1
|
Monchusi B, Dube P, Takundwa MM, Kenmogne VL, Malise T, Thimiri Govinda Raj DB. Combination Therapies in Drug Repurposing: Personalized Approaches to Combatting Leukaemia and Multiple Myeloma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40279000 DOI: 10.1007/5584_2025_863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Despite advances in cancer research, treating malignancies remains challenging due to issues like drug resistance, disease heterogeneity, and the limited efficacy of current therapies, particularly in relapsed or refractory cases. In recent years, several drugs originally approved for non-cancer indications have shown potential in cancer treatment, demonstrating anti-proliferative, anti-metastatic, and immunomodulatory effects. Drug repurposing has shown immense promise due to well-established safety profiles and mechanisms of action of the compounds. However, the implementation is fraught with clinical, logistical, regulatory, and ethical challenges, especially in diseases such as leukaemia and multiple myeloma. This chapter examines the treatment challenges in leukaemia and multiple myeloma, focusing on the role of drug repurposing in addressing therapeutic resistance and disease variability. It highlights the potential of personalized, tailored combination therapies, using repurposed drug components, to offer more effective, targeted, and cost-efficient treatment strategies, overcoming resistance and improving patient outcomes.
Collapse
Affiliation(s)
- B Monchusi
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
- Department of Surgery, University of the Witwatersrand, Johannesburg, South Africa
| | - P Dube
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
- Department of Haematology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - M M Takundwa
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - V L Kenmogne
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
- Department of Surgery, University of the Witwatersrand, Johannesburg, South Africa
| | - T Malise
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
- Department of Surgery, University of the Witwatersrand, Johannesburg, South Africa
| | - D B Thimiri Govinda Raj
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa.
- Department of Surgery, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
2
|
White NFD, Whitton G, Wasakul V, Amenga-Etego L, Dara A, Andrianaranjaka V, Randrianarivelojosia M, Miotto O, D'Alessandro U, Djimdé A, Ariani CV, Pearson RD, Amambua-Ngwa A. Disparate co-evolution and prevalence of sulfadoxine and pyrimethamine resistance alleles and haplotypes at dhfr and dhps genes across Africa. Sci Rep 2025; 15:13222. [PMID: 40247054 PMCID: PMC12006366 DOI: 10.1038/s41598-025-98035-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/09/2025] [Indexed: 04/19/2025] Open
Abstract
Sulfadoxine-pyrimethamine (SP), despite emergence of mutations in dhfr and dhps genes associated with lower treatment efficacy, is still recommended for preventive malaria treatment. Therefore, it is important to understand the evolution of P. falciparum dhfr and dhps genes. We used the MalariaGEN Pf7 dataset to describe haplotype frequencies across 22 African countries, including changes over time in The Gambia, Mali, Ghana, and Kenya. We show that the triple mutant of dhfr, N51I/C59R/S108N, has remained the dominant haplotype across the continent with limited evidence of additional mutations. There is greater variation for dhps in terms of haplotype diversity and spatial heterogeneity of haplotypes found across Africa. Although samples from Madagascar have low genetic differentiation from samples from mainland East Africa at the whole genome level, we show that dhps K540E is highly differentiated between the two populations, being at very low frequency in Madagascar (4%). Whole genome data reveal 12 SNPs which are also highly differentiated between Madagascar and East Africa, including aat1 and a possible novel drug resistance locus approximately 20 kb 3' of mdr1. We highlight the value of longitudinal sampling and whole genome sequence data for understanding the heterogeneity and ongoing changes in anti-malarial drug resistance genetic markers.
Collapse
Affiliation(s)
- Nina F D White
- Genomic Surveillance Unit, Wellcome Sanger Institute, Hinxton, UK
| | - Georgia Whitton
- Genomic Surveillance Unit, Wellcome Sanger Institute, Hinxton, UK
| | - Varanya Wasakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Lucas Amenga-Etego
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Pathogens Genomic Diversity Network Africa (PDNA), Sotuba, Bamako, Mali
| | - Antoine Dara
- Malaria Research and Training Centre, Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
- Pathogens Genomic Diversity Network Africa (PDNA), Sotuba, Bamako, Mali
| | - Voahangy Andrianaranjaka
- Institut Pasteur de Madagascar, Antananarivo, Madagascar
- Pathogens Genomic Diversity Network Africa (PDNA), Sotuba, Bamako, Mali
| | - Milijaona Randrianarivelojosia
- Institut Pasteur de Madagascar, Antananarivo, Madagascar
- Pathogens Genomic Diversity Network Africa (PDNA), Sotuba, Bamako, Mali
| | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Pathogens Genomic Diversity Network Africa (PDNA), Sotuba, Bamako, Mali
| | - Umberto D'Alessandro
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Abdoulaye Djimdé
- Malaria Research and Training Centre, Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
- Pathogens Genomic Diversity Network Africa (PDNA), Sotuba, Bamako, Mali
| | | | | | - Alfred Amambua-Ngwa
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia.
- Pathogens Genomic Diversity Network Africa (PDNA), Sotuba, Bamako, Mali.
| |
Collapse
|
3
|
Early AM, Pelleau S, Musset L, Neafsey DE. Temporal Patterns of Haplotypic and Allelic Diversity Reflect the Changing Selection Landscape of the Malaria Parasite Plasmodium falciparum. Mol Biol Evol 2025; 42:msaf075. [PMID: 40164958 PMCID: PMC12004115 DOI: 10.1093/molbev/msaf075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025] Open
Abstract
The malaria parasite Plasmodium falciparum regularly confronts orchestrated changes in frontline drug treatment that drastically alter its selection landscape. When this has occurred, the parasite has successfully adapted to new drugs through novel resistance mutations. These novel mutations, however, emerge in a genetic background already shaped by prior drug selection. In some instances, selection imposed by different drugs targets the same loci in either synergistic or antagonistic ways, which may leave genomic signatures that are hard to attribute to a specific agent. Here, we use two approaches for detecting sequential bouts of drug adaptation: haplotype-based selection testing and temporal changes in allele frequencies. Using a set of longitudinal samples from French Guiana, we determine that since the official introduction of artemisinin combination therapy in 2007 there have been rapid hard selective sweeps at both known and novel loci. At four high-profile genes with demonstrated involvement in drug resistance (pfcrt, pfmdr1, pfaat1, and pfgch1), we see selection signals both before and after drug regime change; however, selection favored different haplotypes in the two time periods. Similarly, allele frequency analysis identified coding variants whose frequency trajectory changed signs under the new drug pressure. These selected alleles were enriched for genes implicated in artemisinin or partner-drug resistance in other global populations. Overall, these results suggest that drug resistance in P. falciparum is governed by known alleles of large effect along with a polygenic architecture of potentially more subtle variants, any of which can experience fitness reversals under distinct drug regimes.
Collapse
Affiliation(s)
- Angela M Early
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Stéphane Pelleau
- Infectious Diseases Epidemiology and Analytics Unit, Department of Global Health, lnstitut Pasteur, Université Paris Cité, Paris 75015, France
- Centre National de Référence du Paludisme, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, lnstitut Pasteur de la Guyane, Cayenne 97300, French Guiana
| | - Lise Musset
- Centre National de Référence du Paludisme, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, lnstitut Pasteur de la Guyane, Cayenne 97300, French Guiana
| | - Daniel E Neafsey
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
4
|
Tanner JD, Richards SN, Corry B. Molecular basis of the functional conflict between chloroquine and peptide transport in the Malaria parasite chloroquine resistance transporter PfCRT. Nat Commun 2025; 16:2987. [PMID: 40140375 PMCID: PMC11947230 DOI: 10.1038/s41467-025-58244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 03/16/2025] [Indexed: 03/28/2025] Open
Abstract
The Plasmodium falciparum chloroquine resistance transporter (PfCRT) is a key protein contributing to resistance against the antimalarial chloroquine (CQ). Mutations such as K76T enable PfCRT to transport CQ away from its target in the parasite's digestive vacuole, but this comes at a cost to its natural peptide transport function. This creates fitness costs which can drive changes to drug susceptibility in parasite populations, but the molecular basis of this is not well understood. To investigate, here we run 130 μs of molecular dynamics simulations of CQ-sensitive and CQ-resistant PfCRT isoforms with CQ and peptide substrates. We identify the CQ binding site and characterized diverse peptide binding modes. The K76T mutation allows CQ to access the binding site but disrupts peptide binding, highlighting the importance of cavity charge in determining substrate specificity. This study provides insight into PfCRT polyspecific peptide transport and will aid in rational, structure-based inhibitor design.
Collapse
Affiliation(s)
- John D Tanner
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Sashika N Richards
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Ben Corry
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
5
|
Niaré K, Crudale R, Fola AA, Wernsman Young N, Asua V, Conrad M, Gashema P, Ghansah A, Hangi S, Ishengoma DS, Mazarati JB, Zeleke AJ, Rosenthal PJ, Djimdé AA, Juliano JJ, Bailey JA. Highly multiplex molecular inversion probe panel in Plasmodium falciparum targeting common SNPs approximates whole genome sequencing assessments for selection and relatedness. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.07.25323597. [PMID: 40162260 PMCID: PMC11952476 DOI: 10.1101/2025.03.07.25323597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Introduction The use of next-generation sequencing technologies (NGS) to study parasite populations and their response and evolution to interventions is important to support malaria control and elimination efforts. While whole genome sequencing (WGS) is optimal in terms of assessing the entire genome, it is costly for numerous samples. Targeted approaches selectively enriching for sequence of interest are more affordable but sometimes lack adequate information content for key analyses. Methods We have developed a highly-multiplexed molecular inversion probe (MIP) panel (IBC2FULL) targeting single nucleotide polymorphisms (SNPs) with ≥ 5% minor allele frequency (MAF) in sub-Saharan African regions from publicly available Plasmodium falciparum WGS. We optimized the panel alone and in combination with antimalarial drug resistance MIPs in laboratory P. falciparum strains at different parasitemias, and validated it by sequencing field isolates from Democratic Republic of Congo, Ethiopia, Ghana, Mali, Rwanda, Tanzania and Uganda and evaluating population structure, identity-by-descent (IBD), signals of selection, and complexity of infection (COI). Results The new panel IBC2FULL consisted of 2,128 MIP microhaplotypes (containing 4,264 common SNPs) spaced by 5.1 - 18.4 kb across the entire genome. While these microhaplotypes were developed based on variation from sub-Saharan African WGS, 59.3% (2,529) of SNPs were also common in South-East Asia. The MIPs were balanced to produce more uniform and higher depth coverage at low parasitemia (100 parasites/μL) along with MIPs targeting antimalarial drug resistance genes. Comparing targeted regions extracted from public WGS, IBC2FULL provided higher resolution of local population structure in sub-Saharan Africa than current PCR-based targeted sequencing panels. Sequencing field samples, IBC2FULL approximated WGS measures of relatedness, population structure, and COI. Interestingly, genome-wide analysis of extended haplotype homozygosity detected the same major peaks of selection as WGS. We also chose a subset of 305 high performing probes to create a core panel (IBC2CORE) that produced high-quality data for basic population genomic analysis and accurate estimation of COI. Discussion IBC2FULL and IBC2CORE provide an improved platform for malaria genomic epidemiology and biology that can approximate WGS for many applications and is deployable for malaria molecular surveillance in resource-limited settings.
