1
|
Imai Y. Overproduction of secondary metabolites in Photorhabdus noenieputensis through rpoB mutations. J Biosci Bioeng 2025; 139:399-405. [PMID: 40121163 DOI: 10.1016/j.jbiosc.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 03/25/2025]
Abstract
Specific mutations of the rpoB gene, which encodes the β subunit of bacterial RNA polymerase, can enhance the production of secondary metabolites in bacteria such as actinomycetes. Entomopathogenic bacteria Photorhabdus and Xenorhabdus species produce a variety of secondary metabolites. Recently, these genera have attracted attention as a promising source for novel antibiotics. In this study, the effect of rpoB mutations on secondary metabolite production in Photorhabdus noenieputensis DSM 25462, a known producer of the antituberculosis antibiotic evybactin, was evaluated. Spontaneous rifampicin-resistant mutants, frequently carrying rpoB mutations, were generated by plating cells on agar medium containing four times the minimum inhibitory concentration (MIC) of rifampicin and evaluated their antibacterial production using Escherichia coli WO153 as a test strain. Among 190 spontaneous rifampicin-resistant mutants of P. noenieputensis, strain designated R191, which harbors the rpoB Q148K mutation (C442A), displayed higher antibacterial activity than that of the parental strain DSM 25462. The real-time quantitative RT-PCR analysis of 20 putative secondary metabolite biosynthetic gene clusters (BGCs) identified using antiSMASH revealed that seven of these BGCs were overexpressed in the strain R191. Furthermore, comparative high-pressure liquid chromatography (HPLC) analysis of the metabolite profile indicated that the strain R191 produced several compounds that were not detectable in the DSM 25462 culture. These findings suggest that the introduction of rpoB mutations into Photorhabdus strains is an effective strategy for enhancing secondary metabolite production and may lead to the discovery of novel antibiotics.
Collapse
Affiliation(s)
- Yu Imai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano 399-4598, Japan.
| |
Collapse
|
2
|
Shi Y, Xia Y, Gao W, Wang J, Shi B, Wang H. Enzymatic crosslinking of histidine side chains in peptide natural products. Nat Prod Rep 2025; 42:763-773. [PMID: 40025879 DOI: 10.1039/d5np00001g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Covering: 2019 to 2024Peptide macrocyclization stands as the pivotal step in the biosynthesis journey of bioactive cyclic peptide natural products, spanning both ribosomal and non-ribosomal origins. Beyond the enzymatic N- to C-terminus macrocyclization, natural cyclic peptides frequently display side chain-to-side chain crosslinks, which markedly bolster their stability and biological potency. Traditionally, histidine, with its imidazole side chain, has been regarded as chemically unreactive, leading to relatively sparse reports of histidine-containing crosslinks in cyclic peptide natural products. However, recent advancements in research have illuminated a novel perspective on the role of histidine (His) residues in peptide macrocyclization, revealing that His participation in this process is far more ubiquitous than previously envisioned. This highlight underscores the significance of His-containing crosslinks in natural cyclic peptides and delves into the enzymatic mechanisms underlying their formation.
Collapse
Affiliation(s)
- Ying Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Yinzheng Xia
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Weijiang Gao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Jingxue Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Bing Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
3
|
Ruel J, Nguyen TQN, Morishita Y, Usclat A, Martin L, Amara P, Kieffer-Jaquinod S, Stefanoiu MC, de la Mora E, Morinaka BI, Nicolet Y. Peptide Recognition and Mechanism of the Radical S-Adenosyl-l-methionine Multiple Cyclophane Synthase ChlB. J Am Chem Soc 2025; 147:16850-16863. [PMID: 40354606 DOI: 10.1021/jacs.4c16004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) represent a valuable class of natural products, often featuring macrocyclization, which enhances stability and rigidity to achieve specific conformations, frequently underlying antibiotic activity. ChlB is a metalloenzyme with two catalytic domains─a radical S-adenosyl-l-methionine (SAM) domain and an α-ketoglutarate-dependent oxygenase─that work in tandem to sequentially form three cyclophanes and introduce three hydroxyl groups into its substrate peptide, ChlA. Here, we present the crystal structure of the radical SAM domain of ChlB in complex with ChlA, revealing the mechanism underlying cyclophane formation. These structures also elucidate how the leader sequence of ChlA interacts with ChlB. By combining structural, in vitro, and in vivo approaches, we determined the precise sequence of the three cyclophane formations, interspersed with hydroxylation events. Our findings demonstrate a back-and-forth movement of the core peptide between the radical SAM domain and the oxygenase domain, which drives the stepwise modification process, leading to the fully modified peptide.
Collapse
Affiliation(s)
- Jérémie Ruel
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, Grenoble F-38000, France
| | - Thi Quynh Ngoc Nguyen
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University-Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 72506, Vietnam
| | - Yohei Morishita
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Anthony Usclat
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, Grenoble F-38000, France
| | - Lydie Martin
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, Grenoble F-38000, France
| | - Patricia Amara
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, Grenoble F-38000, France
| | - Sylvie Kieffer-Jaquinod
- INSERM, CEA, University Grenoble Alpes, UMR BioSanté U1292, CNRS, CEA, FR2048, Grenoble 38000, France
| | | | - Eugenio de la Mora
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, Grenoble F-38000, France
| | - Brandon I Morinaka
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Yvain Nicolet
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, Grenoble F-38000, France
| |
Collapse
|
4
|
Li Y, Mei H, Dong Y, Lu J, Yang X, Zhang Y, Feng M, Feng J. Novel bifunctional antibacterial peptides mediated by a covalent conjugation strategy combat priority multidrug-resistant gram-negative pathogens through dual targets. J Antibiot (Tokyo) 2025:10.1038/s41429-025-00822-x. [PMID: 40269192 DOI: 10.1038/s41429-025-00822-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 04/25/2025]
Abstract
The escalating antibiotic resistance presents formidable challenges in the treatment of Gram-negative bacterial infections. Clinically, these bacteria have also acquired resistance to polymyxin, the last resort of defense. Novel antibiotics with a single mode of action are susceptible to rapid resistance development, and sometimes asynchronous pharmacokinetics also hinders the effectiveness of combined administration strategies in vivo. Here, we developed a class of novel bifunctional antibacterial peptides by covalently conjugating a series of modified PbgA-derived peptides with colistin analog (PE-2C-C8-DH) via a small-molecule linker (KCM02). These bifunctional peptides show remarkable synergistic antibacterial efficacy, where "1 + 1 > 2", against various priority multidrug-resistant Gram-negative bacteria, involving polymyxin-resistant strains. By optimizing the structure-activity relationship, two compounds (BP-28 and BP-37) with distinct activity preferences were obtained, which possess rapid bactericidal efficacy and a significantly lower risk of resistance compared to single-mode-of-action antibacterial agents, without hemolytic toxicity and cytotoxicity. Identification of antibacterial targets revealed that they can damage Gram-negative bacterial membrane by targeting LPS and BamA. Our study offers a referable approach for the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Yanan Li
- Department of Biological Medicines & Shanghai Engineering Research Centre of Immunotherapeutics, School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Haoran Mei
- China State Institute of Pharmaceutical Industry Co., Ltd, 201203, Shanghai, China
| | - Yuanzhen Dong
- China State Institute of Pharmaceutical Industry Co., Ltd, 201203, Shanghai, China
- Shanghai Duomirui Biotech Co., Ltd, 201203, Shanghai, China
| | - Jianguang Lu
- China State Institute of Pharmaceutical Industry Co., Ltd, 201203, Shanghai, China
- Shanghai Duomirui Biotech Co., Ltd, 201203, Shanghai, China
| | - Xiaoqian Yang
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 210046, Nanjing, China
| | - Ying Zhang
- China State Institute of Pharmaceutical Industry Co., Ltd, 201203, Shanghai, China
| | - Meiqing Feng
- Department of Biological Medicines & Shanghai Engineering Research Centre of Immunotherapeutics, School of Pharmacy, Fudan University, 201203, Shanghai, China.
| | - Jun Feng
- China State Institute of Pharmaceutical Industry Co., Ltd, 201203, Shanghai, China.
| |
Collapse
|
5
|
Bontreger LJ, Gallo AD, Moon J, Silinski P, Monson EE, Franz KJ. Intramolecular Histidine Cross-Links Formed via Copper-Catalyzed Oxidation of Histatin Peptides. J Am Chem Soc 2025; 147:12749-12765. [PMID: 40197000 DOI: 10.1021/jacs.5c01363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Histidine is a versatile amino acid with metal-binding, nucleophilic, and basic properties that endow many peptides and proteins with biological activity. However, histidine itself is susceptible to oxidative modifications via post-translational modifications, photo-oxidation, and metal-catalyzed oxidation. Despite multiple investigations into these different oxidation systems, the varied attributions and differential outcomes point to significant gaps in our understanding of the coordination requirements, spectral features, and reaction products that accompany the Cu-catalyzed oxidation of histidine-containing peptides. Here, we use model peptides of Histatin-5, a salivary peptide with Cu-potentiated antifungal activity that relies on its histidine residues, to characterize the complex mixture resulting from the reaction with Cu under physiologically relevant reducing and oxidizing conditions. Characterization via LC-MS, MS/MS, UV-vis, and NMR revealed that adjacent histidine residues of the bis-His site are the main target of Cu-catalyzed oxidation, with predominant modifications being 2-oxo-His and His-His cross-links that give rise to distinctive electronic absorption features between 300-400 nm. Doubly- and triply-oxygenated peptides, intramolecular His-His cross-links, and multimers in the case of a shorter model peptide were also observed. The configuration of the bis-His motif may enable Cu reactivity not available in systems where His residues are not adjacent in sequence or space. These results expand the possibilities of oxidative modifications available to other proteins and peptides containing multiple histidines.
Collapse
Affiliation(s)
- Leah J Bontreger
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Annastassia D Gallo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jaewon Moon
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Peter Silinski
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Eric E Monson
- Center for Data and Visualization Sciences, Duke University Libraries, Durham, North Carolina 27708, United States
| | - Katherine J Franz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
6
|
Walker ME, Zhu W, Peterson JH, Wang H, Patteson J, Soriano A, Zhang H, Mayhood T, Hou Y, Mesbahi-Vasey S, Gu M, Frost J, Lu J, Johnston J, Hipolito C, Lin S, Painter RE, Klein D, Walji A, Weinglass A, Kelly TM, Saldanha A, Schubert J, Bernstein HD, Walker SS. Antibacterial macrocyclic peptides reveal a distinct mode of BamA inhibition. Nat Commun 2025; 16:3395. [PMID: 40210867 PMCID: PMC11986105 DOI: 10.1038/s41467-025-58086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/06/2025] [Indexed: 04/12/2025] Open
Abstract
Outer membrane proteins (OMPs) produced by Gram-negative bacteria contain a cylindrical amphipathic β-sheet ("β-barrel") that functions as a membrane spanning domain. The assembly (folding and membrane insertion) of OMPs is mediated by the heterooligomeric β-barrel assembly machine (BAM). The central BAM subunit (BamA) is an attractive antibacterial target because its structure and cell surface localization are conserved, it catalyzes an essential reaction, and potent bactericidal compounds that inhibit its activity have been described. Here we utilize mRNA display to discover cyclic peptides that bind to Escherichia coli BamA with high affinity. We describe three peptides that arrest the growth of BAM deficient E. coli strains, inhibit OMP assembly in live cells and in vitro, and bind to unique sites within the BamA β-barrel lumen. Remarkably, we find that if the peptides are added to cultures after a slowly assembling OMP mutant binds to BamA, they accelerate its biogenesis. The data strongly suggest that the peptides trap BamA in conformations that block the initiation of OMP assembly but favor a later assembly step. Molecular dynamics simulations provide further evidence that the peptides bind stably to BamA and function by a previously undescribed mechanism.
