1
|
Li J, Shi Y, Cui C, Li Y, Ruan C, Cheng T. Unveiling Quantum Coherence Effects in Modulating Electron Transfer in Platinum (II) Donor-Acceptor-Donor Systems. Chemistry 2025; 31:e202404512. [PMID: 39929777 DOI: 10.1002/chem.202404512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Quantum coherence effects (QCEs), arising from the interference of wave-like amplitudes, are crucial in controlling the electron transfer function of molecular systems. Here, we report a coherence phenomenon associated with charge separation (CS) in a range of Pt (II) cis-acetylide donor-acceptor-donor (D-A-D) systems, where the photogenerated Pt (III) center acts as an acceptor connecting two (R)phenothiazine (R = H or tBu) donors. Femtosecond transient absorption spectroscopy revealed that CS rates in D-A-D systems with double CS paths were accelerated by 4-8 times compared to their donor-acceptor (D-A) counterparts with a single path. An enhancement factor of 2-3 in electronic coupling, within the context of interference between CS paths, is derived, providing a clear signature of QCEs. This enhancementin CS processes closely correlates with the strength of coupling between donors. This study highlights the significant impact of QCEs on the photophysical properties of molecular systems and offers insights into charge and energy transport mechanisms in both natural and artificial systems.
Collapse
Affiliation(s)
- Juanjuan Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yuqing Shi
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Can Cui
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yefan Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Chenluwei Ruan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Tao Cheng
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|
2
|
Suhail A, Beniwal S, Kumar R, Kumar A, Bag M. Hybrid halide perovskite quantum dots for optoelectronics applications: recent progress and perspective. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:163002. [PMID: 40014916 DOI: 10.1088/1361-648x/adbb47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
Nanotechnology has transformed optoelectronics through quantum dots (QDs), particularly metal halide perovskite QDs (PQDs). PQDs boast high photoluminescent quantum yield, tunable emission, and excellent defect tolerance without extensive passivation. Quantum confinement effects, which refer to the phenomenon where the motion of charge carriers is restricted to a small region, produce discrete energy levels and blue shifts in these materials. They are ideal for next-generation optoelectronic devices prized for superior optical properties, low cost, and straightforward synthesis. In this review, along with the fundamental physics behind the phenomenon, we have covered advances in synthesis methods such as hot injection, ligand-assisted reprecipitation, ultrasonication, solvothermal, and microwave-assisted that enable precise control over size, shape, and stability, enhancing their suitability for LEDs, lasers, and photodetectors. Challenges include lead toxicity and cost, necessitating research into alternative materials and scalable manufacturing. Furthermore, strategies like doping and surface passivation that improve stability and emission control are discussed comprehensively, and how lead halide perovskites like CsPbBr3undergo phase transitions with temperature, impacting device performance, are also investigated. We have explored various characterization techniques, providing insights into nanocrystal properties and behaviors in our study. This review highlights PQDs' synthesis, physical and optoelectronic properties, and potential applications across diverse technologies.
Collapse
Affiliation(s)
- Atif Suhail
- Advanced Research in Electrochemical Impedance Spectroscopy Laboratory, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Shivang Beniwal
- Advanced Research in Electrochemical Impedance Spectroscopy Laboratory, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, United Kingdom
| | - Ramesh Kumar
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE, 75120 Uppsala, Sweden
| | - Anjali Kumar
- Advanced Research in Electrochemical Impedance Spectroscopy Laboratory, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Monojit Bag
- Advanced Research in Electrochemical Impedance Spectroscopy Laboratory, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
3
|
Baltatu OC, Campos LA, Cipolla-Neto J. Circadian system coordination: new perspectives beyond classical models. Front Physiol 2025; 16:1553736. [PMID: 40144545 PMCID: PMC11936781 DOI: 10.3389/fphys.2025.1553736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Background This review examines novel interaction mechanisms contributing to the robustness of circadian rhythms, focusing on enhanced communication between the suprachiasmatic nucleus (SCN) and peripheral clocks. While classical models explain biological clocks through molecular interactions and biochemical signaling, they incompletely account for several key features: precision maintenance despite cellular noise, rapid system-wide synchronization, and temperature compensation. We propose that the SCN, acting as a central hub, may utilize non-classical mechanisms to maintain robust synchronization of peripheral clocks, contributing to biological timekeeping stability. The clinical implications of this model are significant, potentially offering new approaches for treating circadian-related disorders through quantum-based interventions. Recent advances in quantum biosensors and diagnostic tools show promise for early detection and monitoring of circadian disruptions, while quantum-based therapeutic strategies may provide novel treatments for conditions ranging from sleep disorders to metabolic syndromes. Aim of review To evaluate classical models of circadian rhythm robustness and propose a novel synchronization model incorporating quantum mechanical principles, supported by recent advances in quantum biology and chronobiology, with emphasis on potential clinical applications. Key scientific concepts Recent research in quantum biology suggests potential mechanisms for enhanced circadian system coordination. The proposed model explores how quantum effects, including entanglement and coherence, may facilitate rapid system-wide synchronization and temporal coherence across tissues. These mechanisms could explain features not fully addressed by classical models: precision maintenance in noisy cellular environments, rapid resynchronization following environmental changes, temperature compensation of circadian periods, and sensitivity to weak electromagnetic fields. The framework integrates established chronobiology with quantum biological principles to explain system-wide temporal coordination and suggests new therapeutic approaches for circadian-related disorders.
Collapse
Affiliation(s)
- Ovidiu Constantin Baltatu
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Center of Innovation, Technology, and Education (CITE) at Anhembi Morumbi University – Anima Institute, Sao Jose dos Campos Technology Park, Sao Jose dos Campos, Brazil
| | - Luciana Aparecida Campos
- Center of Innovation, Technology, and Education (CITE) at Anhembi Morumbi University – Anima Institute, Sao Jose dos Campos Technology Park, Sao Jose dos Campos, Brazil
| | - José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Ding X, Cao J, Zheng X, Ye L. Tracking spin flip-flop dynamics of surface molecules with quantum dissipation theory. J Chem Phys 2025; 162:084114. [PMID: 40019200 DOI: 10.1063/5.0248065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/22/2025] [Indexed: 03/01/2025] Open
Abstract
The integration of scanning tunneling microscopy (STM) and electron spin resonance spectroscopy with voltage pulses is an emerging technique to probe the local spin dynamics of surface-adsorbed molecules. However, in experiments, the detection of real-time spin dynamics is severely hampered by the limited temporal resolution of STM electronics, and the associated theoretical investigations are still in their early stages due to various challenges in numerical simulations. In this work, we employ the highly accurate hierarchical equations of motion method to characterize the spin states and track the real-time coherent flip-flop spin dynamics in a surface-adsorbed hydrogenated Ti dimer. Our simulations accurately reproduce the experimental observations and reveal the influences of substrate and pulse duration on the spin decoherence process of the dimer. These achievements provide valuable insights into the coherent spin dynamics of surface-adsorbed molecules and set the stage for the application of surface-adsorbed molecular spins to quantum sensing, quantum information processing, and quantum computing.
Collapse
Affiliation(s)
- Xu Ding
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Vocational University, Suzhou, Jiangsu 215104, China
| | - Jiaan Cao
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Department of Chemistry, Fudan University, Shanghai 200433, China
- Hefei National Laboratory, Hefei, Anhui 230088, China
| | - Lyuzhou Ye
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
5
|
Kobori Y, Kokado Y, Kopp KL, Okamoto T, Fuki M. Anisotropic activations controlling doublet-quartet spin conversion of linked chromophore-radical molecular qubits in fluid. J Chem Phys 2025; 162:054505. [PMID: 39902695 DOI: 10.1063/5.0246608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
Light-energy conversion processes causing alternations in spin multiplicity are attracting attention, but the development of quantum sensing technology applicable to fluid environment such as inside cells has been unexploited. How to achieve efficient energy conversion with controlling spin quantum coherence in a noisy condensed system is challenging. In this study, we investigate the effect of molecular motion on electron spin polarization to control quantum information of three-spin qubits in a fluid environment by using steric effects of organic molecules at room temperature. Using time-resolved electron paramagnetic resonance to observe light-induced generation and transfer of quantum entanglement, we directly observed a photoexcited quartet state generated in a radical-chromophore coupled system and clarified details of the electron spin polarization mechanism including a decoherence effect by activation of anisotropic molecular motion by the steric effects.
Collapse
Affiliation(s)
- Yasuhiro Kobori
- Molecular Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Yuya Kokado
- Faculty of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Kevin Lars Kopp
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Tsubasa Okamoto
- Molecular Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Masaaki Fuki
- Molecular Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
6
|
Colazzo L, Urdaniz C, Jung Y, Fang L, Phark SH, Wolf C, Schneider WD, Heinrich A, Jang WJ. Engineering Spin Interaction Channels of FePc on Au(111). NANO LETTERS 2025; 25:1883-1889. [PMID: 39836867 DOI: 10.1021/acs.nanolett.4c05391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
We demonstrate the reversible control of interactions between a local molecular spin, hosted within an iron phthalocyanine (FePc) molecule, and the conduction electrons of a supporting Au(111) surface. Using the tip of a scanning tunneling microscope, we deliberately and reversibly manipulate the adsorption configuration of the molecule relative to the underlying substrate lattice. Different rotation configurations lead to noticeable changes in the differential conductance measured on the FePc molecules. In one configuration, a Kondo resonance is observed, while in others, spin excitations are revealed. To further explore the impact of the local environment, we designed a series of molecular assemblies in which neighboring molecules surrounding the target molecule are incrementally increased. In this structured approach, we observed a step-by-step transition of the spin excitation state to a Kondo resonance, ultimately resulting in a pure Kondo feature.
Collapse
Affiliation(s)
- Luciano Colazzo
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Ewha Womans University, Seoul 03760, South Korea
| | - Corina Urdaniz
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Ewha Womans University, Seoul 03760, South Korea
| | - Yeonjin Jung
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Lei Fang
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Ewha Womans University, Seoul 03760, South Korea
| | - Soo-Hyon Phark
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Ewha Womans University, Seoul 03760, South Korea
| | - Christoph Wolf
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Ewha Womans University, Seoul 03760, South Korea
| | - Wolf-Dieter Schneider
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institut de Physique, CH-1015 Lausanne, Switzerland
| | - Andreas Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Won-Jun Jang
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Ewha Womans University, Seoul 03760, South Korea
| |
Collapse
|
7
|
Zhang X, Morozova E, Rimbach-Russ M, Jirovec D, Hsiao TK, Fariña PC, Wang CA, Oosterhout SD, Sammak A, Scappucci G, Veldhorst M, Vandersypen LMK. Universal control of four singlet-triplet qubits. NATURE NANOTECHNOLOGY 2025; 20:209-215. [PMID: 39482413 PMCID: PMC11835736 DOI: 10.1038/s41565-024-01817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 09/26/2024] [Indexed: 11/03/2024]
Abstract
The coherent control of interacting spins in semiconductor quantum dots is of strong interest for quantum information processing and for studying quantum magnetism from the bottom up. Here we present a 2 × 4 germanium quantum dot array with full and controllable interactions between nearest-neighbour spins. As a demonstration of the level of control, we define four singlet-triplet qubits in this system and show two-axis single-qubit control of each qubit and SWAP-style two-qubit gates between all neighbouring qubit pairs, yielding average single-qubit gate fidelities of 99.49(8)-99.84(1)% and Bell state fidelities of 73(1)-90(1)%. Combining these operations, we experimentally implement a circuit designed to generate and distribute entanglement across the array. A remote Bell state with a fidelity of 75(2)% and concurrence of 22(4)% is achieved. These results highlight the potential of singlet-triplet qubits as a competing platform for quantum computing and indicate that scaling up the control of quantum dot spins in extended bilinear arrays can be feasible.
