathogens. This study provides a comprehensive analysis of over 100 E. faecium isolates collected from 66 cancer patients at the University of Arkansas for Medical Sciences (UAMS) between June 2018 and May 2019. In the top-down approach used in this study, we employed, in addition to the 106 E. faecium UAMS isolates, a filtered set of 2,167 E. faecium strains from the GenBank database to assess the current population structure of E. faecium species and, consequently, to identify the lineages associated with our clinical isolates. We then evaluated the antibiotic resistance and virulence profiles of hospital-associated strains from the species pool, focusing on antibiotics of last resort, to establish an updated classification of high-risk and multidrug-resistant nosocomial clones. Further investigation of the clinical isolates collected from UAMS patients using whole-genome sequencing analytical methodologies (core genome multilocus sequence typing [cgMLST], core single nucleotide polymorphism [coreSNP] analysis, and phylogenomics), with the addition of patient epidemiological data, revealed a polyclonal outbreak of three sequence types occurring simultaneously in different patient wards. The integration of genomic and epidemiological data collected from the patients increased our understanding of the relationships and transmission dynamics of the E. faecium isolates. Our study provides new insights into genomic surveillance of E. faecium to assist in monitoring and further limiting the spread of multidrug-resistant E. faecium. IMPORTANCE Enterococcus faecium is a member of the gastrointestinal microbiota. Although its virulence is low in healthy, immunocompetent individuals, E. faecium has become the third leading cause of health care-associated infections in the United States. This study provides a comprehensive analysis of over 100 E. faecium isolates collected from cancer patients at the University of Arkansas for Medical Sciences (UAMS). We employed a top-down analytical approach (from population genomics to molecular biology) to classify our clinical isolates into their genetic lineages and thoroughly evaluate their antibiotic resistance and virulence profiles. The addition of patient epidemiological data to the whole-genome sequencing analytical methodologies performed in the study allowed us to increase our understanding of the relationships and transmission dynamics of the E. faecium isolates. This study provides new insights into genomic surveillance of E. faecium to help monitor and further limit the spread of multidrug-resistant E. faecium.
Collapse
Affiliation(s)
- Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kaleb Abram
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Atul Kothari
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Se-Ran Jun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
28
|
Nüesch-Inderbinen M, Biggel M, Haussmann A, Treier A, Heyvaert L, Cernela N, Stephan R. Oxazolidinone resistance genes in florfenicol-resistant enterococci from beef cattle and veal calves at slaughter. Front Microbiol 2023; 14:1150070. [PMID: 37389336 PMCID: PMC10301837 DOI: 10.3389/fmicb.2023.1150070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/18/2023] [Indexed: 07/01/2023] Open
Abstract
Background Linezolid is a critically important oxazolidinone antibiotic used in human medicine. Although linezolid is not licensed for use in food-producing animals, the use of florfenicol in veterinary medicine co-selects for oxazolidinone resistance genes. Objective This study aimed to assess the occurrence of cfr, optrA, and poxtA in florfenicol-resistant isolates from beef cattle and veal calves from different herds in Switzerland. Methods A total of 618 cecal samples taken from beef cattle and veal calves at slaughter originating from 199 herds were cultured after an enrichment step on a selective medium containing 10 mg/L florfenicol. Isolates were screened by PCR for cfr, optrA, and poxtA which are genes known to confer resistance to oxazolidinones and phenicols. One isolate per PCR-positive species and herd was selected for antimicrobial susceptibility testing (AST) and whole-genome sequencing (WGS). Results Overall, 105 florfenicol-resistant isolates were obtained from 99 (16%) of the samples, corresponding to 4% of the beef cattle herds and 24% of the veal calf herds. Screening by PCR revealed the presence of optrA in 95 (90%) and poxtA in 22 (21%) of the isolates. None of the isolates contained cfr. Isolates included for AST and WGS analysis were Enterococcus (E.) faecalis (n = 14), E. faecium (n = 12), E. dispar (n = 1), E. durans (n = 2), E. gallinarum (n = 1), Vagococcus (V.) lutrae (n = 2), Aerococcus (A.) urinaeequi (n = 1), and Companilactobacillus (C.) farciminis (n = 1). Thirteen isolates exhibited phenotypic linezolid resistance. Three novel OptrA variants were identified. Multilocus sequence typing identified four E. faecium ST18 belonging to hospital-associated clade A1. There was a difference in the replicon profile among optrA- and poxtA-harboring plasmids, with rep9 (RepA_N) plasmids dominating in optrA-harboring E. faecalis and rep2 (Inc18) and rep29 (Rep_3) plasmids in poxtA-carrying E. faecium. Conclusion Beef cattle and veal calves are reservoirs for enterococci with acquired linezolid resistance genes optrA and poxtA. The presence of E. faecium ST18 highlights the zoonotic potential of some bovine isolates. The dispersal of clinically relevant oxazolidinone resistance genes throughout a wide variety of species including Enterococcus spp., V. lutrae, A. urinaeequi, and the probiotic C. farciminis in food-producing animals is a public health concern.
Collapse
Affiliation(s)
| | - Michael Biggel
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Adrian Haussmann
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Andrea Treier
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Lore Heyvaert
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, University of Ghent, Ghent, Belgium
| | - Nicole Cernela
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Romanescu M, Oprean C, Lombrea A, Badescu B, Teodor A, Constantin GD, Andor M, Folescu R, Muntean D, Danciu C, Dalleur O, Batrina SL, Cretu O, Buda VO. Current State of Knowledge Regarding WHO High Priority Pathogens-Resistance Mechanisms and Proposed Solutions through Candidates Such as Essential Oils: A Systematic Review. Int J Mol Sci 2023; 24:9727. [PMID: 37298678 PMCID: PMC10253476 DOI: 10.3390/ijms24119727] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Combating antimicrobial resistance (AMR) is among the 10 global health issues identified by the World Health Organization (WHO) in 2021. While AMR is a naturally occurring process, the inappropriate use of antibiotics in different settings and legislative gaps has led to its rapid progression. As a result, AMR has grown into a serious global menace that impacts not only humans but also animals and, ultimately, the entire environment. Thus, effective prophylactic measures, as well as more potent and non-toxic antimicrobial agents, are pressingly needed. The antimicrobial activity of essential oils (EOs) is supported by consistent research in the field. Although EOs have been used for centuries, they are newcomers when it comes to managing infections in clinical settings; it is mainly because methodological settings are largely non-overlapping and there are insufficient data regarding EOs' in vivo activity and toxicity. This review considers the concept of AMR and its main determinants, the modality by which the issue has been globally addressed and the potential of EOs as alternative or auxiliary therapy. The focus is shifted towards the pathogenesis, mechanism of resistance and activity of several EOs against the six high priority pathogens listed by WHO in 2017, for which new therapeutic solutions are pressingly required.