Collapse
Affiliation(s)
| | - Wei Zhu
- Merck & Co., Inc., Rahway, NJ, USA
| | - Janine H Peterson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hao Wang
- Merck & Co., Inc., West Point, PA, USA
| | | | | | - Han Zhang
- Merck & Co., Inc., West Point, PA, USA
| | | | - Yan Hou
- Merck & Co., Inc., Rahway, NJ, USA
| | | | - Meigang Gu
- Evotec Ltd., Abingdon, Oxfordshire, OX14 4RZ, UK
| | | | - Jun Lu
- Merck & Co., Inc., West Point, PA, USA
| | | | | | | | | | | | | | | | | | | | | | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | | |
Collapse
|
7
|
Padhi C, Zhu L, Chen JY, Moreira R, van der Donk WA. Biosynthesis of Macrocyclic Peptides by Formation and Crosslinking of ortho -Tyrosines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647296. [PMID: 40291698 PMCID: PMC12026744 DOI: 10.1101/2025.04.04.647296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Ribosomally synthesized and posttranslationally modified peptides (RiPPs) are a growing class of natural products that possess many activities that are of potential translational interest. Multinuclear non-heme iron dependent oxidative enzymes (MNIOs), until recently termed domain of unknown function 692 (DUF692), have been gaining interest because of their involvement in a range of biochemical reactions that are remarkable from a chemical perspective. Over 13,500 putative MNIO-encoding biosynthetic gene clusters (BGCs) have been identified by sequence similarity networks (SSNs). In this study, we identified a set of precursor peptides containing a conserved FHAFRF-motif in MNIO-encoding BGCs. These BGCs follow a conserved synteny with genes encoding an MNIO, a RiPP recognition element (RRE)-containing partner protein, an arginase, and a B12-dependent radical SAM enzyme (rSAM). Using heterologous reconstitution of a representative BGC from Peribacillus simplex ( pbs cluster) in E. coli , we demonstrated that the MNIO in conjunction with the partner protein catalyzes ortho -hydroxylation of each of the phenylalanine residues in the conserved FRF-motif, the arginase forms an ornithine by deguanidination of the arginine in the motif, and the B12-rSAM crosslinks the ortho -Tyr side side chains by a C-C linkage forming a novel macrocyclic molecule. Substrate scope studies suggested tolerance of the MNIO and the B12-rSAM towards substituting the Phe residues with tyrosines in the conserved motif with the position of hydroxylation and crosslinking being maintained. Overall, this study expands the diverse array of posttranslational modifications catalyzed by MNIOs and B12-rSAM enzymes. TOC Graphic
Collapse
|
8
|
Lehner PA, Degen M, Jakob RP, Modaresi SM, Callon M, Burmann BM, Maier T, Hiller S. Architecture and conformational dynamics of the BAM-SurA holo insertase complex. SCIENCE ADVANCES 2025; 11:eads6094. [PMID: 40184469 PMCID: PMC11970506 DOI: 10.1126/sciadv.ads6094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/28/2025] [Indexed: 04/06/2025]
Abstract
The proper folding of outer membrane proteins in Gram-negative bacteria relies on their delivery to the β-barrel assembly machinery (BAM) complex. The mechanism by which survival protein A (SurA), the major periplasmic chaperone, facilitates this process is not well understood. We determine the structure of the holo insertase complex, where SurA binds BAM for substrate delivery. High-resolution cryo-electron microscopy structures of four different states and a three-dimensional variability analysis show that the holo insertase complex has a large motional spectrum. SurA bound to BAM can undergo a large swinging motion between two states. This motion is uncoupled from the conformational flexibility of the BamA barrel, which can open and close without affecting SurA binding. Notably, we observed conformational coupling of the SurA swing state and the carboxyl-terminal helix grip domain of BamC. Substrate delivery by SurA to BAM appears to follow a concerted motion that encodes a gated delivery pathway through the BAM accessory proteins to the membrane entry site.
Collapse
Affiliation(s)
| | - Morris Degen
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | | | | | | | | | - Timm Maier
- Biozentrum, University of Basel, Basel, Switzerland
| | | |
Collapse
|
9
|
Agoni C, Fernández-Díaz R, Timmons PB, Adelfio A, Gómez H, Shields DC. Molecular Modelling in Bioactive Peptide Discovery and Characterisation. Biomolecules 2025; 15:524. [PMID: 40305228 PMCID: PMC12025251 DOI: 10.3390/biom15040524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
Molecular modelling is a vital tool in the discovery and characterisation of bioactive peptides, providing insights into their structural properties and interactions with biological targets. Many models predicting bioactive peptide function or structure rely on their intrinsic properties, including the influence of amino acid composition, sequence, and chain length, which impact stability, folding, aggregation, and target interaction. Homology modelling predicts peptide structures based on known templates. Peptide-protein interactions can be explored using molecular docking techniques, but there are challenges related to the inherent flexibility of peptides, which can be addressed by more computationally intensive approaches that consider their movement over time, called molecular dynamics (MD). Virtual screening of many peptides, usually against a single target, enables rapid identification of potential bioactive peptides from large libraries, typically using docking approaches. The integration of artificial intelligence (AI) has transformed peptide discovery by leveraging large amounts of data. AlphaFold is a general protein structure prediction tool based on deep learning that has greatly improved the predictions of peptide conformations and interactions, in addition to providing estimates of model accuracy at each residue which greatly guide interpretation. Peptide function and structure prediction are being further enhanced using Protein Language Models (PLMs), which are large deep-learning-derived statistical models that learn computer representations useful to identify fundamental patterns of proteins. Recent methodological developments are discussed in the context of canonical peptides, as well as those with modifications and cyclisations. In designing potential peptide therapeutics, the main outstanding challenge for these methods is the incorporation of diverse non-canonical amino acids and cyclisations.
Collapse
Affiliation(s)
- Clement Agoni
- School of Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, D04 C1P Dublin, Ireland
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Raúl Fernández-Díaz
- School of Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
- IBM Research, D15 HN66 Dublin, Ireland
| | | | - Alessandro Adelfio
- Nuritas Ltd., Joshua Dawson House, D02 RY95 Dublin, Ireland; (P.B.T.); (A.A.); (H.G.)
| | - Hansel Gómez
- Nuritas Ltd., Joshua Dawson House, D02 RY95 Dublin, Ireland; (P.B.T.); (A.A.); (H.G.)
| | - Denis C. Shields
- School of Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, D04 C1P Dublin, Ireland
| |
Collapse
|
10
|
Liang L, Quigley J, Theriault M, Iinishi A, Bargabos R, Morrissette M, Ghiglieri M, Curtis T, Corsetti R, Son S, Sarkar B, Lewis K. A Chlorinated Diketopiperazine Antibiotic Targets Mycobacterium Tuberculosis DNA Gyrase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642354. [PMID: 40161711 PMCID: PMC11952414 DOI: 10.1101/2025.03.10.642354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
We describe a novel macrocyclic peptide, speirobactin, produced by Photorhabdus that selectively kills Mycobacterium tuberculosis . A non-ribosomal peptide synthase (NRPS) containing two linear modules codes for the synthesis of speirobactin. The biosynthetic operon contains a pentapeptide-repeat protein as a resistance gene. Genomic analysis of speirobactin-resistant mutants of M. tuberculosis led to identification of DNA gyrase as the molecular target. The mutations were recreated by allelic replacement and show that DNA gyrase is the only target. Transcriptome analysis of M. tuberculosis treated with antibiotics shows that speirobactin clusters close to fluoroquinolones, supporting its action against the DNA gyrase.
Collapse
|
11
|
Süssmuth RD, Kulike‐Koczula M, Gao P, Kosol S. Fighting Antimicrobial Resistance: Innovative Drugs in Antibacterial Research. Angew Chem Int Ed Engl 2025; 64:e202414325. [PMID: 39611429 PMCID: PMC11878372 DOI: 10.1002/anie.202414325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/30/2024]
Abstract
In the fight against bacterial infections, particularly those caused by multi-resistant pathogens known as "superbugs", the need for new antibacterials is undoubted in scientific communities and is by now also widely perceived by the general population. However, the antibacterial research landscape has changed considerably over the past years. With few exceptions, the majority of big pharma companies has left the field and thus, the decline in R&D on antibacterials severely impacts the drug pipeline. In recent years, antibacterial research has increasingly relied on smaller companies or academic research institutions, which mostly have only limited financial resources, to carry a drug discovery and development process from the beginning and through to the beginning of clinical phases. This review formulates the requirements for an antibacterial in regard of targeted pathogens, resistance mechanisms and drug discovery. Strategies are shown for the discovery of new antibacterial structures originating from natural sources, by chemical synthesis and more recently from artificial intelligence approaches. This is complemented by principles for the computer-aided design of antibacterials and the refinement of a lead structure. The second part of the article comprises a compilation of antibacterial molecules classified according to bacterial target structures, e.g. cell wall synthesis, protein synthesis, as well as more recently emerging target classes, e.g. fatty acid synthesis, proteases and membrane proteins. Aspects of the origin, the antibacterial spectrum, resistance and the current development status of the presented drug molecules are highlighted.
Collapse
Affiliation(s)
- Roderich D. Süssmuth
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 124, TC210629BerlinGermany
| | - Marcel Kulike‐Koczula
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 124, TC210629BerlinGermany
| | - Peng Gao
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 124, TC210629BerlinGermany
| | - Simone Kosol
- Medical School BerlinDepartment Human MedicineRüdesheimer Strasse 5014195BerlinGermany
| |
Collapse
|
12
|
Qureshi KA, Parvez A, Jaremko M. Repurposing eugenol and cinnamaldehyde as potent antimicrobial agents: A comprehensive in-vitro and in-silico study. Bioorg Chem 2025; 156:108199. [PMID: 39855115 DOI: 10.1016/j.bioorg.2025.108199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/07/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Multi-drug-resistant (MDR) pathogens represent a critical global health threat, necessitating the development of novel antimicrobial agents with broad-spectrum activity and minimal toxicity. This study investigates the antimicrobial and anti-biofilm properties of 4-Allyl-2-methoxyphenol (eugenol, EU) and (E)-3-Phenylprop-2-enal (cinnamaldehyde, CN) against 19 clinically significant pathogens through a combination of in-vitro assays and in-silico analyses. EU displayed remarkable activity, particularly against Aspergillus niger (20.5 ± 0.5 mm), and strong binding affinities with key protein targets, including peptide deformylase and β-carbonic anhydrase, with binding free energies (ΔG) ranging from -12.75 to -0.60 kcal/mol. CN exhibited exceptional activity against Staphylococcus epidermidis (29.6 ± 0.4 mm) and Candida albicans (36.6 ± 0.4 mm), supported by a significant binding affinity with β-carbonic anhydrase (ΔG: -5.23 kcal/mol). Dissociation constants (Kd) derived from MM-GBSA analyses indicated EU's strong inhibitory potential with nano- to picomolar Kd values, directly correlating with low IC50 values. CN demonstrated moderate inhibitory activity with Kd in the micromolar range. Molecular dynamics (MD) simulations confirmed the stability of these protein-ligand complexes, revealing critical hydrophobic interactions, such as those involving PHE122, that contributed to binding stabilization. ADMET profiling further underscored the favorable pharmacokinetics and safety of both compounds. These findings establish EU and CN as promising candidates for antimicrobial therapy, with potential applications in combating MDR pathogens and biofilm-associated infections. The complementary strengths of EU and CN warrant further structural optimization and combination studies, offering new avenues in the development of next-generation antimicrobial agents.
