1
|
Barrett MP. Transforming the chemotherapy of human African trypanosomiasis. Clin Microbiol Rev 2025; 38:e0015323. [PMID: 39772631 PMCID: PMC11905362 DOI: 10.1128/cmr.00153-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
SUMMARYPrior to 2019, when the orally available drug fexinidazole began its clinical use, the treatment of human African trypanosomiasis (HAT) was complex and unsatisfactory for many reasons. Two sub-species of the Trypanosoma brucei parasite are responsible for HAT, namely the rhodesiense form found in East and Southern Africa and the gambiense form found in Central and West Africa. Diseases caused by both forms manifest in two stages: stage 1 before and stage 2 after central nervous system involvement. Prior to 2019, different drugs were required for each of the two parasite sub-species at each stage. Gambiense disease required pentamidine or nifurtimox-eflornithine combination therapy, while for rhodesiense disease, suramin or melarsoprol was given for stages 1 and 2, respectively. These drugs all suffered complications including protracted administration regimens involving multiple injections with drug-induced adverse effects common. Today, a single drug, fexinidazole, can be given orally in most cases for both diseases at either stage. Another compound, acoziborole, effective in both stages 1 and 2 gambiense disease with a single dosing is anticipated to become available within a few years. Moreover, the recent engagement of multilateral organizations in seeking other compounds that could be used in HAT therapy has also been successful, and a rich vein of new trypanocides has been discovered. Here, the clinical use, modes of action, and resistance risks for drugs used against HAT are discussed.
Collapse
Affiliation(s)
- Michael P Barrett
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Chiurillo MA. mSphere of Influence: The challenge of screening for essential protein kinases in Trypanosoma cruzi. mSphere 2025; 10:e0059824. [PMID: 39873513 PMCID: PMC11852719 DOI: 10.1128/msphere.00598-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Miguel Chiurillo works in the field of protein kinases, studying their role in cell signaling and cell cycle progression in Trypanosoma cruzi. In this mSphere of Influence article, he reflects on how the research articles "Systematic functional analysis of Leishmania protein kinases identifies regulators of differentiation or survival" by Baker et al. and "Screening the Toxoplasma kinome with high throughput tagging identifies a regulator of invasion and egress" by Smith et al. made an impact on his understanding of the complexity of the Trypanosoma cruzi kinome and the challenges to unravel it.
Collapse
Affiliation(s)
- Miguel A. Chiurillo
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
3
|
Damasceno JD, Briggs EM, Krasilnikova M, Marques CA, Lapsley C, McCulloch R. R-loops acted on by RNase H1 influence DNA replication timing and genome stability in Leishmania. Nat Commun 2025; 16:1470. [PMID: 39922816 PMCID: PMC11807225 DOI: 10.1038/s41467-025-56785-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/31/2025] [Indexed: 02/10/2025] Open
Abstract
Genomes in eukaryotes normally undergo DNA replication in a choreographed temporal order, resulting in early and late replicating chromosome compartments. Leishmania, a human protozoan parasite, displays an unconventional DNA replication program in which the timing of DNA replication completion is chromosome size-dependent: larger chromosomes complete replication later then smaller ones. Here we show that both R-loops and RNase H1, a ribonuclease that resolves RNA-DNA hybrids, accumulate in Leishmania major chromosomes in a pattern that reflects their replication timing. Furthermore, we demonstrate that such differential organisation of R-loops, RNase H1 and DNA replication timing across the parasite's chromosomes correlates with size-dependent differences in chromatin accessibility, G quadruplex distribution and sequence content. Using conditional gene excision, we show that loss of RNase H1 leads to transient growth perturbation and permanently abrogates the differences in DNA replication timing across chromosomes, as well as altering levels of aneuploidy and increasing chromosome instability in a size-dependent manner. This work provides a link between R-loop homeostasis and DNA replication timing in a eukaryotic parasite and demonstrates that orchestration of DNA replication dictates levels of genome plasticity in Leishmania.
Collapse
Affiliation(s)
- Jeziel D Damasceno
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
| | - Emma M Briggs
- University of Edinburgh, Institute for Immunology and Infection Research, School of Biological Sciences, Edinburgh, UK
- Biosciences Institute, Cookson Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Marija Krasilnikova
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Catarina A Marques
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Craig Lapsley
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Richard McCulloch
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
4
|
Ramírez-Macías I, García-Huertas P, Marín C. What are the translational challenges associated with Chagas disease drug discovery? Expert Opin Drug Discov 2024; 19:1293-1296. [PMID: 39269147 DOI: 10.1080/17460441.2024.2402409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Affiliation(s)
- Inmaculada Ramírez-Macías
- Department of Parasitology, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Paola García-Huertas
- Instituto Colombiano de Medicina Tropical - ICMT, Universidad CES, Sabaneta, Colombia
| | - Clotilde Marín
- Department of Parasitology, University of Granada, Granada, Spain
| |
Collapse
|
5
|
Espinoza-Chávez RM, de Oliveira Rezende Júnior C, Laureano de Souza M, Consolin Chelucci R, Michelan-Duarte S, Krogh R, Gomes Ferreira LL, Valli M, Sena de Oliveira A, Andricopulo AD, Carlos Dias L. Structure-Metabolism Relationships of Benzimidazole Derivatives with anti-Trypanosoma cruzi Activity for Chagas Disease. ChemMedChem 2024; 19:e202400293. [PMID: 38924252 DOI: 10.1002/cmdc.202400293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
This study introduces further insights from the hit-to-lead optimization process involving a series of benzimidazole derivatives acting as inhibitors of the cruzain enzyme, which targets Trypanosoma cruzi, the causative parasite of Chagas disease. Here, we present the design, synthesis and biological evaluation of 30 new compounds as a third generation of benzimidazole analogues with trypanocidal activity, aiming to enhance our understanding of their pharmacokinetic profiles and establish a structure-metabolism relationships within the series. The design of these new analogues was guided by the analysis of previous pharmacokinetic results, considering identified metabolic sites and biotransformation studies. This optimization resulted in the discovery of two compounds (42 e and 49 b) exhibiting enhanced metabolic stability, anti-Trypanosoma cruzi activity compared to benznidazole (the reference drug for Chagas disease), as well as being non-cruzain inhibitors, and demonstrating a satisfactory in vitro pharmacokinetic profile. These findings unveil a new subclass of aminobenzimidazole and rigid compounds, which offer potential for further exploration in the quest for discovering novel classes of antichagasic compounds.
Collapse
Affiliation(s)
- Rocío Marisol Espinoza-Chávez
- Laboratory of Synthetic Organic Chemistry, Institute of Chemistry, State University of Campinas (Unicamp), Campinas-SP, 13084-971, Brazil
| | - Celso de Oliveira Rezende Júnior
- Laboratory of Synthetic Organic Chemistry, Institute of Chemistry, State University of Campinas (Unicamp), Campinas-SP, 13084-971, Brazil
- Institute of Chemistry, Federal University of Uberlândia (UFU), Uberlândia-MG, 38400-902, Brazil
| | - Mariana Laureano de Souza
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos (IFSC), University of Sao Paulo (USP), Sao Carlos-SP, 13563-120, Brazil
| | - Rafael Consolin Chelucci
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos (IFSC), University of Sao Paulo (USP), Sao Carlos-SP, 13563-120, Brazil
| | - Simone Michelan-Duarte
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos (IFSC), University of Sao Paulo (USP), Sao Carlos-SP, 13563-120, Brazil
| | - Renata Krogh
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos (IFSC), University of Sao Paulo (USP), Sao Carlos-SP, 13563-120, Brazil
| | - Leonardo Luiz Gomes Ferreira
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos (IFSC), University of Sao Paulo (USP), Sao Carlos-SP, 13563-120, Brazil
| | - Marilia Valli
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos (IFSC), University of Sao Paulo (USP), Sao Carlos-SP, 13563-120, Brazil
| | - Aldo Sena de Oliveira
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos (IFSC), University of Sao Paulo (USP), Sao Carlos-SP, 13563-120, Brazil
- Department of Exact Sciences and Education, Federal University of Santa Catarina (UFSC), Blumenau-SC, 89036-004, Brazil
| | - Adriano D Andricopulo
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos (IFSC), University of Sao Paulo (USP), Sao Carlos-SP, 13563-120, Brazil
| | - Luiz Carlos Dias
- Laboratory of Synthetic Organic Chemistry, Institute of Chemistry, State University of Campinas (Unicamp), Campinas-SP, 13084-971, Brazil
| |
Collapse
|
6
|
Pinazo MJ, Malchiodi E, Ioset JR, Bivona A, Gollob KJ, Dutra WO. Challenges and advancements in the development of vaccines and therapies against Chagas disease. THE LANCET. MICROBE 2024; 5:100972. [PMID: 39303738 DOI: 10.1016/j.lanmic.2024.100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, presents a substantial global health burden, affecting millions of individuals worldwide and posing a continual risk of infection. Despite the high mortality and morbidity rates, effective vaccines to prevent infection by the parasite remain elusive, and the drugs currently available are suboptimal. Understanding the intricate dynamics of parasite-host interactions and the resulting immune responses, which contribute to both protection and pathology, is crucial for the development of effective vaccines and therapies against Chagas disease. In this Series paper, we discuss the challenges associated with discovering and translating prophylactic and therapeutic strategies from the laboratory bench to clinical application. We highlight ongoing efforts in vaccine and new drug development, with a focus on more advanced candidates for vaccines and drugs. We also discuss potential solutions, emphasising the importance of collaborative research efforts, sustained funding, and a comprehensive understanding of host-parasite interactions and immunopathology to advance the development of new vaccines and therapies against Chagas disease.
