1
|
Zheng L, Liang H, Tang J, Zheng Q, Chen F, Wang L, Li Q. Micrometer-scale poly(ethylene glycol) with enhanced mechanical performance. Nat Commun 2025; 16:4391. [PMID: 40355451 PMCID: PMC12069566 DOI: 10.1038/s41467-025-59742-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 05/02/2025] [Indexed: 05/14/2025] Open
Abstract
Strong and lightweight materials are highly desired. Here we report the emergence of a compressive strength exceeding 2 GPa in a directly printed poly(ethylene glycol) micropillar. This strong and highly crosslinked micropillar is not brittle, instead, it behaves like rubber under compression. Experimental results show that the micropillar sustains a strain approaching 70%, absorbs energy up to 310 MJ/m3, and displays an almost 100% recovery after cyclic loading. Simple micro-lattices (e.g., honeycombs) of poly(ethylene glycol) also display high strength at low structural densities. By combining a series of control experiments, computational simulations and in situ characterization, we find that the key to achieving such mechanical performance lies in the fabrication of a highly homogeneous structure with suppressed defect formation. Our discovery unveils a generalizable approach for achieving a performance leap in polymeric materials and provides a complementary approach to enhance the mechanical performance of low-density latticed structures.
Collapse
Affiliation(s)
- Letian Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, China
| | - Heyi Liang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Jin Tang
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Fang Chen
- Chemistry Instrumentation Center, Zhejiang University, Hangzhou, China
| | - Lian Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, China
| | - Qi Li
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Chen Z, Xu C, Chen X, Huang J, Guo Z. Advances in Electrically Conductive Hydrogels: Performance and Applications. SMALL METHODS 2025; 9:e2401156. [PMID: 39529563 DOI: 10.1002/smtd.202401156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Electrically conductive hydrogels are highly hydrated 3D networks consisting of a hydrophilic polymer skeleton and electrically conductive materials. Conductive hydrogels have excellent mechanical and electrical properties and have further extensive application prospects in biomedical treatment and other fields. Whereas numerous electrically conductive hydrogels have been fabricated, a set of general principles, that can rationally guide the synthesis of conductive hydrogels using different substances and fabrication methods for various application scenarios, remain a central demand of electrically conductive hydrogels. This paper systematically summarizes the processing, performances, and applications of conductive hydrogels, and discusses the challenges and opportunities in this field. In view of the shortcomings of conductive hydrogels in high electrical conductivity, matchable mechanical properties, as well as integrated devices and machines, it is proposed to synergistically design and process conductive hydrogels with applications in complex surroundings. It is believed that this will present a fresh perspective for the research and development of conductive hydrogels, and further expand the application of conductive hydrogels.
Collapse
Affiliation(s)
- Zhiwei Chen
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| | - Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xionggang Chen
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| |
Collapse
|
3
|
Aswale S, Kang H, Mohanty AK, Kim H, Jang Y, Kim M, Jeon HB, Cho HY, Paik HJ. Various Topological Poly(tert-butyl acrylate)s and Their Impacts on Thermal and Solution Properties. Macromol Rapid Commun 2025:e2401043. [PMID: 40096512 DOI: 10.1002/marc.202401043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/22/2025] [Indexed: 03/19/2025]
Abstract
This study reports the synthesis of acrylate-based polymers with diverse topologies, including cyclic and 8-shaped structures, using a combination of atom transfer radical polymerization (ATRP) and click coupling reactions. The linear and tetra-arm poly(tert-butyl acrylate) (PtBA) polymers with similar molar masses are synthesized via the activators regenerated by electron transfer atom transfer radical polymerization. These polymers are further transformed into cyclic and 8-shaped topologies, respectively, through a click reaction. All topologies possessed similar molar mass are confirmed using 1H NMR, FT-IR, SEC, and MALDI-TOF mass spectrometry. The influence of macromolecular topology on intrinsic viscosity and glass transition temperature (Tg) is systematically investigated. The findings show that within the PtBA topology series, Tg increases with structural compactness, with cyclic polymers exhibiting higher Tg than their precursors. Additionally, intrinsic viscosity decreases as compactness increases across the various topological macromolecules. These observations highlight the potential of topology as a tool for fine-tuning polymer properties, facilitating the development of advanced materials with specific behaviors in solution and bulk properties.
