1
|
Wang L, Tricard N, Chen Z, Deng S. Progress in computational methods and mechanistic insights on the growth of carbon nanotubes. NANOSCALE 2025; 17:11812-11863. [PMID: 40275725 DOI: 10.1039/d4nr05487c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Carbon nanotubes (CNTs), as a promising nanomaterial with broad applications across various fields, are continuously attracting significant research attention. Despite substantial progress in understanding their growth mechanisms, synthesis methods, and post-processing techniques, two major goals remain challenging: achieving property-targeted growth and efficient mass production. Recent advancements in computational methods driven by increased computational resources, the development of platforms, and the refinement of theoretical models, have significantly deepened our understanding of the mechanisms underlying CNT growth. This review aims to comprehensively examine the latest computational techniques that shed light on various aspects of CNT synthesis. The first part of this review focuses on progress in computational methods. Beginning with atomistic simulation approaches, we introduce the fundamentals and advancements in density functional theory (DFT), molecular dynamics (MD) simulations, and kinetic Monte Carlo (kMC) simulations. We discuss the applicability and limitations of each method in studying mechanisms of CNT growth. Then, the focus shifts to multiscale modeling approaches, where we demonstrate the coupling of atomic-scale simulations with reactor-scale multiphase flow models. Given that CNT growth inherently spans multiple temporal and spatial scales, the development and application of multiscale modeling techniques are poised to become a central focus of future computational research in this field. Furthermore, this review emphasizes the growing role played by machine learning in CNT growth research. Compared with traditional physics-based simulation methods, data-driven machine learning approaches have rapidly emerged in recent years, revolutionizing research paradigms from molecular simulation to experimental design. In the second part of this review, we highlight the latest advancements in CNT growth mechanisms and synthesis methods achieved through computational techniques. These include novel findings across fundamental growth stages, i.e., from nucleation to elongation and ultimately termination. We also examine the dynamic behaviors of catalyst nanoparticles and chirality-controlled growth processes, emphasizing how these insights contribute to advancing the field. Finally, in the concluding section, we propose future directions for advancements of computational approaches toward deeper understanding of CNT growth mechanisms and better support of CNT manufacturing.
Collapse
Affiliation(s)
- Linzheng Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA.
| | - Nicolas Tricard
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA.
| | - Zituo Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA.
| | - Sili Deng
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA.
| |
Collapse
|
2
|
Basu S. The Importance of Defects in Controlling the Chemistry of Single-Walled Carbon Nanotubes. J Phys Chem Lett 2025:5128-5139. [PMID: 40367340 DOI: 10.1021/acs.jpclett.5c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Defects in single-walled carbon nanotubes (SWCNTs) serve as active sites for chemical reactions, enabling selective functionalization and molecular interactions that are otherwise inaccessible in pristine SWCNTs. By altering the electronic structure and local reactivity, defects play a pivotal role in controlling the chemistry of SWCNTs, dictating how they interact with external molecules. In this mini-review, we explore how defect engineering transforms SWCNTs into platforms for chemical transformations, starting with the photophysical principles governing defect-induced optical transitions. We then examine strategies for introducing atomic and molecular defects, their influence on fluorescence behavior, and their role in facilitating chemical reactions. Additionally, we discuss the challenges in establishing direct correlations between defect composition and both optical and chemical properties. Finally, we highlight emerging opportunities for defect-engineered SWCNTs in molecular sensing, bioimaging, and catalysis, emphasizing the need for rational chemical design strategies to harness their full potential.
Collapse
Affiliation(s)
- Srestha Basu
- Biophysical Sciences Group, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Chemical Sciences Division, Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
3
|
Eller B, Clark CW, Wang Y. Scaling law of quantum confinement in single-walled carbon nanotubes. J Chem Phys 2025; 162:144303. [PMID: 40197866 DOI: 10.1063/5.0245889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/12/2025] [Indexed: 04/10/2025] Open
Abstract
Quantum confinement significantly influences the excited states of sub-10 nm single-walled carbon nanotubes (SWCNTs), crucial for advancements in transistor technology and the development of novel optoelectronic materials, such as fluorescent ultrashort nanotubes (FUNs). However, the length dependence of this effect in ultrashort SWCNTs is not yet fully understood in the context of the SWCNT exciton states. Here, we conduct excited state calculations using time-dependent density functional theory on geometry-optimized models of ultrashort SWCNTs and FUNs, which consist of ultrashort SWCNTs with sp3 defects. Our results reveal a length-dependent scaling law of the E11 exciton energy that can be understood through a geometric, dimensional argument, which departs from the length scaling of a 1D particle-in-a-box. We find that this scaling law applies to ultrashort (6,5) and (6,6) SWCNTs, as well as models of (6,5) FUNs. In contrast, the defect-induced Esp3 transition, which is redshifted from the E11 optical gap transition, shows little dependence on the nanotube length, even in the shortest possible SWCNTs. We attribute this relative lack of length dependence to orbital localization around the quantum defect that is installed near the SWCNT edge. Our results illustrate the complex interplay of defects and quantum confinement effects in ultrashort SWCNTs and provide a foundation for further explorations of these nanoscale phenomena.
Collapse
Affiliation(s)
- Benjamin Eller
- Institute for Physical Sciences and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Charles W Clark
- Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899, USA
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
4
|
Sander M, Metternich JT, Dippner P, Kruss S, Borchardt L. Controlled Introduction of sp 3 Quantum Defects in Fluorescent Carbon Nanotubes by Mechanochemistry. Angew Chem Int Ed Engl 2025; 64:e202421021. [PMID: 39836383 DOI: 10.1002/anie.202421021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
Precise control over low-dimensional materials holds an immense potential for their applications in sensing, imaging and information processing. The controlled introduction of sp3 quantum defects (color centers) can be used to tailor the optoelectronic properties of single-walled carbon nanotubes (SWCNTs) in the tissue transparency (>800 nm) and the telecommunication window. However, an uncontrolled functionalization of SWCNTs with defects leads to a loss of the NIR fluorescence. Here, we use mechanochemistry with aryldiazonium salts to create quantum defects in SWCNTs. The reaction proceeds within 5 min without solvents or illumination and can be controlled by a varied mechanochemical energy impact. By working in the solid-state, this method presents an alternative synthetic route and marks a crucial step for tailoring photophysics of SWCNTs.
Collapse
Affiliation(s)
- Miriam Sander
- Department of Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum
| | - Justus T Metternich
- Department of Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems (IMS), Finkenstraße 61, 47057, Duisburg
| | - Pascal Dippner
- Department of Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum
| | - Sebastian Kruss
- Department of Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems (IMS), Finkenstraße 61, 47057, Duisburg
| | - Lars Borchardt
- Department of Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum
| |
Collapse
|
5
|
Maeda Y, Iguchi Y, Zhao P, Suwa A, Taki Y, Kawada K, Yamada M, Ehara M, Kako M. Switching Photoluminescence Wavelength of Arylated Single-walled Carbon Nanotubes by Utilizing Steric Hindrance in Reductive Arylation. Chemistry 2025; 31:e202404529. [PMID: 39831380 PMCID: PMC11874903 DOI: 10.1002/chem.202404529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
(6,5)-enriched single-walled carbon nanotubes (SWCNTs) were reductively arylated using sodium naphthalenide and monosubstituted and disubstituted iodobenzene derivatives to control their photoluminescence (PL) properties. In the reactions with substituted iodobenzenes, the degree of functionalization was influenced by the substituents on the aryl groups depending on their position, which allowed us to realize control of the PL intensity and wavelength. The methyl or methoxy group at the 2-position and methyl groups at the 3,5-positions of the phenyl group respectively increased the E11** PL and E11* PL selectivity at ~1230 and ~1100 nm. Methyl groups at the 2,6-positions emerged two new PL peaks. These PL characteristics were prominently observed in the (6,4) SWCNT adducts, which were separated by gel chromatography. Theoretical calculations of model compounds showed that the effect of the substituent at the ortho-position on the relative stability of the isomers with different binding configurations was greater for the diarylated SWCNTs than for the hydroarylated SWCNTs. Experimental and theoretical calculation results revealed that the choice of substituents on the benzene ring was effectively used to modulate the PL wavelength, and these substituents had a considerable effect on the favorable binding configuration of the SWCNT adduct and relative stability and PL wavelength of the conformational isomers.
Collapse
Affiliation(s)
- Yutaka Maeda
- Department of ChemistryTokyo Gakugei University184-8501TokyoJapan
| | - Yui Iguchi
- Department of ChemistryTokyo Gakugei University184-8501TokyoJapan
| | - Pei Zhao
- Research Center for Computational ScienceInstitute for Molecular Science444-8585OkazakiJapan
| | - Atsushi Suwa
- Department of ChemistryTokyo Gakugei University184-8501TokyoJapan
| | - Yasunari Taki
- Department of ChemistryTokyo Gakugei University184-8501TokyoJapan
| | - Kentaro Kawada
- Department of ChemistryTokyo Gakugei University184-8501TokyoJapan
| | - Michio Yamada
- Department of ChemistryTokyo Gakugei University184-8501TokyoJapan
| | - Masahiro Ehara
- Research Center for Computational ScienceInstitute for Molecular Science444-8585OkazakiJapan
| | - Masahiro Kako
- Department of Engineering ScienceThe University of Electro-Communications182-8585TokyoJapan
| |
Collapse
|
6
|
Schrage CA, Galonska P, Metternich JT, Kruss S. Photophysical Properties of Tandem Quantum Defects in Carbon Nanotubes. J Phys Chem Lett 2025; 16:1573-1581. [PMID: 39904739 DOI: 10.1021/acs.jpclett.4c03476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Single-walled carbon nanotubes (SWCNTs) are versatile near-infrared (NIR) fluorophores that can be chemically functionalized to create biosensors. Numerous noncovalent approaches were developed to detect analytes, but these design concepts can be susceptible to nonspecific binding and reduced stability. In contrast, covalent modification of SWCNTs with quantum defects can be utilized to tune their fluorescence properties and enable new molecular recognition concepts. Here, we present and assess four different synthetic pathways/sequences to modify SWCNTs covalently with both sp3 quantum defects and DNA-based guanine defects. We find that it is possible to create two defect types without disrupting the optical properties or chemical stability. Interestingly, the emission peak associated with sp3 defects (E11*) shifts around 3 nm when combined with guanine defects, indicating a coupling between the two defect types. However, it is far lower than the red-shift in bandgap-related emission (E11) by guanine quantum defects (40 nm). We furthermore demonstrate that combinations of defects can be used for (bio)sensing. In summary, the combination of multiple quantum defect types in SWCNTs provides a platform for multifunctional biosensors and a new design space that can be explored.