Collapse
|
6
|
Segovia X, Srivastava B, Serrato-Arroyo S, Guerrero A, Huijben S. Assessing fitness costs in malaria parasites: a comprehensive review and implications for drug resistance management. Malar J 2025; 24:65. [PMID: 40025552 PMCID: PMC11871665 DOI: 10.1186/s12936-025-05286-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 02/10/2025] [Indexed: 03/04/2025] Open
Abstract
Artemisinin-based combination therapy (ACT) remains a broadly effective anti-malarial drug combination, but the emergence of resistance is threatening its effectiveness. Limiting the spread of these drug-resistant parasites and delaying the emergence of resistance in new areas are of high priority. Understanding the evolution of resistance relies on discerning the fitness costs and benefits associated with resistance mutations. If the cost associated with resistance in an untreated host is sufficiently large relative to the benefit of resistance in a treated host, then the spread of resistance can be mitigated by ensuring sufficient hosts free from that active pharmaceutical ingredient. There is no straightforward way to measure these fitness costs, and each approach that has been used has its limitations. Here, the evidence of fitness costs as measured using field data, animal models, and in vitro models is reviewed for three of the main current or past first-line treatments for malaria: chloroquine (CQ), sulfadoxine-pyrimethamine (SP), and artemisinin derivatives (ART). Despite the difficulties of assessing fitness costs, there is a good amount of evidence of fitness costs in drug-resistant Plasmodium falciparum parasites. The most persuasive evidence comes from resistance reversal observed following the cessation of the use of chloroquine. Comparable evidence cannot be obtained for SP- and ART-resistant parasites, due to the absence of complete cessation of these drugs in the field. Data from in vitro and animal models are variable. While fitness costs are often observed, their presence is not universal across all resistant strains. The extent and nature of these fitness costs can vary greatly depending on the specific genetic factors involved and the ecological context in which the parasites evolve. As a result, it is essential to avoid making broad generalizations about the prevalence or impact of fitness costs in drug-resistant malaria parasites. Focusing on fitness costs as a vulnerability in resistant parasites can guide their evolutionary trajectory towards minimizing their fitness. By accurately predicting these costs, efforts to extend the effectiveness of anti-malarials can be enhanced, limiting resistance evolution and advancing malaria control and elimination goals.
Collapse
Affiliation(s)
- Xyonane Segovia
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Sergio Serrato-Arroyo
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Ashley Guerrero
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Silvie Huijben
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Computational and Modeling Sciences Center, Simon A. Levin Mathematical, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
7
|
Okereke PU, Ayodeji BM, Bolarinwa RT, Ayodeji OD, Popoola IO, Okereke WO, Ogamba N, Nworah LU, Umeh CV, Okpechukwu CP, Ibekwe SN, Emeka E, Tola OS. Assessing the influence of rapid diagnostic test (RDT) accuracy on malaria misdiagnosis and antimalarial resistance in Nigeria. Ann Med Surg (Lond) 2025; 87:658-662. [PMID: 40110260 PMCID: PMC11918633 DOI: 10.1097/ms9.0000000000002925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/24/2024] [Indexed: 03/22/2025] Open
Abstract
Malaria remains a critical health challenge in tropical regions, demanding accurate and timely diagnosis to prevent severe negative outcomes. The disease's misdiagnosis, driven by inadequate diagnostic tools, insufficient training, and systemic health care deficiencies, complicates effective management. Rapid diagnostic tests (RDTs), commonly used in Africa, often produce false-negative results due to various factors like parasite density and test conditions, which can lead to inappropriate treatment and potential drug resistance. Microscopy, while the gold standard, is often unavailable in resource-limited settings, pushing reliance on less accurate methods. Technological advances and improved education for health care workers are important for diagnostic accuracy. Innovations such as the Nanomal DNA analyzer, a point-of-care device, offer quick, reliable testing and the potential to identify drug resistance markers. The accuracy of malaria treatment can be significantly improved by integrating clinical assessments with refined diagnostic methods, reducing the disease burden in endemic areas. This comprehensive approach, combining technology, systemic health care improvements, and policy alignment, is important for effective malaria management and eventual eradication in affected regions.
Collapse
Affiliation(s)
- Promise Udohchukwu Okereke
- Department of Dentistry and Dental Surgery, Faculty of Dentistry, College of Medicine, University of Nigeria, Enugu, Nigeria
- Dental Centre, University College Hospital, Ibadan, Nigeria
- Youth Health Action Network (YOHAN Research Institute), Enugu, Nigeria
| | | | | | | | - Idris Olayemi Popoola
- Department of Nursing, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Wisdom Obumneme Okereke
- Department of Dentistry and Dental Surgery, Faculty of Dentistry, College of Medicine, University of Nigeria, Enugu, Nigeria
| | - Nzubechukwu Ogamba
- Youth Health Action Network (YOHAN Research Institute), Enugu, Nigeria
- Department of Medicine and Surgery, Faculty of Medicine, College of Medicine, University of Nigeria, Enugu, Nigeria
| | - Lilian Uzoma Nworah
- Department of Dentistry and Dental Surgery, Faculty of Dentistry, College of Medicine, University of Nigeria, Enugu, Nigeria
| | - Chukwuemeka Victor Umeh
- Department of Medicine and Surgery, Faculty of Medicine, College of Medicine, University of Nigeria, Enugu, Nigeria
| | | | - Solomon Nnayelugo Ibekwe
- Department of Dentistry and Dental Surgery, Faculty of Dentistry, College of Medicine, University of Nigeria, Enugu, Nigeria
| | | | | |
Collapse
|
8
|
Ngwana-Joseph GC, Phelan JE, Manko E, Dombrowski JG, da Silva Santos S, Suarez-Mutis M, Vélez-Tobón G, Tobón Castaño A, Machado RLD, Marinho CRF, Nolder D, Nosten F, Sutherland CJ, Campino S, Clark TG. Genomic analysis of global Plasmodium vivax populations reveals insights into the evolution of drug resistance. Nat Commun 2024; 15:10771. [PMID: 39738010 DOI: 10.1038/s41467-024-54964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Increasing reports of chloroquine resistance (CQR) in Plasmodium vivax endemic regions have led to several countries, including Indonesia, to adopt dihydroarteminsin-piperaquine instead. However, the molecular drivers of CQR remain unclear. Using a genome-wide approach, we perform a genomic analysis of 1534 P. vivax isolates across 29 endemic countries, detailing population structure, patterns of relatedness, selection, and resistance profiling, providing insights into potential drivers of CQR. Selective sweeps in a locus proximal to pvmdr1, a putative marker for CQR, along with transcriptional regulation genes, distinguish isolates from Indonesia from those in regions where chloroquine remains highly effective. In 106 isolates from Indonesian Papua, the epicentre of CQR, we observe an increasing prevalence of novel SNPs in the candidate resistance gene pvmrp1 since the introduction of dihydroartemisinin-piperaquine. Overall, we provide novel markers for resistance surveillance, supported by evidence of regions under recent directional selection and temporal analysis in this continually evolving parasite.
Collapse
Affiliation(s)
- Gabrielle C Ngwana-Joseph
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Jody E Phelan
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Emilia Manko
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Jamille G Dombrowski
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Gabriel Vélez-Tobón
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Antioquia, Colombia
| | | | - Ricardo Luiz Dantas Machado
- Centro de Investigação de Microrganismos - CIM, Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Claudio R F Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Debbie Nolder
- UK Health Security Agency, Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, London, UK
| | - François Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Colin J Sutherland
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- UK Health Security Agency, Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, London, UK
| | - Susana Campino
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Taane G Clark
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
9
|
Ibrahim A, Mohring F, Manko E, van Schalkwyk DA, Phelan JE, Nolder D, Borrmann S, Adegnika AA, Di Santi SM, Alam MS, Mondal D, Nosten F, Sutherland CJ, Moon RW, Clark TG, Campino S. Genome sequencing of Plasmodium malariae identifies continental segregation and mutations associated with reduced pyrimethamine susceptibility. Nat Commun 2024; 15:10779. [PMID: 39738025 DOI: 10.1038/s41467-024-55102-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Plasmodium malariae parasites are widely observed across the tropics and sub-tropics. This slow-growing species, known to maintain chronic asymptomatic infections, has been associated with reduced antimalarial susceptibility. We analyse 251 P. malariae genomes from 28 countries, and leveraging 131,601 high-quality SNPs, demonstrate segregation of African and Asian isolates. Signals of recent evolutionary selection were identified in genes encoding putative surface proteins (pmmsp1) and putative erythrocyte invasion proteins (pmdpap3, pmrbp2, pmnif4). Amino acid substitutions were identified in orthologs of genes associated with antimalarial susceptibility including 2 amino acid substitutions in pmdhfr aligning with pyrimethamine resistance mutations in P. falciparum. Additionally, we characterise pmdhfr mutation F57L and demonstrate its involvement in reduced susceptibility to pyrimethamine in an in vitro parasite assay. We validate CRISPR-Cas9 mediated ortholog replacement in P. knowlesi parasites to determine the function of pmdhfr mutations and demonstrate that circulating pmdhfr genotypes are less susceptible to pyrimethamine.
Collapse
Affiliation(s)
- Amy Ibrahim
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Franziska Mohring
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Emilia Manko
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Donelly A van Schalkwyk
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Jody E Phelan
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Debbie Nolder
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Public Health England Malaria Reference Laboratory, London School of Hygiene & Tropical Medicine, London, UK
| | - Steffen Borrmann
- Institute for Tropical Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Gabon; and German Center for Infection Research (DZIF), Tübingen, Germany
| | - Ayola A Adegnika
- Institute for Tropical Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Gabon; and German Center for Infection Research (DZIF), Tübingen, Germany
| | | | - Mohammad Shafiul Alam
- International Centre for Diarrhoeal Disease Research Bangladesh, Mohakhali, Bangladesh
| | - Dinesh Mondal
- International Centre for Diarrhoeal Disease Research Bangladesh, Mohakhali, Bangladesh
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - Colin J Sutherland
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Public Health England Malaria Reference Laboratory, London School of Hygiene & Tropical Medicine, London, UK
| | - Robert W Moon
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | - Taane G Clark
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
- Faculty of Epidemiology & Population Health, LSHTM, London, UK.