Collapse
Affiliation(s)
- Kamal A Qureshi
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Adil Parvez
- NextGen Life Sciences Pvt. Ltd., New Delhi 110092, India.
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| |
Collapse
|
13
|
Mirza S, Ahmad MS. Applications of MicroED in structural biology and structure-based drug discovery. Biochim Biophys Acta Gen Subj 2025; 1869:130758. [PMID: 39761934 DOI: 10.1016/j.bbagen.2025.130758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Microcrystal electron diffraction (MicroED) is an emerging method for the structure determination of proteins and peptides, enzyme-inhibitor complexes. Several structures of biomolecules, including lysozyme, proteinase K, adenosine receptor A2A, insulin, xylanase, thermolysin, DNA, and Granulovirus occlusion bodies, have been successfully determined through MicroED. As MicroED uses very small crystals for structure determination, therefore, it has several advantages over conventional X-ray diffraction methods. In this review article, we discussed the most recent developments in the field of MicroED and its applications for the structural determination of different types of peptides, proteins, enzymes, DNA, and enzyme-inhibitor-complexed structures.
Collapse
Affiliation(s)
- Salma Mirza
- Dow University of Health Sciences, Ojha, Karachi 74200, Pakistan
| | - Malik Shoaib Ahmad
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
14
|
Khan A, Haedar JR, Kiselov V, Romanuks V, Smits G, Donadio S, Phan CS. Radical SAM Enzyme WprB Catalyzes Uniform Cross-Link Topology between Trp-C5 and Arg-Cγ on the Precursor Peptide. ACS Chem Biol 2025; 20:259-265. [PMID: 39893661 PMCID: PMC11851443 DOI: 10.1021/acschembio.4c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/14/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Cross-link containing products from ribosomally synthesized and post-translationally modified peptides (RiPPs) are generated by radical SAM enzymes (rSAM). Here, we bioinformatically expanded rSAM enzymes based on the known families StrB, NxxcB, WgkB, RrrB, TqqB and GggB. Through in vivo functional studies in E. coli, the newly identified enzyme WprB from Xenorhabdus sp. psl was found to catalyze formation of a cross-link between Trp-C5 and Arg-Cγ at three WPR motifs on the precursor peptide WprA. This represents the first report of this type of cross-link by rSAM enzymes.
Collapse
Affiliation(s)
- Abujunaid
Habib Khan
- Latvian
Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006 Riga, Latvia
| | - Jabal Rahmat Haedar
- Latvian
Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006 Riga, Latvia
| | - Vic Kiselov
- Latvian
Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006 Riga, Latvia
| | - Viktors Romanuks
- Latvian
Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006 Riga, Latvia
| | - Gints Smits
- Latvian
Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006 Riga, Latvia
| | - Stefano Donadio
- Latvian
Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006 Riga, Latvia
- NAICONS
Srl, 20139 Milan, Italy
| | - Chin-Soon Phan
- Latvian
Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006 Riga, Latvia
| |
Collapse
|
15
|
Kandy SK, Pasquale MA, Chekan JR. Aromatic side-chain crosslinking in RiPP biosynthesis. Nat Chem Biol 2025; 21:168-181. [PMID: 39814993 PMCID: PMC11897777 DOI: 10.1038/s41589-024-01795-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/13/2024] [Indexed: 01/18/2025]
Abstract
Peptide cyclization is a defining feature of many bioactive molecules, particularly in the ribosomally synthesized and post-translationally modified peptide (RiPP) family of natural products. Although enzymes responsible for N- to C-terminal macrocyclization, lanthipeptide formation or heterocycle installation have been well documented, a diverse array of cyclases have been discovered that perform crosslinking of aromatic side chains. These enzymes form either biaryl linkages between two aromatic amino acids or a crosslink between one aliphatic amino acid and one aromatic amino acid. Incredibly, nature has evolved multiple routes to install these crosslinks. While enzymes such as cytochromes P450 and radical S-adenosylmethionine (rSAM) enzymes are well known from other pathways, this role in RiPP biosynthesis has only recently been appreciated. Others, such as burpitide cyclases and DUF3328 (UstY) family proteins, come from eukaryotes and are relatively uncharacterized enzyme classes. This Review covers the emerging theme of aromatic amino acid side-chain crosslinking in RiPPs by focusing on the newly discovered enzymes responsible for catalyzing these challenging reactions.
Collapse
Affiliation(s)
- Sanath K Kandy
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Michael A Pasquale
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Jonathan R Chekan
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| |
Collapse
|
16
|
Pei ZF, Vior NM, Zhu L, Truman AW, Nair SK. Biosynthesis of peptide-nucleobase hybrids in ribosomal peptides. Nat Chem Biol 2025; 21:143-154. [PMID: 39285006 PMCID: PMC11912545 DOI: 10.1038/s41589-024-01736-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/20/2024] [Indexed: 12/25/2024]
Abstract
The main biopolymers in nature are oligonucleotides and polypeptides. However, naturally occurring peptide-nucleobase hybrids are rare. Here we report the characterization of the founding member of a class of peptide-nucleobase hybrid natural products with a pyrimidone motif from a widely distributed ribosomally synthesized and post-translationally modified (RiPP) biosynthetic pathway. This pathway features two steps where a heteromeric RRE-YcaO-dehydrogenase complex catalyzes the formation of a six-membered pyrimidone ring from an asparagine residue on the precursor peptide, and an acyl esterase selectively recognizes this moiety to cleave the C-terminal follower peptide. Mechanistic studies reveal that the pyrimidone formation occurs in a substrate-assisted catalysis manner, requiring a His residue in the precursor to activate asparagine for heterocyclization. Our study expands the chemotypes of RiPP natural products and the catalytic scope of YcaO enzymes. This discovery opens avenues to create artificial biohybrid molecules that resemble both peptide and nucleobase, a modality of growing interest.
Collapse
Affiliation(s)
- Zeng-Fei Pei
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Natalia M Vior
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Lingyang Zhu
- School of Chemical Sciences NMR Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
17
|
Nguyen BX, Gurusinga FF, Mettal U, Schäberle TF, Yokoyama K. Radical-Mediated Nucleophilic Peptide Cross-Linking in Dynobactin Biosynthesis. J Am Chem Soc 2024; 146:31715-31732. [PMID: 39528355 DOI: 10.1021/jacs.4c10425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Dynobactins are recently discovered ribosomally synthesized and post-translationally modified peptide (RiPP) antibiotics that selectively kill Gram-negative pathogens by inhibiting the β-barrel assembly machinery (Bam) located on their outer membranes. Such activity of dynobactins derives from their unique cross-links between Trp1-Asn4 and His6-Tyr8. In particular, the His6-Tyr8 cross-link is formed between Nτ of His6 and Cβ of Tyr8, an unprecedented type of cross-link in RiPP natural products. The mechanism of the C-N cross-link formation remains elusive. In this work, using in vitro characterizations, we demonstrate that both cross-links in dynobactins are biosynthesized by the radical S-adenosylmethionine (SAM) enzyme DynA. Subsequent mechanistic studies using deuterium-labeled DynB precursor peptides suggested that the C-N cross-linking proceeds through the Tyr8-Hβ atom abstraction by 5'-deoxyadenosyl radical. The absence of solvent exchange of Tyr8-Hα suggested that the mechanism unlikely involves α,β-desaturation of Tyr8. Furthermore, DynA catalyzed covalent modification of Tyr8 of H6A-DynB with small-molecule nucleophiles, suggesting the presence of a highly electrophilic Tyr-derived intermediate. Based on all these observations, we propose that DynA catalyzes Tyr8-Hβ atom abstraction to generate Tyr8-Cβ radical followed by its oxidation to a p-quinone methide intermediate, to which His6-Nτ attacks to form the C-N cross-link. This quinone methide-dependent mechanism of RiPPs cross-linking is distinct from the previously reported RiPPs cross-linking mechanisms and represents a novel mechanism in RiPPs biosynthesis. We will also discuss the functional, mechanistic, and evolutional relationships of DynA with other peptide-modifying radical SAM enzymes.
Collapse
Affiliation(s)
- Bach X Nguyen
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Friscasari F Gurusinga
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany
| | - Ute Mettal
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany
| | - Till F Schäberle
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Giessen, Germany
- German Center for Infection Research (DZIF), Site Giessen/Marburg/Langen, 35392 Giessen, Germany
| | - Kenichi Yokoyama
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
18
|
Wang Y, Shi YN, Xiang H, Shi YM. Exploring nature's battlefield: organismic interactions in the discovery of bioactive natural products. Nat Prod Rep 2024; 41:1630-1651. [PMID: 39316448 DOI: 10.1039/d4np00018h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Covering: up to March 2024.Microbial natural products have historically been a cornerstone for the discovery of therapeutic agents. Advanced (meta)genome sequencing technologies have revealed that microbes harbor far greater biosynthetic capabilities than previously anticipated. However, despite the application of CRISPR/Cas-based gene editing and high-throughput technologies to activate silent biosynthetic gene clusters, the rapid identification of new natural products has not led to a proportional increase in the discovery rate of lead compounds or drugs. A crucial issue in this gap may be insufficient knowledge about the inherent biological and physiological functions of microbial natural products. Addressing this gap necessitates recognizing that the generation of functional natural products is deeply rooted in the interactions between the producing microbes and other (micro)organisms within their ecological contexts, an understanding that is essential for harnessing their potential therapeutic benefits. In this review, we highlight the discovery of functional microbial natural products from diverse niches, including those associated with humans, nematodes, insects, fungi, protozoa, plants, and marine animals. Many of these findings result from an organismic-interaction-guided strategy using multi-omic approaches. The current importance of this topic lies in its potential to advance drug discovery in an era marked by increasing antimicrobial resistance.