Collapse
Affiliation(s)
- C Alexander Schrage
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Phillip Galonska
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Justus T Metternich
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstraße 61, 47057 Duisburg, Germany
| | - Sebastian Kruss
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstraße 61, 47057 Duisburg, Germany
| |
Collapse
|
7
|
Espinoza VB, Bachilo SM, Zheng Y, Htoon H, Weisman RB. Complexity in the Photofunctionalization of Single-Wall Carbon Nanotubes with Hypochlorite. ACS NANO 2025; 19:2497-2506. [PMID: 39772445 DOI: 10.1021/acsnano.4c13605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The reaction of aqueous suspensions of single-wall carbon nanotubes (SWCNTs) with UV-excited sodium hypochlorite has previously been reported to be an efficient route for doping nanotubes with oxygen atoms. We have investigated how this reaction system is affected by pH level, dissolved O2 content, and radical scavengers and traps. Products were characterized with near-IR fluorescence, Raman, and XPS spectroscopy. The reaction is greatly accelerated by removal of dissolved O2 and strongly suppressed by TEMPO, a radical trap. Alcohols added as radical scavengers alter the reaction efficiency and the product peak emission wavelengths. Photofunctionalization with 300 nm irradiation is substantially less efficient at pH levels low enough to protonate the OCl- ion to HOCl. We deduce that in mildly treated high pH samples, the main product is sp2 hybridized O-doped adducts formed by reaction of SWCNTs with atomic oxygen in its 3P (ground) level. By contrast, treatment under low pH conditions leads to sp3 hybridized SWCNT adducts formed by the addition of secondary radicals from reactions of •OH and •Cl. There is also evidence for additional photoreactions of product species under stronger irradiation. Researchers using photoexcited hypochlorite for SWCNT functionalization should be alert to the range of products and the sensitivity to reaction conditions in this system.
Collapse
Affiliation(s)
- Vanessa B Espinoza
- Department of Chemistry and the Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Sergei M Bachilo
- Department of Chemistry and the Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Yu Zheng
- Center for Integrated Nanotechnologies, Materials, Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Han Htoon
- Center for Integrated Nanotechnologies, Materials, Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - R Bruce Weisman
- Department of Chemistry and the Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
8
|
Taborowska P, Dzienia A, Janas D. Unraveling aryl peroxide chemistry to enrich optical properties of single-walled carbon nanotubes. Chem Sci 2025; 16:1374-1389. [PMID: 39703412 PMCID: PMC11653410 DOI: 10.1039/d4sc04785k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
Harnessing the unique optical properties of chirality-enriched single-walled carbon nanotubes (SWCNTs) is the key to unlocking the application of SWCNTs in photonics. Recently, it has been discovered that chemical modification of SWCNTs greatly increases their potential in this context. Despite the dynamic progress in this area, the mechanism of the chemical modification of SWCNTs and the impact of the reaction conditions on the properties of the obtained functional nanomaterials remain unclear. In this study, we demonstrate how the reaction environment influences the observed fluorescence pattern of SWCNTs after modification with benzoyloxy radicals generated in situ. The obtained results reveal that each diacyl peroxide molecule can generate either one or two radicals by two different mechanisms, i.e., induced or spontaneous decomposition. Through proper selection of the reactant concentration, process temperature, and solvent, we were able to activate one or both radical decay pathways. In addition, the choice of a solvent, such as tetrahydrofuran or acetonitrile, allowed drastic changes in the functionalization process. Consequently, the SWCNT surface was grafted with functional groups via C-C bonds using radicals derived from the solvent molecules instead of attaching an aromatic moiety from the reactant present in the system through the expected C-O linkage. Verification of the structure of the chemically bound functional groups through hydrolysis opens the route to further modification of SWCNT surfaces using the labile ester connection. By gaining a better understanding of the emergence and behavior of the generated radicals, we demonstrate the possibility of controlling the density of introduced defects, as well as the selectivity of the functionalization process. The identification of the underlying chemical pathways responsible for the functionalization of SWCNTs paves the way for the design of precise methods of SWCNT modification to adjust their photonic characteristics for specific applications.
Collapse
Affiliation(s)
- Patrycja Taborowska
- Department of Chemistry, Silesian University of Technology B. Krzywoustego 4 44-100 Gliwice Poland
| | - Andrzej Dzienia
- Department of Chemistry, Silesian University of Technology B. Krzywoustego 4 44-100 Gliwice Poland
| | - Dawid Janas
- Department of Chemistry, Silesian University of Technology B. Krzywoustego 4 44-100 Gliwice Poland
| |
Collapse
|
9
|
Metternich JT, Patjoshi SK, Kistwal T, Kruss S. High-Throughput Approaches to Engineer Fluorescent Nanosensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411067. [PMID: 39533494 PMCID: PMC11707575 DOI: 10.1002/adma.202411067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Optical sensors are powerful tools to identify and image (biological) molecules. Because of their optoelectronic properties, nanomaterials are often used as building blocks. To transduce the chemical interaction with the analyte into an optical signal, the interplay between surface chemistry and nanomaterial photophysics has to be optimized. Understanding these aspects promises major opportunities for tailored sensors with optimal performance. However, this requires methods to create and explore the many chemical permutations. Indeed, many current approaches are limited in throughput. This affects the chemical design space that can be studied, the application of machine learning approaches as well as fundamental mechanistic understanding. Here, an overview of selection-limited and synthesis-limited approaches is provided to create and identify molecular nanosensors. Bottlenecks are discussed and opportunities of non-classical recognition strategies are highlighted such as corona phase molecular recognition as well as the requirements for high throughput and scalability. Fluorescent carbon nanotubes are powerful building blocks for sensors and their huge chemical design space makes them an ideal platform for high throughput approaches. Therefore, they are the focus of this article, but the insights are transferable to any nanosensor system. Overall, this perspective aims to provide a fresh perspective to overcome current challenges in the nanosensor field.
Collapse
Affiliation(s)
- Justus T. Metternich
- Fraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
- Department of ChemistryRuhr‐University BochumUniversitätsstrasse 15044801BochumGermany
| | - Sujit K. Patjoshi
- Department of ChemistryRuhr‐University BochumUniversitätsstrasse 15044801BochumGermany
| | - Tanuja Kistwal
- Department of ChemistryRuhr‐University BochumUniversitätsstrasse 15044801BochumGermany
| | - Sebastian Kruss
- Fraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
- Department of ChemistryRuhr‐University BochumUniversitätsstrasse 15044801BochumGermany
- Center for Nanointegration Duisburg‐Essen (CENIDE)Carl‐Benz‐Strasse 19947057DuisburgGermany
| |
Collapse
|
10
|
Cohen Z, Williams RM. Single-Walled Carbon Nanotubes as Optical Transducers for Nanobiosensors In Vivo. ACS NANO 2024; 18:35164-35181. [PMID: 39696968 PMCID: PMC11697343 DOI: 10.1021/acsnano.4c13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Semiconducting single-walled carbon nanotubes (SWCNTs) may serve as signal transducers for nanobiosensors. Recent studies have developed innovative methods of engineering molecularly specific sensors, while others have devised methods of deploying such sensors within live animals and plants. These advances may potentiate the use of implantable, noninvasive biosensors for continuous drug, disease, and contaminant monitoring based on the optical properties of single-walled carbon nanotubes (SWCNTs). Such tools have substantial potential to improve disease diagnostics, prognosis, drug safety, therapeutic response, and patient compliance. Outside of clinical applications, such sensors also have substantial potential in environmental monitoring or as research tools in the lab. However, substantial work remains to be done to realize these goals through further advances in materials science and engineering. Here, we review the current landscape of quantitative SWCNT-based optical biosensors that have been deployed in living plants and animals. Specifically, we focused this review on methods that have been developed to deploy SWCNT-based sensors in vivo as well as analytes that have been detected by SWCNTs in vivo. Finally, we evaluated potential future directions to take advantage of the promise outlined here toward field-deployable or implantable use in patients.
Collapse
Affiliation(s)
- Zachary Cohen
- Department
of Biomedical Engineering, The City College
of New York, New York, New York 10031, United States
| | - Ryan M. Williams
- Department
of Biomedical Engineering, The City College
of New York, New York, New York 10031, United States
- PhD
Program in Chemistry, The Graduate Center
of The City University of New York, New York, New York 10016, United States
| |
Collapse
|
11
|
Sebastian FL, Settele S, Li H, Flavel BS, Zaumseil J. How to recognize clustering of luminescent defects in single-wall carbon nanotubes. NANOSCALE HORIZONS 2024; 9:2286-2294. [PMID: 39380328 PMCID: PMC11462117 DOI: 10.1039/d4nh00383g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Semiconducting single-wall carbon nanotubes (SWCNTs) are a promising material platform for near-infrared in vivo imaging, optical sensing, and single-photon emission at telecommunication wavelengths. The functionalization of SWCNTs with luminescent defects can lead to significantly enhanced photoluminescence (PL) properties due to efficient trapping of highly mobile excitons and red-shifted emission from these trap states. Among the most studied luminescent defect types are oxygen and aryl defects that have largely similar optical properties. So far, no direct comparison between SWCNTs functionalized with oxygen and aryl defects under identical conditions has been performed. Here, we employ a combination of spectroscopic techniques to quantify the number of defects, their distribution along the nanotubes and thus their exciton trapping efficiencies. The different slopes of Raman D/G+ ratios versus calculated defect densities from PL quantum yield measurements indicate substantial dissimilarities between oxygen and aryl defects. Supported by statistical analysis of single-nanotube PL spectra at cryogenic temperatures they reveal clustering of oxygen defects. The clustering of 2-3 oxygen defects, which act as a single exciton trap, occurs irrespective of the functionalization method and thus enables the use of simple equations to determine the density of oxygen defects and defect clusters in SWCNTs based on standard Raman spectroscopy. The presented analytical approach is a versatile and sensitive tool to study defect distribution and clustering in SWCNTs and can be applied to any new functionalization method.
Collapse
Affiliation(s)
- Finn L Sebastian
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany.
| | - Simon Settele
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany.
| | - Han Li
- Department of Mechanical and Materials Engineering, University of Turku, FI-20014 Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, FI-20520 Turku, Finland
| | - Benjamin S Flavel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
| | - Jana Zaumseil
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany.
| |
Collapse
|
12
|
Dewey HM, Lamb A, Budhathoki-Uprety J. Recent advances on applications of single-walled carbon nanotubes as cutting-edge optical nanosensors for biosensing technologies. NANOSCALE 2024; 16:16344-16375. [PMID: 39157856 DOI: 10.1039/d4nr01892c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) possess outstanding photophysical properties which has garnered interest towards utilizing these materials for biosensing and imaging applications. The near-infrared (NIR) fluorescence within the tissue transparent region along with their photostability and sizes in the nanoscale make SWCNTs valued candidates for the development of optical sensors. In this review, we discuss recent advances in the development and the applications of SWCNT-based nano-biosensors. An overview of SWCNT's structural and photophysical properties, sensor development, and sensing mechanisms are described. Examples of SWCNT-based optical nanosensors for detection of disease biomarkers, pathogens (bacteria and viruses), plant stressors, and environmental contaminants including heavy metals and disinfectants are provided. Molecular detection in biofluids, in vitro, and in vivo (small animal models and plants) are highlighted, and sensor integration into portable substrates for implantable and wearable sensing devices has been discussed. Recent advancements, which include high throughput assays and the use of machine learning models to predict more sensitive and robust sensing outcomes are discussed. Current limitations and future perspectives on translation of SWCNT optical probes into clinical practices have been provided.