| | - Susana Campino
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
10
|
Miotto O, Amambua-Ngwa A, Amenga-Etego LN, Abdel Hamid MM, Adam I, Aninagyei E, Apinjoh T, Awandare GA, Bejon P, Bertin GI, Bouyou-Akotet M, Claessens A, Conway DJ, D'Alessandro U, Diakite M, Djimdé A, Dondorp AM, Duffy P, Fairhurst RM, Fanello CI, Ghansah A, Ishengoma DS, Lawniczak M, Maïga-Ascofaré O, Auburn S, Rosanas-Urgell A, Wasakul V, White NFD, Harrott A, Almagro-Garcia J, Pearson RD, Goncalves S, Ariani C, Bozdech Z, Hamilton WL, Simpson V, Kwiatkowski DP. Identification of complex Plasmodium falciparum genetic backgrounds circulating in Africa: a multicountry genomic epidemiology analysis. THE LANCET. MICROBE 2024; 5:100941. [PMID: 39522520 PMCID: PMC11628469 DOI: 10.1016/j.lanmic.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The population structure of the malaria parasite Plasmodium falciparum can reveal underlying adaptive evolutionary processes. Selective pressures to maintain complex genetic backgrounds can encourage inbreeding, producing distinct parasite clusters identifiable by population structure analyses. METHODS We analysed population structure in 3783 P falciparum genomes from 21 countries across Africa, provided by the MalariaGEN Pf7 dataset. We used Principal Coordinate Analysis to cluster parasites, identity by descent (IBD) methods to identify genomic regions shared by cluster members, and linkage analyses to establish their co-inheritance patterns. Structural variants were reconstructed by de novo assembly and verified by long-read sequencing. FINDINGS We identified a strongly differentiated cluster of parasites, named AF1, comprising 47 (1·2%) of 3783 samples analysed, distributed over 13 countries across Africa, at locations over 7000 km apart. Members of this cluster share a complex genetic background, consisting of up to 23 loci harbouring many highly differentiated variants, rarely observed outside the cluster. IBD analyses revealed common ancestry at these loci, irrespective of sampling location. Outside the shared loci, however, AF1 members appear to outbreed with sympatric parasites. The AF1 differentiated variants comprise structural variations, including a gene conversion involving the dblmsp and dblmsp2 genes, and numerous single nucleotide polymorphisms. Several of the genes harbouring these mutations are functionally related, often involved in interactions with red blood cells including invasion, egress, and erythrocyte antigen export. INTERPRETATION We propose that AF1 parasites have adapted to some unidentified evolutionary niche, probably involving interactions with host erythrocytes. This adaptation involves a complex compendium of interacting variants that are rarely observed in Africa, which remains mostly intact despite recombination events. The term cryptotype was used to describe a common background interspersed with genomic regions of local origin. FUNDING Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia; London School of Hygiene and Tropical Medicine, London, UK
| | - Lucas N Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | | | - Ishag Adam
- Department of Obstetrics and Gynecology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Enoch Aninagyei
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Science, Ho, Ghana
| | - Tobias Apinjoh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Philip Bejon
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | | - Antoine Claessens
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia; LPHI, MIVEGEC, INSERM, CNRS, IRD, University of Montpellier, Montpellier, France
| | - David J Conway
- London School of Hygiene and Tropical Medicine, London, UK
| | - Umberto D'Alessandro
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Mahamadou Diakite
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Abdoulaye Djimdé
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Patrick Duffy
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Rick M Fairhurst
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Caterina I Fanello
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Anita Ghansah
- Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | - Deus S Ishengoma
- National Institute for Medical Research, Dar Es Salaam, Tanzania; Department of Biochemistry, Kampala International University in Tanzania, Dar es Salaam, Tanzania
| | | | | | - Sarah Auburn
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | | | - Varanya Wasakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | | | - Dominic P Kwiatkowski
- MRC Centre for Genomics and Global Health, Big Data Institute, Oxford University, Oxford, UK
| |
Collapse
|
11
|
Sievert MA, Singh PP, Shoue DA, Checkley LA, Brenneman KM, Qahash T, Cassady Z, Kumar S, Li X, Nosten FH, Anderson TJ, Vaughan AM, Romero-Severson J, Ferdig MT. Measuring Growth, Resistance, and Recovery after Artemisinin Treatment of Plasmodium falciparum in a single semi-high-throughput Assay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623064. [PMID: 39605531 PMCID: PMC11601240 DOI: 10.1101/2024.11.11.623064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Artemisinin partial resistance (ART-R) has spread throughout Southeast Asia and mutations in pfKelch13, the molecular marker of resistance, are widely reported in East Africa. Effective in vitro assays and robust phenotypes are crucial for monitoring populations for the emergence and spread of resistance. The recently developed extended Recovery Ring-stage Survival Assay used a qPCR-based readout to reduce the labor intensiveness for in vitro phenotyping of ART-R and improved correlation with the clinical phenotype of ART-R. Here, we extend and refine this assay to include measurements of parasite growth and recovery after drug exposure. Clinical isolates and progeny from two genetic crosses were used to optimize and validate the reliability of a straight-from-blood, SYBR Green-based qPCR protocol in a 96-well plate format to accurately measure phenotypes for Growth, Resistance, and Recovery. Results The assay determined growth between 6 h and 96 h, resistance at 120 h, and recovery from 120 h and 192 h. Growth can be accurately captured by qPCR and is shown by reproduction of previous growth phenotypes from HB3 × Dd2. Resistance measured at 120 h continually shows the most consistent phenotype for ring stage susceptibility. Recovery identifies an additional response to drug than parasites that are determined sensitive by Fold Change at 120 h. Comparison of progeny phenotypes for Growth vs Resistance showed a minor but significant correlation, whereas Growth vs Recovery and Resistance vs Recovery showed no significant correlation. Additionally, dried blood spot (DBS) samples matched Fold Change measured from liquid samples demonstrating Resistance can be easily quantified using either storage method. Conclusions The qPCR-based methodology provides the throughput needed to quickly measure large numbers of parasites for multiple relevant phenotypes. Growth can reveal fitness defects and illuminate relationships between proliferation rates and drug response. Recovery serves as a complementary phenotype to resistance that quantifies the ability of sensitive parasites to tolerate drug exposure. All three phenotypes offer a comprehensive assessment of parasite-drug interaction each with independent genetic determinants of main effect and overlapping secondary effects that should be further. By adapting our method to include DBS, readouts can be easily extended to ex vivo surveillance applications.
Collapse
Affiliation(s)
- Mackenzie A.C. Sievert
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Puspendra P. Singh
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Douglas A. Shoue
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Lisa A. Checkley
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Katelyn M. Brenneman
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Tarrick Qahash
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Zione Cassady
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Xue Li
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - François H. Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
| | | | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Jeanne Romero-Severson
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Michael T. Ferdig
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
12
|
Fola AA, Kobayashi T, Hamapumbu H, Musonda M, Katowa B, Matoba J, Stevenson JC, Norris DE, Thuma PE, Wesolowski A, Moss WJ, Juliano JJ, Bailey JA. Temporal genomics in Southern Zambia shows rising prevalence of Plasmodium falciparum mutations linked to delayed clearance after artemisinin-lumefantrine treatment. Sci Rep 2024; 14:26789. [PMID: 39500918 PMCID: PMC11538544 DOI: 10.1038/s41598-024-76442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
The emergence of antimalarial drug resistance is an impediment to malaria control and elimination in Africa. Analysis of temporal trends in molecular markers of resistance is critical to inform policy makers and guide malaria treatment guidelines. In a low and seasonal transmission region of southern Zambia, we successfully genotyped 85.5% (389/455) of Plasmodium falciparum samples collected between 2013 and 2018 from 8 spatially clustered health centres using molecular inversion probes (MIPs) targeting key drug resistance genes. Aside from one sample from 2016 carrying K13 622I, no other World Health Organization-validated or candidate artemisinin partial resistance (ART-R) mutations were observed. However, in the more recent years (2016-2017) five novel K13-propeller-domain mutations, C532S, A578S, Q613E, D680N and G718S were identified at low prevalence. Moreover, 13% (CI, 9.6-17.2) of isolates had the AP2MU 160N mutation, which has been associated with delayed clearance following artemisinin combination therapy in Africa. This mutation increased in prevalence between 2015 and 2018 and bears a genomic signature of selection. During this time period, there was an increase in the MDR1 NFD haplotype that is associated with reduced susceptibility to lumefantrine. Sulfadoxine-pyrimethamine polymorphisms were near fixation. While validated ART-R mutations are rare, a mutation associated with slow parasite clearance in Africa appears to be under selection in southern Zambia.
Collapse
Affiliation(s)
- Abebe A Fola
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02906, USA
| | - Tamaki Kobayashi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | | | | | | | | | | | - Douglas E Norris
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | | | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - William J Moss
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Jonathan J Juliano
- Institute for Global Health and Infectious Diseases, University of North Carolina Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Infectious Diseases, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02906, USA.
| |
Collapse
|
13
|
Lee C, Ünlü ES, White NFD, Almagro-Garcia J, Ariani C, Pearson RD. Pf-HaploAtlas: an interactive web app for spatiotemporal analysis of Plasmodium falciparum genes. BIOINFORMATICS (OXFORD, ENGLAND) 2024; 40:btae673. [PMID: 39565917 PMCID: PMC11588202 DOI: 10.1093/bioinformatics/btae673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/04/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
MOTIVATION Monitoring the genomic evolution of Plasmodium falciparum-the most widespread and deadliest of the human-infecting malaria species-is critical for making decisions in response to changes in drug resistance, diagnostic test failures, and vaccine effectiveness. The MalariaGEN data resources are the world's largest whole genome sequencing databases for Plasmodium parasites. The size and complexity of such data is a barrier to many potential end users in both public health and academic research. A user-friendly method for accessing and exploring data on the genetic variation of P. falciparum would greatly enable efforts in studying and controlling malaria. RESULTS We developed Pf-HaploAtlas, a web application enabling exploratory data analysis of genomic variation without requiring advanced technical expertise. The app provides analysis-ready data catalogues and visualizations of amino acid haplotypes for all 5102 core P. falciparum genes. Pf-HaploAtlas facilitates comprehensive spatial and temporal exploration of genes and variants of interest by using data from 16 203 samples, from 33 countries, and spread between the years 1984 and 2018. The scope of Pf-HaploAtlas will expand with each new MalariaGEN Plasmodium data release. AVAILABILITY AND IMPLEMENTATION Pf-HaploAtlas is available online for public use at https://apps.malariagen.net/pf-haploatlas, which allows users to download the underlying amino acid haplotype data for further analyses, and its source code is freely available on GitHub under the MIT licence at https://github.com/malariagen/pf-haploatlas.