Collapse
Affiliation(s)
- Yuyang Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yan-Ni Shi
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Hao Xiang
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Ming Shi
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Schreiber S, Jose J. Förster Resonance Energy Transfer Measurements in Living Bacteria for Interaction Studies of BamA with BamD and Inhibitor Identification. Cells 2024; 13:1858. [PMID: 39594607 PMCID: PMC11592675 DOI: 10.3390/cells13221858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
The β-barrel assembly machinery (BAM) is a multimeric protein complex responsible for the folding of outer membrane proteins in gram-negative bacteria. It is essential for cell survival and outer membrane integrity. Therefore, it is of impact in the context of antibiotic resistance and can serve as a target for the development of new antibiotics. The interaction between two of its subunits, BamA and BamD, is essential for its function. Here, a FRET-based assay to quantify the affinity between these two proteins in living bacterial cells is presented. The method was applied to identify two interaction hotspots at the binding interface. BamDY184 was identified to significantly contribute to the binding between both proteins through hydrophobic interactions and hydrogen bonding. Additionally, two salt bridges formed between BamDR94, BamDR97, and BamAE127 contributed substantially to the binding of BamA to BamD as well. Two peptides (RFIRLN and VAEYYTER) that mimic the amino acid sequence of BamD around the identified hotspots were shown to inhibit the interaction between BamA and BamD in a dose-dependent manner in the upper micromolar range. These two peptides can potentially act as antibiotic enhancers. This shows that the BamA-BamD interaction site can be addressed for the design of protein-protein interaction inhibitors. Additionally, the method, as presented in this study, can be used for further functional studies on interactions within the BAM complex.
Collapse
Affiliation(s)
| | - Joachim Jose
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, 48149 Münster, Germany;
| |
Collapse
|
20
|
Zhang X, Xu D, Usman S, Li Y, Liang Y, Bai J, Guo X. Heterofermentative Lentilactobacillus buchneri and low dry matter reduce high-risk antibiotic resistance genes in corn silage by regulating pathogens and mobile genetic element. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135700. [PMID: 39241365 DOI: 10.1016/j.jhazmat.2024.135700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
The study of antibiotic resistance in the silage microbiome has attracted initial attention. However, the influences of lactic acid bacteria inoculants and dry matter (DM) content on antibiotic resistance genes (ARGs) reduction in whole-plant corn silage remain poorly studied. This study accessed the ARGs' risk and transmission mechanism in whole-plant corn silage with different DM levels and treated with Lactiplantibacillus plantarum or Lentilactobacillus buchneri. The macrolide and tetracycline were the main ARGs in corn silage. The dominant species (Lent. buchneri and Lactobacillus acetotolerans) were the main ARGs carriers in whole-plant corn silage. The application of Lent. buchneri increased total ARGs abundance regardless of corn DM. Whole-plant corn silage with 30 % DM reduced the abundances of integrase and plasmid compared with 40 % DM. The correlation and structural equation model analysis demonstrated that bacterial community succession, resulting from changes in DM content, was the primary driving factor influencing the ARGs distribution in whole-plant corn silage. Interestingly, whole-plant corn silage inoculated with Lent. buchneri reduced abundances of high-risk ARGs (mdtG, mepA, tetM, mecA, vatE and tetW) by regulating pathogens (Escherichia coli), mobile genetic elements (MGEs) genes (IS3 and IS1182), and this effect was more pronounced at 30 % DM level. In summary, although whole-plant corn silage inoculated with Lent. buchneri increased the total ARGs abundance at both DM levels, it decreased the abundance of high-risk ARGs by reducing the abundances of the pathogens and MGEs, and this effect was more noticeable at 30 % DM level.
Collapse
Affiliation(s)
- Xia Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China; College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Dongmei Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China; Probiotics and Life Health Research Institute, Lanzhou University, Lanzhou 730000, PR China
| | - Samaila Usman
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China; Probiotics and Life Health Research Institute, Lanzhou University, Lanzhou 730000, PR China
| | - Yue Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China; Probiotics and Life Health Research Institute, Lanzhou University, Lanzhou 730000, PR China
| | - Ying Liang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China; Probiotics and Life Health Research Institute, Lanzhou University, Lanzhou 730000, PR China
| | - Jie Bai
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China; Probiotics and Life Health Research Institute, Lanzhou University, Lanzhou 730000, PR China
| | - Xusheng Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China; Probiotics and Life Health Research Institute, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
21
|
Sajnaga E, Kazimierczak W, Karaś MA, Jach ME. Exploring Xenorhabdus and Photorhabdus Nematode Symbionts in Search of Novel Therapeutics. Molecules 2024; 29:5151. [PMID: 39519791 PMCID: PMC11547657 DOI: 10.3390/molecules29215151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Xenorhabdus and Photorhabdus bacteria, which live in mutualistic symbiosis with entomopathogenic nematodes, are currently recognised as an important source of bioactive compounds. During their extraordinary life cycle, these bacteria are capable of fine regulation of mutualism and pathogenesis towards two different hosts, a nematode and a wide range of insect species, respectively. Consequently, survival in a specific ecological niche favours the richness of biosynthetic gene clusters and respective metabolites with a specific structure and function, providing templates for uncovering new agrochemicals and therapeutics. To date, numerous studies have been published on the genetic ability of Xenorhabdus and Photorhabdus bacteria to produce biosynthetic novelty as well as distinctive classes of their metabolites with their activity and mechanism of action. Research shows diverse techniques and approaches that can lead to the discovery of new natural products, such as extract-based analysis, genetic engineering, and genomics linked with metabolomics. Importantly, the exploration of members of the Xenorhabdus and Photorhabdus genera has led to encouraging developments in compounds that exhibit pharmaceutically important properties, including antibiotics that act against Gram- bacteria, which are extremely difficult to find. This article focuses on recent advances in the discovery of natural products derived from these nematophilic bacteria, with special attention paid to new valuable leads for therapeutics.
Collapse
Affiliation(s)
- Ewa Sajnaga
- Department of Biomedicine and Environmental Research, John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland;
| | - Waldemar Kazimierczak
- Department of Biomedicine and Environmental Research, John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland;
| | - Magdalena Anna Karaś
- Department of Genetics and Microbiology, Institute of Biological Science, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Monika Elżbieta Jach
- Department of Molecular Biology, John Paul II Catholic University of Lublin, Konstantynów 1H, 20-708 Lublin, Poland;
| |
Collapse
|
22
|
Engelhardt PM, Keyzers R, Brimble MA. Histidine-bridged cyclic peptide natural products: isolation, biosynthesis and synthetic studies. Org Biomol Chem 2024; 22:8374-8396. [PMID: 39352687 DOI: 10.1039/d4ob01259c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The histidine bridge is a rare and often overlooked structural motif in macrocyclic peptide natural products, yet there are several examples in nature of cyclic peptides bearing this moiety that exhibit potent biological activity. These interesting compounds have been the focus of several studies reporting their isolation, biosynthesis and chemical synthesis over the last four decades. This review summarises the findings on the structure, biological activity and, where possible, proposed biosynthesis and progress towards the synthesis of histidine-bridged cyclic peptides.
Collapse
Affiliation(s)
- Pascal M Engelhardt
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand.
| | - Robert Keyzers
- School of Chemical and Physical Sciences, Victoria University of Wellington, Laby Building Kelburn Parade, Wellington 6012, New Zealand.
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand.
| |
Collapse
|
23
|
Phan CS, Morinaka BI. Sequence-function space of radical SAM cyclophane synthases reveal conserved active site residues that influence substrate specificity. RSC Chem Biol 2024:d4cb00227j. [PMID: 39464308 PMCID: PMC11499958 DOI: 10.1039/d4cb00227j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024] Open
Abstract
Radical SAM cyclophane synthases catalyze C-C, C-N, and C-O crosslinking reactions in the biosynthesis of bioactive peptide natural products. Here, we studied an uncharacterized rSAM enzyme, HtkB from Pandoraea sp., and found this enzyme to catalyze the formation of a HisC2-to-LysCβ crosslink. We used a combination of ColabFold and mutagenesis studies to show that residues D214 in HtkB and H204 in HaaB (another cyclophane synthase) are important for substrate specificity. Mutation of these residues changes the specificity and lowers substrate recognition on the wild-type motifs. This result opens opportunities to alter the specificity and promiscuity for rSAM peptide modifying enzymes.
Collapse
Affiliation(s)
- Chin-Soon Phan
- Department of Pharmacy, National University of Singapore Singapore 117544 Singapore
- Latvian Institute of Organic Synthesis Aizkraukles Street 21 LV-1006 Riga Latvia
| | - Brandon I Morinaka
- Department of Pharmacy, National University of Singapore Singapore 117544 Singapore
| |
Collapse
|
24
|
Zhai H, Lv K, Li J, Wang J, Liu T, Zhao C. Rhodium(III)-Catalyzed Atroposelective Indolization to Access Planar-Chiral Macrocycles. J Am Chem Soc 2024; 146:29214-29223. [PMID: 39383120 DOI: 10.1021/jacs.4c11873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Macrocycles incorporating conformationally defined indoles are widely found in bioactive natural products. However, the catalytic enantioselective synthesis of planar-chiral indoles via indolization involving macrocyclization remains elusive. Herein, we present the first rhodium(III)-catalyzed atroposelective macrocyclization, which involves the C-H activation of aniline, and a subsequent oxidation [3 + 2] annulation reaction with an intramolecular alkyne. This protocol achieves the construction of indoles, macrocyclization, and planar chirality control in a single step. Importantly, this strategy produces macrocyclic atropisomers bearing full-carbon ansa chains, which represent challenging targets in organic synthesis. Thermodynamic experiments revealed that the rotational barrier of the full-carbon ansa chain-linked macrocyclic atropisomer was lower than that of the atropisomer bearing an oxa-ansa chain. The reaction mechanism was elucidated by computational studies, which revealed that the C-H activation and intramolecular alkyne insertion steps collectively determined the enantioselectivity.
Collapse
Affiliation(s)
- Hongxuan Zhai
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Kang Lv
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, China
| | - Jiayan Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiaming Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tao Liu
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, China
| | - Changgui Zhao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
25
|
Bargabos R, Iinishi A, Hawkins B, Privalsky T, Pitt N, Son S, Corsetti R, Gates MF, Miller RD, Lewis K. Small molecule produced by Photorhabdus interferes with ubiquinone biosynthesis in Gram-negative bacteria. mBio 2024; 15:e0116724. [PMID: 39254306 PMCID: PMC11481567 DOI: 10.1128/mbio.01167-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/26/2024] [Indexed: 09/11/2024] Open
Abstract
We report the identification of 3,6-dihydroxy-1,2-benzisoxazole (DHB) in a screen of Photorhabdus and Xenorhabdus, whose symbiotic relationship with eukaryotic nematodes favors secondary metabolites that meet several requirements matching those for clinically useful antibiotics. DHB is produced by Photorhabdus laumondii and is selective against the Gram-negative species Escherichia coli, Enterobacter cloacae, Serratia marcescens, Klebsiella pneumoniae, Proteus mirabilis, and Acinetobacter baumannii. It is inactive against anaerobic gut bacteria and nontoxic to human cells. Mutants resistant to DHB map to the ubiquinone biosynthesis pathway. DHB binds to 4-hydroxybenzoate octaprenyltransferase (UbiA) and prevents the formation of 4-hydroxy-3-octaprenylbenzoate. Remarkably, DHB itself is prenylated, forming an unusable chimeric product that likely contributes to the toxic effect of this antimicrobial. DHB appears to be both a competitive enzyme inhibitor and a prodrug; this dual mode of action is unusual for an antimicrobial compound. IMPORTANCE The spread of resistant pathogens has led to the antimicrobial resistance crisis, and the need for new compounds acting against Gram-negative pathogens is especially acute. From a screen of Photorhabdus symbionts of nematodes, we identified 3,6-dihydroxy-1,2-benzisoxazole (DHB) that acts against a range of Gram-negative bacteria, including Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, and Acinetobacter baumannii. DHB had previously been isolated from other bacterial species, but its mechanism of action remained unknown. We show that DHB is unique among antimicrobials, with dual action as an inhibitor of an important enzyme, UbiA, in the biosynthesis pathway of ubiquinone and as a prodrug. DHB is a mimic of the natural substrate, and UbiA modifies it into a toxic product, contributing to the antimicrobial action of this unusual antibiotic. We also uncover the mechanism of DHB selectivity, which depends on a particular fold of the UbiA enzyme.