Collapse
Affiliation(s)
- Xin Zhang
- QuTech, Delft University of Technology, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Elizaveta Morozova
- QuTech, Delft University of Technology, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Maximilian Rimbach-Russ
- QuTech, Delft University of Technology, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Daniel Jirovec
- QuTech, Delft University of Technology, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Tzu-Kan Hsiao
- QuTech, Delft University of Technology, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Pablo Cova Fariña
- QuTech, Delft University of Technology, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Chien-An Wang
- QuTech, Delft University of Technology, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Stefan D Oosterhout
- QuTech, Delft University of Technology, Delft, Netherlands
- Netherlands Organisation for Applied Scientific Research (TNO), Delft, Netherlands
| | - Amir Sammak
- QuTech, Delft University of Technology, Delft, Netherlands
- Netherlands Organisation for Applied Scientific Research (TNO), Delft, Netherlands
| | - Giordano Scappucci
- QuTech, Delft University of Technology, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Menno Veldhorst
- QuTech, Delft University of Technology, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Lieven M K Vandersypen
- QuTech, Delft University of Technology, Delft, Netherlands.
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands.
| |
Collapse
|
8
|
Gao R, Ye X, Hu C, Zhang Z, Ji X, Zhang Y, Meng X, Yang H, Zhu X, Li RW. Nanoionics enabled atomic point contact construction and quantum conductance effects. MATERIALS HORIZONS 2025; 12:37-63. [PMID: 39359178 DOI: 10.1039/d4mh00916a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The miniaturization of electronic devices is important for the development of high-density and function-integrated information devices. Atomic-point-contact (APC) structures refer to narrow contact areas formed by one or more atoms between two conductive electrodes that produce quantum conductance effects when the electrons pass through the APC channel, providing a new development path for the miniaturization of information devices. Recently, nanoionics has enabled the electric field reconfiguration of APC structures in solid-state electrolytes, offering new approaches to controlling the quantum conductance states, which may lead to the development of emerging information technologies with low power consumption, high speed, and high density. This review provides an overview of APC structures with a focus on the fabrication methods enabled by nanoionics technology. In particular, the advantages of electric field-driven nanoionics in the construction of APC structures are summarized, and the influence of external fields on quantum conductance effects is discussed. Recent studies on electric field regulation of APC structures to achieve precise control of quantum conductance states are also reviewed. The potential applications of quantum conductance effects in memory, computing, and encryption-related information technologies are further explored. Finally, the challenges and future prospects of quantum conductance effects in APC structures are discussed.
Collapse
Affiliation(s)
- Runsheng Gao
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaoyu Ye
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Cong Hu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Ziyi Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinhui Ji
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyu Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohan Meng
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huali Yang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojian Zhu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Sorace L, Dmitriev AA, Perfetti M, Vostrikova KE. Slow magnetic relaxation and strong magnetic coupling in the nitroxyl radical complexes of lanthanide(iii) with diamagnetic ground state (Ln = Lu, Eu). Chem Sci 2024; 16:218-232. [PMID: 39629487 PMCID: PMC11609977 DOI: 10.1039/d4sc05035e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024] Open
Abstract
Radical lanthanide complexes are appealing platforms to investigate the possibility to engineer relevant magnetic couplings between the two magnetic centers by exploiting the strongly donating magnetic orbitals of the radical. In this paper, we report a spectroscopic and magnetic study on [LnRad(NO3)3], where Ln = Eu3+ or Lu3+ and Rad is the tridentate tripodal nitroxyl radical 4,4-dimethyl-2,2-bis(pyridin-2-yl)-1,3-oxazolidine-3-oxyl. A thorough magnetic investigation by Electron Paramagnetic Resonance (EPR) spectroscopy and magnetometry, fully supported by ab initio calculations, allowed us to unravel an unprecedentedly large antiferromagnetic coupling between the Eu3+ and the radical (J 12 = +19.5 cm-1, +J 12 S 1 S 2 convention). Remarkably, both europium and lutetium complexes showed slow magnetization dynamics below 20 K. The field and temperature dependent relaxation dynamics, dominated by Raman and direct processes were modelled simultaneously, allowing us to assess that the Raman process is field dependent.
Collapse
Affiliation(s)
- Lorenzo Sorace
- Department of Chemistry "U. Schiff", University of Florence and INSTM Research Unit Via della Lastruccia 3-13, Sesto Fiorentino 50019 Firenze Italy
| | - Alexey A Dmitriev
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch, Russian Academy of Sciences 630090 Novosibirsk Russia
| | - Mauro Perfetti
- Department of Chemistry "U. Schiff", University of Florence and INSTM Research Unit Via della Lastruccia 3-13, Sesto Fiorentino 50019 Firenze Italy
| | - Kira E Vostrikova
- Nikolayev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences 630090 Novosibirsk Russia
| |
Collapse
|
10
|
Doll A, Xu Z, Romankov V, Boero G, Rusponi S, Brune H, Salman Z, Dreiser J. Element-specific X-Ray detection of electron paramagnetic resonance in thin films of quantum bits. Nat Commun 2024; 15:10313. [PMID: 39609391 PMCID: PMC11605076 DOI: 10.1038/s41467-024-54586-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
Element-specific magnetism accessible by synchrotron-based X-ray spectroscopy has proven to be valuable to study spin and orbital moments of transition metals and lanthanides in technologically relevant thin-film and monolayer samples. The access to coherent spin superposition states relevant for emergent quantum technologies remains, however, elusive with ordinary X-ray spectroscopy. Here, we approach the study of such quantum-coherent states via the X-ray detection of microwave-driven electron paramagnetic resonance, which involves much smaller signal levels than X-ray detected ferromagnetic resonance on classical magnets. We demonstrate the feasibility of this approach with thin films of phthalocyanine-based metal complexes containing copper or vanadium centers. We also identify X-ray specific phenomena that we relate to charge trapping of secondary electrons resulting from the decay of the X-ray excited core-hole state. Our findings pave the way toward the element-specific X-ray detection of coherent superposition states in monolayers of atomic and molecular spins on virtually arbitrary surfaces.
Collapse
Affiliation(s)
- Andrin Doll
- PSI Center for Photon Sciences CPS, Villigen PSI, Switzerland.
- PSI Center for Neutron and Muon Sciences CNM, Villigen PSI, Switzerland.
| | - Zhewen Xu
- PSI Center for Photon Sciences CPS, Villigen PSI, Switzerland
| | | | - Giovanni Boero
- Microsystems Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Stefano Rusponi
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Harald Brune
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Zaher Salman
- PSI Center for Neutron and Muon Sciences CNM, Villigen PSI, Switzerland
| | - Jan Dreiser
- PSI Center for Photon Sciences CPS, Villigen PSI, Switzerland.
| |
Collapse
|
11
|
Jang J, Yoon HJ. Long-Range Charge Transport in Molecular Wires. J Am Chem Soc 2024; 146:32206-32221. [PMID: 39540553 DOI: 10.1021/jacs.4c11431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Long-range charge transport (LRCT) in molecular wires is crucial for the advancement of molecular electronics but remains insufficiently understood due to complex transport mechanisms and their dependencies on molecular structure. While short-range charge transport is typically dominated by off-resonant tunneling, which decays exponentially with molecular length, recent studies have highlighted certain molecular structures that facilitate LRCT with minimal attenuation over several nanometers. This Perspective reviews the latest progress in understanding LRCT, focusing on chemical designs and mechanisms that enable this phenomenon. Key strategies include π-conjugation, redox-active centers, and stabilization of radical intermediates, which support LRCT through mechanisms such as coherent resonant tunneling or incoherent hopping. We discuss how the effects of molecular structure, length, and temperature influence charge transport, and highlight emerging techniques like the Seebeck effect for distinguishing between transport mechanisms. By clarifying the principles behind LRCT and outlining future challenges, this work aims to guide the design of molecular systems capable of sustaining efficient long-distance charge transport, thereby paving the way for practical applications in molecular electronics and beyond.
Collapse
Affiliation(s)
- Jiung Jang
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| |
Collapse
|
12
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024; 124:11641-11766. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
13
|
Ye L, Zheng X, Xu X. Theory of Electron Spin Resonance Spectroscopy in Scanning Tunneling Microscopy. PHYSICAL REVIEW LETTERS 2024; 133:176201. [PMID: 39530799 DOI: 10.1103/physrevlett.133.176201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
The integration of scanning tunneling microscopy (STM) and electron spin resonance (ESR) spectroscopy has emerged as a powerful and innovative tool for discerning spin excitations and spin-spin interactions within atoms and molecules adsorbed on surfaces. However, the origin of the STM-ESR signal and the underlying mechanisms that govern the essential features of the measured spectra have remained elusive, thereby significantly impeding the future development of the STM-ESR approach. Here, we construct a model to carry out precise numerical simulations of STM-ESR spectra for a single hydrogenated Ti adatom and a hydrogenated Ti dimer, achieving excellent agreement with experimental observations. We further develop an analytic theory that elucidates the fundamental origin of the signal as well as the essential features in the measured spectra. These new theoretical developments establish a solid foundation for the on-demand detection and manipulation of atomic-scale spin states, with promising implications for cutting-edge applications in spin sensing, quantum information, and quantum computing.
Collapse
Affiliation(s)
| | | | - Xin Xu
- Department of Chemistry, Fudan University, Shanghai 200438, People's Republic of China
- Hefei National Laboratory, Hefei, Anhui 230088, People's Republic of China
| |
Collapse
|
14
|
Wolf C, Heinrich AJ, Phark SH. On-Surface Atomic Scale Qubit Platform. ACS NANO 2024; 18:28469-28479. [PMID: 39382840 DOI: 10.1021/acsnano.4c07174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Recent advances in scanning probe microscopy combined with electron spin resonance have revealed that localized electron spins on or near surfaces can be utilized as building blocks for the bottom-up assembly of functional quantum-coherent nanostructures. In this perspective, we review the recent advances, lay out advantages of this platform and outline the challenges that lie ahead on the way to the application of on-surface atomic spins to quantum information science and quantum computing.
Collapse
Affiliation(s)
- Christoph Wolf
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
| | - Andreas J Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| | - Soo-Hyon Phark
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
15
|
Zhou A, Sun Z, Sun L. Stable organic radical qubits and their applications in quantum information science. Innovation (N Y) 2024; 5:100662. [PMID: 39091459 PMCID: PMC11292369 DOI: 10.1016/j.xinn.2024.100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/20/2024] [Indexed: 08/04/2024] Open
Abstract
The past century has witnessed the flourishing of organic radical chemistry. Stable organic radicals are highly valuable for quantum technologies thanks to their inherent room temperature quantum coherence, atomic-level designability, and fine tunability. In this comprehensive review, we highlight the potential of stable organic radicals as high-temperature qubits and explore their applications in quantum information science, which remain largely underexplored. Firstly, we summarize known spin dynamic properties of stable organic radicals and examine factors that influence their electron spin relaxation and decoherence times. This examination reveals their design principles and optimal operating conditions. We further discuss their integration in solid-state materials and surface structures, and present their state-of-the-art applications in quantum computing, quantum memory, and quantum sensing. Finally, we analyze the primary challenges associated with stable organic radical qubits and provide tentative insights to future research directions.