Collapse
Affiliation(s)
- Mirabela Romanescu
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Camelia Oprean
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- OncoGen Centre, County Hospital ‘Pius Branzeu’, Blvd. Liviu Rebreanu 156, 300723 Timisoara, Romania
| | - Adelina Lombrea
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Bianca Badescu
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Ana Teodor
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - George D. Constantin
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Minodora Andor
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Roxana Folescu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Delia Muntean
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
- Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Corina Danciu
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Olivia Dalleur
- Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium
| | - Stefan Laurentiu Batrina
- Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Octavian Cretu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Valentina Oana Buda
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Ineu City Hospital, 2 Republicii Street, 315300 Ineu, Romania
| |
Collapse
|
30
|
Permana B, Beatson SA, Forde BM. GraphSNP: an interactive distance viewer for investigating outbreaks and transmission networks using a graph approach. BMC Bioinformatics 2023; 24:209. [PMID: 37208588 DOI: 10.1186/s12859-023-05332-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 05/11/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Cluster and transmission analysis utilising pairwise SNP distance are increasingly used in genomic epidemiological studies. However, current methods are often challenging to install and use, and lack interactive functionalities for easy data exploration. RESULTS GraphSNP is an interactive visualisation tool running in a web browser that allows users to rapidly generate pairwise SNP distance networks, investigate SNP distance distributions, identify clusters of related organisms, and reconstruct transmission routes. The functionality of GraphSNP is demonstrated using examples from recent multi-drug resistant bacterial outbreaks in healthcare settings. CONCLUSIONS GraphSNP is freely available at https://github.com/nalarbp/graphsnp . An online version of GraphSNP, including demonstration datasets, input templates, and quick start guide is available for use at https://graphsnp.fordelab.com .
Collapse
Affiliation(s)
- Budi Permana
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, Australia
- Herston Infectious Diseases Institute, Metro North Health, Brisbane, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Disease Research Centre, Faculty of Science, The University of Queensland, Brisbane, Australia
| | - Brian M Forde
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.
- Australian Infectious Disease Research Centre, Faculty of Science, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
31
|
Premetis GE, Stathi A, Papageorgiou AC, Labrou NE. Structural and functional features of a broad-spectrum prophage-encoded enzybiotic from Enterococcus faecium. Sci Rep 2023; 13:7450. [PMID: 37156923 PMCID: PMC10167349 DOI: 10.1038/s41598-023-34309-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
Multidrug-resistant (MDR) bacteria have become a growing threat to public health. The gram-positive Enterococcus faecium is classified by WHO as a high-priority pathogen among the global priority list of antibiotic-resistant bacteria. Peptidoglycan-degrading enzymes (PDEs), also known as enzybiotics, are useful bactericidal agents in the fight against resistant bacteria. In this work, a genome-based screening approach of the genome of E. faecium allowed the identification of a putative PDE gene with predictive amidase activity (EfAmi1; EC 3.5.1.28) in a prophage-integrated sequence. EfAmi1 is composed by two domains: a N-terminal Zn2+-dependent N-acetylmuramoyl-L-alanine amidase-2 (NALAA-2) domain and a C-terminal domain with unknown structure and function. The full-length gene of EfAmi1 was cloned and expressed as a 6xHis-tagged protein in E. coli. EfAmi1 was produced as a soluble protein, purified, and its lytic and antimicrobial activities were investigated using turbidity reduction and Kirby-Bauer disk-diffusion assays against clinically isolated bacterial pathogens. The crystal structure of the N-terminal amidase-2 domain was determined using X-ray crystallography at 1.97 Å resolution. It adopts a globular fold with several α-helices surrounding a central five-stranded β-sheet. Sequence comparison revealed a cluster of conserved amino acids that defines a putative binding site for a buried zinc ion. The results of the present study suggest that EfAmi1 displays high lytic and antimicrobial activity and may represent a promising new antimicrobial in the post-antibiotic era.
Collapse
Affiliation(s)
- Georgios E Premetis
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 11855, Athens, Greece
| | - Angeliki Stathi
- Department of Microbiology, "Aghia Sophia" Children's Hospital, 11527, Athens, Greece
| | | | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 11855, Athens, Greece.
| |
Collapse
|
32
|
Khan K, Jalal K, Uddin R. Pangenome profiling of novel drug target against vancomycin-resistant Enterococcus faecium. J Biomol Struct Dyn 2023; 41:15647-15660. [PMID: 36935100 DOI: 10.1080/07391102.2023.2191134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/07/2023] [Indexed: 03/20/2023]
Abstract
Enterococcus faecium is a frequent causative agent of nosocomial infection mainly acquired from outgoing hospital patients (Hospital Acquired Infection-HAIs). They are largely involved in the outbreaks of bacteremia, UTI, and endocarditis with a high transmissibility rate. The recent emergence of VRE strain (i.e. vancomycin resistant enterococcus) turned it into high priority pathogen for which new drug research is of dire need. Therefore, in current study, pangenome and resistome analyses were performed for available antibiotic-resistant genomes (n = 216) of E. faecium. It resulted in the prediction of around 5,059 genes as an accessory gene, 1,076 genes as core and 1,558 genes made up a unique genome fraction. Core genes common to all strains were further used for the identification of potent drug targets by applying subtractive genomics approach. Moreover, the COG functional analysis showed that these genomes are highly enriched in metabolic pathways such as in translational, ribosomal, proteins, carbohydrates and nucleotide transport metabolism. Through subtractive genomics it was observed that 431 proteins were non-homologous to the human proteome, 166 identified as essential for pathogen survival while 26 as potential and unique therapeutic targets. Finally, 3-dehydroquinate dehydrogenase was proposed as a potent drug target for further therapeutic candidate identification. Moreover, the molecular docking and dynamic simulation technique were applied to performed a virtual screening of natural product libraries (i.e., TCM and Ayurvedic compounds) along with 3-amino-4,5-dihydroxy-cyclohex-1-enecarboxylate (DHS) as a standard compound to validate the study. Consequently, Argeloside I, Apigenin-7-O-gentiobioside (from Ayurvedic library), ZINC85571062, and ZINC85570908 (TCM library) compounds were identified as potential inhibitors of 3-dehydroquinate dehydrogenase. The study proposed new compounds as novel therapeutics, however, further experimental validation is needed as a follow-up.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Khurshid Jalal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
33
|