Collapse
Affiliation(s)
- Hannah M Dewey
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Ashley Lamb
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Januka Budhathoki-Uprety
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
13
|
Qu H, Han Y, Fortner J, Wu X, Kilina S, Kilin D, Tretiak S, Wang Y. [2 + 2] Cycloaddition Produces Divalent Organic Color-Centers with Reduced Heterogeneity in Single-Walled Carbon Nanotubes. J Am Chem Soc 2024; 146:23582-23590. [PMID: 39101632 DOI: 10.1021/jacs.4c08105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Organic color centers (OCCs), generated by the covalent functionalization of single-walled carbon nanotubes, have been exploited for chemical sensing, bioimaging, and quantum technologies. However, monovalent OCCs can assume at least 6 different bonding configurations on the sp2 carbon lattice of a chiral nanotube, resulting in heterogeneous OCC photoluminescence emissions. Herein, we show that a heat-activated [2 + 2] cycloaddition reaction enables the synthesis of divalent OCCs with a reduced number of atomic bonding configurations. The chemistry occurs by simply mixing enophile molecules (e.g., methylmaleimide, maleic anhydride, and 4-cyclopentene-1,3-dione) with an ethylene glycol suspension of SWCNTs at elevated temperature (70-140 °C). Unlike monovalent OCC chemistries, we observe just three OCC emission peaks that can be assigned to the three possible bonding configurations of the divalent OCCs based on density functional theory calculations. Notably, these OCC photoluminescence peaks can be controlled by temperature to decrease the emission heterogeneity even further. This divalent chemistry provides a scalable way to synthesize OCCs with tightly controlled emissions for emerging applications.
Collapse
Affiliation(s)
- Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Yulun Han
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Jacob Fortner
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaojian Wu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Dmitri Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Sergei Tretiak
- Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
14
|
Chen T, Xu H, Li S, Zhang J, Tan Z, Chen L, Chen Y, Huang Z, Pang H. Tailoring the Electrochemical Responses of MOF-74 Via Dual-Defect Engineering for Superior Energy Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402234. [PMID: 38781597 DOI: 10.1002/adma.202402234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Rationally designed defects in a crystal can confer unique properties. This study showcases a novel dual-defects engineering strategy to tailor the electrochemical response of metal-organic framework (MOF) materials used for electrochemical energy storage. Salicylic acid (SA) is identified as an effective modulator to control MOF-74 growth and induce structural defects, and cobalt cation doping is adopted for introducing a second type of defect. The resulting dual-defects engineered bimetallic MOF exhibits a discharging capacity of 218.6 mAh g-1, 4.4 times that of the pristine MOF-74, and significantly improved cycling stability. Moreover, the engineered MOF-74(Ni0.675Co0.325)-8//Zn aqueous battery shows top energy/power density performances for Ni-Zn batteries (266.5 Wh kg-1, 17.22 kW kg-1). Comprehensive investigations reveal that engineered defects modify the local coordination environment and promote the in situ electrochemical reconfiguration during operation to significantly boost the electrochemical activity. This work suggests that rational tailoring of the defects within the MOF crystal is an effective strategy to manipulate the coordination environment of the metal centers and the corresponding electrochemical reconfiguration for electrochemical applications.
Collapse
Affiliation(s)
- Tingting Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hengyue Xu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Shaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jiaqi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhicheng Tan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Long Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yiwang Chen
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Zhongjie Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225000, China
| |
Collapse
|
15
|
Settele S, Stammer F, Sebastian FL, Lindenthal S, Wald SR, Li H, Flavel BS, Zaumseil J. Easy Access to Bright Oxygen Defects in Biocompatible Single-Walled Carbon Nanotubes via a Fenton-like Reaction. ACS NANO 2024; 18:20667-20678. [PMID: 39051444 PMCID: PMC11308917 DOI: 10.1021/acsnano.4c06448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The covalent functionalization of single-walled carbon nanotubes (SWNTs) with luminescent oxygen defects increases their brightness and enables their application as optical biosensors or fluorescent probes for in vivo imaging in the second-biological window (NIR-II). However, obtaining luminescent defects with high brightness is challenging with the current functionalization methods due to a restricted window of reaction conditions or the necessity for controlled irradiation with ultraviolet light. Here, we report a method for introducing luminescent oxygen defects via a Fenton-like reaction that uses benign and inexpensive chemicals without light irradiation. (6,5) SWNTs in aqueous dispersion functionalized with this method show bright E11* emission (1105 nm) with 3.2 times higher peak intensities than the pristine E11 emission and a reproducible photoluminescence quantum yield of 3%. The functionalization can be performed within a wide range of reaction parameters and even with unsorted nanotube raw material at high concentrations (100 mg L-1), giving access to large amounts of brightly luminescent SWNTs. We further find that the introduced oxygen defects rearrange under light irradiation, which gives additional insights into the structure and dynamics of oxygen defects. Finally, the functionalization of ultrashort SWNTs with oxygen defects also enables high photoluminescence quantum yields. Their excellent emission properties are retained after surfactant exchange with biocompatible pegylated phospholipids or single-stranded DNA to make them suitable for in vivo NIR-II imaging and dopamine sensing.
Collapse
Affiliation(s)
- Simon Settele
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Florian Stammer
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Finn L. Sebastian
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Sebastian Lindenthal
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Simon R. Wald
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Han Li
- Department
of Mechanical and Materials Engineering, University of Turku, FI-20014 Turku, Finland
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Kaiserstraße
12, D-76131 Karlsruhe, Germany
| | - Benjamin S. Flavel
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Kaiserstraße
12, D-76131 Karlsruhe, Germany
| | - Jana Zaumseil
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
16
|
Kim M, McCann JJ, Fortner J, Randall E, Chen C, Chen Y, Yaari Z, Wang Y, Koder RL, Heller DA. Quantum Defect Sensitization via Phase-Changing Supercharged Antibody Fragments. J Am Chem Soc 2024; 146:12454-12462. [PMID: 38687180 PMCID: PMC11498269 DOI: 10.1021/jacs.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Quantum defects in single-walled carbon nanotubes promote exciton localization, which enables potential applications in biodevices and quantum light sources. However, the effects of local electric fields on the emissive energy states of quantum defects and how they can be controlled are unexplored. Here, we investigate quantum defect sensitization by engineering an intrinsically disordered protein to undergo a phase change at a quantum defect site. We designed a supercharged single-chain antibody fragment (scFv) to enable a full ligand-induced folding transition from an intrinsically disordered state to a compact folded state in the presence of a cytokine. The supercharged scFv was conjugated to a quantum defect to induce a substantial local electric change upon ligand binding. Employing the detection of a proinflammatory biomarker, interleukin-6, as a representative model system, supercharged scFv-coupled quantum defects exhibited robust fluorescence wavelength shifts concomitant with the protein folding transition. Quantum chemical simulations suggest that the quantum defects amplify the optical response to the localization of charges produced upon the antigen-induced folding of the proteins, which is difficult to achieve in unmodified nanotubes. These findings portend new approaches to modulate quantum defect emission for biomarker sensing and protein biophysics and to engineer proteins to modulate binding signal transduction.
Collapse
Affiliation(s)
- Mijin Kim
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James J. McCann
- Department of Physics, City College of New York, New York, NY 10031, USA
| | - Jacob Fortner
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Ewelina Randall
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Chen Chen
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-institutional PhD Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Yu Chen
- Department of Physics, City College of New York, New York, NY 10031, USA
| | - Zvi Yaari
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
- School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9190500, Israel
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Ronald L. Koder
- Department of Physics, City College of New York, New York, NY 10031, USA
- Graduate Programs of Physics, Biology, Chemistry, and Biochemistry, The Graduate Center of City College of New York, New York, NY 10016, USA
| | - Daniel A. Heller
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-institutional PhD Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
17
|
Piwoński H, Szczepski K, Jaremko M, Jaremko Ł, Habuchi S. Shielding Effects Provide a Dominant Mechanism in J-Aggregation-Induced Photoluminescence Enhancement of Carbon Nanotubes. ACS OMEGA 2024; 9:16496-16507. [PMID: 38617658 PMCID: PMC11007775 DOI: 10.1021/acsomega.4c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 04/16/2024]
Abstract
The unique photophysical properties of single-walled carbon nanotubes (SWCNTs) exhibit great potential for bioimaging applications. This led to extensive exploration of photosensitization methods to improve their faint shortwave infrared (SWIR) photoluminescence. Here, we report the mechanisms of SWCNT-assisted J-aggregation of cyanine dyes and the associated photoluminescence enhancement of SWCNTs in the SWIR spectral region. Surprisingly, we found that excitation energy transfer between the cyanine dyes and SWCNTs makes a negligible contribution to the overall photoluminescence enhancement. Instead, the shielding of SWCNTs from the surrounding water molecules through hydrogen bond-assisted macromolecular reorganization of ionic surfactants triggered by counterions and the physisorption of the dye molecules on the side walls of SWCNTs play a primary role in the photoluminescence enhancement of SWCNTs. We observed 2 orders of magnitude photoluminescence enhancement of SWCNTs by optimizing these factors. Our findings suggest that the proper shielding of SWCNTs is the critical factor for their photoluminescence enhancement, which has important implications for their application as imaging agents in biological settings.
Collapse
Affiliation(s)
- Hubert Piwoński
- Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Kacper Szczepski
- Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Łukasz Jaremko
- Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Satoshi Habuchi
- Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
18
|
Wu X, Kim M, Wang LJ, Veetil AK, Wang Y. Programming sp 3 Quantum Defects along Carbon Nanotubes with Halogenated DNA. J Am Chem Soc 2024; 146:8826-8831. [PMID: 38526163 PMCID: PMC11520905 DOI: 10.1021/jacs.3c14784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Atomic defect color centers in solid-state systems hold immense potential to advance various quantum technologies. However, the fabrication of high-quality, densely packed defects presents a significant challenge. Herein we introduce a DNA-programmable photochemical approach for creating organic color-center quantum defects on semiconducting single-walled carbon nanotubes (SWCNTs). Key to this precision defect chemistry is the strategic substitution of thymine with halogenated uracil in DNA strands that are orderly wrapped around the nanotube. Photochemical activation of the reactive uracil initiates the formation of sp3 defects along the nanotube as deep exciton traps, with a pronounced photoluminescence shift from the nanotube band gap emission (by 191 meV for (6,5)-SWCNTs). Furthermore, by altering the DNA spacers, we achieve systematic control over the defect placements along the nanotube. This method, bridging advanced molecular chemistry with quantum materials science, marks a crucial step in crafting quantum defects for critical applications in quantum information science, imaging, and sensing.