Collapse
Affiliation(s)
| | - Emilio Malchiodi
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Instituto de Estudios de la Inmunidad Humoral (IDEHU) and Instituto de Microbiologia y Parasitologia Médica (IMPaM), UBA-CONICET, Buenos Aires, Argentina
| | | | - Augusto Bivona
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Instituto de Estudios de la Inmunidad Humoral (IDEHU) and Instituto de Microbiologia y Parasitologia Médica (IMPaM), UBA-CONICET, Buenos Aires, Argentina
| | - Kenneth J Gollob
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Belo Horizonte, Brazil
| | - Walderez O Dutra
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Belo Horizonte, Brazil; Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
7
|
Ballmer D, Carter W, van Hooff JJE, Tromer EC, Ishii M, Ludzia P, Akiyoshi B. Kinetoplastid kinetochore proteins KKT14-KKT15 are divergent Bub1/BubR1-Bub3 proteins. Open Biol 2024; 14:240025. [PMID: 38862021 PMCID: PMC11286163 DOI: 10.1098/rsob.240025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 06/13/2024] Open
Abstract
Faithful transmission of genetic material is crucial for the survival of all organisms. In many eukaryotes, a feedback control mechanism called the spindle checkpoint ensures chromosome segregation fidelity by delaying cell cycle progression until all chromosomes achieve proper attachment to the mitotic spindle. Kinetochores are the macromolecular complexes that act as the interface between chromosomes and spindle microtubules. While most eukaryotes have canonical kinetochore proteins that are widely conserved, kinetoplastids such as Trypanosoma brucei have a seemingly unique set of kinetochore proteins including KKT1-25. It remains poorly understood how kinetoplastids regulate cell cycle progression or ensure chromosome segregation fidelity. Here, we report a crystal structure of the C-terminal domain of KKT14 from Apiculatamorpha spiralis and uncover that it is a pseudokinase. Its structure is most similar to the kinase domain of a spindle checkpoint protein Bub1. In addition, KKT14 has a putative ABBA motif that is present in Bub1 and its paralogue BubR1. We also find that the N-terminal part of KKT14 interacts with KKT15, whose WD40 repeat beta-propeller is phylogenetically closely related to a direct interactor of Bub1/BubR1 called Bub3. Our findings indicate that KKT14-KKT15 are divergent orthologues of Bub1/BubR1-Bub3, which promote accurate chromosome segregation in trypanosomes.
Collapse
Affiliation(s)
- Daniel Ballmer
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EdinburghEH9 3BF, UK
| | - William Carter
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
| | - Jolien J. E. van Hooff
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, 6708 HB Wageningen, The Netherlands
| | - Eelco C. Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Midori Ishii
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EdinburghEH9 3BF, UK
| | - Patryk Ludzia
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
| | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EdinburghEH9 3BF, UK
| |
Collapse
|
8
|
Li SZ, Shu QP, Zhou HM, Liu YY, Fan MQ, Liang XY, Qi LZ, He YN, Liu XY, Du XH, Huang XC, Chen YZ, Du RL, Liang YX, Zhang XD. CLK2 mediates IκBα-independent early termination of NF-κB activation by inducing cytoplasmic redistribution and degradation. Nat Commun 2024; 15:3901. [PMID: 38724505 PMCID: PMC11082251 DOI: 10.1038/s41467-024-48288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Activation of the NF-κB pathway is strictly regulated to prevent excessive inflammatory and immune responses. In a well-known negative feedback model, IκBα-dependent NF-κB termination is a delayed response pattern in the later stage of activation, and the mechanisms mediating the rapid termination of active NF-κB remain unclear. Here, we showed IκBα-independent rapid termination of nuclear NF-κB mediated by CLK2, which negatively regulated active NF-κB by phosphorylating the RelA/p65 subunit of NF-κB at Ser180 in the nucleus to limit its transcriptional activation through degradation and nuclear export. Depletion of CLK2 increased the production of inflammatory cytokines, reduced viral replication and increased the survival of the mice. Mechanistically, CLK2 phosphorylated RelA/p65 at Ser180 in the nucleus, leading to ubiquitin‒proteasome-mediated degradation and cytoplasmic redistribution. Importantly, a CLK2 inhibitor promoted cytokine production, reduced viral replication, and accelerated murine psoriasis. This study revealed an IκBα-independent mechanism of early-stage termination of NF-κB in which phosphorylated Ser180 RelA/p65 turned off posttranslational modifications associated with transcriptional activation, ultimately resulting in the degradation and nuclear export of RelA/p65 to inhibit excessive inflammatory activation. Our findings showed that the phosphorylation of RelA/p65 at Ser180 in the nucleus inhibits early-stage NF-κB activation, thereby mediating the negative regulation of NF-κB.
Collapse
Affiliation(s)
- Shang-Ze Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
- School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Qi-Peng Shu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Hai-Meng Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Yu-Ying Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Meng-Qi Fan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xin-Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Lin-Zhi Qi
- School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Ya-Nan He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xue-Yi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xue-Hua Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xi-Chen Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Yu-Zhen Chen
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions & Department of Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Run-Lei Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China.
| | - Yue-Xiu Liang
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions & Department of Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Xiao-Dong Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China.
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions & Department of Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
- National Health Commission Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Diseases, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
9
|
Ballmer D, Akiyoshi B. Dynamic localization of the chromosomal passenger complex in trypanosomes is controlled by the orphan kinesins KIN-A and KIN-B. eLife 2024; 13:RP93522. [PMID: 38564240 PMCID: PMC10987093 DOI: 10.7554/elife.93522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
The chromosomal passenger complex (CPC) is an important regulator of cell division, which shows dynamic subcellular localization throughout mitosis, including kinetochores and the spindle midzone. In traditional model eukaryotes such as yeasts and humans, the CPC consists of the catalytic subunit Aurora B kinase, its activator INCENP, and the localization module proteins Borealin and Survivin. Intriguingly, Aurora B and INCENP as well as their localization pattern are conserved in kinetoplastids, an evolutionarily divergent group of eukaryotes that possess unique kinetochore proteins and lack homologs of Borealin or Survivin. It is not understood how the kinetoplastid CPC assembles nor how it is targeted to its subcellular destinations during the cell cycle. Here, we identify two orphan kinesins, KIN-A and KIN-B, as bona fide CPC proteins in Trypanosoma brucei, the kinetoplastid parasite that causes African sleeping sickness. KIN-A and KIN-B form a scaffold for the assembly of the remaining CPC subunits. We show that the C-terminal unstructured tail of KIN-A interacts with the KKT8 complex at kinetochores, while its N-terminal motor domain promotes CPC translocation to spindle microtubules. Thus, the KIN-A:KIN-B complex constitutes a unique 'two-in-one' CPC localization module, which directs the CPC to kinetochores from S phase until metaphase and to the central spindle in anaphase. Our findings highlight the evolutionary diversity of CPC proteins and raise the possibility that kinesins may have served as the original transport vehicles for Aurora kinases in early eukaryotes.
Collapse
Affiliation(s)
- Daniel Ballmer
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological SciencesEdinburghUnited Kingdom
| | - Bungo Akiyoshi
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological SciencesEdinburghUnited Kingdom
| |
Collapse
|
10
|
Rostamighadi M, Kamelshahroudi A, Mehta V, Zeng FY, Pass I, Chung TDY, Salavati R. High-throughput screening of compounds targeting RNA editing in Trypanosoma brucei: Novel molecular scaffolds with broad trypanocidal effects. Biochem Pharmacol 2024; 219:115937. [PMID: 37995979 DOI: 10.1016/j.bcp.2023.115937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Mitochondrial uridine insertion/deletion RNA editing, catalyzed by a multiprotein complex (editosome), is essential for gene expression in trypanosomes and Leishmania parasites. As this process is absent in the human host, a drug targeting this mechanism promises high selectivity and reduced toxicity. Here, we successfully miniaturized our FRET-based full-round RNA editing assay, which replicates the complete RNA editing process, adapting it into a 1536-well format. Leveraging this assay, we screened over 100,000 compounds against purified editosomes derived from Trypanosoma brucei, identifying seven confirmed primary hits. We sourced and evaluated various analogs to enhance the inhibitory and parasiticidal effects of these primary hits. In combination with secondary assays, our compounds marked inhibition of essential catalytic activities, including the RNA editing ligase and interactions of editosome proteins. Although the primary hits did not exhibit any growth inhibitory effect on parasites, we describe eight analog compounds capable of effectively killing T. brucei and/or Leishmania donovani parasites within a low micromolar concentration. Whether parasite killing is - at least in part - due to inhibition of RNA editing in vivo remains to be assessed. Our findings introduce novel molecular scaffolds with the potential for broad antitrypanosomal effects.