Extending outbreak investigation with machine learning and graph theory: Benefits of new tools with application to a nosocomial outbreak of a multidrug-resistant organism. Infect Control Hosp Epidemiol 2023; 44:246-252. [PMID: 36111457 PMCID: PMC9929710 DOI: 10.1017/ice.2022.66] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE From January 1, 2018, until July 31, 2020, our hospital network experienced an outbreak of vancomycin-resistant enterococci (VRE). The goal of our study was to improve existing processes by applying machine-learning and graph-theoretical methods to a nosocomial outbreak investigation. METHODS We assembled medical records generated during the first 2 years of the outbreak period (January 2018 through December 2019). We identified risk factors for VRE colonization using standard statistical methods, and we extended these with a decision-tree machine-learning approach. We then elicited possible transmission pathways by detecting commonalities between VRE cases using a graph theoretical network analysis approach. RESULTS We compared 560 VRE patients to 86,684 controls. Logistic models revealed predictors of VRE colonization as age (aOR, 1.4 (per 10 years), with 95% confidence interval [CI], 1.3-1.5; P < .001), ICU admission during stay (aOR, 1.5; 95% CI, 1.2-1.9; P < .001), Charlson comorbidity score (aOR, 1.1; 95% CI, 1.1-1.2; P < .001), the number of different prescribed antibiotics (aOR, 1.6; 95% CI, 1.5-1.7; P < .001), and the number of rooms the patient stayed in during their hospitalization(s) (aOR, 1.1; 95% CI, 1.1-1.2; P < .001). The decision-tree machine-learning method confirmed these findings. Graph network analysis established 3 main pathways by which the VRE cases were connected: healthcare personnel, medical devices, and patient rooms. CONCLUSIONS We identified risk factors for being a VRE carrier, along with 3 important links with VRE (healthcare personnel, medical devices, patient rooms). Data science is likely to provide a better understanding of outbreaks, but interpretations require data maturity, and potential confounding factors must be considered.
Collapse
|
34
|
Maechler F, Weber A, Schwengers O, Schwab F, Denkel L, Behnke M, Gastmeier P, Kola A. Split k-mer analysis compared to cgMLST and SNP-based core genome analysis for detecting transmission of vancomycin-resistant enterococci: results from routine outbreak analyses across different hospitals and hospitals networks in Berlin, Germany. Microb Genom 2023; 9:mgen000937. [PMID: 36748706 PMCID: PMC9973845 DOI: 10.1099/mgen.0.000937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/22/2022] [Indexed: 01/31/2023] Open
Abstract
The increase of Vancomycin-resistant Enterococcus faecium (VREfm) in recent years has been partially attributed to the rise of specific clonal lineages, which have been identified throughout Germany. To date, there is no gold standard for the interpretation of genomic data for outbreak analyses. New genomic approaches such as split k-mer analysis (SKA) could support cluster attribution for routine outbreak investigation. The aim of this project was to investigate frequent clonal lineages of VREfm identified during suspected outbreaks across different hospitals, and to compare genomic approaches including SKA in routine outbreak investigation. We used routine outbreak laboratory data from seven hospitals and three different hospital networks in Berlin, Germany. Short-read libraries were sequenced on the Illumina MiSeq system. We determined clusters using the published Enterococcus faecium-cgMLST scheme (threshold ≤20 alleles), and assigned sequence and complex types (ST, CT), using the Ridom SeqSphere+ software. For each cluster as determined by cgMLST, we used pairwise core-genome SNP-analysis and SKA at thresholds of ten and seven SNPs, respectively, to further distinguish cgMLST clusters. In order to investigate clinical relevance, we analysed to what extent epidemiological linkage backed the clusters determined with different genomic approaches. Between 2014 and 2021, we sequenced 693 VREfm strains, and 644 (93 %) were associated within cgMLST clusters. More than 74 % (n=475) of the strains belonged to the six largest cgMLST clusters, comprising ST117, ST78 and ST80. All six clusters were detected across several years and hospitals without apparent epidemiological links. Core SNP analysis identified 44 clusters with a median cluster size of three isolates (IQR 2-7, min-max 2-63), as well as 197 singletons (41.4 % of 475 isolates). SKA identified 67 clusters with a median cluster size of two isolates (IQR 2-4, min-max 2-19), and 261 singletons (54.9 % of 475 isolates). Of the isolate pairs attributed to clusters, 7 % (n=3064/45 596) of pairs in clusters determined by standard cgMLST, 15 % (n=1222/8500) of pairs in core SNP-clusters and 51 % (n=942/1880) of pairs in SKA-clusters showed epidemiological linkage. The proportion of epidemiological linkage differed between sequence types. For VREfm, the discriminative ability of the widely used cgMLST based approach at ≤20 alleles difference was insufficient to rule out hospital outbreaks without further analytical methods. Cluster assignment guided by core genome SNP analysis and the reference free SKA was more discriminative and correlated better with obvious epidemiological linkage, at least recently published thresholds (ten and seven SNPs, respectively) and for frequent STs. Besides higher overall discriminative power, the whole-genome approach implemented in SKA is also easier and faster to conduct and requires less computational resources.
Collapse
Affiliation(s)
- Friederike Maechler
- Institute of Hygiene and Environmental Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Weber
- Institute of Hygiene and Environmental Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Schwengers
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Frank Schwab
- Institute of Hygiene and Environmental Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Luisa Denkel
- Institute of Hygiene and Environmental Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Behnke
- Institute of Hygiene and Environmental Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Gastmeier
- Institute of Hygiene and Environmental Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Axel Kola
- Institute of Hygiene and Environmental Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
35
|
Chaguza C, Smith JT, Bruce SA, Gibson R, Martin IW, Andam CP. Prophage-encoded immune evasion factors are critical for Staphylococcus aureus host infection, switching, and adaptation. CELL GENOMICS 2022; 2:100194. [PMID: 36465278 PMCID: PMC9718559 DOI: 10.1016/j.xgen.2022.100194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
Staphylococcus aureus is a multi-host pathogen that causes infections in animals and humans globally. The specific genetic loci-and the extent to which they drive cross-species switching, transmissibility, and adaptation-are not well understood. Here, we conducted a population genomic study of 437 S. aureus isolates to identify bacterial genetic variation that determines infection of human and animal hosts through a genome-wide association study (GWAS) using linear mixed models. We found genetic variants tagging φSa3 prophage-encoded immune evasion genes associated with human hosts, which contributed ~99.9% of the overall heritability (~88%), highlighting their key role in S. aureus human infection. Furthermore, GWAS of pairs of phylogenetically matched human and animal isolates confirmed and uncovered additional loci not implicated in GWAS of unmatched isolates. Our findings reveal the loci that are critical for S. aureus host transmissibility, infection, switching, and adaptation and how their spread alters the specificity of host-adapted clones.