Collapse
Affiliation(s)
- Xiaojian Wu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Mijin Kim
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Lucy J. Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Abhindev Kizhakke Veetil
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
- Maryland NanoCenter, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
19
|
Krasley A, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem Rev 2024; 124:3085-3185. [PMID: 38478064 PMCID: PMC10979413 DOI: 10.1021/acs.chemrev.3c00581] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Eugene Li
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jesus M. Galeana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Chandima Bulumulla
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Abraham G. Beyene
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gozde S. Demirer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
20
|
Ma C, Mohr JM, Lauer G, Metternich JT, Neutsch K, Ziebarth T, Reiner A, Kruss S. Ratiometric Imaging of Catecholamine Neurotransmitters with Nanosensors. NANO LETTERS 2024; 24:2400-2407. [PMID: 38345220 DOI: 10.1021/acs.nanolett.3c05082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Neurotransmitters are important signaling molecules in the brain and are relevant in many diseases. Measuring them with high spatial and temporal resolutions in biological systems is challenging. Here, we develop a ratiometric fluorescent sensor/probe for catecholamine neurotransmitters on the basis of near-infrared (NIR) semiconducting single wall carbon nanotubes (SWCNTs). Phenylboronic acid (PBA)-based quantum defects are incorporated into them to interact selectively with catechol moieties. These PBA-SWCNTs are further modified with poly(ethylene glycol) phospholipids (PEG-PL) for biocompatibility. Catecholamines, including dopamine, do not affect the intrinsic E11 fluorescence (990 nm) of these (PEG-PL-PBA-SWCNT) sensors. In contrast, the defect-related E11* emission (1130 nm) decreases by up to 35%. Furthermore, this dual functionalization allows tuning selectivity by changing the charge of the PEG polymer. These sensors are not taken up by cells, which is beneficial for extracellular imaging, and they are functional in brain slices. In summary, we use dual functionalization of SWCNTs to create a ratiometric biosensor for dopamine.
Collapse
Affiliation(s)
- Chen Ma
- Department of Chemistry, Ruhr University Bochum, Bochum, North Rhine-Westphalia 44801, Germany
| | - Jennifer Maria Mohr
- Department of Chemistry, Ruhr University Bochum, Bochum, North Rhine-Westphalia 44801, Germany
| | - German Lauer
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, North Rhine-Westphalia 44801, Germany
| | - Justus Tom Metternich
- Department of Chemistry, Ruhr University Bochum, Bochum, North Rhine-Westphalia 44801, Germany
- Fraunhofer Institute for Microelectronic Circuits and Systems, Duisburg, North Rhine-Westphalia 47057, Germany
| | - Krisztian Neutsch
- Department of Chemistry, Ruhr University Bochum, Bochum, North Rhine-Westphalia 44801, Germany
| | - Tim Ziebarth
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, North Rhine-Westphalia 44801, Germany
| | - Andreas Reiner
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, North Rhine-Westphalia 44801, Germany
| | - Sebastian Kruss
- Department of Chemistry, Ruhr University Bochum, Bochum, North Rhine-Westphalia 44801, Germany
- Fraunhofer Institute for Microelectronic Circuits and Systems, Duisburg, North Rhine-Westphalia 47057, Germany
| |
Collapse
|
21
|
Wieland S, El Yumin AA, Settele S, Zaumseil J. Photo-Activated, Solid-State Introduction of Luminescent Oxygen Defects into Semiconducting Single-Walled Carbon Nanotubes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:2012-2021. [PMID: 38352856 PMCID: PMC10860128 DOI: 10.1021/acs.jpcc.3c07000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/17/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024]
Abstract
Oxygen defects in semiconducting single-walled carbon nanotubes (SWCNTs) are localized disruptions in the carbon lattice caused by the formation of epoxy or ether groups, commonly through wet-chemical reactions. The associated modifications of the electronic structure can result in luminescent states with emission energies below those of pristine SWCNTs in the near-infrared range, which makes them promising candidates for applications in biosensing and as single-photon emitters. Here, we demonstrate the controlled introduction of luminescent oxygen defects into networks of monochiral (6,5) SWCNTs using a solid-state photocatalytic approach. UV irradiation of SWCNTs on the photoreactive surfaces of the transition metal oxides TiOx and ZnOx in the presence of trace amounts of water and oxygen results in the creation of reactive oxygen species that initiate radical reactions with the carbon lattice and the formation of oxygen defects. The created ether-d and epoxide-l defect configurations give rise to two distinct red-shifted emissive features. The chemical and dielectric properties of the photoactive oxides influence the final defect emission properties, with oxygen-functionalized SWCNTs on TiOx substrates being brighter than those on ZnOx or pristine SWCNTs on glass. The photoinduced functionalization of nanotubes is further employed to create lateral patterns of oxygen defects in (6,5) SWCNT networks with micrometer resolution and thus spatially controlled defect emission.
Collapse
Affiliation(s)
- Sonja Wieland
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | | | - Simon Settele
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jana Zaumseil
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
22
|
Li Y, Liu Y, Jin F, Cao L, Jin H, Qiu S, Li Q. Polymer removal and dispersion exchange of (10,5) chiral carbon nanotubes with enhanced 1.5 μm photoluminescence. NANOSCALE ADVANCES 2024; 6:792-797. [PMID: 38298584 PMCID: PMC10825900 DOI: 10.1039/d3na01041d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024]
Abstract
Singe-chirality single-walled carbon nanotubes (SWCNTs) produced by selective polymer extraction have been actively investigated for their semiconductor applications. However, to fulfil the needs of biocompatible applications, the organic solvents in polymer-sorted SWCNTs impose a limitation. In this study, we developed a novel strategy for organic-to-aqueous phase exchange, which involves thoroughly removing polymers from the sorted SWCNTs, followed by surfactant covering and redispersing of the cleaned SWCNTs in water. Importantly, the obtained aqueous system allows us to perform sp3 functionalization of the SWCNTs, leading to a strong photoluminescence emission at 1550 nm from the defect sites of (10,5) SWCNTs. These functionalized SWCNTs as infrared light emitters show considerable potential for bioimaging applications. This exchange-and-functionalization strategy opens the door for future biocompatible applications of polymer-sorted SWCNTs.
Collapse
Affiliation(s)
- Yahui Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China 96 Jinzhai Road Hefei 230026 China
- Division of Advanced Nano-Materials, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Science 398 Ruoshui Road Suzhou 215123 China
| | - Ye Liu
- Division of Advanced Nano-Materials, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Science 398 Ruoshui Road Suzhou 215123 China
| | - Feng Jin
- Division of Advanced Nano-Materials, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Science 398 Ruoshui Road Suzhou 215123 China
| | - Leitao Cao
- Division of Advanced Nano-Materials, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Science 398 Ruoshui Road Suzhou 215123 China
| | - Hehua Jin
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China 96 Jinzhai Road Hefei 230026 China
- Division of Advanced Nano-Materials, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Science 398 Ruoshui Road Suzhou 215123 China
| | - Song Qiu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China 96 Jinzhai Road Hefei 230026 China
- Division of Advanced Nano-Materials, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Science 398 Ruoshui Road Suzhou 215123 China
| | - Qingwen Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China 96 Jinzhai Road Hefei 230026 China
| |
Collapse
|
23
|
Settele S, Schrage CA, Jung S, Michel E, Li H, Flavel BS, Hashmi ASK, Kruss S, Zaumseil J. Ratiometric fluorescent sensing of pyrophosphate with sp³-functionalized single-walled carbon nanotubes. Nat Commun 2024; 15:706. [PMID: 38267487 PMCID: PMC10808354 DOI: 10.1038/s41467-024-45052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024] Open
Abstract
Inorganic pyrophosphate is a key molecule in many biological processes from DNA synthesis to cell metabolism. Here we introduce sp3-functionalized (6,5) single-walled carbon nanotubes (SWNTs) with red-shifted defect emission as near-infrared luminescent probes for the optical detection and quantification of inorganic pyrophosphate. The sensing scheme is based on the immobilization of Cu2+ ions on the SWNT surface promoted by coordination to covalently attached aryl alkyne groups and a triazole complex. The presence of Cu2+ ions on the SWNT surface causes fluorescence quenching via photoinduced electron transfer, which is reversed by copper-complexing analytes such as pyrophosphate. The differences in the fluorescence response of sp3-defect to pristine nanotube emission enables reproducible ratiometric measurements in a wide concentration window. Biocompatible, phospholipid-polyethylene glycol-coated SWNTs with such sp3 defects are employed for the detection of pyrophosphate in cell lysate and for monitoring the progress of DNA synthesis in a polymerase chain reaction. This robust ratiometric and near-infrared luminescent probe for pyrophosphate may serve as a starting point for the rational design of nanotube-based biosensors.
Collapse
Affiliation(s)
- Simon Settele
- Institute for Physical Chemistry, Universität Heidelberg, Heidelberg, D-69120, Germany
| | - C Alexander Schrage
- Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, D-44801, Germany
| | - Sebastian Jung
- Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, D-44801, Germany
| | - Elena Michel
- Institute for Organic Chemistry, Universität Heidelberg, Heidelberg, D-69120, Germany
| | - Han Li
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Kaiserstrasse 12, Karlsruhe, D-76131, Germany
- Department of Mechanical and Materials Engineering, University of Turku, Turku, FI-20014, Finland
| | - Benjamin S Flavel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Kaiserstrasse 12, Karlsruhe, D-76131, Germany
| | - A Stephen K Hashmi
- Institute for Organic Chemistry, Universität Heidelberg, Heidelberg, D-69120, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sebastian Kruss
- Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, D-44801, Germany.
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, Duisburg, D-47057, Germany.
| | - Jana Zaumseil
- Institute for Physical Chemistry, Universität Heidelberg, Heidelberg, D-69120, Germany.
| |
Collapse
|
24
|
Wang P, Misra RP, Zhang C, Blankschtein D, Wang Y. Surfactant-Aided Stabilization of Individual Carbon Nanotubes in Water around the Critical Micelle Concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:159-169. [PMID: 38095654 DOI: 10.1021/acs.langmuir.3c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Surfactants are widely used to disperse single-walled carbon nanotubes (SWCNTs) and other nanomaterials for liquid-phase processing and characterization. Traditional techniques, however, demand high surfactant concentrations, often in the range of 1-2 wt/v% of the solution. Here, we show that optimal dispersion efficiency can be attained at substantially lower surfactant concentrations of approximately 0.08 wt/v%, near the critical micelle concentration. This unexpected observation is achieved by introducing "bare" nanotubes into water containing the anionic surfactant sodium deoxycholate (DOC) through a superacid-surfactant exchange process that eliminates the need for ultrasonication. Among the diverse ionic surfactants and charged biopolymers explored, DOC exhibits the highest dispersion efficiency, outperforming sodium cholate, a structurally similar bile salt surfactant containing just one additional oxygen atom compared to DOC. Employing all-atomistic molecular dynamics simulations, we unravel that the greater stabilization by DOC arises from its higher binding affinity to nanotubes and a substantially larger free energy barrier that resists nanotube rebundling. Further, we find that this barrier is nonelectrostatic in nature and does not obey the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloidal stability, underscoring the important role of nonelectrostatic dispersion and hydration interactions at the nanoscale, even in the case of ionic surfactants like DOC. These molecular insights advance our understanding of surfactant chemistry at the bare nanotube limit and suggest low-energy, surfactant-efficient solution processing of SWCNTs and potentially other nanomaterials.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chiyu Zhang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
25
|
Huang Z. Chemical Patterning on Nanocarbons: Functionality Typewriting. Molecules 2023; 28:8104. [PMID: 38138593 PMCID: PMC10745949 DOI: 10.3390/molecules28248104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Nanocarbon materials have become extraordinarily compelling for their significant potential in the cutting-edge science and technology. These materials exhibit exceptional physicochemical properties due to their distinctive low-dimensional structures and tailored surface characteristics. An attractive direction at the forefront of this field involves the spatially resolved chemical functionalization of a diverse range of nanocarbons, encompassing carbon nanotubes, graphene, and a myriad of derivative structures. In tandem with the technological leaps in lithography, these endeavors have fostered the creation of a novel class of nanocarbon materials with finely tunable physical and chemical attributes, and programmable multi-functionalities, paving the way for new applications in fields such as nanoelectronics, sensing, photonics, and quantum technologies. Our review examines the swift and dynamic advancements in nanocarbon chemical patterning. Key breakthroughs and future opportunities are highlighted. This review not only provides an in-depth understanding of this fast-paced field but also helps to catalyze the rational design of advanced next-generation nanocarbon-based materials and devices.