Collapse
Affiliation(s)
- Suraj Aswale
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyerin Kang
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Aruna Kumar Mohanty
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hanyoung Kim
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Yerin Jang
- Department of Chemistry, Kwangwoon University, Seoul, 01897, South Korea
| | - Minsung Kim
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Heung Bae Jeon
- Department of Chemistry, Kwangwoon University, Seoul, 01897, South Korea
| | - Hong Y Cho
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
- Department of Chemistry, Gangneung-Wonju National University, Gangneung, Gangnwon, 25457, Republic of Korea
| | - Hyun-Jong Paik
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Republic of Korea
| |
Collapse
|
4
|
Huang Z, Dong J, Liu K, Pan X. Oxygen, light, and mechanical force mediated radical polymerization toward precision polymer synthesis. Chem Commun (Camb) 2025; 61:2699-2722. [PMID: 39817502 DOI: 10.1039/d4cc05772d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The synthesis of polymers with well-defined composition, architecture, and functionality has long been a focal area of research in the field of polymer chemistry. The advancement of controlled radical polymerization (CRP) has facilitated the synthesis of precise polymers, which are endowed with new properties and functionalities, thereby exhibiting a wide range of applications. However, radical polymerization faces several challenges, such as oxygen intolerance, and common thermal initiation methods may lead to side reactions and depolymerization. Therefore, we have developed some oxygen-tolerant systems that directly utilize oxygen for initiating and regulating polymerization. We utilize oxygen/alkylborane as an effective radical initiator system in the polymerization, and also as a reductant for the removal of polymer chain ends. Moreover, we employ the gentler photoinduced CRP to circumvent side reactions caused by high temperatures and achieve temporal and spatial control over the polymerization. To enhance the penetration of the light source for polymerization, we have developed near-infrared light-induced atom transfer radical polymerization. Additionally, we have extended photochemistry to reversible addition-fragmentation chain transfer polymerization involving ion-pair inner-sphere electron transfer mechanism, metal-free radical hydrosilylation polymerization, as well as carbene-mediated polymer modification through C-H activation and insertion mechanisms. Furthermore, we propose a new method for polymerization initiation synergistically triggered by oxygen and mechanical energy. This review not only showcases the current advancements in CRP but also outlines future directions, such as the potential for 3D printing and surface coatings, and the exploration of new heteroatom radical polymerizations. By expanding the boundaries of polymer synthesis, these innovations could lead to the creation of new materials with enhanced functionality and applications.
Collapse
Affiliation(s)
- Zhujun Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Jin Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Kaiwen Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| |
Collapse
|
5
|
Ren C, Chen W, Liao Y, Huang Y, Yu C, Chen T, Zeng Q, Yang Y, Huang R, Liu T, Jiang L, Bao B, Zhu L, Lin Q. Reinforcing Gelatin Hydrogels via In Situ Phase Separation and Enhanced Interphase Bonding for Advanced 3D Fabrication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416432. [PMID: 39659086 DOI: 10.1002/adma.202416432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Gelatin hydrogels (e.g., methacrylated gelatin gel, abbreviated GelMA gel) have garnered significant attention in tissue engineering and therapeutic drug and cell delivery due to their complete degradability and intrinsic ability to support cell adhesion. However, their practical applications are often constrained by their poor mechanical performance, which stems from their single network structure. This limitation poses significant challenges in load-bearing scenarios and restricts their use in advanced biofabrication technologies, where robust mechanical properties are essential. Here a hydrogel is developed composed entirely of gelatin using a phototriggered transient-radical and persistent-radical coupling (PTPC) reaction to achieve an optimized microstructure. This hydrogel features a phase-separated structure with enhanced interfacial bonding, significantly improving mechanical performance compared to conventional GelMA gels. Notably, this approach preserves the inherent properties of gelatin, including biocompatibility, cell adhesion, and degradability, thereby extending its applicability in the biomedical field, particularly in advanced biofabrication methods such as 3D printing. This approach offers a superior solution to meet the complex demands of sophisticated biomanufacturing technologies, expanding the potential applications of gelatin hydrogels in the biomedical field.