Collapse
Affiliation(s)
- Aimei Zhou
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Zhecheng Sun
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Lei Sun
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, Hangzhou 310030, China
| |
Collapse
|
16
|
Wisbeck S, Sorrentino AL, Santana FS, de Camargo LC, Ribeiro RR, Salvadori E, Chiesa M, Giaconi N, Caneschi A, Mannini M, Poggini L, Briganti M, Serrano G, Soares JF, Sessoli R. (η 8-Cyclooctatetraene)(η 5-fluorenyl)titanium: a processable molecular spin qubit with optimized control of the molecule-substrate interface. Chem Sci 2024:d4sc03290j. [PMID: 39156928 PMCID: PMC11325857 DOI: 10.1039/d4sc03290j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024] Open
Abstract
Depositing single paramagnetic molecules on surfaces for sensing and quantum computing applications requires subtle topological control. To overcome issues that are often encountered with sandwich metal complexes, we exploit here the low symmetry architecture and suitable vaporability of mixed-sandwich [FluTi(cot)], Flu = fluorenyl, cot = cyclooctatetraene, to drive submonolayer coverage and select an adsorption configuration that preserves the spin of molecules deposited on Au(111). Electron paramagnetic resonance spectroscopy and ab initio quantum computation evidence a d z 2 ground state that protects the spin from phonon-induced relaxation. Additionally, computed and measured spin coherence times exceed 10 μs despite the molecules being rich in hydrogen. A thorough submonolayer investigation by scanning tunneling microscopy, X-ray photoelectron and absorption spectrocopies and X-ray magnetic circular dichroism measurements supported by DFT calculations reveals that the most stable configuration, with the fluorenyl in contact with the metal surface, prevents titanium(iii) oxidation and spin delocalization to the surface. This is a necessary condition for single molecular spin qubit addressing on surfaces.
Collapse
Affiliation(s)
- Sarita Wisbeck
- Department of Chemistry, Federal University of Paraná, Centro Politécnico Jardim das Américas 81530-900 Curitiba PR Brazil
| | - Andrea Luigi Sorrentino
- Department of Chemistry "U. Schiff" (DICUS) and INSTM Research Unit, University of Florence Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Francielli S Santana
- Department of Chemistry, Federal University of Paraná, Centro Politécnico Jardim das Américas 81530-900 Curitiba PR Brazil
| | - Luana C de Camargo
- Department of Chemistry, Federal University of Paraná, Centro Politécnico Jardim das Américas 81530-900 Curitiba PR Brazil
| | - Ronny R Ribeiro
- Department of Chemistry, Federal University of Paraná, Centro Politécnico Jardim das Américas 81530-900 Curitiba PR Brazil
| | - Enrico Salvadori
- Department of Chemistry, University of Turin Via Giuria 7 10125 Torino Italy
| | - Mario Chiesa
- Department of Chemistry, University of Turin Via Giuria 7 10125 Torino Italy
| | - Niccolò Giaconi
- Department of Chemistry "U. Schiff" (DICUS) and INSTM Research Unit, University of Florence Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Andrea Caneschi
- Department of Industrial Engineering (DIEF) and INSTM Research Unit, University of Florence Via di S. Marta 3 50139 Firenze Italy
| | - Matteo Mannini
- Department of Chemistry "U. Schiff" (DICUS) and INSTM Research Unit, University of Florence Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Lorenzo Poggini
- Institute for Chemistry of OrganoMetallic Compounds (ICCOM-CNR) Via Madonna del Piano 50019 Sesto Fiorentino Italy
| | - Matteo Briganti
- Department of Chemistry "U. Schiff" (DICUS) and INSTM Research Unit, University of Florence Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Giulia Serrano
- Department of Industrial Engineering (DIEF) and INSTM Research Unit, University of Florence Via di S. Marta 3 50139 Firenze Italy
| | - Jaísa F Soares
- Department of Chemistry, Federal University of Paraná, Centro Politécnico Jardim das Américas 81530-900 Curitiba PR Brazil
| | - Roberta Sessoli
- Department of Chemistry "U. Schiff" (DICUS) and INSTM Research Unit, University of Florence Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
- Institute for Chemistry of OrganoMetallic Compounds (ICCOM-CNR) Via Madonna del Piano 50019 Sesto Fiorentino Italy
| |
Collapse
|
17
|
Sorrentino AL, Poggini L, Serrano G, Cucinotta G, Cortigiani B, Malavolti L, Parenti F, Otero E, Arrio MA, Sainctavit P, Caneschi A, Cornia A, Sessoli R, Mannini M. Assembling Fe 4 single-molecule magnets on a TiO 2 monolayer. NANOSCALE 2024; 16:14378-14386. [PMID: 38993100 DOI: 10.1039/d4nr02234c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The decoration of technologically relevant surfaces, such as metal oxides, with Single-Molecule Magnets (SMMs) constitutes a persistent challenge for the integration of these molecular systems into novel technologies and, in particular, for the development of spintronic and quantum devices. We used UHV thermal sublimation to deposit tetrairon(III) propeller-shaped SMMs (Fe4) as a single layer on a TiO2 ultrathin film grown on Cu(001). The properties of the molecular deposit were studied using a multi-technique approach based on standard topographic and spectroscopic measurements, which demonstrated that molecules remain largely intact upon deposition. Ultralow temperature X-ray Absorption Spectroscopy (XAS) with linearly and circularly polarized light was further employed to evaluate both the molecular organization and the magnetic properties of the Fe4 monolayer. X-ray Natural Linear Dichroism (XNLD) and X-ray Magnetic Circular Dichroism (XMCD) showed that molecules in a monolayer display a preferential orientation and an open magnetic hysteresis with pronounced quantum tunnelling steps up to 900 mK. However, unexpected extra features in the XAS and XMCD spectra disclosed a minority fraction of altered molecules, suggesting that the TiO2 film may be chemically non-innocent. The observed persistence of SMM behaviour on a metal oxide thin film opens new possibilities for the development of SMM-based hybrid systems.
Collapse
Affiliation(s)
- Andrea Luigi Sorrentino
- Department of Industrial Engineering - DIEF - and INSTM Research Unit, University of Florence, Via Santa Marta 3, 50139 Florence, Italy
- Department of Chemistry "U. Schiff" - DICUS - and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
| | - Lorenzo Poggini
- Department of Chemistry "U. Schiff" - DICUS - and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
- Institute for Chemistry of Organo-Metallic Compounds (ICCOM-CNR), Via Madonna del Piano, 50019 Sesto Fiorentino, FI, Italy
| | - Giulia Serrano
- Department of Industrial Engineering - DIEF - and INSTM Research Unit, University of Florence, Via Santa Marta 3, 50139 Florence, Italy
- Department of Chemistry "U. Schiff" - DICUS - and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
| | - Giuseppe Cucinotta
- Department of Chemistry "U. Schiff" - DICUS - and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
| | - Brunetto Cortigiani
- Department of Chemistry "U. Schiff" - DICUS - and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
| | - Luigi Malavolti
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Francesca Parenti
- Department of Chemical and Geological Sciences and INSTM Research Unit, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Edwige Otero
- Synchrotron-SOLEIL, L'Orme des Merisiers, 91192 Saint-Aubin, France
| | - Marie-Anne Arrio
- CNRS UMR7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université/MNHN, 4 place Jussieu, 75252 Paris Cedex 5, France
| | - Philippe Sainctavit
- Synchrotron-SOLEIL, L'Orme des Merisiers, 91192 Saint-Aubin, France
- CNRS UMR7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université/MNHN, 4 place Jussieu, 75252 Paris Cedex 5, France
| | - Andrea Caneschi
- Department of Industrial Engineering - DIEF - and INSTM Research Unit, University of Florence, Via Santa Marta 3, 50139 Florence, Italy
| | - Andrea Cornia
- Department of Chemical and Geological Sciences and INSTM Research Unit, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Roberta Sessoli
- Department of Chemistry "U. Schiff" - DICUS - and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
- Institute for Chemistry of Organo-Metallic Compounds (ICCOM-CNR), Via Madonna del Piano, 50019 Sesto Fiorentino, FI, Italy
| | - Matteo Mannini
- Department of Chemistry "U. Schiff" - DICUS - and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
18
|
Chen Z, Grace IM, Woltering SL, Chen L, Gee A, Baugh J, Briggs GAD, Bogani L, Mol JA, Lambert CJ, Anderson HL, Thomas JO. Quantum interference enhances the performance of single-molecule transistors. NATURE NANOTECHNOLOGY 2024; 19:986-992. [PMID: 38528108 PMCID: PMC11286519 DOI: 10.1038/s41565-024-01633-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/13/2024] [Indexed: 03/27/2024]
Abstract
Quantum effects in nanoscale electronic devices promise to lead to new types of functionality not achievable using classical electronic components. However, quantum behaviour also presents an unresolved challenge facing electronics at the few-nanometre scale: resistive channels start leaking owing to quantum tunnelling. This affects the performance of nanoscale transistors, with direct source-drain tunnelling degrading switching ratios and subthreshold swings, and ultimately limiting operating frequency due to increased static power dissipation. The usual strategy to mitigate quantum effects has been to increase device complexity, but theory shows that if quantum effects can be exploited in molecular-scale electronics, this could provide a route to lower energy consumption and boost device performance. Here we demonstrate these effects experimentally, showing how the performance of molecular transistors is improved when the resistive channel contains two destructively interfering waves. We use a zinc-porphyrin coupled to graphene electrodes in a three-terminal transistor to demonstrate a >104 conductance-switching ratio, a subthreshold swing at the thermionic limit, a >7 kHz operating frequency and stability over >105 cycles. We fully map the anti-resonance interference features in conductance, reproduce the behaviour by density functional theory calculations and trace back the high performance to the coupling between molecular orbitals and graphene edge states. These results demonstrate how the quantum nature of electron transmission at the nanoscale can enhance, rather than degrade, device performance, and highlight directions for future development of miniaturized electronics.
Collapse
Affiliation(s)
- Zhixin Chen
- Department of Materials, University of Oxford, Oxford, UK.
| | - Iain M Grace
- Department of Physics, Lancaster University, Lancaster, UK
| | - Steffen L Woltering
- Department of Materials, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Lina Chen
- Department of Materials, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Alex Gee
- Department of Materials, University of Oxford, Oxford, UK
| | - Jonathan Baugh
- Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Lapo Bogani
- Department of Materials, University of Oxford, Oxford, UK
- Departments of Chemistry and Physics, University of Florence, Sesto Fiorentino, Italy
| | - Jan A Mol
- School of Physical and Chemical Sciences, Queen Mary University of London, London, UK
| | | | - Harry L Anderson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK.
| | - James O Thomas
- Department of Materials, University of Oxford, Oxford, UK.
- School of Physical and Chemical Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
19
|
Bornet G, Emperauger G, Chen C, Machado F, Chern S, Leclerc L, Gély B, Chew YT, Barredo D, Lahaye T, Yao NY, Browaeys A. Enhancing a Many-Body Dipolar Rydberg Tweezer Array with Arbitrary Local Controls. PHYSICAL REVIEW LETTERS 2024; 132:263601. [PMID: 38996299 DOI: 10.1103/physrevlett.132.263601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 07/14/2024]
Abstract
We implement and characterize a protocol that enables arbitrary local controls in a dipolar atom array, where the degree of freedom is encoded in a pair of Rydberg states. Our approach relies on a combination of local addressing beams and global microwave fields. Using this method, we directly prepare two different types of three-atom entangled states, including a W state and a state exhibiting finite chirality. We verify the nature of the underlying entanglement by performing quantum state tomography. Finally, leveraging our ability to measure multibasis, multibody observables, we explore the adiabatic preparation of low-energy states in a frustrated geometry consisting of a pair of triangular plaquettes. By using local addressing to tune the symmetry of the initial state, we demonstrate the ability to prepare correlated states distinguished only by correlations of their chirality (a fundamentally six-body observable). Our protocol is generic, allowing for rotations on arbitrary sub-groups of atoms within the array at arbitrary times during the experiment; this extends the scope of capabilities for quantum simulations of the dipolar XY model.