Collapse
Affiliation(s)
- Rachel Bargabos
- Antimicrobial Discovery Center, Northeastern University, Boston, Massachusetts, USA
| | - Akira Iinishi
- Antimicrobial Discovery Center, Northeastern University, Boston, Massachusetts, USA
| | - Bryson Hawkins
- Antimicrobial Discovery Center, Northeastern University, Boston, Massachusetts, USA
| | - Thomas Privalsky
- Antimicrobial Discovery Center, Northeastern University, Boston, Massachusetts, USA
| | - Norman Pitt
- Antimicrobial Discovery Center, Northeastern University, Boston, Massachusetts, USA
| | - Sangkeun Son
- Antimicrobial Discovery Center, Northeastern University, Boston, Massachusetts, USA
| | - Rachel Corsetti
- Antimicrobial Discovery Center, Northeastern University, Boston, Massachusetts, USA
| | - Michael F. Gates
- Antimicrobial Discovery Center, Northeastern University, Boston, Massachusetts, USA
| | - Ryan D. Miller
- Antimicrobial Discovery Center, Northeastern University, Boston, Massachusetts, USA
| | - Kim Lewis
- Antimicrobial Discovery Center, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Butler MS, Vollmer W, Goodall ECA, Capon RJ, Henderson IR, Blaskovich MAT. A Review of Antibacterial Candidates with New Modes of Action. ACS Infect Dis 2024; 10:3440-3474. [PMID: 39018341 PMCID: PMC11474978 DOI: 10.1021/acsinfecdis.4c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/19/2024]
Abstract
There is a lack of new antibiotics to combat drug-resistant bacterial infections that increasingly threaten global health. The current pipeline of clinical-stage antimicrobials is primarily populated by "new and improved" versions of existing antibiotic classes, supplemented by several novel chemical scaffolds that act on traditional targets. The lack of fresh chemotypes acting on previously unexploited targets (the "holy grail" for new antimicrobials due to their scarcity) is particularly unfortunate as these offer the greatest opportunity for innovative breakthroughs to overcome existing resistance. In recognition of their potential, this review focuses on this subset of high value antibiotics, providing chemical structures where available. This review focuses on candidates that have progressed to clinical trials, as well as selected examples of promising pioneering approaches in advanced stages of development, in order to stimulate additional research aimed at combating drug-resistant infections.
Collapse
Affiliation(s)
- Mark S. Butler
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Waldemar Vollmer
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Emily C. A. Goodall
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert J. Capon
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Ian R. Henderson
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Mark A. T. Blaskovich
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
27
|
Sun D, Storek KM, Tegunov D, Yang Y, Arthur CP, Johnson M, Quinn JG, Liu W, Han G, Girgis HS, Alexander MK, Murchison AK, Shriver S, Tam C, Ijiri H, Inaba H, Sano T, Yanagida H, Nishikawa J, Heise CE, Fairbrother WJ, Tan MW, Skelton N, Sandoval W, Sellers BD, Ciferri C, Smith PA, Reid PC, Cunningham CN, Rutherford ST, Payandeh J. The discovery and structural basis of two distinct state-dependent inhibitors of BamA. Nat Commun 2024; 15:8718. [PMID: 39379361 PMCID: PMC11461620 DOI: 10.1038/s41467-024-52512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
BamA is the central component of the essential β-barrel assembly machine (BAM), a conserved multi-subunit complex that dynamically inserts and folds β-barrel proteins into the outer membrane of Gram-negative bacteria. Despite recent advances in our mechanistic and structural understanding of BamA, there are few potent and selective tool molecules that can bind to and modulate BamA activity. Here, we explored in vitro selection methods and different BamA/BAM protein formulations to discover peptide macrocycles that kill Escherichia coli by targeting extreme conformational states of BamA. Our studies show that Peptide Targeting BamA-1 (PTB1) targets an extracellular divalent cation-dependent binding site and locks BamA into a closed lateral gate conformation. By contrast, PTB2 targets a luminal binding site and traps BamA into an open lateral gate conformation. Our results will inform future antibiotic discovery efforts targeting BamA and provide a template to prospectively discover modulators of other dynamic integral membrane proteins.
Collapse
Affiliation(s)
- Dawei Sun
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Kelly M Storek
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Dimitry Tegunov
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Ying Yang
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, CA, USA
| | - Christopher P Arthur
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
- Altos Labs, Redwood City, CA, USA
| | - Matthew Johnson
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - John G Quinn
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Weijing Liu
- Department of Microchemistry, Proteomics and Lipidomics, Genentech Inc., South San Francisco, CA, USA
| | - Guanghui Han
- Department of Microchemistry, Proteomics and Lipidomics, Genentech Inc., South San Francisco, CA, USA
- PTM Bio, Alameda, CA, USA
| | - Hany S Girgis
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Mary Kate Alexander
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Austin K Murchison
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Stephanie Shriver
- Department of BioMolecular Resources, Genentech Inc., South San Francisco, CA, USA
| | - Christine Tam
- Department of BioMolecular Resources, Genentech Inc., South San Francisco, CA, USA
| | | | | | | | | | | | - Christopher E Heise
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA
- Septerna, South San Francisco, CA, USA
| | - Wayne J Fairbrother
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Nicholas Skelton
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, CA, USA
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics and Lipidomics, Genentech Inc., South San Francisco, CA, USA
| | - Benjamin D Sellers
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, CA, USA
- Vilya, South San Francisco, CA, USA
| | - Claudio Ciferri
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Peter A Smith
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
- Revagenix, San Mateo, CA, USA
| | | | - Christian N Cunningham
- Department of Peptide Therapeutics, Genentech Inc., South San Francisco, CA, USA.
- PeptiDream, Kawasaki, Japan.
| | - Steven T Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA.
| | - Jian Payandeh
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA.
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA.
- Exelixis, Alameda, CA, USA.
| |
Collapse
|
28
|
Chen J, Wang W, Hu X, Yue Y, Lu X, Wang C, Wei B, Zhang H, Wang H. Medium-sized peptides from microbial sources with potential for antibacterial drug development. Nat Prod Rep 2024; 41:1235-1263. [PMID: 38651516 DOI: 10.1039/d4np00002a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Covering: 1993 to the end of 2022As the rapid development of antibiotic resistance shrinks the number of clinically available antibiotics, there is an urgent need for novel options to fill the existing antibiotic pipeline. In recent years, antimicrobial peptides have attracted increased interest due to their impressive broad-spectrum antimicrobial activity and low probability of antibiotic resistance. However, macromolecular antimicrobial peptides of plant and animal origin face obstacles in antibiotic development because of their extremely short elimination half-life and poor chemical stability. Herein, we focus on medium-sized antibacterial peptides (MAPs) of microbial origin with molecular weights below 2000 Da. The low molecular weight is not sufficient to form complex protein conformations and is also associated to a better chemical stability and easier modifications. Microbially-produced peptides are often composed of a variety of non-protein amino acids and terminal modifications, which contribute to improving the elimination half-life of compounds. Therefore, MAPs have great potential for drug discovery and are likely to become key players in the development of next-generation antibiotics. In this review, we provide a detailed exploration of the modes of action demonstrated by 45 MAPs and offer a concise summary of the structure-activity relationships observed in these MAPs.
Collapse
Affiliation(s)
- Jianwei Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xubin Hu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yujie Yue
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xingyue Lu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenjie Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huawei Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
29
|
Dutta A, Sharma P, Dass D, Yarlagadda V. Exploring the Darobactin Class of Antibiotics: A Comprehensive Review from Discovery to Recent Advancements. ACS Infect Dis 2024; 10:2584-2599. [PMID: 39028949 DOI: 10.1021/acsinfecdis.4c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The prevalence of antimicrobial resistance in Gram-negative bacteria poses a greater challenge due to their intrinsic resistance to many antibiotics. Recently, darobactins have emerged as a novel class of antibiotics originating from previously unexplored Gram-negative bacterial species such as Photorhabdus, Vibrio, Pseudoalteromonas and Yersinia. Darobactins belong to the ribosomally synthesized and post-translationally modified peptide (RiPP) class of antibiotics, exhibiting selective activity against Gram-negative bacteria. They target the β-barrel assembly machinery (BAM), which is crucial for the maturation and insertion of outer membrane proteins in Gram-negative bacteria. The dar operon in the producer's genome encodes for the synthesis of darobactins, which are characterized by a fused ring system connected via an alkyl-aryl ether linkage (C-O-C) and a C-C cross-link. The enzyme DarE, using the radical S-adenosyl-l-methionine (rSAM), facilitates the formation of these bonds. Biosynthetic manipulation of the darobactin gene cluster, along with its expression in a surrogate host, has enabled access to diverse darobactin analogues with variable antibiotic activities. Recently, two independent research groups successfully achieved the total synthesis of darobactin, employing Larock heteroannulation to construct the bicyclic structure. This paper presents a comprehensive review of darobactins, encompassing their discovery through to the most recent advancements.