Collapse
Affiliation(s)
- Chiyun Lee
- Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - Eyyüb S Ünlü
- Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - Nina F D White
- Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | | | - Cristina Ariani
- Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | | |
Collapse
|
14
|
Ñacata I, Early AM, Boboy J, Neafsey DE, Sáenz FE. Effects of drug pressure and human migration on antimalarial resistance in circulating Plasmodium falciparum malaria parasites in Ecuador. RESEARCH SQUARE 2024:rs.3.rs-4638168. [PMID: 39184096 PMCID: PMC11343295 DOI: 10.21203/rs.3.rs-4638168/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Antimalarial resistance in Plasmodium falciparum is a public health problem in the fight against malaria in Ecuador. Characterizing the molecular epidemiology of drug resistance genes helps to understand the emergence and spread of resistant parasites. In this study, the effects of drug pressure and human migration on antimalarial resistance in P. falciparum were evaluated. Sixty-seven samples from northwestern Ecuador from the 2019-2021 period were analyzed. SNPs in Pfcrt , Pfdhps , Pfdhfr , Pfmdr-1 , Pfk13 and Pfaat1 were identified by Sanger sequencing and whole-genome sequencing. A comparison of the frequencies of the haplotypes was made with data from the 2013-2015 period. Also, nucleotide and haplotype diversity were calculated. The frequencies of the mutant haplotypes, CVM ET in Pfcrt and C I C N I in Pfdhfr , increased. NED F S D F Y in Pfmdr-1 was detected for the first time. While the wild-type haplotypes, SAKAA in Pfdhps and MYRIC in Pfk13 , remained dominant. Interestingly, the A16 V mutation in Pfdhfr that gives resistance to proguanil is reported in Ecuador. In conclusion, parasites resistant to chloroquine ( Pfcrt ) and pyrimethamine ( Pfdhfr ) increased in recent years, while parasites sensitive to sulfadoxine ( Pfdhps ) and artemisinin ( Pfk13 ) prevail in Ecuador. Therefore, the current treatment is still useful against P. falciparum . The frequent human migration between Ecuador and Colombia has likely contributed to the spread of resistant parasites. Keys words : Plasmodium falciparum , resistance, antimalarial, selective pressure, human migration.
Collapse
|
15
|
Md. Yusuf N, Azman AN, Abdul Aziz AA, Ahmad Fuad FA, Nasarudin RN, Hisam S. Evaluation of the binding interactions between Plasmodium falciparum Kelch-13 mutant recombinant proteins with artemisinin. PLoS One 2024; 19:e0306975. [PMID: 39146276 PMCID: PMC11326563 DOI: 10.1371/journal.pone.0306975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/26/2024] [Indexed: 08/17/2024] Open
Abstract
Malaria, an ancient mosquito-borne illness caused by Plasmodium parasites, is mostly treated with Artemisinin Combination Therapy (ACT). However, Single Nucleotide Polymorphisms (SNPs) mutations in the P. falciparum Kelch 13 (PfK13) protein have been associated with artemisinin resistance (ART-R). Therefore, this study aims to generate PfK13 recombinant proteins incorporating of two specific SNPs mutations, PfK13-V494I and PfK13-N537I, and subsequently analyze their binding interactions with artemisinin (ART). The recombinant proteins of PfK13 mutations and the Wild Type (WT) variant were expressed utilizing a standard protein expression protocol with modifications and subsequently purified via IMAC and confirmed with SDS-PAGE analysis and Orbitrap tandem mass spectrometry. The binding interactions between PfK13-V494I and PfK13-N537I propeller domain proteins ART were assessed through Isothermal Titration Calorimetry (ITC) and subsequently validated using fluorescence spectrometry. The protein concentrations obtained were 0.3 mg/ml for PfK13-WT, 0.18 mg/ml for PfK13-V494I, and 0.28 mg/ml for PfK13-N537I. Results obtained for binding interaction revealed an increased fluorescence intensity in the mutants PfK13-N537I (83 a.u.) and PfK13-V494I (143 a.u.) compared to PfK13-WT (33 a.u.), indicating increased exposure of surface proteins because of the looser binding between PfK13 protein mutants with ART. This shows that the PfK13 mutations may induce alterations in the binding interaction with ART, potentially leading to reduced effectiveness of ART and ultimately contributing to ART-R. However, this study only elucidated one facet of the contributing factors that could serve as potential indicators for ART-R and further investigation should be pursued in the future to comprehensively explore this complex mechanism of ART-R.
Collapse
Affiliation(s)
- Noorazian Md. Yusuf
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institute of Health, Shah Alam, Malaysia
| | - Aisya Nazura Azman
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institute of Health, Shah Alam, Malaysia
- Department of Chemical Engineering & Sustainability, Faculty of Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Amirul Adli Abdul Aziz
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institute of Health, Shah Alam, Malaysia
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM) Cawangan Negeri Sembilan, Kampus Kuala Pilah, Kuala Pilah, Malaysia
| | - Fazia Adyani Ahmad Fuad
- Department of Chemical Engineering & Sustainability, Faculty of Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Ruhayatun Naimah Nasarudin
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institute of Health, Shah Alam, Malaysia
| | - Shamilah Hisam
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institute of Health, Shah Alam, Malaysia
| |
Collapse
|
16
|
Fola AA, Ciubotariu II, Dorman J, Mwenda MC, Mambwe B, Mulube C, Kasaro R, Hawela MB, Hamainza B, Miller JM, Bailey JA, Moss WJ, Bridges DJ, Carpi G. National genomic profiling of Plasmodium falciparum antimalarial resistance in Zambian children participating in the 2018 Malaria Indicator Survey. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.05.24311512. [PMID: 39148823 PMCID: PMC11326323 DOI: 10.1101/2024.08.05.24311512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The emergence of antimalarial drug resistance is a major threat to malaria control and elimination. Using whole genome sequencing of 282 P. falciparum samples collected during the 2018 Zambia National Malaria Indicator Survey, we determined the prevalence and spatial distribution of known and candidate antimalarial drug resistance mutations. High levels of genotypic resistance were found across Zambia to pyrimethamine, with over 94% (n=266) of samples having the Pfdhfr triple mutant (N51I, C59R, and S108N), and sulfadoxine, with over 84% (n=238) having the Pfdhps double mutant (A437G and K540E). In northern Zambia, 5.3% (n=15) of samples also harbored the Pfdhps A581G mutation. Although 29 mutations were identified in Pfkelch13, these mutations were present at low frequency (<2.5%), and only three were WHO-validated artemisinin partial resistance mutations: P441L (n=1, 0.35%), V568M (n=2, 0.7%) and R622T (n=1, 0.35%). Notably, 91 (32%) of samples carried the E431K mutation in the Pfatpase6 gene, which is associated with artemisinin resistance. No specimens carried any known mutations associated with chloroquine resistance in the Pfcrt gene (codons 72-76). P. falciparum strains circulating in Zambia were highly resistant to sulfadoxine and pyrimethamine but remained susceptible to chloroquine and artemisinin. Despite this encouraging finding, early genetic signs of developing artemisinin resistance highlight the urgent need for continued vigilance and expanded routine genomic surveillance to monitor these changes.
Collapse
Affiliation(s)
- Abebe A. Fola
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02903, USA
| | - Ilinca I. Ciubotariu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jack Dorman
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Mulenga C. Mwenda
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Brenda Mambwe
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Conceptor Mulube
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Rachael Kasaro
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Moonga B. Hawela
- National Malaria Elimination Centre, Zambia Ministry of Health, Chainama Hospital Grounds, Lusaka, Zambia
| | - Busiku Hamainza
- National Malaria Elimination Centre, Zambia Ministry of Health, Chainama Hospital Grounds, Lusaka, Zambia
| | - John M. Miller
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Jeffrey A. Bailey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02903, USA
| | - William J. Moss
- The Johns Hopkins Malaria Research Institute, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Daniel J. Bridges
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Giovanna Carpi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- The Johns Hopkins Malaria Research Institute, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
17
|
Kane J, Li X, Kumar S, Button-Simons KA, Vendrely Brenneman KM, Dahlhoff H, Sievert MAC, Checkley LA, Shoue DA, Singh PP, Abatiyow BA, Haile MT, Nair S, Reyes A, Tripura R, Peto TJ, Lek D, Mukherjee A, Kappe SHI, Dhorda M, Nkhoma SC, Cheeseman IH, Vaughan AM, Anderson TJC, Ferdig MT. A Plasmodium falciparum genetic cross reveals the contributions of pfcrt and plasmepsin II/III to piperaquine drug resistance. mBio 2024; 15:e0080524. [PMID: 38912775 PMCID: PMC11253641 DOI: 10.1128/mbio.00805-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Piperaquine (PPQ) is widely used in combination with dihydroartemisinin as a first-line treatment against malaria. Multiple genetic drivers of PPQ resistance have been reported, including mutations in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and increased copies of plasmepsin II/III (pm2/3). We generated a cross between a Cambodia-derived multidrug-resistant KEL1/PLA1 lineage isolate (KH004) and a drug-susceptible Malawian parasite (Mal31). Mal31 harbors a wild-type (3D7-like) pfcrt allele and a single copy of pm2/3, while KH004 has a chloroquine-resistant (Dd2-like) pfcrt allele with an additional G367C substitution and multiple copies of pm2/3. We recovered 104 unique recombinant parasites and examined a targeted set of progeny representing all possible combinations of variants at pfcrt and pm2/3. We performed a detailed analysis of competitive fitness and a range of PPQ susceptibility phenotypes with these progenies, including PPQ survival assay, area under the dose response curve, and a limited point IC50. We find that inheritance of the KH004 pfcrt allele is required for reduced PPQ sensitivity, whereas copy number variation in pm2/3 further decreases susceptibility but does not confer resistance in the absence of additional mutations in pfcrt. A deep investigation of genotype-phenotype relationships demonstrates that progeny clones from experimental crosses can be used to understand the relative contributions of pfcrt, pm2/3, and parasite genetic background to a range of PPQ-related traits. Additionally, we find that the resistance phenotype associated with parasites inheriting the G367C substitution in pfcrt is consistent with previously validated PPQ resistance mutations in this transporter.IMPORTANCEResistance to piperaquine, used in combination with dihydroartemisinin, has emerged in Cambodia and threatens to spread to other malaria-endemic regions. Understanding the causal mutations of drug resistance and their impact on parasite fitness is critical for surveillance and intervention and can also reveal new avenues to limiting the evolution and spread of drug resistance. An experimental genetic cross is a powerful tool for pinpointing the genetic determinants of key drug resistance and fitness phenotypes and has the distinct advantage of quantifying the effects of naturally evolved genetic variation. Our study was strengthened since the full range of copies of KH004 pm2/3 was inherited among the progeny clones, allowing us to directly test the role of the pm2/3 copy number on resistance-related phenotypes in the context of a unique pfcrt allele. Our multigene model suggests an important role for both loci in the evolution of this multidrug-resistant parasite lineage.