Collapse
|
20
|
Kanai T, Jin D, Guo W. Single-Electron Qubits Based on Quantum Ring States on Solid Neon Surface. PHYSICAL REVIEW LETTERS 2024; 132:250603. [PMID: 38996268 DOI: 10.1103/physrevlett.132.250603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/23/2024] [Indexed: 07/14/2024]
Abstract
Single electrons trapped on solid-neon surfaces have recently emerged as a promising platform for charge qubits. Experimental results have revealed their exceptionally long coherence times, yet the actual quantum states of these trapped electrons, presumably on imperfectly flat neon surfaces, remain elusive. In this Letter, we examine the electron's interactions with neon surface topography, such as bumps and valleys. By evaluating the surface charges induced by the electron, we demonstrate its strong perpendicular binding to the neon surface. The Schrödinger equation for the electron's lateral motion on the curved 2D surface is then solved for extensive topographical variations. Our results reveal that surface bumps can naturally bind an electron, forming unique quantum ring states that align with experimental observations. We also show that the electron's excitation energy can be tuned using a modest magnetic field to facilitate qubit operation. This study offers a leap in our understanding of electron-on-solid-neon qubit properties and provides strategic insights on minimizing charge noise and scaling the system to propel forward quantum computing architectures.
Collapse
|
21
|
Kovarik S, Schlitz R, Vishwakarma A, Ruckert D, Gambardella P, Stepanow S. Spin torque-driven electron paramagnetic resonance of a single spin in a pentacene molecule. Science 2024; 384:1368-1373. [PMID: 38900895 DOI: 10.1126/science.adh4753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/10/2024] [Indexed: 06/22/2024]
Abstract
Control over quantum systems is typically achieved by time-dependent electric or magnetic fields. Alternatively, electronic spins can be controlled by spin-polarized currents. Here, we demonstrate coherent driving of a single spin by a radiofrequency spin-polarized current injected from the tip of a scanning tunneling microscope into an organic molecule. With the excitation of electron paramagnetic resonance, we established dynamic control of single spins by spin torque using a local electric current. In addition, our work highlights the dissipative action of the spin-transfer torque, in contrast to the nondissipative action of the magnetic field, which allows for the manipulation of individual spins based on controlled decoherence.
Collapse
Affiliation(s)
- Stepan Kovarik
- Department of Materials, ETH Zurich, CH-8093 Zürich, Switzerland
| | - Richard Schlitz
- Department of Materials, ETH Zurich, CH-8093 Zürich, Switzerland
| | | | - Dominic Ruckert
- Department of Materials, ETH Zurich, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
22
|
Reale S, Hwang J, Oh J, Brune H, Heinrich AJ, Donati F, Bae Y. Electrically driven spin resonance of 4f electrons in a single atom on a surface. Nat Commun 2024; 15:5289. [PMID: 38902242 PMCID: PMC11190280 DOI: 10.1038/s41467-024-49447-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/05/2024] [Indexed: 06/22/2024] Open
Abstract
A pivotal challenge in quantum technologies lies in reconciling long coherence times with efficient manipulation of the quantum states of a system. Lanthanide atoms, with their well-localized 4f electrons, emerge as a promising solution to this dilemma if provided with a rational design for manipulation and detection. Here we construct tailored spin structures to perform electron spin resonance on a single lanthanide atom using a scanning tunneling microscope. A magnetically coupled structure made of an erbium and a titanium atom enables us to both drive the erbium's 4f electron spins and indirectly probe them through the titanium's 3d electrons. The erbium spin states exhibit an extended spin relaxation time and a higher driving efficiency compared to 3d atoms with spin ½ in similarly coupled structures. Our work provides a new approach to accessing highly protected spin states, enabling their coherent control in an all-electric fashion.
Collapse
Affiliation(s)
- Stefano Reale
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, Republic of Korea
- Ewha Womans University, Seoul, Republic of Korea
- Department of Energy, Politecnico di Milano, Milano, Italy
| | - Jiyoon Hwang
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul, Republic of Korea
| | - Jeongmin Oh
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul, Republic of Korea
| | - Harald Brune
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andreas J Heinrich
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul, Republic of Korea
| | - Fabio Donati
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Department of Physics, Ewha Womans University, Seoul, Republic of Korea.
| | - Yujeong Bae
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Department of Physics, Ewha Womans University, Seoul, Republic of Korea.
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, Dübendorf, Switzerland.
| |
Collapse
|
23
|
Bui HT, Wolf C, Wang Y, Haze M, Ardavan A, Heinrich AJ, Phark SH. All-Electrical Driving and Probing of Dressed States in a Single Spin. ACS NANO 2024; 18:12187-12193. [PMID: 38698541 DOI: 10.1021/acsnano.4c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The subnanometer distance between tip and sample in a scanning tunneling microscope (STM) enables the application of very large electric fields with a strength as high as ∼1 GV/m. This has allowed for efficient electrical driving of Rabi oscillations of a single spin on a surface at a moderate radiofrequency (RF) voltage on the order of tens of millivolts. Here, we demonstrate the creation of dressed states of a single electron spin localized in the STM tunnel junction by using resonant RF driving voltages. The read-out of these dressed states was achieved all electrically by a weakly coupled probe spin. Our work highlights the strength of the atomic-scale geometry inherent to the STM that facilitates the creation and control of dressed states, which are promising for the design of atomic scale quantum devices using individual spins on surfaces.
Collapse
Affiliation(s)
- Hong T Bui
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| | - Christoph Wolf
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
| | - Yu Wang
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
| | - Masahiro Haze
- The Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
| | - Arzhang Ardavan
- CAESR, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Andreas J Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| | - Soo-Hyon Phark
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
24
|
Jensen S, Løge IA, Bendix J, Diekhöner L. An approach for patterned molecular adsorption on ferromagnets, achieved via Moiré superstructures. Phys Chem Chem Phys 2024; 26:13710-13718. [PMID: 38669006 DOI: 10.1039/d4cp00809j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
We have used a scanning tunneling microscope operated under ultrahigh vacuum conditions to investigate an oxo-vanadium-salen complex V(O)salen, that has potential applications as qubits in future quantum-based technologies. The adsorption and self-assembly of V(O)salen on a range of single crystal metal surfaces and nanoislands and the influence of substrate morphology and reactivity has been measured. On the close-packed flat Ag(111) and Cu(111) surfaces, the molecules adsorb isolated or form small clusters arranged randomly on the surface, whereas structured adsorption occurs on two types of Co nanoislands; Co grown on Ag(111) and Ag capped Co islands grown on Cu(111), both forming a Moiré pattern at the surface. The adsorption configuration can by scanning tunneling spectroscopy be linked to the geometric and electronic properties of the substrates and traced back to a Co d-related surface state, illustrating how the modulated reactivity can be used to engineer a pattern of adsorbed molecules on the nanoscale.
Collapse
Affiliation(s)
- Sigmund Jensen
- Department of Materials and Production, Aalborg University, Skjernvej 4a, 9220 Aalborg, Denmark.
| | - Isaac Appelquist Løge
- Department of Materials and Production, Aalborg University, Skjernvej 4a, 9220 Aalborg, Denmark.
| | - Jesper Bendix
- Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Lars Diekhöner
- Department of Materials and Production, Aalborg University, Skjernvej 4a, 9220 Aalborg, Denmark.
| |
Collapse
|
25
|
Henriques J, Ferri-Cortés M, Fernández-Rossier J. Designer Spin Models in Tunable Two-Dimensional Nanographene Lattices. NANO LETTERS 2024; 24:3355-3360. [PMID: 38427975 PMCID: PMC10958603 DOI: 10.1021/acs.nanolett.3c04915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Motivated by recent experimental breakthroughs, we propose a strategy for designing two-dimensional spin-lattices with competing interactions that lead to nontrivial emergent quantum states. We consider S = 1/2 nanographenes with C3 symmetry as building blocks, and we leverage the potential to control both the sign and the strength of exchange with first neighbors to build a family of spin models. Specifically, we consider the case of a Heisenberg model in a triangle-decorated honeycomb lattice with competing ferromagnetic and antiferromagnetic interactions whose ratio can be varied in a wide range. On the basis of the exact diagonalization of both Fermionic and spin models, we predict a quantum phase transition between a valence bond crystal of spin singlets with triplon excitations living in a Kagomé lattice and a Néel phase of effective S = 3/2 in the limit of dominant ferromagnetic interactions.
Collapse
Affiliation(s)
- João Henriques
- International
Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
- Universidade
de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mar Ferri-Cortés
- Departamento
de Física Aplicada, Universidad de
Alicante, 03690 San Vicente del Raspeig, Spain
| | - Joaquín Fernández-Rossier
- International
Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
26
|
Luo X, Salihoglu H, Wang Z, Li Z, Kim H, Liu X, Li J, Yu B, Du S, Shen S. Observation of Near-Field Thermal Radiation between Coplanar Nanodevices with Subwavelength Dimensions. NANO LETTERS 2024; 24:1502-1509. [PMID: 38277641 PMCID: PMC10853966 DOI: 10.1021/acs.nanolett.3c03748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/01/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
With the continuous advancement of nanotechnology, nanodevices have become crucial components in computing, sensing, and energy conversion applications. The structures of nanodevices typically possess subwavelength dimensions and separations, which pose significant challenges for understanding energy transport phenomena in nanodevices. Here, on the basis of a judiciously designed thermal photonic nanodevice, we report the first measurement of near-field energy transport between two coplanar subwavelength structures over temperature bias up to ∼190 K. Our experimental results demonstrate a 20-fold enhancement in energy transfer beyond blackbody radiation. In contrast with the well-established near-field interactions between two semi-infinite bodies, the subwavelength confinements in nanodevices lead to increased polariton scattering and reduction of supporting photonic modes and, therefore, a lower energy flow at a given separation. Our work unveils exciting opportunities for the rational design of nanodevices, particularly for coplanar near-field energy transport, with important implications for the development of efficient nanodevices for energy harvesting and thermal management.
Collapse
Affiliation(s)
- Xiao Luo
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Hakan Salihoglu
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Zexiao Wang
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Zhuo Li
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Hyeonggyun Kim
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiu Liu
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Jiayu Li
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Bowen Yu
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Shen Du
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Sheng Shen
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
27
|
Abaszadeh F, Ashoub MH, Khajouie G, Amiri M. Nanotechnology development in surgical applications: recent trends and developments. Eur J Med Res 2023; 28:537. [PMID: 38001554 PMCID: PMC10668503 DOI: 10.1186/s40001-023-01429-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/03/2023] [Indexed: 11/26/2023] Open
Abstract
This paper gives a detailed analysis of nanotechnology's rising involvement in numerous surgical fields. We investigate the use of nanotechnology in orthopedic surgery, neurosurgery, plastic surgery, surgical oncology, heart surgery, vascular surgery, ophthalmic surgery, thoracic surgery, and minimally invasive surgery. The paper details how nanotechnology helps with arthroplasty, chondrogenesis, tissue regeneration, wound healing, and more. It also discusses the employment of nanomaterials in implant surfaces, bone grafting, and breast implants, among other things. The article also explores various nanotechnology uses, including stem cell-incorporated nano scaffolds, nano-surgery, hemostasis, nerve healing, nanorobots, and diagnostic applications. The ethical and safety implications of using nanotechnology in surgery are also addressed. The future possibilities of nanotechnology are investigated, pointing to a possible route for improved patient outcomes. The essay finishes with a comment on nanotechnology's transformational influence in surgical applications and its promise for future breakthroughs.