Collapse
Affiliation(s)
- Mojtaba Rostamighadi
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Arezou Kamelshahroudi
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Vaibhav Mehta
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Fu-Yue Zeng
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, La Jolla, CA, USA
| | - Ian Pass
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, La Jolla, CA, USA
| | - Thomas D Y Chung
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, La Jolla, CA, USA
| | - Reza Salavati
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
11
|
Tulloch LB, Carvalho S, Lima M, Wall RJ, Tinti M, Pinto EG, MacLean L, Wyllie S. RES-Seq-a barcoded library of drug-resistant Leishmania donovani allowing rapid assessment of cross-resistance and relative fitness. mBio 2023; 14:e0180323. [PMID: 37929970 PMCID: PMC10746238 DOI: 10.1128/mbio.01803-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE Visceral leishmaniasis (VL) remains the third largest parasitic killer worldwide, responsible for 20,000-30,000 deaths each year. Control and ultimate elimination of VL will require a range of therapeutic options with diverse mechanisms of action to combat drug resistance. One approach to ensure that compounds in development exploit diverse mechanisms of action is to screen them against highly curated cell lines resistant to drugs already in the VL pipeline. The identification of cross-resistant cell lines indicates that test compounds are likely acting via previously established mechanisms. Current cross-resistance screens are limited by the requirement to profile individual resistant cell lines one at a time. Here, we introduce unique DNA barcodes into multiple resistant cell lines to facilitate parallel profiling. Utilizing the power of Illumina sequencing, growth kinetics and relative fitness under compound selection can be monitored revolutionizing our ability to identify and prioritize compounds acting via novel mechanisms.
Collapse
Affiliation(s)
- Lindsay B. Tulloch
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sandra Carvalho
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Marta Lima
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Richard J. Wall
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michele Tinti
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Erika G. Pinto
- Drug Discovery Unit, Wellcome Centre for Anti-infectives Research, University of Dundee, Dundee, United Kingdom
| | - Lorna MacLean
- Drug Discovery Unit, Wellcome Centre for Anti-infectives Research, University of Dundee, Dundee, United Kingdom
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
12
|
Du L, Wilson BAP, Li N, Shah R, Dalilian M, Wang D, Smith EA, Wamiru A, Goncharova EI, Zhang P, O’Keefe BR. Discovery and Synthesis of a Naturally Derived Protein Kinase Inhibitor that Selectively Inhibits Distinct Classes of Serine/Threonine Kinases. JOURNAL OF NATURAL PRODUCTS 2023; 86:2283-2293. [PMID: 37843072 PMCID: PMC10616853 DOI: 10.1021/acs.jnatprod.3c00394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 10/17/2023]
Abstract
The DNAJB1-PRKACA oncogenic gene fusion results in an active kinase enzyme, J-PKAcα, that has been identified as an attractive antitumor target for fibrolamellar hepatocellular carcinoma (FLHCC). A high-throughput assay was used to identify inhibitors of J-PKAcα catalytic activity by screening the NCI Program for Natural Product Discovery (NPNPD) prefractionated natural product library. Purification of the active agent from a single fraction of an Aplidium sp. marine tunicate led to the discovery of two unprecedented alkaloids, aplithianines A (1) and B (2). Aplithianine A (1) showed potent inhibition against J-PKAcα with an IC50 of ∼1 μM in the primary screening assay. In kinome screening, 1 inhibited wild-type PKA with an IC50 of 84 nM. Further mechanistic studies including cocrystallization and X-ray diffraction experiments revealed that 1 inhibited PKAcα catalytic activity by competitively binding to the ATP pocket. Human kinome profiling of 1 against a panel of 370 kinases revealed potent inhibition of select serine/threonine kinases in the CLK and PKG families with IC50 values in the range ∼11-90 nM. An efficient, four-step total synthesis of 1 has been accomplished, enabling further evaluation of aplithianines as biologically relevant kinase inhibitors.
Collapse
Affiliation(s)
- Lin Du
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Brice A. P. Wilson
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ning Li
- Center
for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Rohan Shah
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Masoumeh Dalilian
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Leidos
Biomedical Research, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Dongdong Wang
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Emily A. Smith
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Leidos
Biomedical Research, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Antony Wamiru
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Leidos
Biomedical Research, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ekaterina I. Goncharova
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Leidos
Biomedical Research, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ping Zhang
- Center
for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Barry R. O’Keefe
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Natural
Products Branch, Development Therapeutics Program, Division of Cancer
Treatment and Diagnosis, National Cancer
Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
13
|
Hochberg NS, Rao SPS, Angyalosi G, Zhao X, Carballo L, Demacq C, Braud-Perez S, Wieser D, Casas JP, Millholland J, Ngo D. An end is in sight: a perspective on PCR as an endpoint for Chagas disease treatment trials. FRONTIERS IN PARASITOLOGY 2023; 2:1272386. [PMID: 39816827 PMCID: PMC11731979 DOI: 10.3389/fpara.2023.1272386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 01/18/2025]
Abstract
Novel therapies for chronic indeterminate Chagas disease (CICD) are needed, but trials are limited by the absence of tests to detect infection and early treatment efficacy. This perspective highlights the shortfalls and strengths of polymerase chain reaction (PCR) as a study endpoint for anti-parasitic drug development. Serologic reversion, the gold standard test of cure, may take decades to occur in adults and therefore is challenging as an endpoint for drug development. Use of PCR as a marker of infection and treatment response has notable limitations due to low parasitemia in CICD, fluctuations in circulating (versus tissue) parasite burden, strain differences, and assay performance. It is, however, rapidly responsive to therapy, and technological advances have improved detection of different strains and may allow for parasite quantification. Until we have more sensitive tests for parasitological clearance, PCR as a measure of treatment failure may be the best available efficacy endpoint to accelerate early development of much-needed novel therapies. Adequately designed clinical studies are needed to correlate PCR clearance with clinical outcomes and to identify novel biomarkers predictive of clinical outcomes in patients with CICD. Public-private partnerships and health authority engagement are paramount to identify feasible trial endpoints and deliver promising new drug candidates for Chagas disease.
Collapse
Affiliation(s)
- Natasha S. Hochberg
- Novartis Biomedical Research, Cambridge, MA, United States
- Novartis Biomedical Research, Emeryville, CA, United States
| | - Srinivasa P. S. Rao
- Novartis Biomedical Research, Cambridge, MA, United States
- Novartis Biomedical Research, Emeryville, CA, United States
| | | | - Xiaojun Zhao
- Novartis Biomedical Research, Cambridge, MA, United States
- Novartis Biomedical Research, Emeryville, CA, United States
| | | | - Caroline Demacq
- Novartis Biomedical Research, Emeryville, CA, United States
- Novartis Pharma AG, Basel, Switzerland
| | | | - Daniela Wieser
- Novartis Biomedical Research, Cambridge, MA, United States
- Novartis Biomedical Research, Emeryville, CA, United States
| | - JP Casas
- Novartis Biomedical Research, Cambridge, MA, United States
- Novartis Biomedical Research, Emeryville, CA, United States
| | | | - Debby Ngo
- Novartis Biomedical Research, Cambridge, MA, United States
- Novartis Biomedical Research, Emeryville, CA, United States
| |
Collapse
|
14
|
Alves ETM, Pernichelle FG, Nascimento LA, Ferreira GM, Ferreira EI. Covalent Inhibitors for Neglected Diseases: An Exploration of Novel Therapeutic Options. Pharmaceuticals (Basel) 2023; 16:1028. [PMID: 37513939 PMCID: PMC10385647 DOI: 10.3390/ph16071028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Neglected diseases, primarily found in tropical regions of the world, present a significant challenge for impoverished populations. Currently, there are 20 diseases considered neglected, which greatly impact the health of affected populations and result in difficult-to-control social and economic consequences. Unfortunately, for the majority of these diseases, there are few or no drugs available for patient treatment, and the few drugs that do exist often lack adequate safety and efficacy. As a result, there is a pressing need to discover and design new drugs to address these neglected diseases. This requires the identification of different targets and interactions to be studied. In recent years, there has been a growing focus on studying enzyme covalent inhibitors as a potential treatment for neglected diseases. In this review, we will explore examples of how these inhibitors have been used to target Human African Trypanosomiasis, Chagas disease, and Malaria, highlighting some of the most promising results so far. Ultimately, this review aims to inspire medicinal chemists to pursue the development of new drug candidates for these neglected diseases, and to encourage greater investment in research in this area.
Collapse
Affiliation(s)
- Erick Tavares Marcelino Alves
- Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| | - Filipe Gomes Pernichelle
- Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| | - Lucas Adriano Nascimento
- Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| | - Elizabeth Igne Ferreira
- Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| |
Collapse
|
15
|
Rao SPS, Gould MK, Noeske J, Saldivia M, Jumani RS, Ng PS, René O, Chen YL, Kaiser M, Ritchie R, Francisco AF, Johnson N, Patra D, Cheung H, Deniston C, Schenk AD, Cortopassi WA, Schmidt RS, Wiedemar N, Thomas B, Palkar R, Ghafar NA, Manoharan V, Luu C, Gable JE, Wan KF, Myburgh E, Mottram JC, Barnes W, Walker J, Wartchow C, Aziz N, Osborne C, Wagner J, Sarko C, Kelly JM, Manjunatha UH, Mäser P, Jiricek J, Lakshminarayana SB, Barrett MP, Diagana TT. Cyanotriazoles are selective topoisomerase II poisons that rapidly cure trypanosome infections. Science 2023; 380:1349-1356. [PMID: 37384702 DOI: 10.1126/science.adh0614] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/24/2023] [Indexed: 07/01/2023]
Abstract
Millions who live in Latin America and sub-Saharan Africa are at risk of trypanosomatid infections, which cause Chagas disease and human African trypanosomiasis (HAT). Improved HAT treatments are available, but Chagas disease therapies rely on two nitroheterocycles, which suffer from lengthy drug regimens and safety concerns that cause frequent treatment discontinuation. We performed phenotypic screening against trypanosomes and identified a class of cyanotriazoles (CTs) with potent trypanocidal activity both in vitro and in mouse models of Chagas disease and HAT. Cryo-electron microscopy approaches confirmed that CT compounds acted through selective, irreversible inhibition of trypanosomal topoisomerase II by stabilizing double-stranded DNA:enzyme cleavage complexes. These findings suggest a potential approach toward successful therapeutics for the treatment of Chagas disease.