Collapse
Affiliation(s)
- Chrispin Chaguza
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
| | | | - Spencer A. Bruce
- Department of Biological Sciences, University at Albany, State University of New York, New York, USA
| | - Robert Gibson
- New Hampshire Veterinary Diagnostic Laboratory, Durham, NH, USA
| | - Isabella W. Martin
- Dartmouth-Hitchcock Medical Center and Dartmouth College Geisel School of Medicine, Lebanon, NH, USA
| | - Cheryl P. Andam
- Department of Biological Sciences, University at Albany, State University of New York, New York, USA
| |
Collapse
|
36
|
Threshold-free genomic cluster detection to track transmission pathways in health-care settings: a genomic epidemiology analysis. THE LANCET MICROBE 2022; 3:e652-e662. [PMID: 35803292 PMCID: PMC9869340 DOI: 10.1016/s2666-5247(22)00115-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND A crucial barrier to the routine application of whole-genome sequencing (WGS) for infection prevention is the insufficient criteria for determining whether a genomic linkage is consistent with transmission within the facility. We evaluated the use of single-nucleotide variant (SNV) thresholds, as well as a novel threshold-free approach, for inferring transmission linkages in a high-transmission setting. METHODS We did a retrospective genomic epidemiology analysis of samples previously collected in the context of an intervention study at a long-term acute care hospital in the USA. We performed WGS on 435 isolates of Klebsiella pneumoniae harbouring the blaKPC carbapenemase (KPC-Kp) collected from 256 patients through admission and surveillance culturing (once every 2 weeks) of almost every patient who was admitted to hospital over a 1-year period. FINDINGS Our analysis showed that the standard approach of using an SNV threshold to define transmission would lead to false-positive and false-negative inferences. False-positive inferences were driven by the frequent importation of closely related strains, which were presumably linked via transmission at connected health-care facilities. False-negative inferences stemmed from the diversity of colonising populations that were spread among patients, with multiple examples of hypermutator strain emergence within patients and, as a result, putative transmission links separated by large genetic distances. Motivated by limitations of an SNV threshold, we implemented a novel threshold-free transmission cluster inference approach, in which each of the acquired KPC-Kp isolates were linked back to the imported KPC-Kp isolate with which it shared the most variants. This approach yielded clusters that varied in levels of genetic diversity but where 105 (81%) of 129 unique strain acquisition events were associated with epidemiological links in the hospital. Of 100 patients who acquired KPC-Kp isolates that were included in a cluster, 47 could be linked to a single patient who was positive for KPC-Kp at admission, compared with 31 and 25 using 10 SNV and 20 SNV thresholds, respectively. Holistic examination of clusters highlighted extensive variation in the magnitude of onward transmission stemming from more than 100 importation events and revealed patterns in cluster propagation that could inform improvements to infection prevention strategies. INTERPRETATION Our results show how the integration of culture surveillance data into genomic analyses can overcome limitations of cluster detection based on SNV-thresholds and improve the ability to track pathways of pathogen transmission in health-care settings. FUNDING US Center for Disease Control and Prevention and University of Michigan.
Collapse
|
37
|
Zhang Y, Yu S, Chen C, Sun F, Zhou L, Yao H, Hu J, Li S, Ai J, Jiang N, Wang J, Liu Q, Jin J, Zhang W. Comprehensive Surveillance and Sampling Reveal Carbapenem-Resistant Organism Spreading in Tertiary Hospitals in China. Infect Drug Resist 2022; 15:4563-4573. [PMID: 35999831 PMCID: PMC9393017 DOI: 10.2147/idr.s367398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/23/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Carbapenem-resistant organisms (CROs) have posed a great threat to antibiotic use and induce multi-drug resistance. Contamination of the hospital environment and infection of healthcare workers (HCWs) are reported as sources of nosocomial infections. Here, we performed a comprehensive environment sampling and timely epidemiological investigation during outbreaks to investigate the role of the environment and HCWs in CRO transmission. Patients and Methods We enrolled carbapenem-resistant organism outbreaks in ICU-1 of Huashan Hospital from January 2019 to March 2019, and ICU-2 located at west branch of Huashan Hospital from October 2019 to November 2019. Carbapenem-resistant Klebsiella pneumoniae (CRKP) and carbapenem-resistant Acinetobacter baumannii (CRAB) isolates were collected from the patients. We performed a real-time comprehensive environmental and HCW sampling in the two ICUs. Isolated strains from patients and the positive colonies from the screening were sent for whole-genome sequencing. Finally, phylogenetic trees were constructed. Results CRAB and CRKP outbreaks simultaneously occurred in ICU-1; the outbreak involved 13 patients. Meanwhile, the CRKP outbreak in ICU-2 included 11 patients. Twelve out of 146 environment and HCWs samples in ICU-1 were carbapenem-resistant bacteria, including six CRKP and six CRAB strains. For ICU-2, hospital surfaces and HCWs were negative for CRKP. Phylogenetic analyses showed that CRKP strains in ICU-1 were classified into two clades: Clade 1 and Clade 2, sharing a high similarity of isolates from the environment and HCWs. The same phenomenon was observed in CRAB. Conclusion A timely comprehensive sampling combined with genome-based investigation may aid in tracking the transmission route of and controlling the infections. The environment and HCWs could be contaminated during CRO transmission, which calls for strengthened prevention and control measures.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenglei Yu
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Chen
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Feng Sun
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Zhou
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haijun Yao
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jin Hu
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shirong Li
- Department of Clinical Laboratory, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingwen Ai
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ning Jiang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qihui Liu
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jialin Jin
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Li Y, Peng Y, Zhang N, Liu H, Mao J, Yan Y, Wang S, Yang G, Liu Y, Li J, Huang X. Assessing the Emergence of Resistance in vitro and Invivo: Linezolid Combined with Fosfomycin Against Fosfomycin-Sensitive and Resistant Enterococcus. Infect Drug Resist 2022; 15:4995-5010. [PMID: 36065277 PMCID: PMC9440711 DOI: 10.2147/idr.s377848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yaowen Li
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| | - Yu Peng
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| | - Na Zhang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| | - Huiping Liu
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| | - Jun Mao
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| | - Yisong Yan
- Department of Pharmacy, Anhui College of Traditional Chinese Medicine, Wuhu, Anhui, People’s Republic of China
| | - Shuaishuai Wang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| | - Guang Yang
- Department of Pharmacy, The Third People’s Hospital of Tongling, Tongling, Anhui, People’s Republic of China
| | - Yanyan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xiaohui Huang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