Collapse
Affiliation(s)
- Akash Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Peehu Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dharam Dass
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | |
Collapse
|
30
|
Guo Q, Morinaka BI. Accessing and exploring the unusual chemistry by radical SAM-RiPP enzymes. Curr Opin Chem Biol 2024; 81:102483. [PMID: 38917731 DOI: 10.1016/j.cbpa.2024.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/02/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024]
Abstract
Radical SAM enzymes involved in the biosynthesis of ribosomally synthesized and post-translationally modified peptides catalyze unusual transformations that lead to unique peptide scaffolds and building blocks. Several natural products from these pathways show encouraging antimicrobial activities and represent next-generation therapeutics for infectious diseases. These systems are uniquely configured to benefit from genome-mining approaches because minimal substrate and cognate modifying enzyme expression can reveal unique, chemically complex transformations that outperform late-stage chemical reactions. This report highlights the main strategies used to reveal these enzymatic transformations, which have relied mainly on genome mining using enzyme-first approaches. We describe the general biosynthetic components for rSAM enzymes and highlight emerging approaches that may broaden the discovery and study of rSAM-RiPP enzymes. The large number of uncharacterized rSAM proteins, coupled with their unpredictable transformations, will continue to be an essential and exciting resource for enzyme discovery.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Brandon I Morinaka
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore.
| |
Collapse
|
31
|
Lewis K, Lee RE, Brötz-Oesterhelt H, Hiller S, Rodnina MV, Schneider T, Weingarth M, Wohlgemuth I. Sophisticated natural products as antibiotics. Nature 2024; 632:39-49. [PMID: 39085542 PMCID: PMC11573432 DOI: 10.1038/s41586-024-07530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/07/2024] [Indexed: 08/02/2024]
Abstract
In this Review, we explore natural product antibiotics that do more than simply inhibit an active site of an essential enzyme. We review these compounds to provide inspiration for the design of much-needed new antibacterial agents, and examine the complex mechanisms that have evolved to effectively target bacteria, including covalent binders, inhibitors of resistance, compounds that utilize self-promoted entry, those that evade resistance, prodrugs, target corrupters, inhibitors of 'undruggable' targets, compounds that form supramolecular complexes, and selective membrane-acting agents. These are exemplified by β-lactams that bind covalently to inhibit transpeptidases and β-lactamases, siderophore chimeras that hijack import mechanisms to smuggle antibiotics into the cell, compounds that are activated by bacterial enzymes to produce reactive molecules, and antibiotics such as aminoglycosides that corrupt, rather than merely inhibit, their targets. Some of these mechanisms are highly sophisticated, such as the preformed β-strands of darobactins that target the undruggable β-barrel chaperone BamA, or teixobactin, which binds to a precursor of peptidoglycan and then forms a supramolecular structure that damages the membrane, impeding the emergence of resistance. Many of the compounds exhibit more than one notable feature, such as resistance evasion and target corruption. Understanding the surprising complexity of the best antimicrobial compounds provides a roadmap for developing novel compounds to address the antimicrobial resistance crisis by mining for new natural products and inspiring us to design similarly sophisticated antibiotics.
Collapse
Affiliation(s)
- Kim Lewis
- Antimicrobial Discovery Center, Northeastern University, Boston, MA, USA.
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine, Tubingen, Germany
- Controlling Microbes to Fight Infection-Cluster of Excellence, Tubingen, Germany
| | | | - Marina V Rodnina
- Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Bonn, Germany
| | - Markus Weingarth
- Chemistry Department, Utrecht University, Utrecht, the Netherlands
| | - Ingo Wohlgemuth
- Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
| |
Collapse
|
32
|
Purushothaman M, Chang L, Zhong RJ, Morinaka BI. The Triceptide Maturase OscB Catalyzes Uniform Cyclophane Topology and Accepts Diverse Gly-Rich Precursor Peptides. ACS Chem Biol 2024; 19:1229-1236. [PMID: 38742762 DOI: 10.1021/acschembio.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Triceptides are a class of ribosomally synthesized and post-translationally modified peptides defined by an aromatic C(sp2) to Cβ(sp3) bond. The Gly-rich repeat family of triceptide maturases (TIGR04261) are paired with precursor peptides (TIGR04260) containing a Gly-rich core peptide. These maturases are prevalent in cyanobacteria and catalyze cyclophane formation on multiple Ω1-X2-X3 motifs (Ω1 = Trp and Phe) of the Gly-rich precursor peptide. The topology of the individual rings has not been completely elucidated, and the promiscuity of these enzymes is not known. In this study, we characterized all the cyclophane rings formed by the triceptide maturase OscB and show the ring topology is uniform with respect to the substitution at Trp-C7 and the atropisomerism (planar chirality). Additionally, the enzyme OscB demonstrated substrate promiscuity on Gly-rich precursors and can accommodate a diverse array of engineered sequences. These findings highlight the versatility and implications for using OscB as a biocatalyst for producing polycyclophane-containing peptides for biotechnological applications.
Collapse
Affiliation(s)
- Mugilarasi Purushothaman
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 4 Science Dr 2, Singapore 117544
| | - Litao Chang
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 4 Science Dr 2, Singapore 117544
| | - Ryan Jian Zhong
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 4 Science Dr 2, Singapore 117544
| | - Brandon I Morinaka
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 4 Science Dr 2, Singapore 117544
| |
Collapse
|
33
|
Acehan D, Spoth KA, Budziszewski GR, Snell ME, Campomizzi CS, Lynch ML, Bowman SE. Reaching the potential of electron diffraction. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:102007. [PMID: 39055735 PMCID: PMC11271257 DOI: 10.1016/j.xcrp.2024.102007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Microcrystal electron diffraction (MicroED) is an emerging structural technique in which submicron crystals are used to generate diffraction data for structural studies. Structures allow for the study of molecular-level architecture and drive hypotheses about modes of action, mechanisms, dynamics, and interactions with other molecules. Combining cryoelectron microscopy (cryo-EM) instrumentation with crystallographic techniques, MicroED has led to three-dimensional structural models of small molecules, peptides, and proteins and has generated tremendous interest due to its ability to use vanishingly small crystals. In this perspective, we describe the current state of the field for MicroED methodologies, including making and detecting crystals of the appropriate size for the technique, as well as ways to best handle and characterize these crystals. Our perspective provides insight into ways to unlock the full range of potential for MicroED to access previously intractable samples and describes areas of future development.
Collapse
Affiliation(s)
- Devrim Acehan
- Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203, USA
- University at Buffalo, Jacobs School of Medicine and Biomedical Science, Department of Structural Biology, Buffalo, NY 14203, USA
- University of Rochester, School of Medicine and Dentistry, Department of Biochemistry and Biophysics, Rochester, NY 14642, USA
| | | | | | | | | | - Miranda L. Lynch
- Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203, USA
- University at Buffalo, Jacobs School of Medicine and Biomedical Science, Department of Structural Biology, Buffalo, NY 14203, USA
| | - Sarah E.J. Bowman
- Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203, USA
- University at Buffalo, Jacobs School of Medicine and Biomedical Science, Department of Structural Biology, Buffalo, NY 14203, USA
- University at Buffalo, Jacobs School of Medicine and Biomedical Science, Department of Biochemistry, Buffalo, NY 14203, USA
| |
Collapse
|
34
|
Cheng Z, He BB, Lei K, Gao Y, Shi Y, Zhong Z, Liu H, Liu R, Zhang H, Wu S, Zhang W, Tang X, Li YX. Rule-based omics mining reveals antimicrobial macrocyclic peptides against drug-resistant clinical isolates. Nat Commun 2024; 15:4901. [PMID: 38851779 PMCID: PMC11162475 DOI: 10.1038/s41467-024-49215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/28/2024] [Indexed: 06/10/2024] Open
Abstract
Antimicrobial resistance remains a significant global threat, driving up mortality rates worldwide. Ribosomally synthesized and post-translationally modified peptides have emerged as a promising source of novel peptide antibiotics due to their diverse chemical structures. Here, we report the discovery of new aminovinyl-(methyl)cysteine (Avi(Me)Cys)-containing peptide antibiotics through a synergistic approach combining biosynthetic rule-based omics mining and heterologous expression. We first bioinformatically identify 1172 RiPP biosynthetic gene clusters (BGCs) responsible for Avi(Me)Cys-containing peptides formation from a vast pool of over 50,000 bacterial genomes. Subsequently, we successfully establish the connection between three identified BGCs and the biosynthesis of five peptide antibiotics via biosynthetic rule-guided metabolic analysis. Notably, we discover a class V lanthipeptide, massatide A, which displays excellent activity against gram-positive pathogens, including drug-resistant clinical isolates like linezolid-resistant S. aureus and methicillin-resistant S. aureus, with a minimum inhibitory concentration of 0.25 μg/mL. The remarkable performance of massatide A in an animal infection model, coupled with a relatively low risk of resistance and favorable safety profile, positions it as a promising candidate for antibiotic development. Our study highlights the potential of Avi(Me)Cys-containing peptides in expanding the arsenal of antibiotics against multi-drug-resistant bacteria, offering promising drug leads in the ongoing battle against infectious diseases.
Collapse
Affiliation(s)
- Zhuo Cheng
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 515832, China
| | - Bei-Bei He
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Kangfan Lei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ying Gao
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yuqi Shi
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zheng Zhong
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hongyan Liu
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Runze Liu
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Haili Zhang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 515832, China
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 515832, China.
| | - Yong-Xin Li
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
35
|
Cheek LE, Zhu W. Structural features and substrate engagement in peptide-modifying radical SAM enzymes. Arch Biochem Biophys 2024; 756:110012. [PMID: 38663796 DOI: 10.1016/j.abb.2024.110012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
In recent years, the biological significance of ribosomally synthesized, post-translationally modified peptides (RiPPs) and the intriguing chemistry catalyzed by their tailoring enzymes has garnered significant attention. A subgroup of bacterial radical S-adenosylmethionine (rSAM) enzymes can activate C-H bonds in peptides, which leads to the production of a diverse range of RiPPs. The remarkable ability of these enzymes to facilitate various chemical processes, to generate and harbor high-energy radical species, and to accommodate large substrates with a high degree of flexibility is truly intriguing. The wide substrate scope and diversity of the chemistry performed by rSAM enzymes raise one question: how does the protein environment facilitate these distinct chemical conversions while sharing a similar structural fold? In this review, we discuss recent advances in the field of RiPP-rSAM enzymes, with a particular emphasis on domain architectures and substrate engagements identified by biophysical and structural characterizations. We provide readers with a comparative analysis of six examples of RiPP-rSAM enzymes with experimentally characterized structures. Linking the structural elements and the nature of rSAM-catalyzed RiPP production will provide insight into the functional engineering of enzyme activity to harness their catalytic power in broader applications.
Collapse
Affiliation(s)
- Lilly E Cheek
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Wen Zhu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
36
|
Muñoz KA, Ulrich RJ, Vasan AK, Sinclair M, Wen PC, Holmes JR, Lee HY, Hung CC, Fields CJ, Tajkhorshid E, Lau GW, Hergenrother PJ. A Gram-negative-selective antibiotic that spares the gut microbiome. Nature 2024; 630:429-436. [PMID: 38811738 DOI: 10.1038/s41586-024-07502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/01/2024] [Indexed: 05/31/2024]
Abstract
Infections caused by Gram-negative pathogens are increasingly prevalent and are typically treated with broad-spectrum antibiotics, resulting in disruption of the gut microbiome and susceptibility to secondary infections1-3. There is a critical need for antibiotics that are selective both for Gram-negative bacteria over Gram-positive bacteria, as well as for pathogenic bacteria over commensal bacteria. Here we report the design and discovery of lolamicin, a Gram-negative-specific antibiotic targeting the lipoprotein transport system. Lolamicin has activity against a panel of more than 130 multidrug-resistant clinical isolates, shows efficacy in multiple mouse models of acute pneumonia and septicaemia infection, and spares the gut microbiome in mice, preventing secondary infection with Clostridioides difficile. The selective killing of pathogenic Gram-negative bacteria by lolamicin is a consequence of low sequence homology for the target in pathogenic bacteria versus commensals; this doubly selective strategy can be a blueprint for the development of other microbiome-sparing antibiotics.