Collapse
Affiliation(s)
- Srinivasa P S Rao
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
- Novartis Institute for Tropical Diseases, Singapore
| | - Matthew K Gould
- College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jonas Noeske
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Manuel Saldivia
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Rajiv S Jumani
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Pearly S Ng
- Novartis Institute for Tropical Diseases, Singapore
| | - Olivier René
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Yen-Liang Chen
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
- Novartis Institute for Tropical Diseases, Singapore
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Ryan Ritchie
- College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Nila Johnson
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
| | - Debjani Patra
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Harry Cheung
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Colin Deniston
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | | | | | - Remo S Schmidt
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Natalie Wiedemar
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Bryanna Thomas
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Rima Palkar
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
| | | | | | - Catherine Luu
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Jonathan E Gable
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Kah Fei Wan
- Novartis Institute for Tropical Diseases, Singapore
| | - Elmarie Myburgh
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Whitney Barnes
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | - John Walker
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | - Charles Wartchow
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Natasha Aziz
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Colin Osborne
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - Juergen Wagner
- Novartis Institute for Tropical Diseases, Singapore
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Christopher Sarko
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | - John M Kelly
- London School of Hygiene and Tropical Medicine, London, UK
| | - Ujjini H Manjunatha
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
- Novartis Institute for Tropical Diseases, Singapore
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Jan Jiricek
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institute for Tropical Diseases, Singapore
| | - Suresh B Lakshminarayana
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
- Novartis Institute for Tropical Diseases, Singapore
| | - Michael P Barrett
- College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Thierry T Diagana
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
- Novartis Institute for Tropical Diseases, Singapore
| |
Collapse
|
16
|
Fairlamb AH, Wyllie S. The critical role of mode of action studies in kinetoplastid drug discovery. FRONTIERS IN DRUG DISCOVERY 2023; 3:fddsv.2023.1185679. [PMID: 37600222 PMCID: PMC7614965 DOI: 10.3389/fddsv.2023.1185679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Understanding the target and mode of action of compounds identified by phenotypic screening can greatly facilitate the process of drug discovery and development. Here, we outline the tools currently available for target identification against the neglected tropical diseases, human African trypanosomiasis, visceral leishmaniasis and Chagas' disease. We provide examples how these tools can be used to identify and triage undesirable mechanisms, to identify potential toxic liabilities in patients and to manage a balanced portfolio of target-based campaigns. We review the primary targets of drugs that are currently in clinical development that were initially identified via phenotypic screening, and whose modes of action affect protein turnover, RNA trans-splicing or signalling in these protozoan parasites.
Collapse
Affiliation(s)
- Alan H. Fairlamb
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
17
|
Rao SPS, Manjunatha UH, Mikolajczak S, Ashigbie PG, Diagana TT. Drug discovery for parasitic diseases: powered by technology, enabled by pharmacology, informed by clinical science. Trends Parasitol 2023; 39:260-271. [PMID: 36803572 DOI: 10.1016/j.pt.2023.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/22/2023]
Abstract
While prevention is a bedrock of public health, innovative therapeutics are needed to complement the armamentarium of interventions required to achieve disease control and elimination targets for neglected diseases. Extraordinary advances in drug discovery technologies have occurred over the past decades, along with accumulation of scientific knowledge and experience in pharmacological and clinical sciences that are transforming many aspects of drug R&D across disciplines. We reflect on how these advances have propelled drug discovery for parasitic infections, focusing on malaria, kinetoplastid diseases, and cryptosporidiosis. We also discuss challenges and research priorities to accelerate discovery and development of urgently needed novel antiparasitic drugs.
Collapse
Affiliation(s)
| | | | | | - Paul G Ashigbie
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA.
| | | |
Collapse
|
18
|
Lindberg MF, Deau E, Arfwedson J, George N, George P, Alfonso P, Corrionero A, Meijer L. Comparative Efficacy and Selectivity of Pharmacological Inhibitors of DYRK and CLK Protein Kinases. J Med Chem 2023; 66:4106-4130. [PMID: 36876904 DOI: 10.1021/acs.jmedchem.2c02068] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Dual-specificity, tyrosine phosphorylation-regulated kinases (DYRKs) and cdc2-like kinases (CLKs) play a large variety of cellular functions and are involved in several diseases (cognitive disorders, diabetes, cancers, etc.). There is, thus, growing interest in pharmacological inhibitors as chemical probes and potential drug candidates. This study presents an unbiased evaluation of the kinase inhibitory activity of a library of 56 reported DYRK/CLK inhibitors on the basis of comparative, side-by-side, catalytic activity assays on a panel of 12 recombinant human kinases, enzyme kinetics (residence time and Kd), in-cell inhibition of Thr-212-Tau phosphorylation, and cytotoxicity. The 26 most active inhibitors were modeled in the crystal structure of DYRK1A. The results show a rather large diversity of potencies and selectivities among the reported inhibitors and emphasize the difficulties to avoid "off-targets" in this area of the kinome. The use of a panel of DYRKs/CLKs inhibitors is suggested to analyze the functions of these kinases in cellular processes.
Collapse
Affiliation(s)
| | - Emmanuel Deau
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Jonas Arfwedson
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Nicolas George
- Oncodesign, 25-27 avenue du Québec, 91140 Villebon-sur-Yvette, France
| | - Pascal George
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Patricia Alfonso
- Enzymlogic, Qube Technology Park, C/Santiago Grisolía, 2, 28760 Madrid, Spain
| | - Ana Corrionero
- Enzymlogic, Qube Technology Park, C/Santiago Grisolía, 2, 28760 Madrid, Spain
| | - Laurent Meijer
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| |
Collapse
|
19
|
ElHady AK, El-Gamil DS, Abadi AH, Abdel-Halim M, Engel M. An overview of cdc2-like kinase 1 (Clk1) inhibitors and their therapeutic indications. Med Res Rev 2023; 43:343-398. [PMID: 36262046 DOI: 10.1002/med.21928] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/07/2022] [Accepted: 09/11/2022] [Indexed: 02/05/2023]
Abstract
Over the past decade, Clk1 has been identified as a promising target for the treatment of various diseases, in which deregulated alternative splicing plays a role. First small molecules targeting Clk1 are in clinical trials for the treatment of solid cancer, where variants of oncogenic proteins derived from alternative splicing promote tumor progression. Since many infectious pathogens hi-jack the host cell's splicing machinery to ensure efficient replication, further indications in this area are under investigation, such as Influenza A, HIV-1 virus, and Trypanosoma infections, and more will likely be discovered in the future. In addition, Clk1 was found to contribute to the progression of Alzheimer's disease through causing an imbalance of tau splicing products. Interestingly, homozygous Clk1 knockout mice showed a rather mild phenotype, opposed to what might be expected in view of the profound role of Clk1 in alternative splicing. A major drawback of most Clk1 inhibitors is their insufficient selectivity; in particular, Dyrk kinases and haspin were frequently identified as off-targets, besides the other Clk isoforms. Only few inhibitors were shown to be selective over Dyrk1A and haspin, whereas no Clk1 inhibitor so far achieved selectivity over the Clk4 isoform. In this review, we carefully compiled all Clk1 inhibitors from the scientific literature and summarized their structure-activity relationships (SAR). In addition, we critically discuss the available selectivity data and describe the inhibitor's efficacy in cellular models, if reported. Thus, we provide a comprehensive overview on the current state of Clk1 drug discovery and highlight the most promising chemotypes.
Collapse
Affiliation(s)
- Ahmed K ElHady
- Department of Organic and Pharmaceutical Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Dalia S El-Gamil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Department of Chemistry, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Matthias Engel
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
20
|
Genome-wide subcellular protein map for the flagellate parasite Trypanosoma brucei. Nat Microbiol 2023; 8:533-547. [PMID: 36804636 PMCID: PMC9981465 DOI: 10.1038/s41564-022-01295-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/21/2022] [Indexed: 02/22/2023]
Abstract
Trypanosoma brucei is a model trypanosomatid, an important group of human, animal and plant unicellular parasites. Understanding their complex cell architecture and life cycle is challenging because, as with most eukaryotic microbes, ~50% of genome-encoded proteins have completely unknown functions. Here, using fluorescence microscopy and cell lines expressing endogenously tagged proteins, we mapped the subcellular localization of 89% of the T. brucei proteome, a resource we call TrypTag. We provide clues to function and define lineage-specific organelle adaptations for parasitism, mapping the ultraconserved cellular architecture of eukaryotes, including the first comprehensive 'cartographic' analysis of the eukaryotic flagellum, which is vital for morphogenesis and pathology. To demonstrate the power of this resource, we identify novel organelle subdomains and changes in molecular composition through the cell cycle. TrypTag is a transformative resource, important for hypothesis generation for both eukaryotic evolutionary molecular cell biology and fundamental parasite cell biology.
Collapse
|
21
|
Abstract
Leishmaniasis (visceral and cutaneous), Chagas disease and human African trypanosomiasis cause substantial death and morbidity, particularly in low- and middle-income countries. Although the situation has improved for human African trypanosomiasis, there remains an urgent need for new medicines to treat leishmaniasis and Chagas disease; the clinical development pipeline is particularly sparse for Chagas disease. In this Review, we describe recent advances in our understanding of the biology of the causative pathogens, particularly from the drug discovery perspective, and we explore the progress that has been made in the development of new drug candidates and the identification of promising molecular targets. We also explore the challenges in developing new clinical candidates and discuss potential solutions to overcome such hurdles.