- Correspondence: Xiaohui Huang, Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Meishan Road 81#, Hefei, Anhui, 230032, People’s Republic of China, Tel +86 138 5518 3138, Email
| |
Collapse
|
39
|
Sherry NL, Gorrie CL, Kwong JC, Higgs C, Stuart RL, Marshall C, Ballard SA, Sait M, Korman TM, Slavin MA, Lee RS, Graham M, Leroi M, Worth LJ, Chan HT, Seemann T, Grayson ML, Howden BP. Multi-site implementation of whole genome sequencing for hospital infection control: A prospective genomic epidemiological analysis. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2022; 23:100446. [PMID: 35465046 PMCID: PMC9019234 DOI: 10.1016/j.lanwpc.2022.100446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
BACKGROUND Current microbiological methods lack the resolution to accurately identify multidrug-resistant organism (MDRO) transmission, however, whole genome sequencing can identify highly-related patient isolates providing opportunities for precision infection control interventions. We investigated the feasibility and potential impact of a prospective multi-centre genomics workflow for hospital infection control. METHODS We conducted a prospective genomics implementation study across eight Australian hospitals over 15 months (2017,2018), collecting all clinical and screening isolates from inpatients with vanA VRE, MRSA, ESBL Escherichia coli (ESBL-Ec), or ESBL Klebsiella pneumoniae (ESBL-Kp). Genomic and epidemiologic data were integrated to assess MDRO transmission. FINDINGS In total, 2275 isolates were included from 1970 patients, predominantly ESBL-Ec (40·8%) followed by MRSA (35·6%), vanA VRE (15·2%), and ESBL-Kp (8·3%).Overall, hospital and genomic epidemiology showed 607 patients (30·8%) acquired their MDRO in hospital, including the majority of vanA VRE (266 patients, 86·4%), with lower proportions of ESBL-Ec (186 patients, 23·0%), ESBL-Kp (42 patients, 26·3%), and MRSA (113 patients, 16·3%). Complex patient movements meant the majority of MDRO transmissions would remain undetected without genomic data.The genomics implementation had major impacts, identifying unexpected MDRO transmissions prompting new infection control interventions, and contributing to vanA VRE becoming a notifiable condition. We identified barriers to implementation and recommend strategies for mitigation. INTERPRETATION Implementation of a multi-centre genomics-informed infection control workflow is feasible and identifies many unrecognised MDRO transmissions. This provides critical opportunities for interventions to improve patient safety in hospitals. FUNDING Melbourne Genomics Health Alliance (supported by State Government of Victoria, Australia), and National Health and Medical Research Council (Australia).
Collapse
Affiliation(s)
- Norelle L. Sherry
- Microbiological Diagnostic Unit (MDU) Public Health Laboratory, Department of Microbiology & Immunology at the Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Claire L. Gorrie
- Microbiological Diagnostic Unit (MDU) Public Health Laboratory, Department of Microbiology & Immunology at the Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jason C. Kwong
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Charlie Higgs
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Rhonda L. Stuart
- Monash Infectious Diseases, Monash Health, Clayton, Victoria, Australia
- Monash University, Clayton, Victoria, Australia
- South East Public Health Unit, Monash Health, Clayton, Victoria, Australia
| | - Caroline Marshall
- Infection Prevention & Surveillance, Victorian Infectious Diseases Service, Melbourne Health, Parkville, Victoria, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Susan A. Ballard
- Microbiological Diagnostic Unit (MDU) Public Health Laboratory, Department of Microbiology & Immunology at the Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Michelle Sait
- Microbiological Diagnostic Unit (MDU) Public Health Laboratory, Department of Microbiology & Immunology at the Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Tony M. Korman
- Monash Infectious Diseases, Monash Health, Clayton, Victoria, Australia
- Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash Health, Clayton, Victoria, Australia
| | - Monica A. Slavin
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
- National Centre for Infections in Cancer, Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Robyn S. Lee
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Maryza Graham
- Monash Infectious Diseases, Monash Health, Clayton, Victoria, Australia
- Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash Health, Clayton, Victoria, Australia
| | - Marcel Leroi
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
- Department of Microbiology, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Leon J. Worth
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
- National Centre for Infections in Cancer, Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Hiu Tat Chan
- Department of Microbiology, Melbourne Health, Parkville, Victoria, Australia
| | - Torsten Seemann
- Microbiological Diagnostic Unit (MDU) Public Health Laboratory, Department of Microbiology & Immunology at the Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - M. Lindsay Grayson
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
- Department of Microbiology, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Benjamin P. Howden
- Microbiological Diagnostic Unit (MDU) Public Health Laboratory, Department of Microbiology & Immunology at the Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
40
|
Sequence-Based Genomic Analysis Reveals Transmission of Antibiotic Resistance and Virulence among Carbapenemase-Producing Klebsiella pneumoniae Strains. mSphere 2022; 7:e0014322. [PMID: 35546482 PMCID: PMC9241541 DOI: 10.1128/msphere.00143-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carbapenemase-producing Klebsiella pneumoniae (CP-Kpn) are a major concern for nosocomial infections. We previously reported an intensive care unit (ICU) outbreak of CP-Kpn. This study investigated the transmission pattern and genetic characteristic of CP-Kpn in the hospital during the outbreak period. Whole-genome sequencing was retrospectively performed on 173 CP-Kpn isolates. Pairwise single-nucleotide polymorphism (SNP) distances were calculated to determine SNP thresholds for clustering. Plasmids and mobile genome elements (MGEs) were identified through short- and long-read sequencing. Strains were classified into three groups, sequence type 11 (ST11) (86.12%), ST15 (9.83%), and other ST. An SNP threshold of 16 revealed a 66.47% clustering rate. ICU admission and meropenem use proportions were significantly higher in clustered patients than in unique patients. MGE distribution was consistent with the phylogenetic tree. Of the isolates, 53.18% were CP-Kpn with hypervirulence genes. We identified five plasmids carrying virulence genes, and four of them have not been previously reported. Clonal transmission was the main cause of CP-Kpn infections in the hospital. Multidrug resistance genes and MGE variations were correlated with clustering. Finally, four novel plasmids carrying virulence genes were identified. The findings highlight the control of CR-Kpn transmission through prevention measures to reduce nosocomial infections. IMPORTANCE In this study, we combined genomic and epidemiological analyses and defined an optimal cutoff value for SNP difference that could be used to aid investigation in tertiary hospital in China. We revealed clonal transmission was the main cause of CP-Kpn infections in the hospital and identified four novel plasmids carrying virulence genes. Our results strongly suggested that dominant CP K. pneumoniae strains lead to outbreaks and described different evolutionary patterns of plasmids carrying multidrug resistance and virulence genes.