Collapse
Affiliation(s)
- John Kane
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Xue Li
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Katrina A. Button-Simons
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Katelyn M. Vendrely Brenneman
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Haley Dahlhoff
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Mackenzie A. C. Sievert
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Lisa A. Checkley
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Douglas A. Shoue
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Puspendra P. Singh
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Biley A. Abatiyow
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Meseret T. Haile
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Shalini Nair
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Ann Reyes
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Rupam Tripura
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, United Kingdom
| | - Thomas J. Peto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, United Kingdom
| | - Dysoley Lek
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
- School of Public Health, National Institute of Public Health, Phnom Penh, Cambodia
| | - Angana Mukherjee
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, USA
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Mehul Dhorda
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, United Kingdom
| | - Standwell C. Nkhoma
- BEI Resources, American Type Culture Collection (ATCC), Manassas, Virginia, USA
| | - Ian H. Cheeseman
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Timothy J. C. Anderson
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Michael T. Ferdig
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
18
|
Tran THT, Hien BTT, Dung NTL, Huong NT, Binh TT, Van Long N, Ton ND. Evaluation of Dihydroartemisinin-Piperaquine Efficacy and Molecular Markers in Uncomplicated Falciparum Patients: A Study across Binh Phuoc and Dak Nong, Vietnam. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1013. [PMID: 38929629 PMCID: PMC11205605 DOI: 10.3390/medicina60061013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: Malaria continues to be a significant global health challenge. The efficacy of artemisinin-based combination therapies (ACTs) has declined in many parts of the Greater Mekong Subregion, including Vietnam, due to the spread of resistant malaria strains. This study was conducted to assess the efficacy of the Dihydroartemisinin (DHA)-Piperaquine (PPQ) regimen in treating uncomplicated falciparum malaria and to conduct molecular surveillance of antimalarial drug resistance in Binh Phuoc and Dak Nong provinces. Materials and Methods: The study included 63 uncomplicated malaria falciparum patients from therapeutic efficacy studies (TES) treated following the WHO treatment guidelines (2009). Molecular marker analysis was performed on all 63 patients. Methods encompassed Sanger sequencing for pfK13 mutations and quantitative real-time PCR for the pfpm2 gene. Results: This study found a marked decrease in the efficacy of the DHA-PPQ regimen, with an increased rate of treatment failures at two study sites. Genetic analysis revealed a significant presence of pfK13 mutations and pfpm2 amplifications, indicating emerging resistance to artemisinin and its partner drug. Conclusions: The effectiveness of the standard DHA-PPQ regimen has sharply declined, with rising treatment failure rates. This decline necessitates a review and possible revision of national malaria treatment guidelines. Importantly, molecular monitoring and clinical efficacy assessments together provide a robust framework for understanding and addressing detection drug resistance in malaria.
Collapse
Affiliation(s)
- Thu Huyen Thi Tran
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi 100000, Vietnam; (T.H.T.T.); (B.T.T.H.); (N.T.L.D.); (N.V.L.)
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Bui Thi Thu Hien
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi 100000, Vietnam; (T.H.T.T.); (B.T.T.H.); (N.T.L.D.); (N.V.L.)
| | - Nguyen Thi Lan Dung
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi 100000, Vietnam; (T.H.T.T.); (B.T.T.H.); (N.T.L.D.); (N.V.L.)
| | - Nguyen Thi Huong
- National Burn Hospital, Vietnam Military Medical University, Hanoi 100000, Vietnam
| | - Tran Thanh Binh
- 103 Hospital, Vietnam Military Medical University, Hanoi 100000, Vietnam;
| | - Nguyen Van Long
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi 100000, Vietnam; (T.H.T.T.); (B.T.T.H.); (N.T.L.D.); (N.V.L.)
| | - Nguyen Dang Ton
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| |
Collapse
|
19
|
Fola AA, Kobayashi T, Shields T, Hamapumbu H, Musonda M, Katowa B, Matoba J, Stevenson JC, Norris DE, Thuma PE, Wesolowski A, Moss WJ, Juliano JJ, Bailey JA. Temporal genomic analysis of Plasmodium falciparum reveals increased prevalence of mutations associated with delayed clearance following treatment with artemisinin-lumefantrine in Choma District, Southern Province, Zambia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.05.24308497. [PMID: 38883763 PMCID: PMC11178023 DOI: 10.1101/2024.06.05.24308497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The emergence of antimalarial drug resistance is an impediment to malaria control and elimination in Africa. Analysis of temporal trends in molecular markers of resistance is critical to inform policy makers and guide malaria treatment guidelines. In a low and seasonal transmission region of southern Zambia, we successfully genotyped 85.5% (389/455) of Plasmodium falciparum samples collected between 2013-2018 from 8 spatially clustered health centres using molecular inversion probes (MIPs) targeting key drug resistance genes. Aside from one sample carrying K13 R622I, none of the isolates carried other World Health Organization-validated or candidate artemisinin partial resistance (ART-R) mutations in K13. However, 13% (CI, 9.6-17.2) of isolates had the AP2MU S160N mutation, which has been associated with delayed clearance following artemisinin combination therapy in Africa. This mutation increased in prevalence between 2015-2018 and bears a genomic signature of selection. During this time period, there was an increase in the MDR1 NFD haplotype that is associated with reduced susceptibility to lumefantrine. Sulfadoxine-pyrimethamine polymorphisms were near fixation. While validated ART-R mutations are rare, a mutation associated with slow parasite clearance in Africa appears to be under selection in southern Zambia.
Collapse
Affiliation(s)
- Abebe A. Fola
- Department of Pathology and Laboratory Medicine, Brown University, RI, USA, 02906
| | - Tamaki Kobayashi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA, 21205
| | - Timothy Shields
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA, 21205
| | | | | | - Ben Katowa
- Macha Research Trust, Choma District, Zambia
| | | | | | - Douglas E. Norris
- Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA, 21205
| | | | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA, 21205
| | - William J. Moss
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA, 21205
- Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA, 21205
| | - Jonathan J. Juliano
- Institute for Global Health and Infectious Diseases, University of North Carolina Chapel Hill, NC, USA, 27599
- Division of Infectious Diseases, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina Chapel Hill, Chapel Hill, NC, USA, 27599
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599
| | - Jeffrey A. Bailey
- Department of Pathology and Laboratory Medicine, Brown University, RI, USA, 02906
| |
Collapse
|
20
|
Sharma P, Tandel N, Kumar R, Negi S, Sharma P, Devi S, Saxena K, Chaudhary NR, Saini S, Kumar R, Chandel BS, Sijwali PS, Tyagi RK. Oleuropein activates autophagy to circumvent anti-plasmodial defense. iScience 2024; 27:109463. [PMID: 38562521 PMCID: PMC10982566 DOI: 10.1016/j.isci.2024.109463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Antimalarial drug resistance and unavailability of effective vaccine warrant for newer drugs and drug targets. Hence, anti-inflammatory activity of phyto-compound (oleuropein; OLP) was determined in antigen (LPS)-stimulated human THP-1 macrophages (macrophage model of inflammation; MMI). Reduction in the inflammation was controlled by the PI3K-Akt1 signaling to establish the "immune-homeostasis." Also, OLP treatment influenced the cell death/autophagy axis leading to the modulated inflammation for extended cell survival. The findings with MII prompted us to detect the antimalarial activity of OLP in the wild type (3D7), D10-expressing GFP-Atg18 parasite, and chloroquine-resistant (Dd2) parasite. OLP did not show the parasite inhibition in the routine in vitro culture of P. falciparum whereas OLP increased the antimalarial activity of artesunate. The molecular docking of autophagy-related proteins, investigations with MMI, and parasite inhibition assays indicated that the host activated the autophagy to survive OLP pressure. The challenge model of P. berghei infection showed to induce autophagy for circumventing anti-plasmodial defenses.
Collapse
Affiliation(s)
- Praveen Sharma
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India
| | - Nikunj Tandel
- Institute of Science, Nirma University, SG highway, Ahmedabad 382481, India
| | - Rajinder Kumar
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India
| | - Sushmita Negi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
| | - Prakriti Sharma
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India
| | - Sonia Devi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
| | - Kanika Saxena
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
- CSIR-Centre for Cellular & Molecular Biology, Hyderabad, Telangana, India
| | - Neil Roy Chaudhary
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India
| | - Sheetal Saini
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India
| | - Reetesh Kumar
- Faculty of Agricultural Sciences, Institute of Applied Sciences & Humanities, GLA University, Mathura 281406, India
| | - Bharat Singh Chandel
- Department of Animal Biotechnology, College of Veterinary Science and AH, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Gujarat 385 506, India
| | - Puran S. Sijwali
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
- CSIR-Centre for Cellular & Molecular Biology, Hyderabad, Telangana, India
| | - Rajeev K. Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
21
|
Fola AA, He Q, Xie S, Thimmapuram J, Bhide KP, Dorman J, Ciubotariu II, Mwenda MC, Mambwe B, Mulube C, Hawela M, Norris DE, Moss WJ, Bridges DJ, Carpi G. Genomics reveals heterogeneous Plasmodium falciparum transmission and selection signals in Zambia. COMMUNICATIONS MEDICINE 2024; 4:67. [PMID: 38582941 PMCID: PMC10998850 DOI: 10.1038/s43856-024-00498-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/28/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Genomic surveillance is crucial for monitoring malaria transmission and understanding parasite adaptation to interventions. Zambia lacks prior nationwide efforts in malaria genomic surveillance among African countries. METHODS We conducted genomic surveillance of Plasmodium falciparum parasites from the 2018 Malaria Indicator Survey in Zambia, a nationally representative household survey of children under five years of age. We whole-genome sequenced and analyzed 241 P. falciparum genomes from regions with varying levels of malaria transmission across Zambia and estimated genetic metrics that are informative about transmission intensity, genetic relatedness between parasites, and selection. RESULTS We provide genomic evidence of widespread within-host polygenomic infections, regardless of epidemiological characteristics, underscoring the extensive and ongoing endemic malaria transmission in Zambia. Our analysis reveals country-level clustering of parasites from Zambia and neighboring regions, with distinct separation in West Africa. Within Zambia, identity by descent (IBD) relatedness analysis uncovers local spatial clustering and rare cases of long-distance sharing of closely related parasite pairs. Genomic regions with large shared IBD segments and strong positive selection signatures implicate genes involved in sulfadoxine-pyrimethamine and artemisinin combination therapies drug resistance, but no signature related to chloroquine resistance. Furthermore, differences in selection signatures, including drug resistance loci, are observed between eastern and western Zambian parasite populations, suggesting variable transmission intensity and ongoing drug pressure. CONCLUSIONS Our findings enhance our understanding of nationwide P. falciparum transmission in Zambia, establishing a baseline for analyzing parasite genetic metrics as they vary over time and space. These insights highlight the urgency of strengthening malaria control programs and surveillance of antimalarial drug resistance.