Collapse
Affiliation(s)
- Zhongjie Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
26
|
Maeda Y, Zhao P, Ehara M. Recent progress in controlling the photoluminescence properties of single-walled carbon nanotubes by oxidation and alkylation. Chem Commun (Camb) 2023; 59:14497-14508. [PMID: 38009193 DOI: 10.1039/d3cc05065c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
The functionalization of single-walled carbon nanotubes (SWCNTs) has received considerable attention in the last decade since highly efficient near-infrared photoluminescence (PL) has been observed to be red-shifted compared with the intrinsic PL peak of pristine SWCNTs. The PL wavelength has been manipulated using arylation reactions with aryldiazonium salts and aryl halides. Additionally, simple oxidation and alkylation reactions have proven effective in extensively adjusting the PL wavelength, with the resulting PL efficiency varying based on the chosen reaction techniques and molecular structures. This review discusses the latest developments in tailoring the PL attributes of SWCNTs by oxidation and alkylation processes. (6,5) SWCNTs exhibit intrinsic emission at 980 nm, and the PL wavelength can be controlled in the range of 1100-1320 nm by chemical modification. In addition, recent developments in chiral separation techniques have increased our understanding of the control of the PL wavelength, extending to the selection of excitation and emission wavelengths, by chemical modification of SWCNTs with different chiral indices.
Collapse
Affiliation(s)
- Yutaka Maeda
- Department of Chemistry, Tokyo Gakugei University, Tokyo 184-8501, Japan.
| | - Pei Zhao
- Research Center for Computational Science, Institute for Molecular Science, Okazaki 444-8585, Japan
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science, Okazaki 444-8585, Japan
| |
Collapse
|
27
|
Kim M, Chen C, Yaari Z, Frederiksen R, Randall E, Wollowitz J, Cupo C, Wu X, Shah J, Worroll D, Lagenbacher RE, Goerzen D, Li YM, An H, Wang Y, Heller DA. Nanosensor-based monitoring of autophagy-associated lysosomal acidification in vivo. Nat Chem Biol 2023; 19:1448-1457. [PMID: 37322156 PMCID: PMC10721723 DOI: 10.1038/s41589-023-01364-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
Autophagy is a cellular process with important functions that drive neurodegenerative diseases and cancers. Lysosomal hyperacidification is a hallmark of autophagy. Lysosomal pH is currently measured by fluorescent probes in cell culture, but existing methods do not allow for quantitative, transient or in vivo measurements. In the present study, we developed near-infrared optical nanosensors using organic color centers (covalent sp3 defects on carbon nanotubes) to measure autophagy-mediated endolysosomal hyperacidification in live cells and in vivo. The nanosensors localize to the lysosomes, where the emission band shifts in response to local pH, enabling spatial, dynamic and quantitative mapping of subtle changes in lysosomal pH. Using the sensor, we observed cellular and intratumoral hyperacidification on administration of mTORC1 and V-ATPase modulators, revealing that lysosomal acidification mirrors the dynamics of S6K dephosphorylation and LC3B lipidation while diverging from p62 degradation. This sensor enables the transient and in vivo monitoring of the autophagy-lysosomal pathway.
Collapse
Affiliation(s)
- Mijin Kim
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chen Chen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zvi Yaari
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | - Jaina Wollowitz
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christian Cupo
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiaojian Wu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Janki Shah
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Worroll
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rachel E Lagenbacher
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Dana Goerzen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Yue-Ming Li
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Heeseon An
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
- Maryland NanoCenter, University of Maryland, College Park, MD, USA
| | - Daniel A Heller
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
28
|
Heppe BJ, Dzombic N, Keil JM, Sun XL, Ao G. Solvent Isotope Effects on the Creation of Fluorescent Quantum Defects in Carbon Nanotubes by Aryl Diazonium Chemistry. J Am Chem Soc 2023; 145:25621-25631. [PMID: 37971308 DOI: 10.1021/jacs.3c07341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The integration of aryl diazonium and carbon nanotube chemistries has offered rich and versatile tools for creating nanomaterials of unique optical and electronic properties in a controllable fashion. The diazonium reaction with single-wall carbon nanotubes (SWCNTs) is known to proceed through a radical or carbocation mechanism in aqueous solutions, with deuterated water (D2O) being the frequently used solvent. Here, we show strong water solvent isotope effects on the aryl diazonium reaction with SWCNTs for creating fluorescent quantum defects using water (H2O) and D2O. We found a deduced reaction constant of ∼18.2 times larger value in D2O than in H2O, potentially due to their different chemical properties. We also observed the generation of new defect photoluminescence over a broad concentration range of diazonium reactants in H2O, as opposed to a narrow window of reaction conditions in D2O under UV excitation. Without UV light, the physical adsorption of diazonium on the surface of SWCNTs led to the fluorescence quenching of nanotubes. These findings provide important insights into the aryl diazonium chemistry with carbon nanotubes for creating promising material platforms for optical sensing, imaging, and quantum communication technologies.
Collapse
Affiliation(s)
- Brandon J Heppe
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Nina Dzombic
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Joseph M Keil
- Department of Chemistry, Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Xue-Long Sun
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
- Department of Chemistry, Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Geyou Ao
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| |
Collapse
|
29
|
Ma X, Long R. The sp 3 Defect Decreases Charge Carrier Lifetime in (8,3) Single-Walled Carbon Nanotubes. J Phys Chem Lett 2023; 14:10242-10248. [PMID: 37937588 DOI: 10.1021/acs.jpclett.3c02923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
A recent experimental approach introduces sp3 defects into single-walled carbon nanotubes (SWNTs) through controlled functionalization with guanine, resulting in a decrease in charge carrier lifetime. However, the physical mechanism behind this phenomenon remains unclear. We employ nonadiabatic molecular dynamics to systematically model the nonradiative recombination process of electron-hole pairs in SWNTs with sp3 defects generated by a guanine molecule. We demonstrate that the introduction of sp3 defects creates an overlapping channel between the highest occupied (HOMO) and lowest unoccupied molecular orbital (LUMO), significantly enhancing the nonadiabatic (NA) coupling and leading to a 4.7-fold acceleration in charge carrier recombination compared to defect-free SWNTs. The charge carrier recombination slows significantly at a lower temperature (50 K) due to the weakening of the NA coupling. Our results rationalize the accelerated recombination of charge carriers in SWNTs with sp3 defects in experiments and contribute to a deeper understanding of the carrier dynamics in SWNTs.
Collapse
Affiliation(s)
- Xinbo Ma
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
30
|
Sebastian FL, Becker F, Yomogida Y, Hosokawa Y, Settele S, Lindenthal S, Yanagi K, Zaumseil J. Unified Quantification of Quantum Defects in Small-Diameter Single-Walled Carbon Nanotubes by Raman Spectroscopy. ACS NANO 2023; 17:21771-21781. [PMID: 37856164 PMCID: PMC10655237 DOI: 10.1021/acsnano.3c07668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
The covalent functionalization of single-walled carbon nanotubes (SWCNTs) with luminescent quantum defects enables their application as near-infrared single-photon sources, as optical sensors, and for in vivo tissue imaging. Tuning the emission wavelength and defect density is crucial for these applications. While the former can be controlled by different synthetic protocols and is easily measured, defect densities are still determined as relative rather than absolute values, limiting the comparability between different nanotube batches and chiralities. Here, we present an absolute and unified quantification metric for the defect density in SWCNT samples based on Raman spectroscopy. It is applicable to a range of small-diameter semiconducting nanotubes and for arbitrary laser wavelengths. We observe a clear inverse correlation of the D/G+ ratio increase with nanotube diameter, indicating that curvature effects contribute significantly to the defect activation of Raman modes. Correlation of intermediate frequency modes with defect densities further corroborates their activation by defects and provides additional quantitative metrics for the characterization of functionalized SWCNTs.
Collapse
Affiliation(s)
- Finn L. Sebastian
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Felicitas Becker
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Yohei Yomogida
- Department
of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Yuuya Hosokawa
- Department
of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Simon Settele
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Sebastian Lindenthal
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Kazuhiro Yanagi
- Department
of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Jana Zaumseil
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
31
|
Alam RB, Ahmad MH, Islam MR. Improved electrochemical performance of multi-walled carbon nanotube reinforced gelatin biopolymer for transient energy storage applications. PLoS One 2023; 18:e0288113. [PMID: 37943871 PMCID: PMC10635558 DOI: 10.1371/journal.pone.0288113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/20/2023] [Indexed: 11/12/2023] Open
Abstract
Multi-walled carbon nanotube (MWCNT) incorporated biodegradable gelatin nanocomposites (Gel/MWCNT) have been prepared following a facile solution processing method. The Fourier-transform infrared (FTIR) spectroscopy, field emission scanning electronic microscopy (FESEM), and water contact angle (WCA) measurements revealed improved structural properties and surface morphological features of the nanocomposite films due to the incorporation of MWCNT. A four-fold decrease in the DC resistivity was obtained due to the addition of MWCNTs. The specific capacitance of the nanocomposite increased from 0.12 F/g to 12.7 F/g at a current density of 0.3 μA/cm2 due to the incorporation of 0.05 wt.% MWCNT. EIS analysis and the corresponding Nyquist plots demonstrated the contributions of the different electrical components responsible for the improved electrochemical performance were evaluated using an equivalent AC circuit. The incorporation of MWCNTs was found to reduce the charge-transfer resistance from 127 Ω to 75 Ω and increase the double-layer capacitance from 4 nF to 9 nF. The Gel/MWCNT nanocomposite demonstrated improved cyclic stability with a retention of 95% of the initial capacitance even after 5000 charging/discharging cycles. The biodegradability test showed that the nanocomposite degraded completely after 30 hours of immersion in water. This fully biocompatible nature of the nanocomposites with high specific capacitance and low charge transfer resistance may offer a promising route to fabricate a nature-friendly electrode material for energy storage applications.