Collapse
|
41
|
Nüesch-Inderbinen M, Haussmann A, Treier A, Zurfluh K, Biggel M, Stephan R. Fattening Pigs Are a Reservoir of Florfenicol-Resistant Enterococci Harboring Oxazolidinone Resistance Genes. J Food Prot 2022; 85:740-746. [PMID: 35258564 DOI: 10.4315/jfp-21-431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT The use of florfenicol in farm animals may select enterococci that carry resistance genes that confer resistance to linezolid, a critically important oxazolidinone antibiotic used in human medicine. This cross-sectional study aimed to assess the occurrence of oxazolidinone resistance genes in florfenicol-resistant enterococci from fattening pigs in Switzerland and to characterize a subset of the isolates using whole genome sequencing. A total of 31 florfenicol-resistant enterococcal isolates were obtained from 27 (5%) of 565 cecal samples of fattening pigs from seven (11%) of 62 farms. Screening by PCR revealed the presence of cfr-poxtA in 1 of 31, optrA in 15 of 31, and poxtA in 15 of 31 enterococcal isolates. One randomly selected isolate per PCR-positive Enterococcus species and positive farm was selected for further analysis (n = 10). In nine of the 10 isolates, the presence of oxazolidinone resistance genes did not result in phenotypic resistance. Whole genome sequencing analysis showed the presence of E. faecalis (n = 1), E. faecium (n = 1), and E. hirae (n = 1), harboring optrA18, optrA7, and a new optrA allele, respectively. E. durans (n = 1), E. faecium (n = 4), and E. hirae (n = 1) carried the wild-type poxtA, and E. faecalis (n = 1) coharbored cfr(D) and poxtA2. Except for optrA7, all oxazolidinone resistance genes were found on plasmids. Multilocus sequence typing analysis identified E. faecalis ST19 and ST376, E. faecium ST80 belonging to hospital-adapted clade A1, and E. faecium ST21, ST55, ST269, and ST416 belonging to clade A2, which represents human commensals and animal strains. The occurrence of cfr(D), optrA, and poxtA in various porcine Enterococcus spp. demonstrates the spread of oxazolidinone resistance genes among enterococci from fattening pigs in Switzerland. The presence in one sample of poxtA-carrying E. faecium ST80 emphasizes the potential risk to human health through dissemination of strains carrying oxazolidinone resistance genes into the food chain. HIGHLIGHTS
Collapse
Affiliation(s)
| | - Adrian Haussmann
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| | - Andrea Treier
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| | - Katrin Zurfluh
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| | - Michael Biggel
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
42
|
Boumasmoud M, Dengler Haunreiter V, Schweizer TA, Meyer L, Chakrakodi B, Schreiber PW, Seidl K, Kühnert D, Kouyos RD, Zinkernagel AS. Genomic Surveillance of Vancomycin-Resistant Enterococcus faecium Reveals Spread of a Linear Plasmid Conferring a Nutrient Utilization Advantage. mBio 2022; 13:e0377121. [PMID: 35343787 PMCID: PMC9040824 DOI: 10.1128/mbio.03771-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Healthcare-associated outbreaks of vancomycin-resistant Enterococcus faecium (VREfm) are a worldwide problem with increasing prevalence. The genomic plasticity of this hospital-adapted pathogen contributes to its efficient spread despite infection control measures. Here, we aimed to identify the genomic and phenotypic determinants of health care-associated transmission of VREfm. We assessed the VREfm transmission networks at the tertiary-care University Hospital of Zurich (USZ) between October 2014 and February 2018 and investigated microevolutionary dynamics of this pathogen. We performed whole-genome sequencing for the 69 VREfm isolates collected during this time frame and assessed the population structure and variability of the vancomycin resistance transposon. Phylogenomic analysis allowed us to reconstruct transmission networks and to unveil external or wider transmission networks undetectable by routine surveillance. Notably, it unveiled a persistent clone, sampled 31 times over a 29-month period. Exploring the evolutionary dynamics of this clone and characterizing the phenotypic consequences revealed the spread of a variant with decreased daptomycin susceptibility and the acquired ability to utilize N-acetyl-galactosamine (GalNAc), one of the primary constituents of the human gut mucins. This nutrient utilization advantage was conferred by a novel plasmid, termed pELF_USZ, which exhibited a linear topology. This plasmid, which was harbored by two distinct clones, was transferable by conjugation. Overall, this work highlights the potential of combining epidemiological, functional genomic, and evolutionary perspectives to unveil adaptation strategies of VREfm. IMPORTANCE Sequencing microbial pathogens causing outbreaks has become a common practice to characterize transmission networks. In addition to the signal provided by vertical evolution, bacterial genomes harbor mobile genetic elements shared horizontally between clones. While macroevolutionary studies have revealed an important role of plasmids and genes encoding carbohydrate utilization systems in the adaptation of Enterococcus faecium to the hospital environment, mechanisms of dissemination and the specific function of many of these genetic determinants remain to be elucidated. Here, we characterize a plasmid providing a nutrient utilization advantage and show evidence for its clonal and horizontal spread at a local scale. Further studies integrating epidemiological, functional genomics, and evolutionary perspectives will be critical to identify changes shaping the success of this pathogen.