Collapse
|
22
|
Ishii M, Ludzia P, Marcianò G, Allen W, Nerusheva OO, Akiyoshi B. Divergent polo boxes in KKT2 bind KKT1 to initiate the kinetochore assembly cascade in Trypanosoma brucei. Mol Biol Cell 2022; 33:ar143. [PMID: 36129769 PMCID: PMC9727816 DOI: 10.1091/mbc.e22-07-0269-t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 02/04/2023] Open
Abstract
Chromosome segregation requires assembly of the macromolecular kinetochore complex onto centromeric DNA. While most eukaryotes have canonical kinetochore proteins that are widely conserved among eukaryotes, evolutionarily divergent kinetoplastids have a unique set of kinetochore proteins. Little is known about the mechanism of kinetochore assembly in kinetoplastids. Here we characterize two homologous kinetoplastid kinetochore proteins, KKT2 and KKT3, that constitutively localize at centromeres. They have three domains that are highly conserved among kinetoplastids: an N-terminal kinase domain of unknown function, the centromere localization domain in the middle, and the C-terminal domain that has weak similarity to polo boxes of Polo-like kinases. We show that the kinase activity of KKT2 is essential for accurate chromosome segregation, while that of KKT3 is dispensable for cell growth in Trypanosoma brucei. Crystal structures of their divergent polo boxes reveal differences between KKT2 and KKT3. We also show that the divergent polo boxes of KKT3 are sufficient to recruit KKT2 in trypanosomes. Furthermore, we demonstrate that the divergent polo boxes of KKT2 interact directly with KKT1 and that KKT1 interacts with KKT6. These results show that the divergent polo boxes of KKT2 and KKT3 are protein-protein interaction domains that initiate kinetochore assembly in T. brucei.
Collapse
Affiliation(s)
- Midori Ishii
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Patryk Ludzia
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Gabriele Marcianò
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - William Allen
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Olga O. Nerusheva
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
23
|
Geoghegan V, Carnielli JBT, Jones NG, Saldivia M, Antoniou S, Hughes C, Neish R, Dowle A, Mottram JC. CLK1/CLK2-driven signalling at the Leishmania kinetochore is captured by spatially referenced proximity phosphoproteomics. Commun Biol 2022; 5:1305. [PMID: 36437406 PMCID: PMC9701682 DOI: 10.1038/s42003-022-04280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Kinetochores in the parasite Leishmania and related kinetoplastids appear to be unique amongst eukaryotes and contain protein kinases as core components. Using the kinetochore kinases KKT2, KKT3 and CLK2 as baits, we developed a BirA* proximity biotinylation methodology optimised for sensitivity, XL-BioID, to investigate the composition and function of the Leishmania kinetochore. We could detect many of the predicted components and also discovered two novel kinetochore proteins, KKT24 and KKT26. Using KKT3 tagged with a fast-acting promiscuous biotin ligase variant, we took proximity biotinylation snapshots of the kinetochore in synchronised parasites. To quantify proximal phosphosites at the kinetochore as the parasite progressed through the cell cycle, we further developed a spatially referenced proximity phosphoproteomics approach. This revealed a group of phosphosites at the kinetochore that were highly dynamic during kinetochore assembly. We show that the kinase inhibitor AB1 targets CLK1/CLK2 (KKT10/KKT19) in Leishmania leading to defective cytokinesis. Using AB1 to uncover CLK1/CLK2 driven signalling pathways important for kinetochore function at G2/M, we found a set of 16 inhibitor responsive kinetochore-proximal phosphosites. Our results exploit new proximity labelling approaches to provide a direct analysis of the Leishmania kinetochore, which is emerging as a promising drug target.
Collapse
Affiliation(s)
- Vincent Geoghegan
- grid.5685.e0000 0004 1936 9668York Biomedical Research Institute and Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD UK
| | - Juliana B. T. Carnielli
- grid.5685.e0000 0004 1936 9668York Biomedical Research Institute and Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD UK
| | - Nathaniel G. Jones
- grid.5685.e0000 0004 1936 9668York Biomedical Research Institute and Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD UK
| | - Manuel Saldivia
- grid.418424.f0000 0004 0439 2056Novartis Institute for Tropical Diseases, Emeryville, CA USA
| | - Sergios Antoniou
- grid.5685.e0000 0004 1936 9668York Biomedical Research Institute and Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD UK
| | - Charlotte Hughes
- grid.5685.e0000 0004 1936 9668York Biomedical Research Institute and Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD UK
| | - Rachel Neish
- grid.5685.e0000 0004 1936 9668York Biomedical Research Institute and Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD UK
| | - Adam Dowle
- grid.5685.e0000 0004 1936 9668Bioscience Technology Facility, Department of Biology, University of York, York, YO10 5DD UK
| | - Jeremy C. Mottram
- grid.5685.e0000 0004 1936 9668York Biomedical Research Institute and Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD UK
| |
Collapse
|
24
|
Cayla M, Nievas YR, Matthews KR, Mottram JC. Distinguishing functions of trypanosomatid protein kinases. Trends Parasitol 2022; 38:950-961. [PMID: 36075845 DOI: 10.1016/j.pt.2022.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 01/13/2023]
Abstract
Trypanosomatid parasitic protozoa are divergent from opisthokont models and have evolved unique mechanisms to regulate their complex life cycles and to adapt to a range of hosts. Understanding how these organisms respond, adapt, and persist in their different hosts could reveal optimal drug-control strategies. Protein kinases are fundamental to many biological processes such as cell cycle control, adaptation to stress, and cellular differentiation. Therefore, we have focused this review on the features and functions of protein kinases that distinguish trypanosomatid kinomes from other eukaryotes. We describe the latest research, highlighting similarities and differences between two groups of trypanosomatid parasites, Leishmania and African trypanosomes.
Collapse
Affiliation(s)
- Mathieu Cayla
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Y Romina Nievas
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, UK.
| |
Collapse
|
25
|
Genome-scale RNA interference profiling of Trypanosoma brucei cell cycle progression defects. Nat Commun 2022; 13:5326. [PMID: 36088375 PMCID: PMC9464253 DOI: 10.1038/s41467-022-33109-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Trypanosomatids, which include major pathogens of humans and livestock, are flagellated protozoa for which cell cycle controls and the underlying mechanisms are not completely understood. Here, we describe a genome-wide RNA-interference library screen for cell cycle defects in Trypanosoma brucei. We induced massive parallel knockdown, sorted the perturbed population using high-throughput flow cytometry, deep-sequenced RNAi-targets from each stage and digitally reconstructed cell cycle profiles at a genomic scale; also enabling data visualisation using an online tool ( https://tryp-cycle.pages.dev/ ). Analysis of several hundred genes that impact cell cycle progression reveals >100 flagellar component knockdowns linked to genome endoreduplication, evidence for metabolic control of the G1-S transition, surface antigen regulatory mRNA-binding protein knockdowns linked to G2M accumulation, and a putative nucleoredoxin required for both mitochondrial genome segregation and for mitosis. The outputs provide comprehensive functional genomic evidence for the known and novel machineries, pathways and regulators that coordinate trypanosome cell cycle progression.
Collapse
|
26
|
Koester DC, Marx VM, Williams S, Jiricek J, Dauphinais M, René O, Miller SL, Zhang L, Patra D, Chen YL, Cheung H, Gable J, Lakshminarayana SB, Osborne C, Galarneau JR, Kulkarni U, Richmond W, Bretz A, Xiao L, Supek F, Wiesmann C, Honnappa S, Be C, Mäser P, Kaiser M, Ritchie R, Barrett MP, Diagana TT, Sarko C, Rao SPS. Discovery of Novel Quinoline-Based Proteasome Inhibitors for Human African Trypanosomiasis (HAT). J Med Chem 2022; 65:11776-11787. [PMID: 35993839 PMCID: PMC9469205 DOI: 10.1021/acs.jmedchem.2c00791] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human African Trypanosomiasis (HAT) is a vector-borne disease caused by kinetoplastid parasites of the Trypanosoma genus. The disease proceeds in two stages, with a hemolymphatic blood stage and a meningo-encephalic brain stage. In the latter stage, the parasite causes irreversible damage to the brain leading to sleep cycle disruption and is fatal if untreated. An orally bioavailable treatment is highly desirable. In this study, we present a brain-penetrant, parasite-selective 20S proteasome inhibitor that was rapidly optimized from an HTS singleton hit to drug candidate compound 7 that showed cure in a stage II mouse efficacy model. Here, we describe hit expansion and lead optimization campaign guided by cryo-electron microscopy and an in silico model to predict the brain-to-plasma partition coefficient Kp as an important parameter to prioritize compounds for synthesis. The model combined with in vitro and in vivo experiments allowed us to advance compounds with favorable unbound brain-to-plasma ratios (Kp,uu) to cure a CNS disease such as HAT.