Collapse
Affiliation(s)
- Abebe A Fola
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Shaojun Xie
- Bioinformatics Core, Purdue University, Purdue University, West Lafayette, IN, USA
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, Purdue University, West Lafayette, IN, USA
| | - Ketaki P Bhide
- Bioinformatics Core, Purdue University, Purdue University, West Lafayette, IN, USA
| | - Jack Dorman
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Ilinca I Ciubotariu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Mulenga C Mwenda
- PATH-MACEPA, National Malaria Elimination Centre, Lusaka, Zambia
| | - Brenda Mambwe
- PATH-MACEPA, National Malaria Elimination Centre, Lusaka, Zambia
| | - Conceptor Mulube
- PATH-MACEPA, National Malaria Elimination Centre, Lusaka, Zambia
| | - Moonga Hawela
- PATH-MACEPA, National Malaria Elimination Centre, Lusaka, Zambia
| | - Douglas E Norris
- The Johns Hopkins Malaria Research Institute, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - William J Moss
- The Johns Hopkins Malaria Research Institute, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Giovanna Carpi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
- The Johns Hopkins Malaria Research Institute, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Purdue Institute for Inflammation, Immunology, & Infectious Disease, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
22
|
Zeng W, Zhao W, Wei H, Qin Y, Xiang Z, Wu Y, Chen X, Zhang Y, Zhao H, Duan M, Zhu W, Sun K, Wu Y, Liang T, Mou Y, Liu C, Tang X, Huang Y, Cui L, Yang Z. Absence of association between Pfnfs1 mutation and in vitro susceptibility to lumefantrine in Plasmodium falciparum. Int J Parasitol Drugs Drug Resist 2024; 24:100532. [PMID: 38520842 PMCID: PMC10979268 DOI: 10.1016/j.ijpddr.2024.100532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Abstract
Artemether-lumefantrine (AL) is the most widely used antimalarial drug for treating uncomplicated falciparum malaria. This study evaluated whether the K65Q mutation in the Plasmodium falciparum cysteine desulfurase IscS (Pfnfs1) gene was associated with alternated susceptibility to lumefantrine using clinical parasite samples from Ghana and the China-Myanmar border area. Parasite isolates from the China-Myanmar border had significantly higher IC50 values to lumefantrine than parasites from Ghana. In addition, the K65 allele was significantly more prevalent in the Ghanaian parasites (34.5%) than in the China-Myanmar border samples (6.8%). However, no difference was observed in the lumefantrine IC50 value between the Pfnfs1 reference K65 allele and the non reference 65Q allele in parasites from the two regions. These data suggest that the Pfnfs1 K65Q mutation may not be a reliable marker for reduced susceptibility to lumefantrine.
Collapse
Affiliation(s)
- Weilin Zeng
- Yunnan Provincial Key Laboratory of Public Health and Biosafety & Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Wei Zhao
- Yunnan Provincial Key Laboratory of Public Health and Biosafety & Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Hao Wei
- Chinese Center for Tropical Diseases Research, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Clinical Research Alliance for Parasitic Diseases Related Infectious Diseases, Department of Infectious Diseases, Shanglin County People's Hospital, Guangxi, China
| | - Yucheng Qin
- Chinese Center for Tropical Diseases Research, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Clinical Research Alliance for Parasitic Diseases Related Infectious Diseases, Department of Infectious Diseases, Shanglin County People's Hospital, Guangxi, China
| | - Zheng Xiang
- Yunnan Provincial Key Laboratory of Public Health and Biosafety & Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Yanrui Wu
- Yunnan Provincial Key Laboratory of Public Health and Biosafety & Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Xi Chen
- Yunnan Provincial Key Laboratory of Public Health and Biosafety & Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Yanmei Zhang
- Yunnan Provincial Key Laboratory of Public Health and Biosafety & Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Hui Zhao
- Yunnan Provincial Key Laboratory of Public Health and Biosafety & Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Mengxi Duan
- Yunnan Provincial Key Laboratory of Public Health and Biosafety & Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Wenya Zhu
- Yunnan Provincial Key Laboratory of Public Health and Biosafety & Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Kemin Sun
- Yunnan Provincial Key Laboratory of Public Health and Biosafety & Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Yiman Wu
- Yunnan Provincial Key Laboratory of Public Health and Biosafety & Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Tao Liang
- Yunnan Provincial Key Laboratory of Public Health and Biosafety & Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Ye Mou
- Yunnan Provincial Key Laboratory of Public Health and Biosafety & Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Cheng Liu
- Yunnan Provincial Key Laboratory of Public Health and Biosafety & Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Xiuya Tang
- Yunnan Provincial Key Laboratory of Public Health and Biosafety & Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Yaming Huang
- Department of Protozoan Diseases, Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning, China
| | - Liwang Cui
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| | - Zhaoqing Yang
- Yunnan Provincial Key Laboratory of Public Health and Biosafety & Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
23
|
Xu R, Lin L, Jiao Z, Liang R, Guo Y, Zhang Y, Shang X, Wang Y, Wang X, Yao L, Liu S, Deng X, Yuan J, Su XZ, Li J. Deaggregation of mutant Plasmodium yoelii de-ubiquitinase UBP1 alters MDR1 localization to confer multidrug resistance. Nat Commun 2024; 15:1774. [PMID: 38413566 PMCID: PMC10899652 DOI: 10.1038/s41467-024-46006-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/09/2024] [Indexed: 02/29/2024] Open
Abstract
Mutations in a Plasmodium de-ubiquitinase UBP1 have been linked to antimalarial drug resistance. However, the UBP1-mediated drug-resistant mechanism remains unknown. Through drug selection, genetic mapping, allelic exchange, and functional characterization, here we show that simultaneous mutations of two amino acids (I1560N and P2874T) in the Plasmodium yoelii UBP1 can mediate high-level resistance to mefloquine, lumefantrine, and piperaquine. Mechanistically, the double mutations are shown to impair UBP1 cytoplasmic aggregation and de-ubiquitinating activity, leading to increased ubiquitination levels and altered protein localization, from the parasite digestive vacuole to the plasma membrane, of the P. yoelii multidrug resistance transporter 1 (MDR1). The MDR1 on the plasma membrane enhances the efflux of substrates/drugs out of the parasite cytoplasm to confer multidrug resistance, which can be reversed by inhibition of MDR1 transport. This study reveals a previously unknown drug-resistant mechanism mediated by UBP1 through altered MDR1 localization and substrate transport direction in a mouse model, providing a new malaria treatment strategy.
Collapse
Affiliation(s)
- Ruixue Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lirong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhiwei Jiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Rui Liang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yazhen Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yixin Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaoxu Shang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yuezhou Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xu Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Luming Yao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shengfa Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20850, USA.
| | - Jian Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
24
|
Wiser MF. The Digestive Vacuole of the Malaria Parasite: A Specialized Lysosome. Pathogens 2024; 13:182. [PMID: 38535526 PMCID: PMC10974218 DOI: 10.3390/pathogens13030182] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/11/2025] Open
Abstract
The malaria parasite resides within erythrocytes during one stage of its life cycle. During this intraerythrocytic period, the parasite ingests the erythrocyte cytoplasm and digests approximately two-thirds of the host cell hemoglobin. This digestion occurs within a lysosome-like organelle called the digestive vacuole. Several proteases are localized to the digestive vacuole and these proteases sequentially breakdown hemoglobin into small peptides, dipeptides, and amino acids. The peptides are exported into the host cytoplasm via the chloroquine-resistance transporter and an amino acid transporter has also been identified on the digestive vacuole membrane. The environment of the digestive vacuole also provides appropriate conditions for the biocrystallization of toxic heme into non-toxic hemozoin by a poorly understood process. Hemozoin formation is an attribute of Plasmodium and Haemoproteus and is not exhibited by other intraerythrocytic protozoan parasites. The efficient degradation of hemoglobin and detoxification of heme likely plays a major role in the high level of replication exhibited by malaria parasites within erythrocytes. Unique features of the digestive vacuole and the critical importance of nutrient acquisition provide therapeutic targets for the treatment of malaria.
Collapse
Affiliation(s)
- Mark F Wiser
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112-2824, USA
| |
Collapse
|
25
|
Fola AA, He Q, Xie S, Thimmapuram J, Bhide KP, Dorman J, Ciubotariu II, Mwenda MC, Mambwe B, Mulube C, Hawela M, Norris DE, Moss WJ, Bridges DJ, Carpi G. Genomics reveals heterogeneous Plasmodium falciparum transmission and population differentiation in Zambia and bordering countries. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.09.24302570. [PMID: 38370674 PMCID: PMC10871455 DOI: 10.1101/2024.02.09.24302570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Genomic surveillance plays a critical role in monitoring malaria transmission and understanding how the parasite adapts in response to interventions. We conducted genomic surveillance of malaria by sequencing 241 Plasmodium falciparum genomes from regions with varying levels of malaria transmission across Zambia. We found genomic evidence of high levels of within-host polygenomic infections, regardless of epidemiological characteristics, underscoring the extensive and ongoing endemic malaria transmission in the country. We identified country-level clustering of parasites from Zambia and neighboring countries, and distinct clustering of parasites from West Africa. Within Zambia, our identity by descent (IBD) relatedness analysis uncovered spatial clustering of closely related parasite pairs at the local level and rare cases of long-distance sharing. Genomic regions with large shared IBD segments and strong positive selection signatures identified genes involved in sulfadoxine-pyrimethamine and artemisinin combination therapies drug resistance, but no signature related to chloroquine resistance. Together, our findings enhance our understanding of P. falciparum transmission nationwide in Zambia and highlight the urgency of strengthening malaria control programs and surveillance of antimalarial drug resistance.
Collapse
Affiliation(s)
- Abebe A. Fola
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Shaojun Xie
- Bioinformatics Core, Purdue University, Purdue University, West Lafayette, IN, USA
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, Purdue University, West Lafayette, IN, USA
| | - Ketaki P. Bhide
- Bioinformatics Core, Purdue University, Purdue University, West Lafayette, IN, USA
| | - Jack Dorman
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | | | | | - Brenda Mambwe
- PATH-MACEPA, National Malaria Elimination Centre, Lusaka, Zambia
| | - Conceptor Mulube
- PATH-MACEPA, National Malaria Elimination Centre, Lusaka, Zambia
| | - Moonga Hawela
- PATH-MACEPA, National Malaria Elimination Centre, Lusaka, Zambia
| | - Douglas E. Norris
- The Johns Hopkins Malaria Research Institute, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - William J. Moss
- The Johns Hopkins Malaria Research Institute, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Giovanna Carpi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- The Johns Hopkins Malaria Research Institute, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Purdue Institute for Inflammation, Immunology, & Infectious Disease, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
26
|
Piro F, Masci S, Kannan G, Focaia R, Schultz TL, Thaprawat P, Carruthers VB, Di Cristina M. A Toxoplasma gondii putative amino acid transporter localizes to the plant-like vacuolar compartment and controls parasite extracellular survival and stage differentiation. mSphere 2024; 9:e0059723. [PMID: 38051073 PMCID: PMC10871165 DOI: 10.1128/msphere.00597-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023] Open
Abstract
Toxoplasma gondii is a protozoan parasite that infects a broad spectrum of hosts and can colonize many organs and cell types. The ability to reside within a wide range of different niches requires substantial adaptability to diverse microenvironments. Very little is known about how this parasite senses various milieus and adapts its metabolism to survive, replicate during the acute stage, and then differentiate to the chronic stage. T. gondii possesses a lysosome-like organelle known as the plant-like vacuolar compartment (PLVAC), which serves various functions, including digestion, ion storage and homeostasis, endocytosis, and autophagy. Lysosomes are critical for maintaining cellular health and function by degrading waste materials and recycling components. To supply the cell with the essential building blocks and energy sources required for the maintenance of its functions and structures, the digested solutes generated within the lysosome are transported into the cytosol by proteins embedded in the lysosomal membrane. Currently, a limited number of PLVAC transporters have been characterized, with TgCRT being the sole potential transporter of amino acids and small peptides identified thus far. To bridge this knowledge gap, we used lysosomal amino acid transporters from other organisms as queries to search the T. gondii proteome. This led to the identification of four potential amino acid transporters, which we have designated as TgAAT1-4. Assessing their expression and sub-cellular localization, we found that one of them, TgAAT1, localized to the PLVAC and is necessary for normal parasite extracellular survival and bradyzoite differentiation. Moreover, we present preliminary data showing the possible involvement of TgAAT1 in the PLVAC transport of arginine.IMPORTANCEToxoplasma gondii is a highly successful parasite infecting a broad range of warm-blooded organisms, including about one-third of all humans. Although Toxoplasma infections rarely result in symptomatic disease in individuals with a healthy immune system, the incredibly high number of persons infected, along with the risk of severe infection in immunocompromised patients and the potential link of chronic infection to mental disorders, makes this infection a significant public health concern. As a result, there is a pressing need for new treatment approaches that are both effective and well tolerated. The limitations in understanding how Toxoplasma gondii manages its metabolism to adapt to changing environments and triggers its transformation into bradyzoites have hindered the discovery of vulnerabilities in its metabolic pathways or nutrient acquisition mechanisms to identify new therapeutic targets. In this work, we have shown that the lysosome-like organelle plant-like vacuolar compartment (PLVAC), acting through the putative arginine transporter TgAAT1, plays a pivotal role in regulating the parasite's extracellular survival and differentiation into bradyzoites.