Collapse
Affiliation(s)
- Mathilde Boumasmoud
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Vanina Dengler Haunreiter
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Tiziano A. Schweizer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lilly Meyer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bhavya Chakrakodi
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Peter W. Schreiber
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kati Seidl
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Denise Kühnert
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roger D. Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Annelies S. Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Coll F, Gouliouris T, Bruchmann S, Phelan J, Raven KE, Clark TG, Parkhill J, Peacock SJ. PowerBacGWAS: a computational pipeline to perform power calculations for bacterial genome-wide association studies. Commun Biol 2022; 5:266. [PMID: 35338232 PMCID: PMC8956664 DOI: 10.1038/s42003-022-03194-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWAS) are increasingly being applied to investigate the genetic basis of bacterial traits. However, approaches to perform power calculations for bacterial GWAS are limited. Here we implemented two alternative approaches to conduct power calculations using existing collections of bacterial genomes. First, a sub-sampling approach was undertaken to reduce the allele frequency and effect size of a known and detectable genotype-phenotype relationship by modifying phenotype labels. Second, a phenotype-simulation approach was conducted to simulate phenotypes from existing genetic variants. We implemented both approaches into a computational pipeline (PowerBacGWAS) that supports power calculations for burden testing, pan-genome and variant GWAS; and applied it to collections of Enterococcus faecium, Klebsiella pneumoniae and Mycobacterium tuberculosis. We used this pipeline to determine sample sizes required to detect causal variants of different minor allele frequencies (MAF), effect sizes and phenotype heritability, and studied the effect of homoplasy and population diversity on the power to detect causal variants. Our pipeline and user documentation are made available and can be applied to other bacterial populations. PowerBacGWAS can be used to determine sample sizes required to find statistically significant associations, or the associations detectable with a given sample size. We recommend to perform power calculations using existing genomes of the bacterial species and population of study.
Collapse
Affiliation(s)
- Francesc Coll
- Department of Infection Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | - Theodore Gouliouris
- Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Jody Phelan
- Department of Infection Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Kathy E Raven
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Taane G Clark
- Department of Infection Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
44
|
Higgs C, Sherry NL, Seemann T, Horan K, Walpola H, Kinsella P, Bond K, Williamson DA, Marshall C, Kwong JC, Grayson ML, Stinear TP, Gorrie CL, Howden BP. Optimising genomic approaches for identifying vancomycin-resistant Enterococcus faecium transmission in healthcare settings. Nat Commun 2022; 13:509. [PMID: 35082278 PMCID: PMC8792028 DOI: 10.1038/s41467-022-28156-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/07/2022] [Indexed: 11/08/2022] Open
Abstract
Vancomycin-resistant Enterococcus faecium (VREfm) is a major nosocomial pathogen. Identifying VREfm transmission dynamics permits targeted interventions, and while genomics is increasingly being utilised, methods are not yet standardised or optimised for accuracy. We aimed to develop a standardized genomic method for identifying putative VREfm transmission links. Using comprehensive genomic and epidemiological data from a cohort of 308 VREfm infection or colonization cases, we compared multiple approaches for quantifying genetic relatedness. We showed that clustering by core genome multilocus sequence type (cgMLST) was more informative of population structure than traditional MLST. Pairwise genome comparisons using split k-mer analysis (SKA) provided the high-level resolution needed to infer patient-to-patient transmission. The more common mapping to a reference genome was not sufficiently discriminatory, defining more than three times more genomic transmission events than SKA (3729 compared to 1079 events). Here, we show a standardized genomic framework for inferring VREfm transmission that can be the basis for global deployment of VREfm genomics into routine outbreak detection and investigation.
Collapse
Affiliation(s)
- Charlie Higgs
- Department of Microbiology & Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Norelle L Sherry
- Department of Microbiology & Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Department of Infectious Diseases, Austin Health, Melbourne, VIC, Australia
| | - Torsten Seemann
- Department of Microbiology & Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Kristy Horan
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Hasini Walpola
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul Kinsella
- Department of Microbiology, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Katherine Bond
- Department of Microbiology, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Deborah A Williamson
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Caroline Marshall
- Victorian Infectious Diseases Service, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jason C Kwong
- Department of Microbiology & Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Department of Infectious Diseases, Austin Health, Melbourne, VIC, Australia
| | - M Lindsay Grayson
- Department of Infectious Diseases, Austin Health, Melbourne, VIC, Australia
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| | - Timothy P Stinear
- Department of Microbiology & Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Claire L Gorrie
- Department of Microbiology & Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin P Howden
- Department of Microbiology & Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
- Department of Infectious Diseases, Austin Health, Melbourne, VIC, Australia.
| |
Collapse
|
45
|
Atkinson A, Ellenberger B, Piezzi V, Kaspar T, Endrich O, Leichtle A, Zwahlen M, Marschall J. A Bayesian spatial-temporal model for prevalence estimation of a VRE outbreak in a tertiary care hospital. J Hosp Infect 2022; 122:108-114. [DOI: 10.1016/j.jhin.2021.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
|
46
|
Thorpe HA, Booton R, Kallonen T, Gibbon MJ, Couto N, Passet V, López-Fernández S, Rodrigues C, Matthews L, Mitchell S, Reeve R, David S, Merla C, Corbella M, Ferrari C, Comandatore F, Marone P, Brisse S, Sassera D, Corander J, Feil EJ. A large-scale genomic snapshot of Klebsiella spp. isolates in Northern Italy reveals limited transmission between clinical and non-clinical settings. Nat Microbiol 2022; 7:2054-2067. [PMID: 36411354 PMCID: PMC9712112 DOI: 10.1038/s41564-022-01263-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/10/2022] [Indexed: 11/22/2022]
Abstract
The Klebsiella group, found in humans, livestock, plants, soil, water and wild animals, is genetically and ecologically diverse. Many species are opportunistic pathogens and can harbour diverse classes of antimicrobial resistance genes. Healthcare-associated Klebsiella pneumoniae clones that are non-susceptible to carbapenems can spread rapidly, representing a high public health burden. Here we report an analysis of 3,482 genome sequences representing 15 Klebsiella species sampled over a 17-month period from a wide range of clinical, community, animal and environmental settings in and around the Italian city of Pavia. Northern Italy is a hotspot for hospital-acquired carbapenem non-susceptible Klebsiella and thus a pertinent setting to examine the overlap between isolates in clinical and non-clinical settings. We found no genotypic or phenotypic evidence for non-susceptibility to carbapenems outside the clinical environment. Although we noted occasional transmission between clinical and non-clinical settings, our data point to a limited role of animal and environmental reservoirs in the human acquisition of Klebsiella spp. We also provide a detailed genus-wide view of genomic diversity and population structure, including the identification of new groups.