Collapse
Affiliation(s)
- Rabeya Binta Alam
- Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - Md. Hasive Ahmad
- Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - Muhammad Rakibul Islam
- Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| |
Collapse
|
32
|
Roy A, Ta BQ, Azadmehr M, Aasmundtveit KE. Post-CMOS processing challenges and design developments of CMOS-MEMS microheaters for local CNT synthesis. MICROSYSTEMS & NANOENGINEERING 2023; 9:136. [PMID: 37937184 PMCID: PMC10625928 DOI: 10.1038/s41378-023-00598-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 11/09/2023]
Abstract
Carbon nanotubes (CNTs) can be locally grown on custom-designed CMOS microheaters by a thermal chemical vapour deposition (CVD) process to utilize the sensing capabilities of CNTs in emerging micro- and nanotechnology applications. For such a direct CMOS-CNT integration, a key requirement is the development of necessary post-processing steps on CMOS chips for fabricating CMOS-MEMS polysilicon heaters that can locally generate the required CNT synthesis temperatures (~650-900 °C). In our post-CMOS processing, a subtractive fabrication technique is used for micromachining the polysilicon heaters, where the passivation layers in CMOS are used as masks to protect the electronics. For dielectric etching, it is necessary to achieve high selectivity, uniform etching and a good etch rate to fully expose the polysilicon layers without causing damage. We achieved successful post-CMOS processing by developing two-step reactive ion etching (RIE) of the SiO2 dielectric layer and making design improvements to a second-generation CMOS chip. After the dry etching process, CMOS-MEMS microheaters are partially suspended by SiO2 wet etching with minimum damage to the exposed aluminium layers, to obtain high thermal isolation. The fabricated microheaters are then successfully utilized for synthesizing CNTs by a local thermal CVD process. The CMOS post-processing challenges and design aspects to fabricate CMOS-MEMS polysilicon microheaters for such high-temperature applications are detailed in this article. Our developed process for heterogeneous monolithic integration of CMOS-CNT shows promise for wafer-level manufacturing of CNT-based sensors by incorporating additional steps in an already existing foundry CMOS process.
Collapse
Affiliation(s)
- Avisek Roy
- Department of Microsystems, University of South-Eastern Norway, 3184 Horten, Norway
| | - Bao Q. Ta
- Department of Microsystems, University of South-Eastern Norway, 3184 Horten, Norway
| | - Mehdi Azadmehr
- Department of Microsystems, University of South-Eastern Norway, 3184 Horten, Norway
| | - Knut E. Aasmundtveit
- Department of Microsystems, University of South-Eastern Norway, 3184 Horten, Norway
| |
Collapse
|
33
|
Zorn N, Settele S, Sebastian FL, Lindenthal S, Zaumseil J. Tuning Electroluminescence from Functionalized SWCNT Networks Further into the Near-Infrared. ACS APPLIED OPTICAL MATERIALS 2023; 1:1706-1714. [PMID: 37915970 PMCID: PMC10616844 DOI: 10.1021/acsaom.3c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
Near-infrared electroluminescence from carbon-based emitters, especially in the second biological window (NIR-II) or at telecommunication wavelengths, is difficult to achieve. Single-walled carbon nanotubes (SWCNTs) have been proposed as a possible solution due to their tunable and narrowband emission in the near-infrared region and high charge carrier mobilities. Furthermore, the covalent functionalization of SWCNTs with a controlled number of luminescent sp3 defects leads to even more red-shifted photoluminescence with enhanced quantum yields. Here, we demonstrate that by tailoring the binding configuration of the introduced sp3 defects and hence tuning their optical trap depth, we can generate emission from polymer-sorted (6,5) and (7,5) nanotubes that is mainly located in the telecommunication O-band (1260-1360 nm). Networks of these functionalized nanotubes are integrated in ambipolar, light-emitting field-effect transistors to yield the corresponding narrowband near-infrared electroluminescence. Further investigation of the current- and carrier density-dependent electro- and photoluminescence spectra enables insights into the impact of different sp3 defects on charge transport in networks of functionalized SWCNTs.
Collapse
Affiliation(s)
- Nicolas
F. Zorn
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Simon Settele
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Finn L. Sebastian
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Sebastian Lindenthal
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jana Zaumseil
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
34
|
Maeda Y, Morooka R, Zhao P, Yamada M, Ehara M. Control of functionalized single-walled carbon nanotube photoluminescence via competition between thermal rearrangement and elimination. Chem Commun (Camb) 2023; 59:11648-11651. [PMID: 37655792 DOI: 10.1039/d3cc02965d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
We conducted the chiral separation of functionalized single-walled carbon nanotubes (SWNTs) with dibromopropane derivatives. Depending on their chirality and diameter, the thermal treatment of functionalized SWNTs leads to a shift in the emission radiation to longer wavelengths owing to rearrangement reaction in competition with elimination reaction.
Collapse
Affiliation(s)
- Yutaka Maeda
- Department of Chemistry, Tokyo Gakugei University, Tokyo 184-8501, Japan.
| | - Rina Morooka
- Department of Chemistry, Tokyo Gakugei University, Tokyo 184-8501, Japan.
| | - Pei Zhao
- Research Center for Computational Science, Institute for Molecular Science, Okazaki 444-8585, Japan.
| | - Michio Yamada
- Department of Chemistry, Tokyo Gakugei University, Tokyo 184-8501, Japan.
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science, Okazaki 444-8585, Japan.
| |
Collapse
|
35
|
Ma C, Schrage CA, Gretz J, Akhtar A, Sistemich L, Schnitzler L, Li H, Tschulik K, Flavel BS, Kruss S. Stochastic Formation of Quantum Defects in Carbon Nanotubes. ACS NANO 2023; 17:15989-15998. [PMID: 37527201 DOI: 10.1021/acsnano.3c04314] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Small perturbations in the structure of materials significantly affect their properties. One example is single wall carbon nanotubes (SWCNTs), which exhibit chirality-dependent near-infrared (NIR) fluorescence. They can be modified with quantum defects through the reaction with diazonium salts, and the number or distribution of these defects determines their photophysics. However, the presence of multiple chiralities in typical SWCNT samples complicates the identification of defect-related emission features. Here, we show that quantum defects do not affect aqueous two-phase extraction (ATPE) of different SWCNT chiralities into different phases, which suggests low numbers of defects. For bulk samples, the bandgap emission (E11) of monochiral (6,5)-SWCNTs decreases, and the defect-related emission feature (E11*) increases with diazonium salt concentration and represents a proxy for the defect number. The high purity of monochiral samples from ATPE allows us to image NIR fluorescence contributions (E11 = 986 nm and E11* = 1140 nm) on the single SWCNT level. Interestingly, we observe a stochastic (Poisson) distribution of quantum defects. SWCNTs have most likely one to three defects (for low to high (bulk) quantum defect densities). Additionally, we verify this number by following single reaction events that appear as discrete steps in the temporal fluorescence traces. We thereby count single reactions via NIR imaging and demonstrate that stochasticity plays a crucial role in the optical properties of SWCNTs. These results show that there can be a large discrepancy between ensemble and single particle experiments/properties of nanomaterials.
Collapse
Affiliation(s)
- Chen Ma
- Department of Chemistry, Ruhr-University Bochum, Bochum 44801, Germany
| | | | - Juliana Gretz
- Department of Chemistry, Ruhr-University Bochum, Bochum 44801, Germany
| | - Anas Akhtar
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum 44801, Germany
| | - Linda Sistemich
- Department of Chemistry, Ruhr-University Bochum, Bochum 44801, Germany
| | - Lena Schnitzler
- Department of Chemistry, Ruhr-University Bochum, Bochum 44801, Germany
| | - Han Li
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76344, Germany
| | - Kristina Tschulik
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum 44801, Germany
| | - Benjamin S Flavel
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76344, Germany
| | - Sebastian Kruss
- Department of Chemistry, Ruhr-University Bochum, Bochum 44801, Germany
- Fraunhofer Institute for Microelectronic Circuits and Systems, Duisburg 47057, Germany
| |
Collapse
|
36
|
Maeda Y, Suzuki Y, Konno Y, Zhao P, Kikuchi N, Yamada M, Mitsuishi M, Dao ATN, Kasai H, Ehara M. Selective emergence of photoluminescence at telecommunication wavelengths from cyclic perfluoroalkylated carbon nanotubes. Commun Chem 2023; 6:159. [PMID: 37524908 PMCID: PMC10390534 DOI: 10.1038/s42004-023-00950-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/04/2023] [Indexed: 08/02/2023] Open
Abstract
Chemical functionalisation of semiconducting single-walled carbon nanotubes (SWNTs) can tune their local band gaps to induce near-infrared (NIR) photoluminescence (PL). However, tuning the PL to telecommunication wavelengths (>1300 nm) remains challenging. The selective emergence of NIR PL at the longest emission wavelength of 1320 nm was successfully achieved in (6,5) SWNTs via cyclic perfluoroalkylation. Chiral separation of the functionalised SWNTs showed that this functionalisation was also effective in SWNTs with five different chiral angles. The local band gap modulation mechanism was also studied using density functional theory calculations, which suggested the effects of the addenda and addition positions on the emergence of the longest-wavelength PL. These findings increase our understanding of the functionalised SWNT structure and methods for controlling the local band gap, which will contribute to the development and application of NIR light-emitting materials with widely extended emission and excitation wavelengths.
Collapse
Affiliation(s)
- Yutaka Maeda
- Department of Chemistry, Tokyo Gakugei University, Tokyo, 184-8501, Japan.
| | - Yasuhiro Suzuki
- Department of Chemistry, Tokyo Gakugei University, Tokyo, 184-8501, Japan
| | - Yui Konno
- Department of Chemistry, Tokyo Gakugei University, Tokyo, 184-8501, Japan
| | - Pei Zhao
- Research Center for Computational Science, Institute for Molecular Science, Okazaki, 444-8585, Japan.
| | - Nobuhiro Kikuchi
- Department of Chemistry, Tokyo Gakugei University, Tokyo, 184-8501, Japan
| | - Michio Yamada
- Department of Chemistry, Tokyo Gakugei University, Tokyo, 184-8501, Japan
| | - Masaya Mitsuishi
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Anh T N Dao
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, 980-8577, Japan
- Graduate School of Engineering, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Hitoshi Kasai
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, 980-8577, Japan
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science, Okazaki, 444-8585, Japan.
| |
Collapse
|
37
|
Metternich JT, Wartmann JAC, Sistemich L, Nißler R, Herbertz S, Kruss S. Near-Infrared Fluorescent Biosensors Based on Covalent DNA Anchors. J Am Chem Soc 2023. [PMID: 37367958 DOI: 10.1021/jacs.3c03336] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Semiconducting single-walled carbon nanotubes (SWCNTs) are versatile near-infrared (NIR) fluorophores. They are noncovalently modified to create sensors that change their fluorescence when interacting with biomolecules. However, noncovalent chemistry has several limitations and prevents a consistent way to molecular recognition and reliable signal transduction. Here, we introduce a widely applicable covalent approach to create molecular sensors without impairing the fluorescence in the NIR (>1000 nm). For this purpose, we attach single-stranded DNA (ssDNA) via guanine quantum defects as anchors to the SWCNT surface. A connected sequence without guanines acts as flexible capture probe allowing hybridization with complementary nucleic acids. Hybridization modulates the SWCNT fluorescence and the magnitude increases with the length of the capture sequence (20 > 10 ≫ 6 bases). The incorporation of additional recognition units via this sequence enables a generic route to NIR fluorescent biosensors with improved stability. To demonstrate the potential, we design sensors for bacterial siderophores and the SARS CoV-2 spike protein. In summary, we introduce covalent guanine quantum defect chemistry as rational design concept for biosensors.