Collapse
Affiliation(s)
- Farzad Abaszadeh
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ghazal Khajouie
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Mahnaz Amiri
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| |
Collapse
|
28
|
Xie Z, Wang G, Guo Z, Li Z, Li T. Heralded quantum multiplexing entanglement between stationary qubits via distribution of high-dimensional optical entanglement. OPTICS EXPRESS 2023; 31:37802-37817. [PMID: 38017902 DOI: 10.1364/oe.504383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/04/2023] [Indexed: 11/30/2023]
Abstract
Quantum entanglement between pairs of remote quantum memories (QMs) is a prerequisite for realizing many applications in quantum networks. Here, we present a heralded protocol for the parallel creation of quantum entanglement among multiple pairs of QMs placed in spatially separated nodes, where each QM, encoding a stationary qubit, couples to an optical cavity and deterministically interacts with single photons. Our protocol utilizes an entangled photon pair encoded in the high-dimensional time-bin degree of freedom to simultaneously entangle multiple QM pairs, and is efficient in terms of reducing the time consumption and photon loss during transmission. Furthermore, our approach can be extended to simultaneously support spatial-temporal multiplexing, as its success is heralded by the detection of single photons. These distinguishing features make our protocol particularly useful for long-distance quantum communication and large-scale quantum networks.
Collapse
|
29
|
Lorenz H, Kohler S, Parafilo A, Kiselev M, Ludwig S. Classical analogue to driven quantum bits based on macroscopic pendula. Sci Rep 2023; 13:18386. [PMID: 37884548 PMCID: PMC10603110 DOI: 10.1038/s41598-023-45118-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Quantum mechanics increasingly penetrates modern technologies but, due to its non-deterministic nature seemingly contradicting our classical everyday world, our comprehension often stays elusive. Arguing along the correspondence principle, classical mechanics is often seen as a theory for large systems where quantum coherence is completely averaged out. Surprisingly, it is still possible to reconstruct the coherent dynamics of a quantum bit (qubit) by using a classical model system. This classical-to-quantum analogue is based on wave mechanics, which applies to both, the classical and the quantum world. In this spirit we investigate the dynamics of macroscopic physical pendula with a modulated coupling. As a proof of principle, we demonstrate full control of our one-to-one analogue to a qubit by realizing Rabi oscillations, Landau-Zener transitions and Landau-Zener-Stückelberg-Majorana interferometry. Our classical qubit demonstrator can help comprehending and developing useful quantum technologies.
Collapse
Affiliation(s)
- Heribert Lorenz
- Fakultät für Physik, Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU), 80539, München, Germany
| | - Sigmund Kohler
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049, Madrid, Spain
| | - Anton Parafilo
- Center for Theoretical Physics of Complex Systems (PCS), Institute for Basic Science (IBS), Expo-ro 55, Yuseong-gu, Daejeon, 34126, Korea
| | - Mikhail Kiselev
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34151, Trieste, Italy
| | - Stefan Ludwig
- Paul-Drude-Institut für Festkörperelektronik (PDI), Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplatz 5-7, 10117, Berlin, Germany.
| |
Collapse
|
30
|
Wang Y, Chen Y, Bui HT, Wolf C, Haze M, Mier C, Kim J, Choi DJ, Lutz CP, Bae Y, Phark SH, Heinrich AJ. An atomic-scale multi-qubit platform. Science 2023; 382:87-92. [PMID: 37797000 DOI: 10.1126/science.ade5050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 08/30/2023] [Indexed: 10/07/2023]
Abstract
Individual electron spins in solids are promising candidates for quantum science and technology, where bottom-up assembly of a quantum device with atomically precise couplings has long been envisioned. Here, we realized atom-by-atom construction, coherent operations, and readout of coupled electron-spin qubits using a scanning tunneling microscope. To enable the coherent control of "remote" qubits that are outside of the tunnel junction, we complemented each electron spin with a local magnetic field gradient from a nearby single-atom magnet. Readout was achieved by using a sensor qubit in the tunnel junction and implementing pulsed double electron spin resonance. Fast single-, two-, and three-qubit operations were thereby demonstrated in an all-electrical fashion. Our angstrom-scale qubit platform may enable quantum functionalities using electron spin arrays built atom by atom on a surface.
Collapse
Affiliation(s)
- Yu Wang
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
| | - Yi Chen
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Hong T Bui
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| | - Christoph Wolf
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
| | - Masahiro Haze
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- The Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
| | - Cristina Mier
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
| | - Jinkyung Kim
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| | - Deung-Jang Choi
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | | | - Yujeong Bae
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| | - Soo-Hyon Phark
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
| | - Andreas J Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
31
|
Phark S, Bui HT, Ferrón A, Fernández‐Rossier J, Reina‐Gálvez J, Wolf C, Wang Y, Yang K, Heinrich AJ, Lutz CP. Electric-Field-Driven Spin Resonance by On-Surface Exchange Coupling to a Single-Atom Magnet. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302033. [PMID: 37466177 PMCID: PMC10520627 DOI: 10.1002/advs.202302033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/11/2023] [Indexed: 07/20/2023]
Abstract
Coherent control of individual atomic and molecular spins on surfaces has recently been demonstrated by using electron spin resonance (ESR) in a scanning tunneling microscope (STM). Here, a combined experimental and modeling study of the ESR of a single hydrogenated Ti atom that is exchange-coupled to a Fe adatom positioned 0.6-0.8 nm away by means of atom manipulation is presented. Continuous wave and pulsed ESR of the Ti spin show a Rabi rate with two contributions, one from the tip and the other from the Fe, whose spin interactions with Ti are modulated by the radio-frequency electric field. The Fe contribution is comparable to the tip, as revealed by its dominance when the tip is retracted, and tunable using a vector magnetic field. The new ESR scheme allows on-surface individual spins to be addressed and coherently controlled without the need for magnetic interaction with a tip. This study establishes a feasible implementation of spin-based multi-qubit systems on surfaces.
Collapse
Affiliation(s)
- Soo‐hyon Phark
- Center for Quantum NanoscienceInstitute for Basic Science (IBS)Seoul03760Republic of Korea
- Department of PhysicsEwha Womans UniversitySeoul03760Republic of Korea
- IBM Research DivisionAlmaden Research CenterSan JoseCA95120USA
| | - Hong Thi Bui
- Center for Quantum NanoscienceInstitute for Basic Science (IBS)Seoul03760Republic of Korea
- Department of PhysicsEwha Womans UniversitySeoul03760Republic of Korea
| | - Alejandro Ferrón
- Instituto de Modelado e Innovación Tecnológica (CONICET‐UNNE) and Facultad de Ciencias ExactasNaturales y AgrimensuraUniversidad Nacional del NordesteAvenida Libertad 5400CorrientesW3404AASArgentina
| | | | - Jose Reina‐Gálvez
- Center for Quantum NanoscienceInstitute for Basic Science (IBS)Seoul03760Republic of Korea
- Department of PhysicsEwha Womans UniversitySeoul03760Republic of Korea
| | - Christoph Wolf
- Center for Quantum NanoscienceInstitute for Basic Science (IBS)Seoul03760Republic of Korea
- Department of PhysicsEwha Womans UniversitySeoul03760Republic of Korea
| | - Yu Wang
- Center for Quantum NanoscienceInstitute for Basic Science (IBS)Seoul03760Republic of Korea
- Department of PhysicsEwha Womans UniversitySeoul03760Republic of Korea
| | - Kai Yang
- IBM Research DivisionAlmaden Research CenterSan JoseCA95120USA
- Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijing100864China
| | - Andreas J. Heinrich
- Center for Quantum NanoscienceInstitute for Basic Science (IBS)Seoul03760Republic of Korea
- Department of PhysicsEwha Womans UniversitySeoul03760Republic of Korea
| | | |
Collapse
|
32
|
Zhang J, Liu L, Zheng C, Li W, Wang C, Wang T. Embedded nano spin sensor for in situ probing of gas adsorption inside porous organic frameworks. Nat Commun 2023; 14:4922. [PMID: 37582960 PMCID: PMC10427628 DOI: 10.1038/s41467-023-40683-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023] Open
Abstract
Spin-based sensors have attracted considerable attention owing to their high sensitivities. Herein, we developed a metallofullerene-based nano spin sensor to probe gas adsorption within porous organic frameworks. For this, spin-active metallofullerene, Sc3C2@C80, was selected and embedded into a nanopore of a pyrene-based covalent organic framework (Py-COF). Electron paramagnetic resonance (EPR) spectroscopy recorded the EPR signals of Sc3C2@C80 within Py-COF after adsorbing N2, CO, CH4, CO2, C3H6, and C3H8. Results indicated that the regularly changing EPR signals of embedded Sc3C2@C80 were associated with the gas adsorption performance of Py-COF. In contrast to traditional adsorption isotherm measurements, this implantable nano spin sensor could probe gas adsorption and desorption with in situ, real-time monitoring. The proposed nano spin sensor was also employed to probe the gas adsorption performance of a metal-organic framework (MOF-177), demonstrating its versatility. The nano spin sensor is thus applicable for quantum sensing and precision measurements.
Collapse
Affiliation(s)
- Jie Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linshan Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
| | - Chaofeng Zheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wang Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
| | - Taishan Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China.
| |
Collapse
|
33
|
Ingla-Aynés J, Manesco ALR, Ghiasi TS, Volosheniuk S, Watanabe K, Taniguchi T, van der Zant HSJ. Specular Electron Focusing between Gate-Defined Quantum Point Contacts in Bilayer Graphene. NANO LETTERS 2023; 23:5453-5459. [PMID: 37289250 PMCID: PMC10311585 DOI: 10.1021/acs.nanolett.3c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/02/2023] [Indexed: 06/09/2023]
Abstract
We report multiterminal measurements in a ballistic bilayer graphene (BLG) channel, where multiple spin- and valley-degenerate quantum point contacts (QPCs) are defined by electrostatic gating. By patterning QPCs of different shapes along different crystallographic directions, we study the effect of size quantization and trigonal warping on transverse electron focusing (TEF). Our TEF spectra show eight clear peaks with comparable amplitudes and weak signatures of quantum interference at the lowest temperature, indicating that reflections at the gate-defined edges are specular, and transport is phase coherent. The temperature dependence of the focusing signal shows that, despite the small gate-induced bandgaps in our sample (≲45 meV), several peaks are visible up to 100 K. The achievement of specular reflection, which is expected to preserve the pseudospin information of the electron jets, is promising for the realization of ballistic interconnects for new valleytronic devices.
Collapse
Affiliation(s)
- Josep Ingla-Aynés
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Antonio L. R. Manesco
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Talieh S. Ghiasi
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Serhii Volosheniuk
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Kenji Watanabe
- Research
Center for Functional Materials, National
Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Herre S. J. van der Zant
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| |
Collapse
|
34
|
Hou B, Thoss M, Banin U, Rabani E. Incoherent nonadiabatic to coherent adiabatic transition of electron transfer in colloidal quantum dot molecules. Nat Commun 2023; 14:3073. [PMID: 37244903 PMCID: PMC10224918 DOI: 10.1038/s41467-023-38470-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/27/2023] [Indexed: 05/29/2023] Open
Abstract
Electron transfer is a fundamental process in chemistry, biology, and physics. One of the most intriguing questions concerns the realization of the transitions between nonadiabatic and adiabatic regimes of electron transfer. Using colloidal quantum dot molecules, we computationally demonstrate how the hybridization energy (electronic coupling) can be tuned by changing the neck dimensions and/or the quantum dot sizes. This provides a handle to tune the electron transfer from the incoherent nonadiabatic regime to the coherent adiabatic regime in a single system. We develop an atomistic model to account for several states and couplings to the lattice vibrations and utilize the mean-field mixed quantum-classical method to describe the charge transfer dynamics. Here, we show that charge transfer rates increase by several orders of magnitude as the system is driven to the coherent, adiabatic limit, even at elevated temperatures, and delineate the inter-dot and torsional acoustic modes that couple most strongly to the charge transfer dynamics.