Collapse
Affiliation(s)
- Harry A. Thorpe
- grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Ross Booton
- grid.5337.20000 0004 1936 7603Bristol Veterinary School, University of Bristol, Bristol, UK
| | - Teemu Kallonen
- grid.410552.70000 0004 0628 215XDepartment of Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Marjorie J. Gibbon
- grid.7340.00000 0001 2162 1699The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
| | - Natacha Couto
- grid.7340.00000 0001 2162 1699The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
| | - Virginie Passet
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Sebastián López-Fernández
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Carla Rodrigues
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Louise Matthews
- grid.8756.c0000 0001 2193 314XBoyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Sonia Mitchell
- grid.8756.c0000 0001 2193 314XBoyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Richard Reeve
- grid.8756.c0000 0001 2193 314XBoyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Sophia David
- grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - Cristina Merla
- grid.419425.f0000 0004 1760 3027Microbiology and Virology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Marta Corbella
- grid.419425.f0000 0004 1760 3027Microbiology and Virology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Carolina Ferrari
- grid.419425.f0000 0004 1760 3027Microbiology and Virology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Francesco Comandatore
- grid.4708.b0000 0004 1757 2822Romeo ed Enrica Invernizzi Pediatric Research Center, Department of Biomedical and Clinical Sciences Luigi Sacco, Università di Milano, Milan, Italy
| | - Piero Marone
- grid.419425.f0000 0004 1760 3027Microbiology and Virology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Sylvain Brisse
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Davide Sassera
- grid.8982.b0000 0004 1762 5736Department of Biology and Biotechnology, Università di Pavia, Pavia, Italy
| | - Jukka Corander
- grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Oslo, Norway ,grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK ,grid.7737.40000 0004 0410 2071Department of Mathematics and Statistics, Helsinki Institute of Information Technology, University of Helsinki, Helsinki, Finland
| | - Edward J. Feil
- grid.7340.00000 0001 2162 1699The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
| |
Collapse
|
47
|
Hoffman S, Lapp Z, Wang J, Snitkin ES. regentrans: a framework and R package for using genomics to study regional pathogen transmission. Microb Genom 2022; 8:000747. [PMID: 35037617 PMCID: PMC8914358 DOI: 10.1099/mgen.0.000747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022] Open
Abstract
Increasing evidence of regional pathogen transmission networks highlights the importance of investigating the dissemination of multidrug-resistant organisms (MDROs) across a region to identify where transmission is occurring and how pathogens move across regions. We developed a framework for investigating MDRO regional transmission dynamics using whole-genome sequencing data and created regentrans, an easy-to-use, open source R package that implements these methods (https://github.com/Snitkin-Lab-Umich/regentrans). Using a dataset of over 400 carbapenem-resistant isolates of Klebsiella pneumoniae collected from patients in 21 long-term acute care hospitals over a one-year period, we demonstrate how to use our framework to gain insights into differences in inter- and intra-facility transmission across different facilities and over time. This framework and corresponding R package will allow investigators to better understand the origins and transmission patterns of MDROs, which is the first step in understanding how to stop transmission at the regional level.
Collapse
Affiliation(s)
- Sophie Hoffman
- Department of Computational Medicine and Bioinformatics, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-5680, USA
| | - Zena Lapp
- Department of Computational Medicine and Bioinformatics, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-5680, USA
| | - Joyce Wang
- Department of Microbiology and Immunology, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-5680, USA
| | - Evan S. Snitkin
- Department of Microbiology and Immunology, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-5680, USA
- Department of Medicine, Division of Infectious Diseases, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-5680, USA
| |
Collapse
|
48
|
Vancomycin Resistant Enterococcus Bacteraemia in an Endemic Region: Clinical Features and Genomic Analysis, a 12-Year Cohort. J Hosp Infect 2021; 121:105-113. [PMID: 34896188 DOI: 10.1016/j.jhin.2021.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Vancomycin-resistant enterococci (VRE) are important nosocomial pathogens with an increasing prevalence worldwide. Hospitals in Jerusalem, Israel, are known to have high rates of VRE carriage. The clonicity of this pathogen, in endemic areas, is still not clear. METHODS We reviewed the medical files of patients with VRE bacteraemia (n=182) who were hospitalized in the three major hospitals in Jerusalem, from 2009 to 2020. These were compared to 100 patients with Vancomycin-susceptible enterococcus (VSE) bacteraemia, during the same period, and their clinical and demographic characters were analyzed. Then, whole genome sequencing (WGS) of the VRE isolates was performed; the results were analyzed considering the demographic, epidemiologic and clinical outcome data. RESULTS Patients with VRE bacteraemia had higher rate of central lines, hematologic malignancies and immunosuppression compared to patients with VSE bacteraemia (63% vs 27%, p<0.001; 25% vs 13%, p=0.02; 24% vs 13%, p=0.04 respectively). Patients with VRE bacteraemia had a significantly increased 7 and 30 days in-hospital-mortality (31% vs 18%, p= 0.02; 57% vs 34%, p<0.001 respectively) and a longer mean hospital stay (39 vs 24 days, p= 0.005). The WGS results of VRE isolates showed diversity rather than endemicity of a single clone. No clones were associated with specific ethnicity, geographical distribution, or worse prognosis. CONCLUSIONS WGS revealed the occurrence of small unrelated outbreaks rather than the expansion of large clusters in the city of Jerusalem. VRE bacteraemia was found in sicker patients and was associated with higher mortality and longer hospital stay compared to VSE bacteraemia.
Collapse
|
49
|
Cattoir V. The multifaceted lifestyle of enterococci: genetic diversity, ecology and risks for public health. Curr Opin Microbiol 2021; 65:73-80. [PMID: 34768106 DOI: 10.1016/j.mib.2021.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/29/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022]
Abstract
Enterococci are long-standing members of the gastrointestinal tract of humans and many animals and they are also ubiquitously distributed in natural environments. Classically as harmless bacteria, two main species (namely Enterococcus faecalis and Enterococcus faecium) have become a leading cause of human infections, especially in hospital settings, with the worldwide spread of multidrug-resistant isolates, especially vancomycin-resistant enterococci. In this review, it will be summarized what is known about genetic diversity and ecology of enterococci with a focus on E. faecalis and E. faecium from human and non-human habitats and related risks for public health.
Collapse
Affiliation(s)
- Vincent Cattoir
- Service de Bactériologie-Hygiène Hospitalière, CHU de Rennes, Rennes, France; CNR de la Résistance aux Antibiotiques (Laboratoire Associé 'Entérocoques'), Rennes, France; Unité Inserm U1230, Université de Rennes 1, Rennes, France.
| |
Collapse
|
50
|
Coll F. Key variables affecting genetic distance calculations in genomic epidemiology. THE LANCET MICROBE 2021; 2:e486-e487. [DOI: 10.1016/s2666-5247(21)00183-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022] Open
|