Collapse
Affiliation(s)
- Justus T Metternich
- Department of Chemistry, Ruhr-University Bochum, 44801 Bochum, Germany
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany
| | | | - Linda Sistemich
- Department of Chemistry, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Robert Nißler
- Nanoparticle Systems Engineering Laboratory, ETH Zürich, 8092 Zürich, Switzerland
- Laboratory for Particles-Biology Interactions, Empa, 9014 St. Gallen, Switzerland
| | - Svenja Herbertz
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany
| | - Sebastian Kruss
- Department of Chemistry, Ruhr-University Bochum, 44801 Bochum, Germany
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), 47057 Duisburg, Germany
| |
Collapse
|
38
|
Aluru NR, Aydin F, Bazant MZ, Blankschtein D, Brozena AH, de Souza JP, Elimelech M, Faucher S, Fourkas JT, Koman VB, Kuehne M, Kulik HJ, Li HK, Li Y, Li Z, Majumdar A, Martis J, Misra RP, Noy A, Pham TA, Qu H, Rayabharam A, Reed MA, Ritt CL, Schwegler E, Siwy Z, Strano MS, Wang Y, Yao YC, Zhan C, Zhang Z. Fluids and Electrolytes under Confinement in Single-Digit Nanopores. Chem Rev 2023; 123:2737-2831. [PMID: 36898130 PMCID: PMC10037271 DOI: 10.1021/acs.chemrev.2c00155] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Confined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects observed in the narrowest of such pores, called single-digit nanopores (SDNs), which have diameters or conduit widths of less than 10 nm, and have only recently become accessible for experimental measurements. What SDNs reveal has been surprising, including a rapidly increasing number of examples such as extraordinarily fast water transport, distorted fluid-phase boundaries, strong ion-correlation and quantum effects, and dielectric anomalies that are not observed in larger pores. Exploiting these effects presents myriad opportunities in both basic and applied research that stand to impact a host of new technologies at the water-energy nexus, from new membranes for precise separations and water purification to new gas permeable materials for water electrolyzers and energy-storage devices. SDNs also present unique opportunities to achieve ultrasensitive and selective chemical sensing at the single-ion and single-molecule limit. In this review article, we summarize the progress on nanofluidics of SDNs, with a focus on the confinement effects that arise in these extremely narrow nanopores. The recent development of precision model systems, transformative experimental tools, and multiscale theories that have played enabling roles in advancing this frontier are reviewed. We also identify new knowledge gaps in our understanding of nanofluidic transport and provide an outlook for the future challenges and opportunities at this rapidly advancing frontier.
Collapse
Affiliation(s)
- Narayana R Aluru
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Fikret Aydin
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Alexandra H Brozena
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - J Pedro de Souza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Samuel Faucher
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - John T Fourkas
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Matthias Kuehne
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Hao-Kun Li
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Yuhao Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zhongwu Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Arun Majumdar
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Joel Martis
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Tuan Anh Pham
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Archith Rayabharam
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Mark A Reed
- Department of Electrical Engineering, Yale University, 15 Prospect Street, New Haven, Connecticut06520, United States
| | - Cody L Ritt
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Eric Schwegler
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zuzanna Siwy
- Department of Physics and Astronomy, Department of Chemistry, Department of Biomedical Engineering, University of California, Irvine, Irvine92697, United States
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Yun-Chiao Yao
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Cheng Zhan
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Ze Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| |
Collapse
|
39
|
Li Y, Jiang JW. Modulation of thermal conductivity of single-walled carbon nanotubes by fullerene encapsulation: the effect of vacancy defects. Phys Chem Chem Phys 2023; 25:7734-7740. [PMID: 36880294 DOI: 10.1039/d2cp04638e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) possess extremely high thermal conductivity that benefits their application in high-performance electronic devices. The characteristic hollow configuration of SWCNTs is not favorable for the buckling stability of the structure, which is typically resolved by fullerene encapsulation in practice. To investigate the fullerene encapsulation effect on thermal conductivity, we perform molecular dynamics simulations to comparatively study the thermal conductivity of pure SWCNTs and fullerene encapsulated SWCNTs. We focus on disclosing the relationship between the vacancy defect and the fullerene encapsulation effect on thermal conductivity. It is quite interesting that vacancy defects weaken the coupling strength between the nanotube shell and the fullerene, especially for narrower SWCNTs (9, 9), which will considerably reduce the effect of fullerene encapsulation on the thermal conductivity of narrower SWCNTs. However, for thicker SWCNTs (10, 10) and (11, 11), vacancy defects have an ignorable effect on the coupling strength between the nanotube shell and the fullerene due to plenty of free space in thicker SWCNTs, so vacancy defects are not important for the fullerene encapsulation effect on the thermal conductivity of thicker SWCNTs. These findings shall be valuable for the application of SWCNTs in thermoelectric fields.
Collapse
Affiliation(s)
- Yu Li
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Aircraft Mechanics and Control, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Frontier Science Center of Mechanoinformatics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, People's Republic of China.
| | - Jin-Wu Jiang
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Aircraft Mechanics and Control, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Frontier Science Center of Mechanoinformatics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, People's Republic of China. .,Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|
40
|
Yu B, Naka S, Aoki H, Kato K, Yamashita D, Fujii S, Kato YK, Fujigaya T, Shiraki T. ortho-Substituted Aryldiazonium Design for the Defect Configuration-Controlled Photoluminescent Functionalization of Chiral Single-Walled Carbon Nanotubes. ACS NANO 2022; 16:21452-21461. [PMID: 36384293 DOI: 10.1021/acsnano.2c09897] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Defect functionalization of single-walled carbon nanotubes (SWCNTs) by chemical modification is a promising strategy for near-infrared photoluminescence (NIR PL) generation at >1000 nm, which has advanced telecom and bio/medical applications. The covalent attachment of molecular reagents generates sp3-carbon defects in the sp2-carbon lattice of SWCNTs with bright red-shifted PL generation. Although the positional difference between proximal sp3-carbon defects, labeled as the defect binding configuration, can dominate NIR PL properties, the defect arrangement chemistry remains unexplored. Here, aryldiazonium reagents with π-conjugated ortho-substituents (phenyl and acetylene groups) were developed to introduce molecular interactions with nanotube sidewalls into the defect-formation chemical reaction. The functionalized chiral SWCNTs selectively emitted single defect PL in the wavelength range of ∼1230-1270 nm for (6,5) tubes, indicating the formation of an atypical binding configuration, different from those exhibited by typical aryl- or alkyl-functionalized chiral tubes emitting ∼1150 nm PL. Moreover, the acetylene-based substituent design enabled PL brightening and a subsequent molecular modification of the doped sites using click chemistry.
Collapse
Affiliation(s)
- Boda Yu
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Sadahito Naka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Haruka Aoki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Koichiro Kato
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Daiki Yamashita
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama 351-0198, Japan
| | - Shun Fujii
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama 351-0198, Japan
| | - Yuichiro K Kato
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama 351-0198, Japan
- Nanoscale Quantum Photonics Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| | - Tsuyohiko Fujigaya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomohiro Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
41
|
Ahamed M, Akhtar MJ, Alhadlaq HA. Combined effect of single-walled carbon nanotubes and cadmium on human lung cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87844-87857. [PMID: 35821329 DOI: 10.1007/s11356-022-21933-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Co-exposure of widely used single-walled carbon nanotubes (SWCNTs) and ubiquitous cadmium (Cd) to humans through ambient air is unavoidable. Studies on joint toxicity of SWCNTs and Cd in human cells are scarce. We aimed to investigate the joint effects of SWCNTs and Cd in human lung epithelial (A549) cells. Results showed that SWCNTs were safe while Cd induce significant toxicity to A549 cells. Remarkably, Cd-induced cell viability reduction, lactate dehydrogenase leakage, cell cycle arrest, dysregulation of apoptotic gene (p53, bax, bcl-2, casp3, and casp9), and mitochondrial membrane potential depletion were significantly mitigated following SWCNTs co-exposure. Cd-induced intracellular level of reactive oxygen species, hydrogen peroxide, and lipid peroxidation were significantly attenuated by SWCNT co-exposure. Moreover, glutathione depletion and lower activity of antioxidant enzymes after Cd exposure were also effectively abrogated by co-exposure of SWCNTs. Inductively coupled plasma-mass spectrometry study indicated that higher adsorption of Cd on SCWNTs might decreased cellular uptake and the toxic potential of Cd in A549 cells. Our work warranted further research to explore the potential mechanism of joint effects of SWCNTs and Cd at in vivo levels.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
42
|
Fortner J, Wang Y. Quantum Coupling of Two Atomic Defects in a Carbon Nanotube Semiconductor. J Phys Chem Lett 2022; 13:8908-8913. [PMID: 36126326 DOI: 10.1021/acs.jpclett.2c02439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chemical defects can create organic color centers in the graphitic lattice of single-walled carbon nanotubes. However, the underlying physics remains somewhat of a mystery. Here we show that two sp3 atomic defects can interact with each other in a way reminiscent of atoms bonding to form molecules. Each defect creates an atom-like mid-gap state within the band gap of the nanotube semiconductor. Two such defects, when brought close to each other, interact to form a split pair of orbitals akin to two hydrogen atoms covalently bonding to form a H2 molecule. This unexpected finding may help in understanding the nature of atomic defects in solids and provide a fresh perspective to the engineering of these color centers.
Collapse
Affiliation(s)
- Jacob Fortner
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - YuHuang Wang
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
43
|
Eller B, Fortner J, Kłos J, Wang Y, Clark CW. Can armchair nanotubes host organic color centers? JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:464004. [PMID: 36063817 DOI: 10.1088/1361-648x/ac8f7e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
We use time-dependent density functional theory to investigate the possibility of hosting organic color centers in (6, 6) armchair single-walled carbon nanotubes, which are known to be metallic. Our calculations show that in short segments of (6, 6) nanotubes∼5nm in length there is a dipole-allowed singlet transition related to the quantum confinement of charge carriers in the smaller segments. The introduction ofsp3defects to the surface of (6, 6) nanotubes results in new dipole-allowed excited states. Some of these states are redshifted from the native confinement state of the defect-free (6, 6) segments; this is similar behavior to what is observed withsp3defects to exciton transitions in semiconducting carbon nanotubes. This result suggests the possibility of electrically wiring organic color centers directly through armchair carbon nanotube hosts.