Collapse
Affiliation(s)
- Bokang Hou
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Michael Thoss
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
| | - Uri Banin
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Eran Rabani
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
35
|
Santanni F, Briganti M, Serrano G, Salvadori E, Veneri A, Batistoni C, Russi SF, Menichetti S, Mannini M, Chiesa M, Sorace L, Sessoli R. VdW Mediated Strong Magnetic Exchange Interactions in Chains of Hydrogen-Free Sublimable Molecular Qubits. JACS AU 2023; 3:1250-1262. [PMID: 37124308 PMCID: PMC10131211 DOI: 10.1021/jacsau.3c00121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
Sulfur-rich molecular complexes of dithiolene-like ligands are appealing candidates as molecular spin qubits because spin coherence properties are enhanced in hydrogen-free environments. Herein, we employ the hydrogen-free mononegative 1,3,2-dithiazole-4-thione-5-thiolate (dttt-) ligand as an alternative to common dinegative dithiolate ligands. We report the first synthesis and structural characterization of its Cu2+, Ni2+, and Pt2+ neutral complexes. The XPS analysis of thermal deposition of [Cu(dttt)2] in UHV conditions indicates that films of intact molecules can be deposited on surfaces by sublimation. Thanks to a combined approach employing DC magnetometry and DFT calculations, we highlighted AF exchange interactions of 108 cm-1 and 36 cm-1 attributed to the two different polymorph phases. These couplings are exclusively mediated by S···S VdW interactions, which are facilitated by the absence of counterions and made particularly efficient by the diffuse electron density on S atoms. Furthermore, the spin dynamics of solid-state magnetically diluted samples was investigated. The longest observed T m is 2.3 μs at 30 K, which significantly diverges from the predicted T m > 100 μs. These results point to the diluting matrix severely affecting the coherence lifetime of Cu2+ species via different factors, such as the contributions of neighboring 14N nuclei and the formation of radical impurities in a non-completely controllable way. However, the ease of processing [Cu(dttt)2] via thermal sublimation can allow dispersion in matrices better suited for coherent spin manipulation of isolated molecules and the realization of AF-coupled VdW structures on surfaces.
Collapse
Affiliation(s)
- Fabio Santanni
- Dipartimento
di Chimica “Ugo Schiff” - DICUS, Università degli Studi di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
| | - Matteo Briganti
- Dipartimento
di Chimica “Ugo Schiff” - DICUS, Università degli Studi di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
| | - Giulia Serrano
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
- Dipartimento
di Ingegneria Industriale - DIEF, Università
degli Studi di Firenze, Via Santa Marta 3, I-50139 Firenze, Italy
| | - Enrico Salvadori
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
- Dipartimento
di Chimica e NIS Centre, Università
di Torino, Via P. Giuria 7, I-10125 Torino, Italy
| | - Alessandro Veneri
- Dipartimento
di Chimica “Ugo Schiff” - DICUS, Università degli Studi di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
| | - Chiara Batistoni
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
| | - Sofia F. Russi
- Dipartimento
di Chimica e NIS Centre, Università
di Torino, Via P. Giuria 7, I-10125 Torino, Italy
| | - Stefano Menichetti
- Dipartimento
di Chimica “Ugo Schiff” - DICUS, Università degli Studi di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
| | - Matteo Mannini
- Dipartimento
di Chimica “Ugo Schiff” - DICUS, Università degli Studi di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
| | - Mario Chiesa
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
- Dipartimento
di Chimica e NIS Centre, Università
di Torino, Via P. Giuria 7, I-10125 Torino, Italy
| | - Lorenzo Sorace
- Dipartimento
di Chimica “Ugo Schiff” - DICUS, Università degli Studi di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
| | - Roberta Sessoli
- Dipartimento
di Chimica “Ugo Schiff” - DICUS, Università degli Studi di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
| |
Collapse
|
36
|
Lock EH, Lee J, Choi DS, Bedford RG, Karna SP, Roy AK. Materials Innovations for Quantum Technology Acceleration: A Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2201064. [PMID: 37021584 DOI: 10.1002/adma.202201064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 01/16/2023] [Indexed: 06/19/2023]
Abstract
A broad perspective of quantum technology state of the art is provided and critical stumbling blocks for quantum technology development are identified. Innovations in demonstrating and understanding electron entanglement phenomena using bulk and low-dimensional materials and structures are summarized. Correlated photon-pair generation via processes such as nonlinear optics is discussed. Application of qubits to current and future high-impact quantum technology development is presented. Approaches for realizing unique qubit features for large-scale encrypted communication, sensing, computing, and other technologies are still evolving; thus, materials innovation is crucially important. A perspective on materials modeling approaches for quantum technology acceleration that incorporate physics-based AI/ML, integrated with quantum metrology is discussed.
Collapse
Affiliation(s)
- Evgeniya H Lock
- Materials Science and Technology Division, U. S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Jonghoon Lee
- Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/RXAN, 2179 12th St, WPAFB, OH, 45433, USA
- ARCTOS Technology Solutions, 1270 N Fairfield Rd, Beavercreek, OH, 45432, USA
| | - Daniel S Choi
- DEVCOM Army Research Laboratory, Weapons and Materials Research Directorate, FCDD-RLW, Aberdeen Proving Ground, Beavercreek, MD, 21015, USA
| | - Robert G Bedford
- Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/RXAN, 2179 12th St, WPAFB, OH, 45433, USA
| | - Shashi P Karna
- DEVCOM Army Research Laboratory, Weapons and Materials Research Directorate, FCDD-RLW, Aberdeen Proving Ground, Beavercreek, MD, 21015, USA
| | - Ajit K Roy
- Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/RXAN, 2179 12th St, WPAFB, OH, 45433, USA
| |
Collapse
|
37
|
Tesi L, Stemmler F, Winkler M, Liu SSY, Das S, Sun X, Zharnikov M, Ludwigs S, van Slageren J. Modular Approach to Creating Functionalized Surface Arrays of Molecular Qubits. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208998. [PMID: 36609776 DOI: 10.1002/adma.202208998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The quest for developing quantum technologies is driven by the promise of exponentially faster computations, ultrahigh performance sensing, and achieving thorough understanding of many-particle quantum systems. Molecular spins are excellent qubit candidates because they feature long coherence times, are widely tunable through chemical synthesis, and can be interfaced with other quantum platforms such as superconducting qubits. A present challenge for molecular spin qubits is their integration in quantum devices, which requires arranging them in thin films or monolayers on surfaces. However, clear proof of the survival of quantum properties of molecular qubits on surfaces has not been reported so far. Furthermore, little is known about the change in spin dynamics of molecular qubits going from the bulk to monolayers. Here, a versatile bottom-up method is reported to arrange molecular qubits as functional groups of self-assembled monolayers (SAMs) on surfaces, combining molecular self-organization and click chemistry. Coherence times of up to 13 µs demonstrate that qubit properties are maintained or even enhanced in the monolayer.
Collapse
Affiliation(s)
- Lorenzo Tesi
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Friedrich Stemmler
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Mario Winkler
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Sherri S Y Liu
- IPOC-Functional Polymers, Institute of Polymer Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Saunak Das
- Applied Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Xiuming Sun
- IPOC-Functional Polymers, Institute of Polymer Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Michael Zharnikov
- Applied Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Sabine Ludwigs
- IPOC-Functional Polymers, Institute of Polymer Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Joris van Slageren
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
38
|
Savytskyy R, Botzem T, Fernandez de Fuentes I, Joecker B, Pla JJ, Hudson FE, Itoh KM, Jakob AM, Johnson BC, Jamieson DN, Dzurak AS, Morello A. An electrically driven single-atom "flip-flop" qubit. SCIENCE ADVANCES 2023; 9:eadd9408. [PMID: 36763660 PMCID: PMC9916988 DOI: 10.1126/sciadv.add9408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
The spins of atoms and atom-like systems are among the most coherent objects in which to store quantum information. However, the need to address them using oscillating magnetic fields hinders their integration with quantum electronic devices. Here, we circumvent this hurdle by operating a single-atom "flip-flop" qubit in silicon, where quantum information is encoded in the electron-nuclear states of a phosphorus donor. The qubit is controlled using local electric fields at microwave frequencies, produced within a metal-oxide-semiconductor device. The electrical drive is mediated by the modulation of the electron-nuclear hyperfine coupling, a method that can be extended to many other atomic and molecular systems and to the hyperpolarization of nuclear spin ensembles. These results pave the way to the construction of solid-state quantum processors where dense arrays of atoms can be controlled using only local electric fields.
Collapse
Affiliation(s)
- Rostyslav Savytskyy
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Tim Botzem
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia
| | | | - Benjamin Joecker
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Jarryd J. Pla
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Fay E. Hudson
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Kohei M. Itoh
- School of Fundamental Science and Technology, Keio University, Kohoku-ku, Yokohama, Japan
| | - Alexander M. Jakob
- School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Brett C. Johnson
- School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - David N. Jamieson
- School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Andrew S. Dzurak
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Andrea Morello
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
39
|
Houard F, Cucinotta G, Guizouarn T, Suffren Y, Calvez G, Daiguebonne C, Guillou O, Artzner F, Mannini M, Bernot K. Metallogels: a novel approach for the nanostructuration of single-chain magnets. MATERIALS HORIZONS 2023; 10:547-555. [PMID: 36426997 DOI: 10.1039/d2mh01158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study we demonstrate that single-chain magnets (SCMs) can be assembled in gel phase and transferred intact on surface. We take advantage of a family of SCMs based on TbIII ions and nitronyl-nitroxides radicals functionalized with short alkyl chains known to form crystalline supramolecular nanotubes interacting with heptane acting as crystallizing solvent. When the radicals are functionalized with long aliphatic chains a robust gel is formed with similar structural and functional properties respect to its crystalline parent. Indeed, a small-angle X-ray scattering (SAXS) study unambiguously demonstrates that the gel is made of supramolecular nanotubes: the high stability of the gel allows the determination from SAXS data of precise nanotube metrics such as diameter, helical pitch and monoclinic cell of the folded 2D crystal lattice along the tube direction. Additionally, static and dynamic magnetic investigations show the persistence of the SCM behavior in the metallogel. Last, on-surface gelation provides thick films as well as sub-monolayer deposits of supramolecular nanotubes on surface as evidenced by atomic force microscopy (AFM) observations. This paves the road toward magnetic materials and devices made of SCMs profiting of their isolation on surface as individual chains.
Collapse
Affiliation(s)
- Felix Houard
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Université de Rennes 1, F-35000 Rennes, France.
| | - Guiseppe Cucinotta
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università degli Studi di Firenze, INSTM Research Unit of Firenze, Via della Lastruccia n.3-13, 50019 Sesto Fiorentino, FI, Italy.
| | - Thierry Guizouarn
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Université de Rennes 1, F-35000 Rennes, France.
| | - Yan Suffren
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Université de Rennes 1, F-35000 Rennes, France.
| | - Guillaume Calvez
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Université de Rennes 1, F-35000 Rennes, France.
| | - Carole Daiguebonne
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Université de Rennes 1, F-35000 Rennes, France.
| | - Olivier Guillou
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Université de Rennes 1, F-35000 Rennes, France.
| | - Franck Artzner
- CNRS, IPR (Institut de Physique de Rennes), UMR 6251, Université de Rennes 1, F-35000 Rennes, France
| | - Matteo Mannini
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università degli Studi di Firenze, INSTM Research Unit of Firenze, Via della Lastruccia n.3-13, 50019 Sesto Fiorentino, FI, Italy.
| | - Kevin Bernot
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Université de Rennes 1, F-35000 Rennes, France.