Collapse
Affiliation(s)
- Kristen A Muñoz
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rebecca J Ulrich
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Archit K Vasan
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matt Sinclair
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Po-Chao Wen
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jessica R Holmes
- High-Performance Computing in Biology, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyang Yeon Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Chien-Che Hung
- Veterinary Diagnostic Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christopher J Fields
- High-Performance Computing in Biology, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Emad Tajkhorshid
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
37
|
Aragon M, Bowman SEJ, Chen CH, de la Cruz MJ, Decato DA, Eng ET, Flatt KM, Gulati S, Li Y, Lomba CJ, Mercado B, Miller J, Palatinus L, Rice WJ, Waterman D, Zimanyi CM. Applying 3D ED/MicroED workflows toward the next frontiers. Acta Crystallogr C Struct Chem 2024; 80:179-189. [PMID: 38712546 PMCID: PMC11150879 DOI: 10.1107/s2053229624004078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
We report on the latest advancements in Microcrystal Electron Diffraction (3D ED/MicroED), as discussed during a symposium at the National Center for CryoEM Access and Training housed at the New York Structural Biology Center. This snapshot describes cutting-edge developments in various facets of the field and identifies potential avenues for continued progress. Key sections discuss instrumentation access, research applications for small molecules and biomacromolecules, data collection hardware and software, data reduction software, and finally reporting and validation. 3D ED/MicroED is still early in its wide adoption by the structural science community with ample opportunities for expansion, growth, and innovation.
Collapse
Affiliation(s)
- Mahira Aragon
- Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, New York 10027, USA
| | - Sarah E. J. Bowman
- Hauptman-Woodward Medical Research Institute, 700 Ellicott St, Buffalo, New York 14203, USA
| | - Chun-Hsing Chen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
| | - M. Jason de la Cruz
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Daniel A. Decato
- Chemistry and Biochemistry, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA
| | - Edward T. Eng
- Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, New York 10027, USA
| | - Kristen M. Flatt
- Materials Research Laboratory, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, USA
| | | | - Yuchen Li
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Charles J. Lomba
- Department of Physics, Quantitative Biology Institute, Yale University, 260 Whitney Ave., New Haven, Connecticut 06520-8103, USA
| | - Brandon Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Jessalyn Miller
- Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, New York 10027, USA
| | - Lukáš Palatinus
- Institute of Physics of the CAS/NanED, Na Slovance 1999/2, Prague 192000, Czech Republic
| | - William J. Rice
- Department of Cell Biology, NYU Grossman School of Medicine, 540 First Ave, New York, New York 10016, USA
| | - David Waterman
- Research Complex at Harwell, UKRI–STFC Rutherford Appleton Laboratory, Harwell, Didcot, Oxfordshire, OX11 0FA, England, United Kingdom
| | - Christina M. Zimanyi
- Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, New York 10027, USA
| |
Collapse
|
38
|
Woodard AM, Peccati F, Navo CD, Jiménez-Osés G, Mitchell DA. Darobactin Substrate Engineering and Computation Show Radical Stability Governs Ether versus C-C Bond Formation. J Am Chem Soc 2024; 146:14328-14340. [PMID: 38728535 PMCID: PMC11225102 DOI: 10.1021/jacs.4c03994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The Gram-negative selective antibiotic darobactin A has attracted interest owing to its intriguing fused bicyclic structure and unique targeting of the outer membrane protein BamA. Darobactin, a ribosomally synthesized and post-translationally modified peptide (RiPP), is produced by a radical S-adenosyl methionine (rSAM)-dependent enzyme (DarE) and contains one ether and one C-C cross-link. Herein, we analyze the substrate tolerance of DarE and describe an underlying catalytic principle of the enzyme. These efforts produced 51 enzymatically modified darobactin variants, revealing that DarE can install the ether and C-C cross-links independently and in different locations on the substrate. Notable variants with fused bicyclic structures were characterized, including darobactin W3Y, with a non-Trp residue at the twice-modified central position, and darobactin K5F, which displays a fused diether ring pattern. While lacking antibiotic activity, quantum mechanical modeling of darobactins W3Y and K5F aided in the elucidation of the requisite features for high-affinity BamA engagement. We also provide experimental evidence for β-oxo modification, which adds support for a proposed DarE mechanism. Based on these results, ether and C-C cross-link formation was investigated computationally, and it was determined that more stable and longer-lived aromatic Cβ radicals correlated with ether formation. Further, molecular docking and transition state structures based on high-level quantum mechanical calculations support the different indole connectivity observed for ether (Trp-C7) and C-C (Trp-C6) cross-links. Finally, mutational analysis and protein structural predictions identified substrate residues that govern engagement to DarE. Our work informs on darobactin scaffold engineering and further unveils the underlying principles of rSAM catalysis.
Collapse
Affiliation(s)
- Austin M. Woodard
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Francesca Peccati
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Claudio D. Navo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
39
|
Abstract
Covering: 2016 to 2023Ribosomally synthesized and posttranslationally modified peptides (RiPPs) continue to be a rich source of chemically diverse and bioactive peptide natural products. In recent years, cyclophane-containing RiPP natural products and their biosynthetic pathways have been more frequently encountered. This highlight will focus on bacterial monoaryl cyclophane-containing RiPPs. This class of RiPPs is produced by radical SAM/SPASM enzymes that form a crosslink between the aromatic ring and sidechain of two amino acid residues of the precursor peptide. Selected natural products from these pathways exhibit specific antibacterial activity against gram-negative pathogens. The approaches used to discover these pathways and products will be described and categorized as natural product-first or enzyme-first. The breadth of ring systems formed by the enzymes, enzyme mechanism, and recent reports of synthetic methods for constructing these ring systems will also be presented. Bacterial cyclophane-containing RiPPs and their biosynthetic enzymes represent an untapped source of scaffolds for drug discovery and tools for synthetic biology.
Collapse
Affiliation(s)
- Chin-Soon Phan
- Department of Pharmacy, National University of Singapore, 4 Science Dr 2, Singapore 117544, Singapore.
| | - Brandon I Morinaka
- Department of Pharmacy, National University of Singapore, 4 Science Dr 2, Singapore 117544, Singapore.
| |
Collapse
|
40
|
Nguyen DT, Zhu L, Gray DL, Woods TJ, Padhi C, Flatt KM, Mitchell DA, van der Donk WA. Biosynthesis of Macrocyclic Peptides with C-Terminal β-Amino-α-keto Acid Groups by Three Different Metalloenzymes. ACS CENTRAL SCIENCE 2024; 10:1022-1032. [PMID: 38799663 PMCID: PMC11117315 DOI: 10.1021/acscentsci.4c00088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 05/29/2024]
Abstract
Advances in genome sequencing and bioinformatics methods have identified a myriad of biosynthetic gene clusters (BGCs) encoding uncharacterized molecules. By mining genomes for BGCs containing a prevalent peptide-binding domain used for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), we uncovered a new compound class involving modifications installed by a cytochrome P450, a multinuclear iron-dependent non-heme oxidative enzyme (MNIO, formerly DUF692), a cobalamin- and radical S-adenosyl-l-methionine-dependent enzyme (B12-rSAM), and a methyltransferase. All enzymes were functionally expressed in Burkholderia sp. FERM BP-3421. Structural characterization demonstrated that the P450 enzyme catalyzed the formation of a biaryl C-C cross-link between two Tyr residues with the B12-rSAM generating β-methyltyrosine. The MNIO transformed a C-terminal Asp residue into aminopyruvic acid, while the methyltransferase acted on the β-carbon of this α-keto acid. Exciton-coupled circular dichroism spectroscopy and microcrystal electron diffraction (MicroED) were used to elucidate the stereochemical configuration of the atropisomer formed upon biaryl cross-linking. To the best of our knowledge, the MNIO featured in this pathway is the first to modify a residue other than Cys. This study underscores the utility of genome mining to isolate new macrocyclic RiPPs biosynthesized via previously undiscovered enzyme chemistry.
Collapse
Affiliation(s)
- Dinh T. Nguyen
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lingyang Zhu
- School
of Chemical Sciences NMR Laboratory, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Danielle L. Gray
- School
of Chemical Sciences George L. Clark X-Ray Facility and 3M Materials
Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Toby J. Woods
- School
of Chemical Sciences George L. Clark X-Ray Facility and 3M Materials
Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chandrashekhar Padhi
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kristen M. Flatt
- Materials
Research Laboratory, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Douglas A. Mitchell
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
41
|
Phan CS, Chang L, Nguyen TQN, Suarez AFL, Ho XH, Chen H, Koh IYF, Morinaka BI. Substrate Promiscuity of the Triceptide Maturase XncB Leads to Incorporation of Various Amino Acids and Detection of Oxygenated Products. ACS Chem Biol 2024; 19:855-860. [PMID: 38452396 DOI: 10.1021/acschembio.3c00782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Triceptides are cyclophane-containing ribosomally synthesized and post-translationally modified peptides. The characteristic cross-links are formed between an aromatic ring to Cβ on three-residue Ω1X2X3 motifs (Ω1 = aromatic). Here, we explored the promiscuity of the XYE family triceptide maturase, XncB from Xenorhabdus nematophila DSM 3370. Single amino acid variants were coexpressed with XncB in vivo in Escherichia coli, and we show that a variety of amino acids can be incorporated into the Phe-Gly-Asn cyclophane. Aromatic amino acids at the X3 position were accepted by the enzyme but yielded hydroxylated, rather than the typical cyclophane, products. These studies show that oxygen can be inserted but diverges in the final product formed relative to daropeptide maturases. Finally, truncations of the leader peptide showed that it is necessary for complete modification by XncB.
Collapse
Affiliation(s)
- Chin-Soon Phan
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Litao Chang
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Thi Quynh Ngoc Nguyen
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | | | - Xuen Huei Ho
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Huiyi Chen
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Ivan Yu Fan Koh
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Brandon I Morinaka
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| |
Collapse
|
42
|
Nguyen DT, Mitchell DA, van der Donk WA. Genome Mining for New Enzyme Chemistry. ACS Catal 2024; 14:4536-4553. [PMID: 38601780 PMCID: PMC11002830 DOI: 10.1021/acscatal.3c06322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 04/12/2024]
Abstract
A revolution in the field of biocatalysis has enabled scalable access to compounds of high societal values using enzymes. The construction of biocatalytic routes relies on the reservoir of available enzymatic transformations. A review of uncharacterized proteins predicted from genomic sequencing projects shows that a treasure trove of enzyme chemistry awaits to be uncovered. This Review highlights enzymatic transformations discovered through various genome mining methods and showcases their potential future applications in biocatalysis.
Collapse
Affiliation(s)
- Dinh T. Nguyen
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Douglas A. Mitchell
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute at the University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
43
|
Ma X, Beard AM, Burgess SA, Darlak M, Newman JA, Nogle LM, Pietrafitta MJ, Smith DA, Wang X, Yue L. General Synthesis of Conformationally Constrained Noncanonical Amino Acids with C( sp3)-Rich Benzene Bioisosteres. J Org Chem 2024; 89:5010-5018. [PMID: 38532573 DOI: 10.1021/acs.joc.4c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Recent years have seen novel modalities emerge for the treatment of human diseases resulting in an increase in beyond rule of 5 (bRo5) chemical matter. As a result, synthetic innovations aiming to enable rapid access to complex bRo5 molecular entities have become increasingly valuable for medicinal chemists' toolkits. Herein, we report the general synthesis of a new class of noncanonical amino acids (ncAA) with a cyclopropyl backbone to achieve conformational constraint and bearing C(sp3)-rich benzene bioisosteres. We also demonstrate preliminary studies toward utilities of these ncAA as building blocks for medicinal chemistry research.