Collapse
Affiliation(s)
- Dennis C. Koester
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, Emeryville, California 94608, United States
| | - Vanessa M. Marx
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, Emeryville, California 94608, United States
| | - Sarah Williams
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, Emeryville, California 94608, United States
| | - Jan Jiricek
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, Emeryville, California 94608, United States
| | - Maxime Dauphinais
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, Emeryville, California 94608, United States
| | - Olivier René
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, Emeryville, California 94608, United States
| | - Sarah L. Miller
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, Emeryville, California 94608, United States
| | - Lei Zhang
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, Emeryville, California 94608, United States
| | - Debjani Patra
- Novartis
Institutes for Tropical Diseases, Emeryville, California 94608, United States
| | - Yen-Liang Chen
- Lead
Discovery, Novartis Institutes for Tropical
Diseases, Emeryville, California 94608, United States
| | - Harry Cheung
- Lead
Discovery, Novartis Institutes for Tropical
Diseases, Emeryville, California 94608, United States
| | - Jonathan Gable
- Lead
Discovery, Novartis Institutes for Tropical
Diseases, Emeryville, California 94608, United States
| | - Suresh B. Lakshminarayana
- Pharmacokinetic
Sciences, Novartis Institutes for Tropical
Diseases, Emeryville, California 94608, United States
| | - Colin Osborne
- Pharmacokinetic
Sciences, Pharmacology and Comparative Medicine, Novartis Institutes for Tropical Diseases, Emeryville, California 94608, United States
| | - Jean-Rene Galarneau
- Preclinical
Safety, Novartis Institutes for Biomedical
Research, Cambridge, Massachusetts 02139, United States
| | - Upendra Kulkarni
- Chemical
and Pharmaceutical Profiling, Novartis Institutes
for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Wendy Richmond
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, San Diego, California 92121, United States
| | - Angela Bretz
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, San Diego, California 92121, United States
| | - Linda Xiao
- Pharmacology, Novartis Institutes for Tropical Diseases, Emeryville, California 94608, United States
| | - Frantisek Supek
- Novartis
Institutes for Biomedical Research, San Diego, California 92121, United States
| | | | - Srinivas Honnappa
- Novartis
Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Celine Be
- Novartis
Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- University
of Basel, CH 4000 Basel, Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- University
of Basel, CH 4000 Basel, Switzerland
| | - Ryan Ritchie
- University of Glasgow, University Place, Glasgow G12 8TA, U.K
| | | | - Thierry T. Diagana
- Novartis
Institutes for Tropical Diseases, Emeryville, California 94608, United States
| | - Christopher Sarko
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, Emeryville, California 94608, United States
| | - Srinivasa P. S. Rao
- Novartis
Institutes for Tropical Diseases, Emeryville, California 94608, United States
| |
Collapse
|
27
|
Bao G, Li T, Guan X, Yao Y, Liang J, Xiang Y, Zhong X. Development of a Prognostic Alternative Splicing Signature Associated With Tumor Microenvironment Immune Profiles in Lung Adenocarcinoma. Front Oncol 2022; 12:880478. [PMID: 35832557 PMCID: PMC9271776 DOI: 10.3389/fonc.2022.880478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Alternative splicing (AS), a pivotal post-transcriptional process across more than 95% of human transcripts, is involved in transcript structural variations and protein complexity. Clinical implications of AS events and their interaction with tumor immunity were systematically analyzed in lung adenocarcinoma (LUAD). METHODS Transcriptome profiling as well as AS data of LUAD were retrospectively curated. Then, the network of the overall survival (OS)-relevant AS events with splicing factors was established. After screening OS-relevant AS events, a LASSO prognostic model was conducted and evaluated with ROC curves. A nomogram that integrated independent prognostic indicators was created. Immune response and immune cell infiltration were estimated with ESTIMATE, CIBERSORT, and ssGSEA algorithms. Drug sensitivity was inferred with pRRophetic package. RESULTS In total, 2415 OS-relevant AS events were identified across LUAD patients. The interaction network of splicing factors with OS-relevant AS events uncovered the underlying regulatory mechanisms of AS events in LUAD. Thereafter, a prognostic model containing 12 AS events was developed, which acted as a reliable and independent prognostic indicator following verification. A nomogram that constituted stage and risk score displayed great effectiveness in evaluating the survival likelihood. Moreover, the AS-based prognostic model was in relation to immune response and immune cell infiltration. Patients with a high-risk score displayed therapeutic superiority to cisplatin, erlotinib, gefitinib, and gemcitabine. Finally, three AS-relevant genes (CDKN2A, TTC39C, and PKIB) were identified as prognostic markers. CONCLUSION Collectively, our findings developed an AS event signature with powerful prognostic predictive efficacy in LUAD.
Collapse
Affiliation(s)
- Guangyao Bao
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Xiaojiao Guan
- Department of Pathology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yao Yao
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jie Liang
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yifan Xiang
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xinwen Zhong
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
28
|
Geoghegan V, Mottram JC, Jones NG. Tag Thy Neighbour: Nanometre-Scale Insights Into Kinetoplastid Parasites With Proximity Dependent Biotinylation. Front Cell Infect Microbiol 2022; 12:894213. [PMID: 35601102 PMCID: PMC9120650 DOI: 10.3389/fcimb.2022.894213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Proximity labelling is a powerful and rapidly developing technology for exploring the interaction space and molecular environment of a protein of interest at the nanometre scale. In proximity labelling, a promiscuous biotinylating enzyme is genetically fused to the protein of interest, initiation of labelling then results in the biotinylating enzyme generating reactive biotin which covalently 'tags' nearby molecules. Importantly, this labelling takes place in vivo whilst the protein of interest continues to perform its normal functions in the cell. Due to its unique advantageous characteristics, proximity labelling is driving discoveries in an ever increasing range of organisms. Here, we highlight the applications of proximity labelling to the study of kinetoplastids, a group of eukaryotic protozoa that includes trypanosomes and Leishmania which can cause serious disease in humans and livestock. We first provide a general overview of the proximity labelling experimental workflow including key labelling enzymes used, proper experimental design with appropriate controls and robust statistical analysis to maximise the amount of reliable spatial information that is generated. We discuss studies employing proximity labelling in kinetoplastid parasites to illustrate how these key principles of experimental design are applied. Finally, we highlight emerging trends in the development of proximity labelling methodology.
Collapse
Affiliation(s)
- Vincent Geoghegan
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | | | | |
Collapse
|
29
|
Approaches to advance drug discovery for neglected tropical diseases. Drug Discov Today 2022; 27:2278-2287. [DOI: 10.1016/j.drudis.2022.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/21/2022] [Accepted: 04/02/2022] [Indexed: 12/19/2022]
|
30
|
Ishii M, Akiyoshi B. Plasticity in centromere organization and kinetochore composition: Lessons from diversity. Curr Opin Cell Biol 2022; 74:47-54. [PMID: 35108654 PMCID: PMC9089191 DOI: 10.1016/j.ceb.2021.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022]
Abstract
Kinetochores are the macromolecular protein complexes that govern chromosome movement by binding spindle microtubules during mitosis and meiosis. Centromeres are the specific chromosomal regions that serve as the platform on which kinetochores assemble. Despite their essentiality for proper chromosome segregation, the size and organization of centromeres vary dramatically between species, while different compositions of kinetochores are found among eukaryotes. Here we discuss recent progress in understanding centromeres and kinetochores in non-traditional model eukaryotes. We specifically focus on select lineages (holocentric insects, early diverging fungi, and kinetoplastids) that lack CENP-A, a centromere-specific histone H3 variant that is critical for kinetochore specification and assembly in many eukaryotes. We also highlight some organisms that might have hitherto unknown types of kinetochore proteins.
Collapse
Affiliation(s)
- Midori Ishii
- Department of Biochemistry, University of Oxford, UK
| | | |
Collapse
|
31
|
Abstract
The parasitic trypanosomatids cause lethal and debilitating diseases, the leishmaniases, Chagas disease, and the African trypanosomiases, with major impacts on human and animal health. Sustained research has borne fruit by assisting efforts to reduce the burden of disease and by improving our understanding of fundamental molecular and cell biology. But where has the research primarily been conducted, and which research areas have received the most attention? These questions are addressed below using publication and citation data from the past few decades.
Collapse
Affiliation(s)
- David Horn
- The Wellcome Trust Centre for Anti-Infectives Research, Division of Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
32
|
Horn D. Genome-scale RNAi screens in African trypanosomes. Trends Parasitol 2021; 38:160-173. [PMID: 34580035 DOI: 10.1016/j.pt.2021.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022]
Abstract
Genome-scale genetic screens allow researchers to rapidly identify the genes and proteins that impact a particular phenotype of interest. In African trypanosomes, RNA interference (RNAi) knockdown screens have revealed mechanisms underpinning drug resistance, drug transport, prodrug metabolism, quorum sensing, genome replication, and gene expression control. RNAi screening has also been remarkably effective at highlighting promising potential antitrypanosomal drug targets. The first ever RNAi library screen was implemented in African trypanosomes, and genome-scale RNAi screens and other related approaches continue to have a major impact on trypanosomatid research. Here, I review those impacts in terms of both discovery and translation.
Collapse
Affiliation(s)
- David Horn
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
33
|
Serafim RAM, Elkins JM, Zuercher WJ, Laufer SA, Gehringer M. Chemical Probes for Understudied Kinases: Challenges and Opportunities. J Med Chem 2021; 65:1132-1170. [PMID: 34477374 DOI: 10.1021/acs.jmedchem.1c00980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over 20 years after the approval of the first-in-class protein kinase inhibitor imatinib, the biological function of a significant fraction of the human kinome remains poorly understood while most research continues to be focused on few well-validated targets. Given the strong genetic evidence for involvement of many kinases in health and disease, the understudied fraction of the kinome holds a large and unexplored potential for future therapies. Specific chemical probes are indispensable tools to interrogate biology enabling proper preclinical validation of novel kinase targets. In this Perspective, we highlight recent case studies illustrating the development of high-quality chemical probes for less-studied kinases and their application in target validation. We spotlight emerging techniques and approaches employed in the generation of chemical probes for protein kinases and beyond and discuss the associated challenges and opportunities.