- Institut Universitaire de France, 1 rue Descartes, 75005, Paris, France
| |
Collapse
|
40
|
Kola P, Nagesh PKB, Roy PK, Deepak K, Reis RL, Kundu SC, Mandal M. Innovative nanotheranostics: Smart nanoparticles based approach to overcome breast cancer stem cells mediated chemo- and radioresistances. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1876. [PMID: 36600447 DOI: 10.1002/wnan.1876] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
The alarming increase in the number of breast cancer patients worldwide and the increasing death rate indicate that the traditional and current medicines are insufficient to fight against it. The onset of chemo- and radioresistances and cancer stem cell-based recurrence make this problem harder, and this hour needs a novel treatment approach. Competent nanoparticle-based accurate drug delivery and cancer nanotheranostics like photothermal therapy, photodynamic therapy, chemodynamic therapy, and sonodynamic therapy can be the key to solving this problem due to their unique characteristics. These innovative formulations can be a better cargo with fewer side effects than the standard chemotherapy and can eliminate the stability problems associated with cancer immunotherapy. The nanotheranostic systems can kill the tumor cells and the resistant breast cancer stem cells by novel mechanisms like local hyperthermia and reactive oxygen species and prevent tumor recurrence. These theranostic systems can also combine with chemotherapy or immunotherapy approaches. These combining approaches can be the future of anticancer therapy, especially to overcome the breast cancer stem cells mediated chemo- and radioresistances. This review paper discusses several novel theranostic systems and smart nanoparticles, their mechanism of action, and their modifications with time. It explains their relevance and market scope in the current era. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Prithwish Kola
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | - Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - K Deepak
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Rui Luis Reis
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimaraes, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimaraes, Portugal
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
41
|
Pereira GC. Nanotechnology-Driven Delivery Systems in Inoculation Therapies. Methods Mol Biol 2023; 2575:39-57. [PMID: 36301470 DOI: 10.1007/978-1-0716-2716-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanotechnology and genomics are the newest allies of inoculation design. In recent years, nucleic acids have been targeted as sources of therapeutics to stimulate immune responses, to both fight disease and create memory to trigger further responses to threat. A myriad of promising findings in cancer research and virology has been reported in the current literature. Nanosystems are demonstrating their capabilities as efficient carriers, improving the efficacy of drug delivery, including nucleic acids as therapeutics, at focal sites, in living systems. This chapter approaches major elements involved in the successful use of nanotechnology as delivery platforms to optimise the efficacy of nucleic acids-driven therapeutics, particularly mRNA vectors as coding engines for targeted viral proteins. Latest findings in nanotechnological design are highlighted, key discoveries associated with the success of nanodelivery platforms are presented, and key characteristics of nanodelivery systems in nucleic acids-based vaccine technology are discussed, to illustrate their distinct advantages and disadvantages.
Collapse
|
42
|
Salvadori E, Bruzzese PC, Giamello E, Chiesa M. Single Metal Atoms on Oxide Surfaces: Assessing the Chemical Bond through 17O Electron Paramagnetic Resonance. Acc Chem Res 2022; 55:3706-3715. [PMID: 36442497 PMCID: PMC9774661 DOI: 10.1021/acs.accounts.2c00606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ConspectusEven in the gas phase single atoms possess catalytic properties, which can be crucially enhanced and modulated by the chemical interaction with a solid support. This effect, known as electronic metal-support interaction, encompasses charge transfer, orbital overlap, coordination structure, etc., in other words, all the crucial features of the chemical bond. These very features are the object of this Account, with specific reference to open-shell (paramagnetic) single metal atoms or ions on oxide supports. Such atomically dispersed species are part of the emerging class of heterogeneous catalysts known as single-atom catalysts (SACs). In these materials, atomic dispersion ensures maximum atom utilization and uniform active sites, whereby the nature of the chemical interaction between the metal and the oxide surface modulates the catalytic activity of the metal active site by tuning the energy of the frontier orbitals. A comprehensive set of examples includes fourth period metal atoms and ions in zeolites on insulating (e.g., MgO) or reducible (e.g., TiO2) oxides and are among the most relevant catalysts for a wealth of key processes of industrial and environmental relevance, from the abatement of NOx to the selective oxidation of hydrocarbons and the conversion of methane to methanol.There exist several spectroscopic techniques able to inform on the geometric and electronic structure of isolated single metal ion sites, but either they yield information averaged over the bulk or they lack description of the intimate features of chemical bonding, which include covalency, ionicity, electron and spin delocalization. All of these can be recovered at once by measuring the magnetic interactions between open-shell metals and the surrounding nuclei with Electron Paramagnetic Resonance (EPR) spectroscopy. In the case of oxides, this entails the synthesis of 17O isotopically enriched materials. We have established 17O EPR as a unique source of information about the local binding environment around oxygen of magnetic atoms or ions on different oxidic supports to rationalize structure-property relationships. Here, we will describe strategies for 17O surface enrichments and approaches to monitor the state of charge and spin delocalization of atoms or ions from K to Zn dispersed on oxide surfaces characterized by different chemical properties (i.e., basicity or reducibility). Emphasis is placed on chemical insight at the atomic-scale level achieved by 17O EPR, which is a crucial step in understanding the structure-property relationships of single metal atom catalysts and in enabling efficient design of future materials for a range of end uses.
Collapse
Affiliation(s)
- Enrico Salvadori
- Department
of Chemistry and NIS Centre of Excellence, University of Turin, via Giuria 9, 10125 Torino, Italy
| | - Paolo Cleto Bruzzese
- Department
of Chemistry and NIS Centre of Excellence, University of Turin, via Giuria 9, 10125 Torino, Italy,Felix
Bloch Institute for Solid State Physics, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany
| | - Elio Giamello
- Department
of Chemistry and NIS Centre of Excellence, University of Turin, via Giuria 9, 10125 Torino, Italy
| | - Mario Chiesa
- Department
of Chemistry and NIS Centre of Excellence, University of Turin, via Giuria 9, 10125 Torino, Italy,E-mail:
| |
Collapse
|
43
|
Qian H, Beltran AS. Mesoscience in cell biology and cancer research. CANCER INNOVATION 2022; 1:271-284. [PMID: 38089088 PMCID: PMC10686186 DOI: 10.1002/cai2.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 10/15/2024]
Abstract
Mesoscale characteristics and their interdimensional correlation are the focus of contemporary interdisciplinary research. Mesoscience is a discipline that has the potential to radically update the existing knowledge structure, which differs from the conventional unit-scale and system-scale research models, revealing a previously untouchable area for scientific research. Integrative biology research aims to dissect the complex problems of life systems by conducting comprehensive research and integrating various disciplines from all biological levels of the living organism. However, the mesoscientific issues between different research units are neglected and challenging. Mesoscale research in biology requires the integration of research theories and methods from other disciplines (mathematics, physics, engineering, and even visual imaging) to investigate theoretical and frontier questions of biological processes through experiments, computations, and modeling. We reviewed integrative paradigms and methods for the biological mesoscale problems (focusing on oncology research) and prospected the potential of their multiple dimensions and upcoming challenges. We expect to establish an interactive and collaborative theoretical platform for further expanding the depth and width of our understanding on the nature of biology.
Collapse
Affiliation(s)
- Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Adriana Sujey Beltran
- Department of Pharmacology, University of North Carolina at Chapel HillChapel HillNCUSA
| |
Collapse
|
44
|
Nam NN, Do HDK, Trinh KTL, Lee NY. Recent Progress in Nanotechnology-Based Approaches for Food Monitoring. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4116. [PMID: 36500739 PMCID: PMC9740597 DOI: 10.3390/nano12234116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 05/10/2023]
Abstract
Throughout the food supply chain, including production, storage, and distribution, food can be contaminated by harmful chemicals and microorganisms, resulting in a severe threat to human health. In recent years, the rapid advancement and development of nanotechnology proposed revolutionary solutions to solve several problems in scientific and industrial areas, including food monitoring. Nanotechnology can be incorporated into chemical and biological sensors to improve analytical performance, such as response time, sensitivity, selectivity, reliability, and accuracy. Based on the characteristics of the contaminants and the detection methods, nanotechnology can be applied in different ways in order to improve conventional techniques. Nanomaterials such as nanoparticles, nanorods, nanosheets, nanocomposites, nanotubes, and nanowires provide various functions for the immobilization and labeling of contaminants in electrochemical and optical detection. This review summarizes the recent advances in nanotechnology for detecting chemical and biological contaminations in the food supply chain.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Kieu The Loan Trinh
- Department of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
45
|
Xu X, Wang J, Blankevoort N, Daaoub A, Sangtarash S, Shi J, Fang C, Yuan S, Chen L, Liu J, Yang Y, Sadeghi H, Hong W. Scaling of quantum interference from single molecules to molecular cages and their monolayers. Proc Natl Acad Sci U S A 2022; 119:e2211786119. [PMID: 36343232 PMCID: PMC9674264 DOI: 10.1073/pnas.2211786119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
The discovery of quantum interference (QI) is widely considered as an important advance in molecular electronics since it provides unique opportunities for achieving single-molecule devices with unprecedented performance. Although some pioneering studies suggested the presence of spin qubit coherence and QI in collective systems such as thin films, it remains unclear whether the QI can be transferred step-by-step from single molecules to different length scales, which hinders the application of QI in fabricating active molecular devices. Here, we found that QI can be transferred from a single molecule to their assemblies. We synthesized and investigated the charge transport through the molecular cages using 1,3-dipyridylbenzene (DPB) as a ligand block with a destructive quantum interference (DQI) effect and 2,5-dipyridylfuran (DPF) as a control building block with a constructive quantum interference (CQI) effect using both single-molecule break junction and large area junction techniques. Combined experiments and calculations revealed that both DQI and CQI had been transferred from the ligand blocks to the molecular cages and the monolayer thin film of the cages. Our work introduced QI effects from a ligand to the molecular cage comprising 732 atoms and even their monolayers, suggesting that the quantum interference could be scaled up within the phase-coherent distance.
Collapse
Affiliation(s)
- Xiaohui Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Juejun Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Nickel Blankevoort
- Device Modelling Group, School of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Abdalghani Daaoub
- Device Modelling Group, School of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Sara Sangtarash
- Device Modelling Group, School of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Jie Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Chao Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Saisai Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Lichuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| | - Hatef Sadeghi
- Device Modelling Group, School of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
| |
Collapse
|
46
|
Privitera A, Macaluso E, Chiesa A, Gabbani A, Faccio D, Giuri D, Briganti M, Giaconi N, Santanni F, Jarmouni N, Poggini L, Mannini M, Chiesa M, Tomasini C, Pineider F, Salvadori E, Carretta S, Sessoli R. Direct detection of spin polarization in photoinduced charge transfer through a chiral bridge. Chem Sci 2022; 13:12208-12218. [PMID: 36349110 PMCID: PMC9601404 DOI: 10.1039/d2sc03712b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/03/2022] [Indexed: 12/26/2022] Open
Abstract
It is well assessed that the charge transport through a chiral potential barrier can result in spin-polarized charges. The possibility of driving this process through visible photons holds tremendous potential for several aspects of quantum information science, e.g., the optical control and readout of qubits. In this context, the direct observation of this phenomenon via spin-sensitive spectroscopies is of utmost importance to establish future guidelines to control photo-driven spin selectivity in chiral structures. Here, we provide direct proof that time-resolved electron paramagnetic resonance (EPR) can be used to detect long-lived spin polarization generated by photoinduced charge transfer through a chiral bridge. We propose a system comprising CdSe quantum dots (QDs), as a donor, and C60, as an acceptor, covalently linked through a saturated oligopeptide helical bridge (χ) with a rigid structure of ∼10 Å. Time-resolved EPR spectroscopy shows that the charge transfer in our system results in a C60 radical anion, whose spin polarization maximum is observed at longer times with respect to that of the photogenerated C60 triplet state. Notably, the theoretical modelling of the EPR spectra reveals that the observed features may be compatible with chirality-induced spin selectivity, but the electronic features of the QD do not allow the unambiguous identification of the CISS effect. Nevertheless, we identify which parameters need optimization for unambiguous detection and quantification of the phenomenon. This work lays the basis for the optical generation and direct manipulation of spin polarization induced by chirality.