Collapse
Affiliation(s)
- Chunling Ren
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanqi Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yun Liao
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yangguang Huang
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Changlong Yu
- Burn Plastic Wound Repair Surgery of Ganzhou Hospital of Guangdong Provincial People's Hospital, GanZhou, 341000, China
| | - Ting Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qingmei Zeng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yunlong Yang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Rongkun Huang
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Tuan Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Jiang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bingkun Bao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linyong Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiuning Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
6
|
Iwasaki T, Suehisa G, Mandai R, Nozaki K. Sequence-Controlled Copolymerization of Structurally Well-Defined Multinuclear Zinc Acrylate Complexes and Styrene. Macromol Rapid Commun 2025; 46:e2400742. [PMID: 39520319 PMCID: PMC11800057 DOI: 10.1002/marc.202400742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The copolymerization of two or more monomers produces polymeric materials with unique properties that cannot be achieved with homopolymers. However, precise control over the polymer sequence remains challenging because the sequence is determined by the inherent reactivity of comonomers. Therefore, only limited methods using modified monomers or supramolecular interactions are reported. In this study, the sequence control of acrylate-styrene copolymerization using multinuclear zinc complexes is reported. The copolymerization of the zinc acrylate complex with a polymeric sheet-like structure and styrene in benzene affords a copolymer with a higher content of acrylate triad than calculated for the statistical random model, whereas tetranuclear zinc acrylate (TZA) affords a copolymer with fewer adjacent acrylate sequences. The copolymer with a higher content of acrylate triad exhibits a lower glass transition temperature because of the higher mobility of the longer polystyrene segments. These results highlight the promise of multinuclear zinc acrylate complexes as monomers for sequence-controlled copolymerization.
Collapse
Affiliation(s)
- Takanori Iwasaki
- Department of Chemistry and BiotechnologyGraduate School of EngineeringThe University of Tokyo7‐3‐1 HongoBunkyo‐kuTokyo113–8656Japan
| | - Gaito Suehisa
- Department of Chemistry and BiotechnologyGraduate School of EngineeringThe University of Tokyo7‐3‐1 HongoBunkyo‐kuTokyo113–8656Japan
| | - Ryo Mandai
- Department of Chemistry and BiotechnologyGraduate School of EngineeringThe University of Tokyo7‐3‐1 HongoBunkyo‐kuTokyo113–8656Japan
| | - Kyoko Nozaki
- Department of Chemistry and BiotechnologyGraduate School of EngineeringThe University of Tokyo7‐3‐1 HongoBunkyo‐kuTokyo113–8656Japan
| |
Collapse
|
7
|
Qi X, Jin W, Tang C, Xiao X, Li R, Ma Y, Ma L. pH monitoring in high ionic concentration environments: performance study of graphene-based sensors. ANAL SCI 2025; 41:127-135. [PMID: 39487954 DOI: 10.1007/s44211-024-00682-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Graphene-based pH sensors, acclaimed for their exceptional sensitivity to environmental variations, have garnered significant interest in scientific research. However, the sensor performance in high ionic concentration environments is limited, due to the Debye length ion screening effect. In this study, an innovative graphene channel pH sensing device was developed and modified by cross-linked poly(methyl methacrylate) (PMMA). Furthermore, even in high ionic concentrations, the pH value can be precisely measured by this sensor. The sensor has remarkable sensitivity, and high response rate of - 70.49 mV/pH within the pH range from 7 to 10. Notably, the sensors retain uniform response direction and sensitivity under different ionic concentrations environmental and maintain consistent reversibility and stability. This advancement in sensor technology paves the way for broader applications in complex ionic environments.
Collapse
Affiliation(s)
- Xin Qi
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China
| | - Wei Jin
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China
| | - Cao Tang
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China
| | - Xue Xiao
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China
| | - Rui Li
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China
| | - Yanqing Ma
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China.
- Tianjin Key Laboratory of Low-Dimensional Electronic Materials and Advanced Instrumentation, Tianjin, 300072, People's Republic of China.