Collapse
Affiliation(s)
- Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Jonathan M Elkins
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - William J Zuercher
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
34
|
Dean S. Basic Biology of Trypanosoma brucei with Reference to the Development of Chemotherapies. Curr Pharm Des 2021; 27:1650-1670. [PMID: 33463458 DOI: 10.2174/1381612827666210119105008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
Trypanosoma brucei are protozoan parasites that cause the lethal human disease African sleeping sickness and the economically devastating disease of cattle, Nagana. African sleeping sickness, also known as Human African Trypanosomiasis (HAT), threatens 65 million people and animal trypanosomiasis makes large areas of farmland unusable. There is no vaccine and licensed therapies against the most severe, late-stage disease are toxic, impractical and ineffective. Trypanosomes are transmitted by tsetse flies, and HAT is therefore predominantly confined to the tsetse fly belt in sub-Saharan Africa. They are exclusively extracellular and they differentiate between at least seven developmental forms that are highly adapted to host and vector niches. In the mammalian (human) host they inhabit the blood, cerebrospinal fluid (late-stage disease), skin, and adipose fat. In the tsetse fly vector they travel from the tsetse midgut to the salivary glands via the ectoperitrophic space and proventriculus. Trypanosomes are evolutionarily divergent compared with most branches of eukaryotic life. Perhaps most famous for their extraordinary mechanisms of monoallelic gene expression and antigenic variation, they have also been investigated because much of their biology is either highly unconventional or extreme. Moreover, in addition to their importance as pathogens, many researchers have been attracted to the field because trypanosomes have some of the most advanced molecular genetic tools and database resources of any model system. The following will cover just some aspects of trypanosome biology and how its divergent biochemistry has been leveraged to develop drugs to treat African sleeping sickness. This is by no means intended to be a comprehensive survey of trypanosome features. Rather, I hope to present trypanosomes as one of the most fascinating and tractable systems to do discovery biology.
Collapse
Affiliation(s)
- Samuel Dean
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
35
|
Saldivia M, Wollman AJM, Carnielli JBT, Jones NG, Leake MC, Bower-Lepts C, Rao SPS, Mottram JC. A CLK1-KKT2 Signaling Pathway Regulating Kinetochore Assembly in Trypanosoma brucei. mBio 2021; 12:e0068721. [PMID: 34128702 PMCID: PMC8262961 DOI: 10.1128/mbio.00687-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/07/2021] [Indexed: 01/17/2023] Open
Abstract
During mitosis, eukaryotic cells must duplicate and separate their chromosomes in a precise and timely manner. The apparatus responsible for this is the kinetochore, which is a large protein structure that links chromosomal DNA and spindle microtubules to facilitate chromosome alignment and segregation. The proteins that comprise the kinetochore in the protozoan parasite Trypanosoma brucei are divergent from yeast and mammals and comprise an inner kinetochore complex composed of 24 distinct proteins (KKT1 to KKT23, KKT25) that include four protein kinases, CLK1 (KKT10), CLK2 (KKT19), KKT2, and KKT3. We recently reported the identification of a specific trypanocidal inhibitor of T. brucei CLK1, an amidobenzimidazole, AB1. We now show that chemical inhibition of CLK1 with AB1 impairs inner kinetochore recruitment and compromises cell cycle progression, leading to cell death. Here, we show that KKT2 is a substrate for CLK1 and identify phosphorylation of S508 by CLK1 to be essential for KKT2 function and for kinetochore assembly. Additionally, KKT2 protein kinase activity is required for parasite proliferation but not for assembly of the inner kinetochore complex. We also show that chemical inhibition of the aurora kinase AUK1 does not affect CLK1 phosphorylation of KKT2, indicating that AUK1 and CLK1 are in separate regulatory pathways. We propose that CLK1 is part of a divergent signaling cascade that controls kinetochore function via phosphorylation of the inner kinetochore protein kinase KKT2. IMPORTANCE In eukaryotic cells, kinetochores are large protein complexes that link chromosomes to dynamic microtubule tips, ensuring proper segregation and genomic stability during cell division. Several proteins tightly coordinate kinetochore functions, including the protein kinase aurora kinase B. The kinetochore has diverse evolutionary roots. For example, trypanosomatids, single-cell parasitic protozoa that cause several neglected tropical diseases, possess a unique repertoire of kinetochore components whose regulation during the cell cycle remains unclear. Here, we shed light on trypanosomatid kinetochore biology by showing that the protein kinase CLK1 coordinates the assembly of the inner kinetochore by phosphorylating one of its components, KKT2, allowing the timely spatial recruitment of the rest of the kinetochore proteins and posterior attachment to microtubules in a process that is aurora kinase B independent.
Collapse
Affiliation(s)
- Manuel Saldivia
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
- Novartis Institute for Tropical Diseases, Emeryville, California, USA
| | - Adam J. M. Wollman
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
- York Biomedical Research Institute, Department of Physics, University of York, Heslington, United Kingdom
| | - Juliana B. T. Carnielli
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
| | - Nathaniel G. Jones
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
| | - Mark C. Leake
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
- York Biomedical Research Institute, Department of Physics, University of York, Heslington, United Kingdom
| | - Christopher Bower-Lepts
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
| | | | - Jeremy C. Mottram
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
| |
Collapse
|
36
|
Lindberg MF, Meijer L. Dual-Specificity, Tyrosine Phosphorylation-Regulated Kinases (DYRKs) and cdc2-Like Kinases (CLKs) in Human Disease, an Overview. Int J Mol Sci 2021; 22:6047. [PMID: 34205123 PMCID: PMC8199962 DOI: 10.3390/ijms22116047] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/09/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRK1A, 1B, 2-4) and cdc2-like kinases (CLK1-4) belong to the CMGC group of serine/threonine kinases. These protein kinases are involved in multiple cellular functions, including intracellular signaling, mRNA splicing, chromatin transcription, DNA damage repair, cell survival, cell cycle control, differentiation, homocysteine/methionine/folate regulation, body temperature regulation, endocytosis, neuronal development, synaptic plasticity, etc. Abnormal expression and/or activity of some of these kinases, DYRK1A in particular, is seen in many human nervous system diseases, such as cognitive deficits associated with Down syndrome, Alzheimer's disease and related diseases, tauopathies, dementia, Pick's disease, Parkinson's disease and other neurodegenerative diseases, Phelan-McDermid syndrome, autism, and CDKL5 deficiency disorder. DYRKs and CLKs are also involved in diabetes, abnormal folate/methionine metabolism, osteoarthritis, several solid cancers (glioblastoma, breast, and pancreatic cancers) and leukemias (acute lymphoblastic leukemia, acute megakaryoblastic leukemia), viral infections (influenza, HIV-1, HCMV, HCV, CMV, HPV), as well as infections caused by unicellular parasites (Leishmania, Trypanosoma, Plasmodium). This variety of pathological implications calls for (1) a better understanding of the regulations and substrates of DYRKs and CLKs and (2) the development of potent and selective inhibitors of these kinases and their evaluation as therapeutic drugs. This article briefly reviews the current knowledge about DYRK/CLK kinases and their implications in human disease.
Collapse
Affiliation(s)
| | - Laurent Meijer
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France;
| |
Collapse
|
37
|
Zhang Y, Xia A, Zhang S, Lin G, Liu J, Chen P, Mu B, Jiao Y, Xu W, Chen M, Li L. Discovery of 3,6-disubstutited-imidazo[1,2-a]pyridine derivatives as a new class of CLK1 inhibitors. Bioorg Med Chem Lett 2021; 41:127881. [PMID: 33662541 DOI: 10.1016/j.bmcl.2021.127881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/04/2021] [Accepted: 02/13/2021] [Indexed: 02/08/2023]
Abstract
Inhibition of cdc2-like kinase1 (CLK1) could efficiently induce autophagy and it has been thought as a potential target for treatment of autophagy-related diseases. Herein we report the discovery of a series of 3,6-disubstutited-imidazo[1,2-a]pyridine derivatives as a new class of CLK1 inhibitors. Among them, compound 9e is the most potent one, which exhibits an IC50 value of 4 nM against CLK1 kinase. In vitro, this compound reduces the phosphorylation level of the typical downstream substrates of CLK1 and affects their subcellular redistribution. Further study indicates that 9e is efficient to induce autophagy. Overall, this study provides a promising lead compound for drug discovery targeting CLK1 kinase.
Collapse
Affiliation(s)
- Yun Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Macular Disease Research Laboratory, Department of Ophthalmology, West China Hospital, Sichuan University, Sichuan 610041, China
| | - Anjie Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shiyu Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Guifeng Lin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jingming Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Pei Chen
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Bo Mu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Basic Medical College of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Yan Jiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenwen Xu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Mingxin Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Linli Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China.
| |
Collapse
|
38
|
Pastor F, Shkreta L, Chabot B, Durantel D, Salvetti A. Interplay Between CMGC Kinases Targeting SR Proteins and Viral Replication: Splicing and Beyond. Front Microbiol 2021; 12:658721. [PMID: 33854493 PMCID: PMC8040976 DOI: 10.3389/fmicb.2021.658721] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/04/2021] [Indexed: 12/27/2022] Open
Abstract
Protein phosphorylation constitutes a major post-translational modification that critically regulates the half-life, intra-cellular distribution, and activity of proteins. Among the large number of kinases that compose the human kinome tree, those targeting RNA-binding proteins, in particular serine/arginine-rich (SR) proteins, play a major role in the regulation of gene expression by controlling constitutive and alternative splicing. In humans, these kinases belong to the CMGC [Cyclin-dependent kinases (CDKs), Mitogen-activated protein kinases (MAPKs), Glycogen synthase kinases (GSKs), and Cdc2-like kinases (CLKs)] group and several studies indicate that they also control viral replication via direct or indirect mechanisms. The aim of this review is to describe known and emerging activities of CMGC kinases that share the common property to phosphorylate SR proteins, as well as their interplay with different families of viruses, in order to advance toward a comprehensive knowledge of their pro- or anti-viral phenotype and better assess possible translational opportunities.