Collapse
Affiliation(s)
- Alberto Privitera
- Department of Chemistry and NIS Centre, University of Torino Via Giuria 7 Torino I-10125 Italy
- Department of Chemistry "U. Schiff" (DICUS), University of Florence & UdR INSTM Firenze Via della Lastruccia 3-13 Sesto Fiorentino I-50019 Italy
| | - Emilio Macaluso
- Department of Mathematical, Physical and Computer Sciences, University of Parma & UdR INSTM I-43124 Parma Italy
- INFN-Sezione di Milano-Bicocca, gruppo collegato di Parma I-43124 Parma Italy
| | - Alessandro Chiesa
- Department of Mathematical, Physical and Computer Sciences, University of Parma & UdR INSTM I-43124 Parma Italy
- INFN-Sezione di Milano-Bicocca, gruppo collegato di Parma I-43124 Parma Italy
| | - Alessio Gabbani
- Department of Chemistry and Industrial Chemistry, University of Pisa & UdR INSTM Pisa Via Moruzzi 13 Pisa I-56124 Italy
| | - Davide Faccio
- Department of Chemistry "Giacomo Ciamician", University of Bologna Via Selmi 2 Bologna I-40126 Italy
| | - Demetra Giuri
- Department of Chemistry "Giacomo Ciamician", University of Bologna Via Selmi 2 Bologna I-40126 Italy
| | - Matteo Briganti
- Department of Chemistry "U. Schiff" (DICUS), University of Florence & UdR INSTM Firenze Via della Lastruccia 3-13 Sesto Fiorentino I-50019 Italy
| | - Niccolò Giaconi
- Department of Chemistry "U. Schiff" (DICUS), University of Florence & UdR INSTM Firenze Via della Lastruccia 3-13 Sesto Fiorentino I-50019 Italy
- Department of Industrial Engineering (DIEF), University of Florence & UdR INSTM Firenze Via Santa Marta 3 Firenze I-50139 Italy
| | - Fabio Santanni
- Department of Chemistry "U. Schiff" (DICUS), University of Florence & UdR INSTM Firenze Via della Lastruccia 3-13 Sesto Fiorentino I-50019 Italy
| | - Nabila Jarmouni
- Department of Chemistry and Industrial Chemistry, University of Pisa & UdR INSTM Pisa Via Moruzzi 13 Pisa I-56124 Italy
| | - Lorenzo Poggini
- CNR-ICCOM Via Madonna del Piano 10 Sesto Fiorentino I-50019 Italy
| | - Matteo Mannini
- Department of Chemistry "U. Schiff" (DICUS), University of Florence & UdR INSTM Firenze Via della Lastruccia 3-13 Sesto Fiorentino I-50019 Italy
| | - Mario Chiesa
- Department of Chemistry and NIS Centre, University of Torino Via Giuria 7 Torino I-10125 Italy
| | - Claudia Tomasini
- Department of Chemistry "Giacomo Ciamician", University of Bologna Via Selmi 2 Bologna I-40126 Italy
| | - Francesco Pineider
- Department of Chemistry and Industrial Chemistry, University of Pisa & UdR INSTM Pisa Via Moruzzi 13 Pisa I-56124 Italy
| | - Enrico Salvadori
- Department of Chemistry and NIS Centre, University of Torino Via Giuria 7 Torino I-10125 Italy
| | - Stefano Carretta
- Department of Mathematical, Physical and Computer Sciences, University of Parma & UdR INSTM I-43124 Parma Italy
- INFN-Sezione di Milano-Bicocca, gruppo collegato di Parma I-43124 Parma Italy
| | - Roberta Sessoli
- Department of Chemistry "U. Schiff" (DICUS), University of Florence & UdR INSTM Firenze Via della Lastruccia 3-13 Sesto Fiorentino I-50019 Italy
| |
Collapse
|
47
|
Hu R, Liang Y, Qian W, Gan X, Liang L, Wang J, Liu Z, Shi Y, Xu J, Chen K, Yu L. Ultra-Confined Catalytic Growth Integration of Sub-10 nm 3D Stacked Silicon Nanowires Via a Self-Delimited Droplet Formation Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204390. [PMID: 36084173 DOI: 10.1002/smll.202204390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Fabricating ultrathin silicon (Si) channels down to critical dimension (CD) <10 nm, a key capability to implementing cutting-edge microelectronics and quantum charge-qubits, has never been accomplished via an extremely low-cost catalytic growth. In this work, 3D stacked ultrathin Si nanowires (SiNWs) are demonstrated, with width and height of Wnw = 9.9 ± 1.2 nm (down to 8 nm) and Hnw = 18.8 ± 1.8 nm, that can be reliably grown into the ultrafine sidewall grooves, approaching to the CD of 10 nm technology node, thanks to a new self-delimited droplet control strategy. Interestingly, the cross-sections of the as-grown SiNW channels can also be easily tailored from fin-like to sheet-like geometries by tuning the groove profile, while a sharply folding guided growth indicates a unique capability to produce closely-packed multiple rows of stacked SiNWs, out of a single run growth, with the minimal use of catalyst metal. Prototype field effect transistors are also successfully fabricated, achieving Ion/off ratio and sub-threshold swing of >106 and 125 mV dec-1 , respectively. These results highlight the unexplored potential of versatile catalytic growth to compete with, or complement, the advanced top-down etching technology in the exploitation of monolithic 3D integration of logic-in-memory, neuromorphic and charge-qubit applications.
Collapse
Affiliation(s)
- Ruijin Hu
- School of Electronics Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Yifei Liang
- School of Electronics Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Wentao Qian
- School of Electronics Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Xin Gan
- School of Electronics Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Lei Liang
- School of Electronics Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Junzhuan Wang
- School of Electronics Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Zongguang Liu
- School of Electronics Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Yi Shi
- School of Electronics Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Jun Xu
- School of Electronics Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Kunji Chen
- School of Electronics Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Linwei Yu
- School of Electronics Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
48
|
Lockyer S, Chiesa A, Brookfield A, Timco GA, Whitehead GFS, McInnes EJL, Carretta S, Winpenny REP. Five-Spin Supramolecule for Simulating Quantum Decoherence of Bell States. J Am Chem Soc 2022; 144:16086-16092. [PMID: 36007954 PMCID: PMC9460766 DOI: 10.1021/jacs.2c06384] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/28/2022]
Abstract
We report a supramolecule that contains five spins of two different types and with, crucially, two different and predictable interaction energies between the spins. The supramolecule is characterized, and the interaction energies are demonstrated by electron paramagnetic resonance (EPR) spectroscopy. Based on the measured parameters, we propose experiments that would allow this designed supramolecule to be used to simulate quantum decoherence in maximally entangled Bell states that could be used in quantum teleportation.
Collapse
Affiliation(s)
- Selena
J. Lockyer
- Department
of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Alessandro Chiesa
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INFN−Sezione
di Milano-Bicocca, Gruppo Collegato di Parma, I-43124 Parma, Italy
- UdR
Parma, INSTM, I-43124 Parma, Italy
| | - Adam Brookfield
- Department
of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Grigore A. Timco
- Department
of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - George F. S. Whitehead
- Department
of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Eric J. L. McInnes
- Department
of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Stefano Carretta
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INFN−Sezione
di Milano-Bicocca, Gruppo Collegato di Parma, I-43124 Parma, Italy
- UdR
Parma, INSTM, I-43124 Parma, Italy
| | - Richard E. P. Winpenny
- Department
of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
49
|
de Oteyza DG, Frederiksen T. Carbon-based nanostructures as a versatile platform for tunable π-magnetism. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:443001. [PMID: 35977474 DOI: 10.1088/1361-648x/ac8a7f] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Emergence ofπ-magnetism in open-shell nanographenes has been theoretically predicted decades ago but their experimental characterization was elusive due to the strong chemical reactivity that makes their synthesis and stabilization difficult. In recent years, on-surface synthesis under vacuum conditions has provided unprecedented opportunities for atomically precise engineering of nanographenes, which in combination with scanning probe techniques have led to a substantial progress in our capabilities to realize localized electron spin states and to control electron spin interactions at the atomic scale. Here we review the essential concepts and the remarkable advances in the last few years, and outline the versatility of carbon-basedπ-magnetic materials as an interesting platform for applications in spintronics and quantum technologies.
Collapse
Affiliation(s)
- Dimas G de Oteyza
- Nanomaterials and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, E-33940 El Entrego, Spain
- Donostia International Physics Center (DIPC)-UPV/EHU, E-20018 San Sebastián, Spain
| | - Thomas Frederiksen
- Donostia International Physics Center (DIPC)-UPV/EHU, E-20018 San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, E-48013 Bilbao, Spain
| |
Collapse
|
50
|
Xu Z, Romankov V, Doll A, Dreiser J. Orienting dilute thin films of non-planar spin-1/2 vanadyl-phthalocyanine complexes. MATERIALS ADVANCES 2022; 3:4938-4946. [PMID: 35812836 PMCID: PMC9207598 DOI: 10.1039/d2ma00157h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The molecular orientation as well as the electronic and magnetic properties of vanadyl-phthalocyanine (VOPc) diluted into titanyl-phthalocyanine (TiOPc) thin films on Si(100) and polycrystalline aluminum substrates have been investigated by soft X-ray absorption spectroscopy (XAS), X-ray linear dichroism (XLD) and X-ray magnetic circular dichroism (XMCD). On the bare substrates the films grow with a standing-up geometry. By contrast, on template layers of 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA), they assume a lying-down orientation. Moreover, a theoretical model based on the normalized intensity of the nitrogen K-edge XLD is established in order to extract the molecular orientation angle quantitatively without the need for crystallinity and with the sub-monolayer sensitivity of soft-XAS. XMCD reveals that the vanadium magnetic properties are preserved in both non-diluted and diluted films. The results pave the way toward the use of VOPc as nanometer-sized spin quantum bits.
Collapse
Affiliation(s)
- Zhewen Xu
- Swiss Light Source, Paul Scherrer Institut Forschungsstrasse 111 CH-5232 Villigen PSI Switzerland
| | - Vladyslav Romankov
- Swiss Light Source, Paul Scherrer Institut Forschungsstrasse 111 CH-5232 Villigen PSI Switzerland
| | - Andrin Doll
- Swiss Light Source, Paul Scherrer Institut Forschungsstrasse 111 CH-5232 Villigen PSI Switzerland
| | - Jan Dreiser
- Swiss Light Source, Paul Scherrer Institut Forschungsstrasse 111 CH-5232 Villigen PSI Switzerland
| |
Collapse
|