Collapse
Affiliation(s)
- Xiaoshen Ma
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Adam M Beard
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Samantha A Burgess
- Analytical Research & Development, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Miroslawa Darlak
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Justin A Newman
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Lisa M Nogle
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Mark J Pietrafitta
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - David A Smith
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Xiao Wang
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Lei Yue
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| |
Collapse
|
44
|
Hughes D, Lawrence W, Peel J, Rosan DW, Ling L, Niiti N, Aaron P, Shukla R, MacGillavry H, Heine H, Martha H, Elbert W, Weingarth M, Lewis K. A Resistance-Evading Antibiotic for Treating Anthrax. RESEARCH SQUARE 2024:rs.3.rs-3991430. [PMID: 38585816 PMCID: PMC10996807 DOI: 10.21203/rs.3.rs-3991430/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The antimicrobial resistance crisis (AMR) is associated with millions of deaths and undermines the franchise of medicine. Of particular concern is the threat of bioweapons, exemplified by anthrax. Introduction of novel antibiotics helps mitigate AMR, but does not address the threat of bioweapons with engineered resistance. We reasoned that teixobactin, an antibiotic with no detectable resistance, is uniquely suited to address the challenge of weaponized anthrax. Teixobactinbinds to immutable targets, precursors of cell wall polymers. Here we show that teixobactinis highly efficacious in a rabbit model of inhalation anthrax. Inhaling spores of Bacillus anthracis causes overwhelming morbidity and mortality. Treating rabbits with teixobactinafter the onset of disease rapidly eliminates the pathogen from blood and tissues, normalizes body temperature, and prevents tissue damage. Teixobactinassembles into an irreversible supramolecular structure of the surface of B. anthracis membrane, likely contributing to its unusually high potency against anthrax. Antibiotics evading resistance provide a rational solution to both AMR and engineered bioweapons.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Kim Lewis
- Antimicrobial Discovery Center, Department of Biology, Northeastern University
| |
Collapse
|
45
|
Suarez AFL, Nguyen TQN, Chang L, Tooh YW, Yong RHS, Leow LC, Koh IYF, Chen H, Koh JWH, Selvanayagam A, Lim V, Tan YE, Agatha I, Winnerdy FR, Morinaka BI. Functional and Promiscuity Studies of Three-Residue Cyclophane Forming Enzymes Show Nonnative C-C Cross-Linked Products and Leader-Dependent Cyclization. ACS Chem Biol 2024; 19:774-783. [PMID: 38417140 DOI: 10.1021/acschembio.3c00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Enzymes catalyzing peptide macrocyclization are important biochemical tools in drug discovery. The three-residue cyclophane-forming enzymes (3-CyFEs) are an emerging family of post-translational modifying enzymes that catalyze the formation of three-residue peptide cyclophanes. In this report, we introduce three additional 3-CyFEs, including ChlB, WnsB, and FnnB, that catalyze cyclophane formation on Tyr, Trp, and Phe, respectively. To understand the promiscuity of these enzymes and those previously reported (MscB, HaaB, and YxdB), we tested single amino acid substitutions at the three-residue motif of modification (Ω1X2X3, Ω1 = aromatic). Collectively, we observe that substrate promiscuity is observed at the Ω1 and X2 positions, but a greater specificity is observed for the X3 residue. Two nonnative cyclophane products were characterized showing a Phe-C3 to Arg-Cβ and His-C2 to Pro-Cβ cross-links, respectively. We also tested the leader dependence of selected 3-CyFEs and show that a predicted helix region is important for cyclophane formation. These results demonstrate the biocatalytic potential of these maturases and allow rational design of substrates to obtain a diverse array of genetically encoded 3-residue cyclophanes.
Collapse
Affiliation(s)
| | - Thi Quynh Ngoc Nguyen
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Litao Chang
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Yi Wei Tooh
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Rubin How Sheng Yong
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Li Chuan Leow
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Ivan Yu Fan Koh
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Huiyi Chen
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Jeffery Wei Heng Koh
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | | | - Vernon Lim
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Yi En Tan
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Irene Agatha
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Fernaldo R Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Brandon I Morinaka
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| |
Collapse
|
46
|
Schneider F, Guo Y, Lin YC, Eberle KJ, Chiodi D, Greene JA, Lu C, Baran PS. Total Synthesis of Dynobactin A. J Am Chem Soc 2024; 146:6444-6448. [PMID: 38427590 DOI: 10.1021/jacs.3c11560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
The first total synthesis of the potent antimicrobial agent dynobactin A is disclosed. This synthesis enlists a singular aziridine ring opening strategy to access the two disparate β-aryl-branched amino acids present within this complex decapeptide. Featuring a number of unique maneuvers to navigate inherently sensitive and epimerizable functional groups, this convergent approach proceeds in only 16 steps (LLS) from commercial materials and should facilitate the synthesis of numerous analogues for medicinal chemistry studies.
Collapse
Affiliation(s)
- Fabian Schneider
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yinliang Guo
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - You-Chen Lin
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kelly J Eberle
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Debora Chiodi
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Johnathan A Greene
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chenxin Lu
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Phil S Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
47
|
Li H, Ding W, Zhang Q. Discovery and engineering of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. RSC Chem Biol 2024; 5:90-108. [PMID: 38333193 PMCID: PMC10849128 DOI: 10.1039/d3cb00172e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/17/2023] [Indexed: 02/10/2024] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) represent a diverse superfamily of natural products with immense potential for drug development. This review provides a concise overview of the recent advances in the discovery of RiPP natural products, focusing on rational strategies such as bioactivity guided screening, enzyme or precursor-based genome mining, and biosynthetic engineering. The challenges associated with activating silent biosynthetic gene clusters and the development of elaborate catalytic systems are also discussed. The logical frameworks emerging from these research studies offer valuable insights into RiPP biosynthesis and engineering, paving the way for broader pharmaceutic applications of these peptide natural products.
Collapse
Affiliation(s)
- He Li
- Department of Chemistry, Fudan University Shanghai 200433 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Qi Zhang
- Department of Chemistry, Fudan University Shanghai 200433 China
| |
Collapse
|
48
|
George A, Patil AG, Mahalakshmi R. ATP-independent assembly machinery of bacterial outer membranes: BAM complex structure and function set the stage for next-generation therapeutics. Protein Sci 2024; 33:e4896. [PMID: 38284489 PMCID: PMC10804688 DOI: 10.1002/pro.4896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/30/2024]
Abstract
Diderm bacteria employ β-barrel outer membrane proteins (OMPs) as their first line of communication with their environment. These OMPs are assembled efficiently in the asymmetric outer membrane by the β-Barrel Assembly Machinery (BAM). The multi-subunit BAM complex comprises the transmembrane OMP BamA as its functional subunit, with associated lipoproteins (e.g., BamB/C/D/E/F, RmpM) varying across phyla and performing different regulatory roles. The ability of BAM complex to recognize and fold OM β-barrels of diverse sizes, and reproducibly execute their membrane insertion, is independent of electrochemical energy. Recent atomic structures, which captured BAM-substrate complexes, show the assembly function of BamA can be tailored, with different substrate types exhibiting different folding mechanisms. Here, we highlight common and unique features of its interactome. We discuss how this conserved protein complex has evolved the ability to effectively achieve the directed assembly of diverse OMPs of wide-ranging sizes (8-36 β-stranded monomers). Additionally, we discuss how darobactin-the first natural membrane protein inhibitor of Gram-negative bacteria identified in over five decades-selectively targets and specifically inhibits BamA. We conclude by deliberating how a detailed deduction of BAM complex-associated regulation of OMP biogenesis and OM remodeling will open avenues for the identification and development of effective next-generation therapeutics against Gram-negative pathogens.
Collapse
Affiliation(s)
- Anjana George
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| | - Akanksha Gajanan Patil
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| |
Collapse
|
49
|
Yu L, Nagata Y, Nakamura H. Atroposelective Total Synthesis of Cihunamide B. J Am Chem Soc 2024; 146:2549-2555. [PMID: 38240691 DOI: 10.1021/jacs.3c11016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
A short, atroposelective synthesis of cihunamide B (1) is reported. The feature of this report is the decagram-scale SNAr reaction of l-tryptophan derivatives, followed by atroposelective Larock macrocyclization. This strategy allowed the construction of a Trp-Trp cross-linkage with unprecedented atropisomerism. The atroposelectivity of this Larock macrocyclization has been investigated through a combination of experimental and computational chemistry, yielding detailed insights into the synthesis of biaryl linkages. It also enabled the concise synthesis of cihunamide B (1), which is expected to be a potential antibacterial agent.
Collapse
Affiliation(s)
- Longhui Yu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Yuuya Nagata
- WPI Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Hugh Nakamura
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| |
Collapse
|
50
|
Nguyen DT, Zhu L, Gray DL, Woods TJ, Padhi C, Flatt KM, Mitchell DA, van der Donk WA. Biosynthesis of macrocyclic peptides with C-terminal β-amino-α-keto acid groups by three different metalloenzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.30.564719. [PMID: 37965205 PMCID: PMC10635010 DOI: 10.1101/2023.10.30.564719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Advances in genome sequencing and bioinformatics methods have identified a myriad of biosynthetic gene clusters (BGCs) encoding uncharacterized molecules. By mining genomes for BGCs containing a prevalent peptide-binding domain used for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), we uncovered a new class involving modifications installed by a cytochrome P450, a multi-nuclear iron-dependent non-heme oxidative enzyme (MNIO, formerly DUF692), a cobalamin- and radical S-adenosyl-L-methionine-dependent enzyme (B12-rSAM), and a methyltransferase. All enzymes encoded by the BGC were functionally expressed in Burkholderia sp. FERM BP-3421. Structural characterization with 2D-NMR and Marfey's method on the resulting RiPP demonstrated that the P450 enzyme catalyzed the formation of a biaryl C-C crosslink between two Tyr residues with the B12-rSAM generating β-methyltyrosine. The MNIO transformed a C-terminal Asp residue into aminopyruvic acid while the methyltransferase acted on the β-carbon of the α-keto acid. Exciton-coupled circular dichroism spectroscopy and microcrystal electron diffraction (MicroED) were used to elucidate the stereochemical configurations of the atropisomer that formed upon biaryl crosslinking. The conserved Cys residue in the precursor peptide was not modified as in all other characterized MNIO-containing BGCs; However, mutational analyses demonstrated that it was essential for the MNIO activity on the C-terminal Asp. To the best of our knowledge, the MNIO featured in this pathway is the first to modify a residue other than Cys. This study underscores the utility of genome mining to discover new macrocyclic RiPPs and that RiPPs remain a significant source of previously undiscovered enzyme chemistry.
Collapse
Affiliation(s)
- Dinh T. Nguyen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Lingyang Zhu
- School of Chemical Sciences NMR Laboratory, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Danielle L. Gray
- School of Chemical Sciences George L. Clark X-Ray Facility and 3M Materials Laboratory, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Toby J. Woods
- School of Chemical Sciences George L. Clark X-Ray Facility and 3M Materials Laboratory, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Chandrashekhar Padhi
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Kristen M. Flatt
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Wilfred A. van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|