- School of Precision Instrument and Opto-Electronic Engineering, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Lei Ma
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China.
- Tianjin Key Laboratory of Low-Dimensional Electronic Materials and Advanced Instrumentation, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
8
|
Carrascal-Hernández DC, Grande-Tovar CD, Mendez-Lopez M, Insuasty D, García-Freites S, Sanjuan M, Márquez E. CO 2 Capture: A Comprehensive Review and Bibliometric Analysis of Scalable Materials and Sustainable Solutions. Molecules 2025; 30:563. [PMID: 39942667 PMCID: PMC11820267 DOI: 10.3390/molecules30030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The greenhouse effect and global warming, driven by the accumulation of pollutants, such as sulfur oxides (SOx), nitrogen oxides (NOx), and CO2, are primarily caused by the combustion of fossil fuels and volcanic eruptions. These phenomena represent an international crisis that negatively impacts human health and the environment. Several studies have reported novel carbon capture, utilization, and storage (CCUS) technologies, promising solutions. Notable methods include chemical absorption using solvents, and the development of functionalized porous materials, such as MCM-41, impregnated with amines like polyethyleneimine. These technologies have demonstrated high capture capacity and thermal stability; however, they face challenges related to recyclability and high operating costs. In parallel, biodegradable polymers and hydrogels present sustainable alternatives with a lower environmental impact, although their industrial scalability remains limited. This review comprehensively analyzes CO2 capture methods, focusing on silica-based porous supports, polymers, hydrogels, and emerging techniques, like CCUS and MOFs, while including traditional methods and a bibliometric analysis to update the field's scientific dynamics. With increasing investigations focused on developing new CCUS technologies, this study highlights a growing interest in eco-friendly alternatives. A bibliometric analysis of 903 articles published between 2010 and 2024 provides an overview of current research on environmentally friendly carbon capture technologies. Countries such as the United States, the United Kingdom, and India are leading research efforts in this field, emphasizing the importance of scientific collaboration. Despite these advancements, implementing these technologies in industrial sectors with high greenhouse gas emissions remains scarce. This underscores the need for public policies and financing to promote their development and application in these sectors. Future research should prioritize materials with high capture capacity, efficient transformation, and valorization of CO2 while promoting circular economy approaches and decarbonizing challenging sectors, such as energy and transportation. Integrating environmentally friendly materials, energy optimization, and sustainable strategies is essential to position these technologies as key tools in the fight against climate change.
Collapse
Affiliation(s)
- Domingo Cesar Carrascal-Hernández
- Departamento de Química y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Barranquilla 080020, Colombia; (D.C.C.-H.); (M.M.-L.); (D.I.)
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Programa de Química, Universidad del Atlántico, Carrera 30 No 8–49, Puerto Colombia 081007, Colombia
| | - Maximiliano Mendez-Lopez
- Departamento de Química y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Barranquilla 080020, Colombia; (D.C.C.-H.); (M.M.-L.); (D.I.)
| | - Daniel Insuasty
- Departamento de Química y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Barranquilla 080020, Colombia; (D.C.C.-H.); (M.M.-L.); (D.I.)
| | - Samira García-Freites
- Centro de Investigación e Innovación en Energía y Gas—CIIEG, Promigas S.A. E.S.P., Barranquilla 11001, Colombia; (S.G.-F.); (M.S.)
| | - Marco Sanjuan
- Centro de Investigación e Innovación en Energía y Gas—CIIEG, Promigas S.A. E.S.P., Barranquilla 11001, Colombia; (S.G.-F.); (M.S.)
| | - Edgar Márquez
- Departamento de Química y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Barranquilla 080020, Colombia; (D.C.C.-H.); (M.M.-L.); (D.I.)