Collapse
Affiliation(s)
- Benjamin Eller
- Chemical Physics Program, University of Maryland, College Park, MD 20742, United States of America
| | - Jacob Fortner
- Chemical Physics Program, University of Maryland, College Park, MD 20742, United States of America
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742, United States of America
| | - Jacek Kłos
- Joint Quantum Institute, Department of Physics, University of Maryland, College Park, MD 20742, United States of America
| | - YuHuang Wang
- Chemical Physics Program, University of Maryland, College Park, MD 20742, United States of America
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742, United States of America
| | - Charles W Clark
- Joint Quantum Institute, Department of Physics, University of Maryland, College Park, MD 20742, United States of America
- National Institute of Standards and Technology and the University of Maryland, Gaithersburg, MD 20899, United States of America
| |
Collapse
|
44
|
Hayashi K, Niidome Y, Shiga T, Yu B, Nakagawa Y, Janas D, Fujigaya T, Shiraki T. Azide modification forming luminescent sp 2 defects on single-walled carbon nanotubes for near-infrared defect photoluminescence. Chem Commun (Camb) 2022; 58:11422-11425. [PMID: 36134499 DOI: 10.1039/d2cc04492g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Azide functionalization produced luminescent sp2-type defects on single-walled carbon nanotubes, by which defect photoluminescence appeared in near infrared regions (1116 nm). Changes in exciton properties were induced by localization effects at the defect sites, creating exciton-engineered nanomaterials based on the defect structure design.
Collapse
Affiliation(s)
- Keita Hayashi
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Yoshiaki Niidome
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Tamehito Shiga
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Boda Yu
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Yasuto Nakagawa
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Dawid Janas
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Tsuyohiko Fujigaya
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan. .,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tomohiro Shiraki
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan. .,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
45
|
Niidome Y, Wakabayashi R, Goto M, Fujigaya T, Shiraki T. Protein-structure-dependent spectral shifts of near-infrared photoluminescence from locally functionalized single-walled carbon nanotubes based on avidin-biotin interactions. NANOSCALE 2022; 14:13090-13097. [PMID: 35938498 DOI: 10.1039/d2nr01440h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) emit photoluminescence (PL) in the near-infrared (NIR) region (>900 nm). To enhance their PL properties, defect doping via local chemical functionalization has been developed. The locally functionalized SWCNTs (lf-SWCNTs) emit red-shifted and bright E11* PL originating from the excitons localized at the defect-doped sites. Here, we observe the E11* PL energy shifts induced by protein adsorption via the avidin-biotin interactions at the doped sites of lf-SWCNTs. We establish that the difference in the structures of the avidin derivatives notably influences the energy shifts. First, lf-SWCNT-tethering biotin groups (lf-SWCNTs-b) are synthesized based on diazonium chemistry, followed by post-modification. The responsiveness of the lf-SWCNTs-b to different microenvironments is investigated, and a correlation between the E11* PL energy shift and the induction-polarity parameters of surrounding solvents is established. The adsorption of neutravidin onto the lf-SWCNTs-b induces an increase in the induction-polarity parameters around the biotin-doped sites, resulting in the red-shift of the E11* PL peak. The E11* PL shift behaviors of the lf-SWCNTs-b change noticeably when avidin and streptavidin are introduced compared to the case with neutravidin. This is due to the different microenvironments formed at the biotin-doped sites, attributed to the difference in the structural features of the introduced avidin derivatives. Moreover, we successfully enhance the detection signals of lf-SWCNTs-b (>three fold) for streptavidin detection using a fabricated film device. Therefore, lf-SWCNTs exhibit significant promise for application in advanced protein detection/recognition devices based on NIR PL.
Collapse
Affiliation(s)
- Yoshiaki Niidome
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
- Center for Future Chemistry (CFC), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tsuyohiko Fujigaya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomohiro Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
46
|
Abstract
Single-walled carbon nanotubes are structurally modified by using a genetic sequence.
Collapse
Affiliation(s)
- YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
47
|
Selvaggio G, Kruss S. Preparation, properties and applications of near-infrared fluorescent silicate nanosheets. NANOSCALE 2022; 14:9553-9575. [PMID: 35766334 DOI: 10.1039/d2nr02967g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The layered silicates Egyptian Blue (CaCuSi4O10, EB), Han Blue (BaCuSi4O10, HB) and Han Purple (BaCuSi2O6, HP) are known as historic pigments, but they also possess novel optoelectronic properties with great potential for fundamental research and technology. They fluoresce in the near-infrared (NIR) range and can be exfoliated into two-dimensional (2D) nanomaterials (i.e. nanosheets, NS) which retain the photophysical properties of the bulk materials. These and other characteristics fuel the growing excitement of the scientific community about these materials. EB-, HB- and HP-NS have been used in various applications ranging from smart inks, energy storage, bioimaging, to phototherapy and more. In this review article, we report the fundamental properties of these low-dimensional silicate nanomaterials, discuss applications and outline perspectives for the future.
Collapse
Affiliation(s)
| | - Sebastian Kruss
- Department of Chemistry, Bochum University, Bochum, 44801, Germany.
- Fraunhofer Institute for Microelectronic Circuits and Systems, Duisburg, 47057, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), Duisburg, 47057, Germany
| |
Collapse
|
48
|
Wang P, Fortner J, Luo H, Kłos J, Wu X, Qu H, Chen F, Li Y, Wang Y. Quantum Defects: What Pairs with the Aryl Group When Bonding to the sp 2 Carbon Lattice of Single-Wall Carbon Nanotubes? J Am Chem Soc 2022; 144:13234-13241. [PMID: 35830302 DOI: 10.1021/jacs.2c03846] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aryl diazonium reactions are widely used to covalently modify graphitic electrodes and low-dimensional carbon materials, including the recent creation of organic color centers (OCCs) on single-wall carbon nanotube semiconductors. However, due to the experimental difficulties in resolving small functional groups over extensive carbon lattices, a basic question until now remains unanswered: what group, if any, is pairing with the aryl sp3 defect when breaking a C═C bond on the sp2 carbon lattice? Here, we show that water plays an unexpected role in completing the diazonium reaction with carbon nanotubes involving chlorosulfonic acid, acting as a nucleophilic agent that contributes -OH as the pairing group. By simply replacing water with other nucleophilic solvents, we find it is possible to create OCCs that feature an entirely new series of pairing groups, including -OCH3, -OC2H5, -OC3H7, -i-OC3H7, and -NH2, which allows us to systematically tailor the defect pairs and the optical properties of the resulting color centers. Enabled by these pairing groups, we further achieved the synthesis of OCCs with sterically bulky pairs that exhibit high purity defect photoluminescence effectively covering both the second near-infrared window and the telecom wavelengths. Our studies further suggest that these diazonium reactions proceed through the formation of carbocations in chlorosulfonic acid, rather than a radical mechanism that typically occurs in aqueous solutions. These findings uncover the unknown half of the sp3 defect pairs and provide a synthetic approach to control these defect color centers for quantum information, imaging, and sensing.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jacob Fortner
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Hongbin Luo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jacek Kłos
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States.,Department of Physics, Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaojian Wu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Fu Chen
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Yue Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States.,Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, United State
| |
Collapse
|
49
|
Zheng W, Zorn NF, Bonn M, Zaumseil J, Wang HI. Probing Carrier Dynamics in sp3-Functionalized Single-Walled Carbon Nanotubes with Time-Resolved Terahertz Spectroscopy. ACS NANO 2022; 16:9401-9409. [PMID: 35709437 PMCID: PMC9246260 DOI: 10.1021/acsnano.2c02199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The controlled introduction of covalent sp3 defects into semiconducting single-walled carbon nanotubes (SWCNTs) gives rise to exciton localization and red-shifted near-infrared luminescence. The single-photon emission characteristics of these functionalized SWCNTs make them interesting candidates for electrically driven quantum light sources. However, the impact of sp3 defects on the carrier dynamics and charge transport in carbon nanotubes remains an open question. Here, we use ultrafast, time-resolved optical-pump terahertz-probe spectroscopy as a direct and quantitative technique to investigate the microscopic and temperature-dependent charge transport properties of pristine and functionalized (6,5) SWCNTs in dispersions and thin films. We find that sp3 functionalization increases charge carrier scattering, thus reducing the intra-nanotube carrier mobility. In combination with electrical measurements of SWCNT network field-effect transistors, these data enable us to distinguish between contributions of intra-nanotube band transport, sp3 defect scattering and inter-nanotube carrier hopping to the overall charge transport properties of nanotube networks.
Collapse
Affiliation(s)
- Wenhao Zheng
- Max
Planck Institute for Polymer Research, D-55128 Mainz, Germany
| | - Nicolas F. Zorn
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, D-55128 Mainz, Germany
| | - Jana Zaumseil
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Hai I. Wang
- Max
Planck Institute for Polymer Research, D-55128 Mainz, Germany
| |
Collapse
|
50
|
Kozawa D, Wu X, Ishii A, Fortner J, Otsuka K, Xiang R, Inoue T, Maruyama S, Wang Y, Kato YK. Formation of organic color centers in air-suspended carbon nanotubes using vapor-phase reaction. Nat Commun 2022; 13:2814. [PMID: 35595760 PMCID: PMC9123200 DOI: 10.1038/s41467-022-30508-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/28/2022] [Indexed: 11/28/2022] Open
Abstract
Organic color centers in single-walled carbon nanotubes have demonstrated exceptional ability to generate single photons at room temperature in the telecom range. Combining the color centers with pristine air-suspended nanotubes would be desirable for improved performance, but all current synthetic methods occur in solution which makes them incompatible. Here we demonstrate the formation of color centers in air-suspended nanotubes using a vapor-phase reaction. Functionalization is directly verified by photoluminescence spectroscopy, with unambiguous statistics from more than a few thousand individual nanotubes. The color centers show strong diameter-dependent emission, which can be explained with a model for chemical reactivity considering strain along the tube curvature. We also estimate the defect density by comparing the experiments with simulations based on a one-dimensional exciton diffusion equation. Our results highlight the influence of the nanotube structure on vapor-phase reactivity and emission properties, providing guidelines for the development of high-performance near-infrared quantum light sources. Organic color centers in single-walled carbon nanotubes can act as single-photon sources in the telecom range. Here the authors report the functionalization of air-suspended nanotubes through a vapor-phase photochemical reaction, demonstrating a further tailoring of quantum emitter materials.
Collapse
Affiliation(s)
- Daichi Kozawa
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama, 351-0198, Japan.
| | - Xiaojian Wu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Akihiro Ishii
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama, 351-0198, Japan.,Nanoscale Quantum Photonics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
| | - Jacob Fortner
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Keigo Otsuka
- Nanoscale Quantum Photonics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
| | - Rong Xiang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.,Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Taiki Inoue
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.,Department of Applied Physics, Osaka University, Osaka, 565-0871, Japan
| | - Shigeo Maruyama
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA.,Maryland NanoCenter, University of Maryland, College Park, MD, 20742, USA
| | - Yuichiro K Kato
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama, 351-0198, Japan. .,Nanoscale Quantum Photonics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan.
| |
Collapse
|