Collapse
Affiliation(s)
- Federica Piro
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Silvia Masci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Geetha Kannan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Riccardo Focaia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Tracey L. Schultz
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Pariyamon Thaprawat
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Manlio Di Cristina
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
27
|
Kebede AM, Sutanto E, Trimarsanto H, Benavente ED, Barnes M, Pearson RD, Siegel SV, Erko B, Assefa A, Getachew S, Aseffa A, Petros B, Lo E, Mohammed R, Yilma D, Rumaseb A, Nosten F, Noviyanti R, Rayner JC, Kwiatkowski DP, Price RN, Golassa L, Auburn S. Genomic analysis of Plasmodium vivax describes patterns of connectivity and putative drivers of adaptation in Ethiopia. Sci Rep 2023; 13:20788. [PMID: 38012191 PMCID: PMC10682486 DOI: 10.1038/s41598-023-47889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
Ethiopia has the greatest burden of Plasmodium vivax in Africa, but little is known about the epidemiological landscape of parasites across the country. We analysed the genomic diversity of 137 P. vivax isolates collected nine Ethiopian districts from 2012 to 2016. Signatures of selection were detected by cross-country comparisons with isolates from Thailand (n = 104) and Indonesia (n = 111), representing regions with low and high chloroquine resistance respectively. 26% (35/137) of Ethiopian infections were polyclonal, and 48.5% (17/35) of these comprised highly related clones (within-host identity-by-descent > 25%), indicating frequent co-transmission and superinfection. Parasite gene flow between districts could not be explained entirely by geographic distance, with economic and cultural factors hypothesised to have an impact on connectivity. Amplification of the duffy binding protein gene (pvdbp1) was prevalent across all districts (16-75%). Cross-population haplotype homozygosity revealed positive selection in a region proximal to the putative chloroquine resistance transporter gene (pvcrt-o). An S25P variant in amino acid transporter 1 (pvaat1), whose homologue has recently been implicated in P. falciparum chloroquine resistance evolution, was prevalent in Ethiopia (96%) but not Thailand or Indonesia (35-53%). The genomic architecture in Ethiopia highlights circulating variants of potential public health concern in an endemic setting with evidence of stable transmission.
Collapse
Affiliation(s)
| | | | - Hidayat Trimarsanto
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Ernest Diez Benavente
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mariana Barnes
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
| | | | | | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ashenafi Assefa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sisay Getachew
- Armauer Hansen Research Unit (AHRI), Addis Ababa, Ethiopia
- Addis Ababa University, Addis Ababa, Ethiopia
- Millipore Sigma (Bioreliance), Rockville, USA
| | - Abraham Aseffa
- Armauer Hansen Research Unit (AHRI), Addis Ababa, Ethiopia
| | | | - Eugenia Lo
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, USA
| | | | - Daniel Yilma
- Jimma University Clinical Trial Unit, Department of Internal Medicine, Jimma University, Jimma, Ethiopia
| | - Angela Rumaseb
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
| | - Francois Nosten
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | - Ric N Price
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sarah Auburn
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
28
|
Schaffner SF, Badiane A, Khorgade A, Ndiop M, Gomis J, Wong W, Ndiaye YD, Diedhiou Y, Thwing J, Seck MC, Early A, Sy M, Deme A, Diallo MA, Sy N, Sene A, Ndiaye T, Sow D, Dieye B, Ndiaye IM, Gaye A, Ndiaye A, Battle KE, Proctor JL, Bever C, Fall FB, Diallo I, Gaye S, Sene D, Hartl DL, Wirth DF, MacInnis B, Ndiaye D, Volkman SK. Malaria surveillance reveals parasite relatedness, signatures of selection, and correlates of transmission across Senegal. Nat Commun 2023; 14:7268. [PMID: 37949851 PMCID: PMC10638404 DOI: 10.1038/s41467-023-43087-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
We here analyze data from the first year of an ongoing nationwide program of genetic surveillance of Plasmodium falciparum parasites in Senegal. The analysis is based on 1097 samples collected at health facilities during passive malaria case detection in 2019; it provides a baseline for analyzing parasite genetic metrics as they vary over time and geographic space. The study's goal was to identify genetic metrics that were informative about transmission intensity and other aspects of transmission dynamics, focusing on measures of genetic relatedness between parasites. We found the best genetic proxy for local malaria incidence to be the proportion of polygenomic infections (those with multiple genetically distinct parasites), although this relationship broke down at low incidence. The proportion of related parasites was less correlated with incidence while local genetic diversity was uninformative. The type of relatedness could discriminate local transmission patterns: two nearby areas had similarly high fractions of relatives, but one was dominated by clones and the other by outcrossed relatives. Throughout Senegal, 58% of related parasites belonged to a single network of relatives, within which parasites were enriched for shared haplotypes at known and suspected drug resistance loci and at one novel locus, reflective of ongoing selection pressure.
Collapse
Affiliation(s)
- Stephen F Schaffner
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Aida Badiane
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Akanksha Khorgade
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Medoune Ndiop
- Programme National de Lutte Contre le Paludisme (PNLP), Dakar, Senegal
| | - Jules Gomis
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Wesley Wong
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Yaye Die Ndiaye
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Younouss Diedhiou
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Julie Thwing
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mame Cheikh Seck
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Angela Early
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Mouhamad Sy
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Awa Deme
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Mamadou Alpha Diallo
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Ngayo Sy
- Section de Lutte Anti-Parasitaire (SLAP) Clinic, Thies, Senegal
| | - Aita Sene
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Tolla Ndiaye
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Djiby Sow
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Baba Dieye
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Ibrahima Mbaye Ndiaye
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Amy Gaye
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Aliou Ndiaye
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Katherine E Battle
- Institute for Disease Modeling in Global Health, Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Joshua L Proctor
- Institute for Disease Modeling in Global Health, Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Caitlin Bever
- Institute for Disease Modeling in Global Health, Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Fatou Ba Fall
- Programme National de Lutte Contre le Paludisme (PNLP), Dakar, Senegal
| | - Ibrahima Diallo
- Programme National de Lutte Contre le Paludisme (PNLP), Dakar, Senegal
| | - Seynabou Gaye
- Programme National de Lutte Contre le Paludisme (PNLP), Dakar, Senegal
| | - Doudou Sene
- Programme National de Lutte Contre le Paludisme (PNLP), Dakar, Senegal
| | - Daniel L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Dyann F Wirth
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Bronwyn MacInnis
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Daouda Ndiaye
- Centre International de recherche, de Formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Sarah K Volkman
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- College of Natural, Behavioral, and Health Sciences, Simmons University, Boston, MA, USA.
| |
Collapse
|
29
|
Mok S, Yeo T, Hong D, Shears MJ, Ross LS, Ward KE, Dhingra SK, Kanai M, Bridgford JL, Tripathi AK, Mlambo G, Burkhard AY, Ansbro MR, Fairhurst KJ, Gil-Iturbe E, Park H, Rozenberg FD, Kim J, Mancia F, Fairhurst RM, Quick M, Uhlemann AC, Sinnis P, Fidock DA. Mapping the genomic landscape of multidrug resistance in Plasmodium falciparum and its impact on parasite fitness. SCIENCE ADVANCES 2023; 9:eadi2364. [PMID: 37939186 PMCID: PMC10631731 DOI: 10.1126/sciadv.adi2364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
Drug-resistant Plasmodium falciparum parasites have swept across Southeast Asia and now threaten Africa. By implementing a P. falciparum genetic cross using humanized mice, we report the identification of key determinants of resistance to artemisinin (ART) and piperaquine (PPQ) in the dominant Asian KEL1/PLA1 lineage. We mapped k13 as the central mediator of ART resistance in vitro and identified secondary markers. Applying bulk segregant analysis, quantitative trait loci mapping using 34 recombinant haplotypes, and gene editing, our data reveal an epistatic interaction between mutant PfCRT and multicopy plasmepsins 2/3 in mediating high-grade PPQ resistance. Susceptibility and parasite fitness assays implicate PPQ as a driver of selection for KEL1/PLA1 parasites. Mutant PfCRT enhanced susceptibility to lumefantrine, the first-line partner drug in Africa, highlighting a potential benefit of opposing selective pressures with this drug and PPQ. We also identified that the ABCI3 transporter can operate in concert with PfCRT and plasmepsins 2/3 in mediating multigenic resistance to antimalarial agents.
Collapse
Affiliation(s)
- Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Davin Hong
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Melanie J. Shears
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Leila S. Ross
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kurt E. Ward
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Satish K. Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mariko Kanai
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Jessica L. Bridgford
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Abhai K. Tripathi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Godfree Mlambo
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Anna Y. Burkhard
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Megan R. Ansbro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Kate J. Fairhurst
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Felix D. Rozenberg
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Matthias Quick
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Anne-Catrin Uhlemann
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
30
|
Henshall IG, Spielmann T. Critical interdependencies between Plasmodium nutrient flux and drugs. Trends Parasitol 2023; 39:936-944. [PMID: 37716852 PMCID: PMC10580322 DOI: 10.1016/j.pt.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/18/2023]
Abstract
Nutrient import and waste efflux are critical dependencies for intracellular Plasmodium falciparum parasites. Nutrient transport proteins are often lineage specific and can provide unique targets for antimalarial drug development. P. falciparum nutrient transport pathways can be a double-edged sword for the parasite, not only mediating the import of nutrients and excretion of waste products but also providing an access route for drugs. Here we briefly summarise the nutrient acquisition pathways of intracellular P. falciparum blood-stage parasites and then highlight how these pathways influence many aspects relevant to antimalarial drugs, resulting in complex and often underappreciated interdependencies.