| |
Collapse
|
9
|
Chen Y, Wang R, Sheng X, Zhang L, Tan J. Degradable and Chain Extendable Segmented Hyperbranched Copolymers by Wavelength-Selective Photoiniferter Polymerization Using a Trithiocarbonate-Derived Dimethacrylate. ACS Macro Lett 2025; 14:72-79. [PMID: 39715460 DOI: 10.1021/acsmacrolett.4c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
In this study, segmented hyperbranched copolymers with degradable and chain extendable cross-linker branch points were synthesized via green light-activated photoiniferter copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA) and a trithiocarbonate-derived dimethacrylate. A series of segmented hyperbranched copolymers with different degrees of branching were synthesized by changing the feed ratio of PEGMA to cross-linker to chain transfer agent. The segmented hyperbranched copolymers could be degraded into linear polymer chains by removing the trithocarbonate groups, which provides fundamental insights into the growth of primary chains during photoiniferter copolymerization. Switching to blue light irradiation allowed for the chain extension of poly(N,N-dimethylacrylamide) (PDMA) both at the branch points and at the chain ends. Finally, the formed segmented hyperbranched copolymers were explored as macromolecular chain transfer agents to prepare segmented hyperbranched block copolymer nanoparticles via polymerization-induced self-assembly. This study not only leads to new examples of degradable and chain extendable segmented hyperbranched polymers but also provides important insights into the formation of branched polymers via copolymerization of multivinyl monomers.
Collapse
Affiliation(s)
- Yanwen Chen
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruiming Wang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinxin Sheng
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
10
|
Rommel D, Häßel B, Pietryszek P, Mork M, Jung O, Emondts M, Norkin N, Doolaar IC, Kittel Y, Yazdani G, Omidinia-Anarkoli A, Schweizerhof S, Kim K, Mourran A, Möller M, Guck J, De Laporte L. Thermally Assisted Microfluidics to Produce Chemically Equivalent Microgels with Tunable Network Morphologies. Angew Chem Int Ed Engl 2025; 64:e202411772. [PMID: 39453733 DOI: 10.1002/anie.202411772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/27/2024]
Abstract
Although micron-sized microgels have become important building blocks in regenerative materials, offering decisive interactions with living matter, their chemical composition mostly significantly varies when their network morphology is tuned. Since cell behavior is simultaneously affected by the physical, chemical, and structural properties of the gel network, microgels with variable morphology but chemical equivalence are of interest. This work describes a new method to produce thermoresponsive microgels with defined mechanical properties, surface morphologies, and volume phase transition temperatures. A wide variety of microgels is synthesized by crosslinking monomers or star polymers at different temperatures using thermally assisted microfluidics. The diversification of microgels with different network structures and morphologies but of chemical equivalence offers a new platform of microgel building blocks with the ability to undergo phase transition at physiological temperatures. The method holds high potential to create soft and dynamic materials while maintaining the chemical composition for a wide variety of applications in biomedicine.
Collapse
Affiliation(s)
- Dirk Rommel
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstrasse 50, 52074, Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Bernhard Häßel
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstrasse 50, 52074, Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Philip Pietryszek
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstrasse 50, 52074, Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Matthias Mork
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstrasse 50, 52074, Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Oliver Jung
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstrasse 50, 52074, Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Meike Emondts
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstrasse 50, 52074, Aachen, Germany
| | - Nikita Norkin
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstrasse 50, 52074, Aachen, Germany
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Iris Christine Doolaar
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstrasse 50, 52074, Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Yonca Kittel
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstrasse 50, 52074, Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Ghazaleh Yazdani
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstrasse 50, 52074, Aachen, Germany
| | | | - Sjören Schweizerhof
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Kyoohyun Kim
- Max Planck Institute for the Science of Light
- Max-Planck-Zentrum für Physik und Medizin, Staudtstraße 2, 91058, Erlangen, Germany
| | - Ahmed Mourran
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstrasse 50, 52074, Aachen, Germany
| | - Martin Möller
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstrasse 50, 52074, Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light