Collapse
Affiliation(s)
- Florentin Pastor
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| | - Lulzim Shkreta
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - David Durantel
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| | - Anna Salvetti
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| |
Collapse
|
39
|
Baker N, Catta-Preta CMC, Neish R, Sadlova J, Powell B, Alves-Ferreira EVC, Geoghegan V, Carnielli JBT, Newling K, Hughes C, Vojtkova B, Anand J, Mihut A, Walrad PB, Wilson LG, Pitchford JW, Volf P, Mottram JC. Systematic functional analysis of Leishmania protein kinases identifies regulators of differentiation or survival. Nat Commun 2021; 12:1244. [PMID: 33623024 PMCID: PMC7902614 DOI: 10.1038/s41467-021-21360-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/13/2021] [Indexed: 01/31/2023] Open
Abstract
Differentiation between distinct stages is fundamental for the life cycle of intracellular protozoan parasites and for transmission between hosts, requiring stringent spatial and temporal regulation. Here, we apply kinome-wide gene deletion and gene tagging in Leishmania mexicana promastigotes to define protein kinases with life cycle transition roles. Whilst 162 are dispensable, 44 protein kinase genes are refractory to deletion in promastigotes and are likely core genes required for parasite replication. Phenotyping of pooled gene deletion mutants using bar-seq and projection pursuit clustering reveal functional phenotypic groups of protein kinases involved in differentiation from metacyclic promastigote to amastigote, growth and survival in macrophages and mice, colonisation of the sand fly and motility. This unbiased interrogation of protein kinase function in Leishmania allows targeted investigation of organelle-associated signalling pathways required for successful intracellular parasitism.
Collapse
Affiliation(s)
- N Baker
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - C M C Catta-Preta
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - R Neish
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - J Sadlova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - B Powell
- Department of Mathematics, University of York, York, UK
| | - E V C Alves-Ferreira
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - V Geoghegan
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - J B T Carnielli
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - K Newling
- Department of Biology, University of York, York, UK
| | - C Hughes
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - B Vojtkova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - J Anand
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - A Mihut
- Department of Biology, University of York, York, UK
| | - P B Walrad
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - L G Wilson
- York Biomedical Research Institute, University of York, York, UK
- Department of Physics, University of York, York, UK
| | - J W Pitchford
- Department of Biology, University of York, York, UK
- Department of Mathematics, University of York, York, UK
| | - P Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - J C Mottram
- York Biomedical Research Institute, University of York, York, UK.
- Department of Biology, University of York, York, UK.
| |
Collapse
|
40
|
Ferreira RAA, Junior CDOR, Martinez PDG, Koovits PJ, Soares BM, Ferreira LLG, Michelan-Duarte S, Chelucci RC, Andricopulo AD, Galuppo MK, Uliana SRB, Matheeussen A, Caljon G, Maes L, Campbell S, Kratz JM, Mowbray CE, Dias LC. 2-aminobenzimidazoles for leishmaniasis: From initial hit discovery to in vivo profiling. PLoS Negl Trop Dis 2021; 15:e0009196. [PMID: 33617566 PMCID: PMC7932521 DOI: 10.1371/journal.pntd.0009196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/04/2021] [Accepted: 02/02/2021] [Indexed: 12/30/2022] Open
Abstract
Leishmaniasis is a major infectious disease with hundreds of thousands of new cases and over 20,000 deaths each year. The current drugs to treat this life-threatening infection have several drawbacks such as toxicity and long treatment regimens. A library of 1.8 million compounds, from which the hits reported here are publicly available, was screened against Leishmania infantum as part of an optimization program; a compound was found with a 2-aminobenzimidazole functionality presenting moderate potency, low metabolic stability and high lipophilicity. Several rounds of synthesis were performed to incorporate chemical groups capable of reducing lipophilicity and clearance, leading to the identification of compounds that are active against different parasite strains and have improved in vitro properties. As a result of this optimization program, a group of compounds was further tested in anticipation of in vivo evaluation. In vivo tests were carried out with compounds 29 (L. infantum IC50: 4.1 μM) and 39 (L. infantum IC50: 0.5 μM) in an acute L. infantum VL mouse model, which showed problems of poor exposure and lack of efficacy, despite the good in vitro potency. Leishmaniasis is a neglected tropical disease affecting millions of people worldwide and, in the case of visceral leishmaniasis (VL), is potentially fatal if untreated. Protozoan parasites of the genus Leishmania spp. are the causative agents of leishmaniasis, which has different clinical manifestations, including the visceral form and a cutaneous form that causes disfiguring skin lesions. The current treatment options are limited either by the length of treatment or toxic side effects. Starting from a promising hit in an in vitro phenotypic screen, hundreds of analogues were synthesized with the aim of finding a molecule capable of killing the parasite whilst causing little or no harm to the patient. The program led to several active compounds with good in vitro activity against L. infantum intracellular amastigotes, however, in vivo data showed low parasiticidal efficacy.
Collapse
Affiliation(s)
| | | | | | - Paul John Koovits
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas-SP, Brazil
| | | | - Leonardo L. G. Ferreira
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of São Carlos, University of São Paulo (USP), São Carlos-SP, Brazil
| | - Simone Michelan-Duarte
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of São Carlos, University of São Paulo (USP), São Carlos-SP, Brazil
| | - Rafael Consolin Chelucci
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of São Carlos, University of São Paulo (USP), São Carlos-SP, Brazil
| | - Adriano D. Andricopulo
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of São Carlos, University of São Paulo (USP), São Carlos-SP, Brazil
| | - Mariana K. Galuppo
- Department of Parasitology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo-SP, Brazil
| | - Silvia R. B. Uliana
- Department of Parasitology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo-SP, Brazil
| | - An Matheeussen
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Antwerpen, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Antwerpen, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Antwerpen, Belgium
| | - Simon Campbell
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | - Jadel M. Kratz
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | | | - Luiz Carlos Dias
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas-SP, Brazil
- * E-mail:
| |
Collapse
|
41
|
Rojas-Pirela M, Andrade-Alviárez D, Rojas V, Kemmerling U, Cáceres AJ, Michels PA, Concepción JL, Quiñones W. Phosphoglycerate kinase: structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea. Open Biol 2020; 10:200302. [PMID: 33234025 PMCID: PMC7729029 DOI: 10.1098/rsob.200302] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phosphoglycerate kinase (PGK) is a glycolytic enzyme that is well conserved among the three domains of life. PGK is usually a monomeric enzyme of about 45 kDa that catalyses one of the two ATP-producing reactions in the glycolytic pathway, through the conversion of 1,3-bisphosphoglycerate (1,3BPGA) to 3-phosphoglycerate (3PGA). It also participates in gluconeogenesis, catalysing the opposite reaction to produce 1,3BPGA and ADP. Like most other glycolytic enzymes, PGK has also been catalogued as a moonlighting protein, due to its involvement in different functions not associated with energy metabolism, which include pathogenesis, interaction with nucleic acids, tumorigenesis progression, cell death and viral replication. In this review, we have highlighted the overall aspects of this enzyme, such as its structure, reaction kinetics, activity regulation and possible moonlighting functions in different protistan organisms, especially both free-living and parasitic Kinetoplastea. Our analysis of the genomes of different kinetoplastids revealed the presence of open-reading frames (ORFs) for multiple PGK isoforms in several species. Some of these ORFs code for unusually large PGKs. The products appear to contain additional structural domains fused to the PGK domain. A striking aspect is that some of these PGK isoforms are predicted to be catalytically inactive enzymes or ‘dead’ enzymes. The roles of PGKs in kinetoplastid parasites are analysed, and the apparent significance of the PGK gene duplication that gave rise to the different isoforms and their expression in Trypanosoma cruzi is discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaiso, Valparaiso 2373223, Chile
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Verónica Rojas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaiso, Valparaiso 2373223, Chile
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Universidad de Chile, Facultad de Medicina, Santiago de Chile 8380453, Santigo de Chile
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Paul A Michels
- Centre for Immunity, Infection and Evolution, The King's Buildings, Edinburgh EH9 3FL, UK.,Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3FL, UK
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| |
Collapse
|
42
|
Martín Moyano P, Němec V, Paruch K. Cdc-Like Kinases (CLKs): Biology, Chemical Probes, and Therapeutic Potential. Int J Mol Sci 2020; 21:E7549. [PMID: 33066143 PMCID: PMC7593917 DOI: 10.3390/ijms21207549] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Protein kinases represent a very pharmacologically attractive class of targets; however, some members of the family still remain rather unexplored. The biology and therapeutic potential of cdc-like kinases (CLKs) have been explored mainly over the last decade and the first CLK inhibitor, compound SM08502, entered clinical trials only recently. This review summarizes the biological roles and therapeutic potential of CLKs and their heretofore published small-molecule inhibitors, with a focus on the compounds' potential to be utilized as quality chemical biology probes.
Collapse
Affiliation(s)
- Paula Martín Moyano
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (P.M.M.); (V.N.)
| | - Václav Němec
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (P.M.M.); (V.N.)
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne’s University Hospital in Brno, 602 00 Brno, Czech Republic
| | - Kamil Paruch
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (P.M.M.); (V.N.)
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne’s University Hospital in Brno, 602 00 Brno, Czech Republic
| |
Collapse
|