Collapse
Affiliation(s)
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
31
|
Coonahan E, Gage H, Chen D, Noormahomed EV, Buene TP, Mendes de Sousa I, Akrami K, Chambal L, Schooley RT, Winzeler EA, Cowell AN. Whole-genome surveillance identifies markers of Plasmodium falciparum drug resistance and novel genomic regions under selection in Mozambique. mBio 2023; 14:e0176823. [PMID: 37750720 PMCID: PMC10653802 DOI: 10.1128/mbio.01768-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 09/27/2023] Open
Abstract
IMPORTANCE Malaria is a devastating disease caused by Plasmodium parasites. The evolution of parasite drug resistance continues to hamper progress toward malaria elimination, and despite extensive efforts to control malaria, it remains a leading cause of death in Mozambique and other countries in the region. The development of successful vaccines and identification of molecular markers to track drug efficacy are essential for managing the disease burden. We present an analysis of the parasite genome in Mozambique, a country with one of the highest malaria burdens globally and limited available genomic data, revealing current selection pressure. We contribute additional evidence to limited prior studies supporting the effectiveness of SWGA in producing reliable genomic data from complex clinical samples. Our results provide the identity of genomic loci that may be associated with current antimalarial drug use, including artemisinin and lumefantrine, and reveal selection pressure predicted to compromise the efficacy of current vaccine candidates.
Collapse
Affiliation(s)
- Erin Coonahan
- School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Hunter Gage
- School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Daisy Chen
- Department of Pediatrics, University of California San Diego (UCSD), La Jolla, California, USA
| | - Emilia Virginia Noormahomed
- School of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Microbiology, Parasitology Laboratory, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
- Mozambique Institute of Health Education and Research (MIHER), Maputo, Mozambique
| | - Titos Paulo Buene
- Department of Microbiology, Parasitology Laboratory, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
- Mozambique Institute of Health Education and Research (MIHER), Maputo, Mozambique
| | - Irina Mendes de Sousa
- Mozambique Institute of Health Education and Research (MIHER), Maputo, Mozambique
- Biological Sciences Department, Faculty of Sciences, Eduardo Mondlane University, Maputo, Mozambique
| | - Kevan Akrami
- School of Medicine, University of California San Diego, La Jolla, California, USA
- Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Lucia Chambal
- Mozambique Institute of Health Education and Research (MIHER), Maputo, Mozambique
- Department of Internal Medicine, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
- Maputo Central Hospital, Maputo, Mozambique
| | - Robert T. Schooley
- School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Elizabeth A. Winzeler
- Department of Pediatrics, University of California San Diego (UCSD), La Jolla, California, USA
| | - Annie N. Cowell
- School of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
32
|
Kane J, Li X, Kumar S, Button-Simons KA, Brenneman KMV, Dahlhoff H, Sievert MA, Checkley LA, Shoue DA, Singh PP, Abatiyow BA, Haile MT, Nair S, Reyes A, Tripura R, Peto T, Lek D, Kappe SH, Dhorda M, Nkhoma SC, Cheeseman IH, Vaughan AM, Anderson TJC, Ferdig MT. A Plasmodium falciparum genetic cross reveals the contributions of pfcrt and plasmepsin II/III to piperaquine drug resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543862. [PMID: 37745488 PMCID: PMC10515748 DOI: 10.1101/2023.06.06.543862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Piperaquine (PPQ) is widely used in combination with dihydroartemisinin (DHA) as a first-line treatment against malaria parasites. Multiple genetic drivers of PPQ resistance have been reported, including mutations in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and increased copies of plasmepsin II/III (pm2/3). We generated a cross between a Cambodia-derived multi-drug resistant KEL1/PLA1 lineage isolate (KH004) and a drug susceptible parasite isolated in Malawi (Mal31). Mal31 harbors a wild-type (3D7-like) pfcrt allele and a single copy of pm2/3, while KH004 has a chloroquine-resistant (Dd2-like) pfcrt allele with an additional G367C substitution and four copies of pm2/3. We recovered 104 unique recombinant progeny and examined a targeted set of progeny representing all possible combinations of variants at pfcrt and pm2/3 for detailed analysis of competitive fitness and a range of PPQ susceptibility phenotypes, including PPQ survival assay (PSA), area under the dose-response curve (AUC), and a limited point IC50 (LP-IC50). We find that inheritance of the KH004 pfcrt allele is required for PPQ resistance, whereas copy number variation in pm2/3 further enhances resistance but does not confer resistance in the absence of PPQ-R-associated mutations in pfcrt. Deeper investigation of genotype-phenotype relationships demonstrates that progeny clones from experimental crosses can be used to understand the relative contributions of pfcrt, pm2/3, and parasite genetic background, to a range of PPQ-related traits and confirm the critical role of the PfCRT G367C substitution in PPQ resistance.
Collapse
Affiliation(s)
- John Kane
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Xue Li
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Katrina A. Button-Simons
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | - Haley Dahlhoff
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Mackenzie A.C. Sievert
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Lisa A. Checkley
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Douglas A. Shoue
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Puspendra P. Singh
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Biley A. Abatiyow
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Meseret T. Haile
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Shalini Nair
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ann Reyes
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Rupam Tripura
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
| | - Tom Peto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
| | - Dysoley Lek
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
- School of Public Health, National Institute of Public Health, Phnom Penh, Cambodia
| | - Stefan H.I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Mehul Dhorda
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
| | - Standwell C Nkhoma
- BEI Resources, American Type Culture Collection (ATCC), Manassas, VA, USA
| | - Ian H. Cheeseman
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Timothy J. C. Anderson
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Michael T. Ferdig
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
33
|
Piro F, Masci S, Kannan G, Focaia R, Schultz TL, Carruthers VB, Di Cristina M. A Toxoplasma gondii putative arginine transporter localizes to the plant-like vacuolar compartment and controls parasite extracellular survival and stage differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555807. [PMID: 37693549 PMCID: PMC10491228 DOI: 10.1101/2023.08.31.555807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Toxoplasma gondii is a protozoan parasite that infects a broad spectrum of hosts and can colonize many organs and cell types. The ability to reside within a wide range of different niches requires substantial adaptability to diverse microenvironments. Very little is known about how this parasite senses various milieus and adapts its metabolism to survive, replicate during the acute stage, and then differentiate to the chronic stage. Most eukaryotes, from yeast to mammals, rely on a nutrient sensing machinery involving the TORC complex as master regulator of cell growth and cell cycle progression. The lysosome functions as a signaling hub where TORC complex assembles and is activated by transceptors, which both sense and transport amino acids, including the arginine transceptor SLC38A9. While most of the TORC components are lost in T. gondii , indicating the evolution of a distinct nutrient sensing mechanism, the parasite's lysosomal plant-like vacuolar compartment (PLVAC) may still serve as a sensory platform for controlling parasite growth and differentiation. Using SLC38A9 to query the T. gondii proteome, we identified four putative amino acid transporters, termed TgAAT1-4, that structurally resemble the SLC38A9 arginine transceptor. Assessing their expression and sub-cellular localization, we found that one of them, TgAAT1, localized to the PLVAC and is necessary for normal parasite extracellular survival and bradyzoite differentiation. Moreover, we show that TgAAT1 is involved in the PLVAC efflux of arginine, an amino acid playing a key role in T. gondii differentiation, further supporting the hypothesis that TgAAT1 might play a role in nutrient sensing. IMPORTANCE T. gondii is a highly successful parasite infecting a broad range of warm-blood organisms including about one third of all humans. Although Toxoplasma infections rarely result in symptomatic disease in individuals with a healthy immune system, the incredibly high number of persons infected along with the risk of severe infection in immunocompromised patients and the potential link of chronic infection to mental disorders make this infection a significant public health concern. As a result, there is a pressing need for new treatment approaches that are both effective and well-tolerated. The limitations in understanding how Toxoplasma gondii manages its metabolism to adapt to changing environments and triggers its transformation into bradyzoites have hindered the discovery of vulnerabilities in its metabolic pathways or nutrient acquisition mechanisms to identify new therapeutic targets. In this work, we have shown that the lysosome-like organelle PLVAC, acting through the putative arginine transporter TgAAT1, plays a pivotal role in regulating the parasite's extracellular survival and differentiation into bradyzoites.
Collapse
|
34
|
Sibley CH. Two transporters enable chloroquine resistance in malaria. Nat Microbiol 2023:10.1038/s41564-023-01414-x. [PMID: 37308594 DOI: 10.1038/s41564-023-01414-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
|
35
|
Anand A, Chandana M, Ghosh S, Das R, Singh N, Vaishalli PM, Gantasala NP, Padmanaban G, Nagaraj VA. Significance of Plasmodium berghei Amino Acid Transporter 1 in Food Vacuole Functionality and Its Association with Cerebral Pathogenesis. Microbiol Spectr 2023; 11:e0494322. [PMID: 36976018 PMCID: PMC10101031 DOI: 10.1128/spectrum.04943-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
The food vacuole plays a central role in the blood stage of parasite development by digesting host hemoglobin acquired from red blood cells and detoxifying the host heme released during hemoglobin digestion into hemozoin. Blood-stage parasites undergo periodic schizont bursts, releasing food vacuoles containing hemozoin. Clinical studies in malaria-infected patients and in vivo animal studies have shown the association of hemozoin with disease pathogenesis and abnormal host immune responses in malaria. Here, we perform a detailed in vivo characterization of putative Plasmodium berghei amino acid transporter 1 localized in the food vacuole to understand its significance in the malaria parasite. We show that the targeted deletion of amino acid transporter 1 in Plasmodium berghei leads to a swollen food vacuole phenotype with the accumulation of host hemoglobin-derived peptides. Plasmodium berghei amino acid transporter 1-knockout parasites produce less hemozoin, and the hemozoin crystals display a thin morphology compared with wild-type parasites. The knockout parasites show reduced sensitivity to chloroquine and amodiaquine by showing recrudescence. More importantly, mice infected with the knockout parasites are protected from cerebral malaria and display reduced neuronal inflammation and cerebral complications. Genetic complementation of the knockout parasites restores the food vacuole morphology with hemozoin levels similar to that of wild-type parasites, causing cerebral malaria in the infected mice. The knockout parasites also show a significant delay in male gametocyte exflagellation. Our findings highlight the significance of amino acid transporter 1 in food vacuole functionality and its association with malaria pathogenesis and gametocyte development. IMPORTANCE Food vacuoles of the malaria parasite are involved in the degradation of red blood cell hemoglobin. The amino acids derived from hemoglobin degradation support parasite growth, and the heme released is detoxified into hemozoin. Antimalarials such as quinolines target hemozoin formation in the food vacuole. Food vacuole transporters transport hemoglobin-derived amino acids and peptides from the food vacuole to the parasite cytosol. Such transporters are also associated with drug resistance. Here, we show that the deletion of amino acid transporter 1 in Plasmodium berghei leads to swollen food vacuoles with the accumulation of hemoglobin-derived peptides. The transporter-deleted parasites generate less hemozoin with thin crystal morphology and show reduced sensitivity to quinolines. Mice infected with transporter-deleted parasites are protected from cerebral malaria. There is also a delay in male gametocyte exflagellation, affecting transmission. Our findings uncover the functional significance of amino acid transporter 1 in the life cycle of the malaria parasite.
Collapse
Affiliation(s)
- Aditya Anand
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Manjunatha Chandana
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Sourav Ghosh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Rahul Das
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Nalini Singh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Pradeep Mini Vaishalli
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | | | | | | |
Collapse
|