- Max-Planck-Zentrum für Physik und Medizin, Staudtstraße 2, 91058, Erlangen, Germany
- Department of Biophysics and Bioinformatics, BIOTEC-Biotechnology Center, Dresden University of Technology, Tatzberg 47/49, 01307, Dresden, Germany
| | - Laura De Laporte
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstrasse 50, 52074, Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
- Department of Advanced Materials for Biomedicine (AMB), CBMS-Center for Biohybrid Medical Systems, AME-Institute of Applied Medical Engineering, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany
| |
Collapse
|
11
|
Roxas AP, Yu H, Tamtaji M, Yang Z, Luo Z. Rapid, Controlled Branching Polymerization of Cyanoacrylate via Pathway-Enabled, Site-Specific Branching Initiation. Macromol Rapid Commun 2025; 46:e2400658. [PMID: 39513652 PMCID: PMC11756863 DOI: 10.1002/marc.202400658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/09/2024] [Indexed: 11/15/2024]
Abstract
Controlled branched structures remain a key synthetic limitation for monomeric tissue adhesives because their on-site polymerization that enables adhesion formation requires rapid kinetics, high conversion, and straightforward setup. In this context, site-specific branching initiation by using evolmers is potentially effective for structural control; however, the efficiency and kinetics in current reaction setups persists to be a major challenge. In this paper, an evolmer induces a controlled branching polymerization of cyanoacrylate amid the high monomer reactivity useful in rapid adhesion. The contrasting reactivities between the vinyl and the initiating groups in the evolmer molecule generate a kinetic pathway that favors a control-enabling branching mechanism. Through density functional theory calculations, the reaction pathway toward branching is shown to kinetically favor site-specific initiation by six orders of magnitude than the route toward non-specificity. Reaction monitoring confirms the branching polymerization after the polymerization with the evolmer forms a more compact structure than the linear counterpart. Control of branching density is demonstrated in rapid polymerizations within minutes and in polymerizations completed in an instant. These results provide a template for achieving site-specific branching initiation during adhesion formation and, broadly, where conditions for kinetic control are necessary.
Collapse
Affiliation(s)
- Alexander Perez Roxas
- Department of Chemical and Biological EngineeringGuangdong‐Hong Kong‐Macao Joint Laboratory for Intelligent Micro‐Nano Optoelectronic TechnologyWilliam Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong999077P. R. China
| | - Han Yu
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong999077P. R. China
| | - Mohsen Tamtaji
- Department of Chemical and Biological EngineeringGuangdong‐Hong Kong‐Macao Joint Laboratory for Intelligent Micro‐Nano Optoelectronic TechnologyWilliam Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong999077P. R. China
| | - Zhenggen Yang
- Guangzhou Koncen BioScience Co., Ltd.GuangzhouGuangdong510660P. R. China
- Guangdong Provincial Key Laboratory of Hemoadsorption TechnologyGuangzhou510660P. R China
| | - Zhengtang Luo
- Department of Chemical and Biological EngineeringGuangdong‐Hong Kong‐Macao Joint Laboratory for Intelligent Micro‐Nano Optoelectronic TechnologyWilliam Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong999077P. R. China
| |
Collapse
|
12
|
Zhu Z, Heng X, Shan F, Yang H, Wang Y, Zhang H, Chen G, Chen H. Customizable Glycopolymers as Adjuvants for Cancer Immunotherapy: From Branching Degree Optimization to Cell Surface Engineering. Biomacromolecules 2024; 25:7975-7984. [PMID: 39534984 DOI: 10.1021/acs.biomac.4c01230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Engineering dendritic cell (DC) maturation is paramount for robust T-cell responses and immunological memory, critical for cancer immunotherapy. This work unveils a novel strategy using precisely controlled branching in synthetic glycopolymers to optimize DC activation. Using the distinct copolymerization kinetics of 2-(methacrylamido) glucopyranose (MAG) and diethylene glycol dimethacrylate (DEGDMA) in a RAFT polymerization, unique glycopolymers with varying branching degrees are created. These strategically produced gradient branched glycopolymers with sugar moieties on the outer chain potently promote DC maturation. Strikingly, low-branched glycopolymers demonstrate superior activity, both in pure form and when engineered on tumor cell surfaces. Quartz crystal microbalance and theoretical simulations elucidate the crucial role of branching in modulating glycopolymer-DC receptor interactions. Low-branched gradient glycopolymers have shown a notable advantage and are promising adjuvants in DC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Zhichen Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Xingyu Heng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Fangjian Shan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - He Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Yichen Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Hengyuan Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Gaojian Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| |
Collapse
|
13
|
Jeong YG, Yoo JJ, Lee SJ, Kim MS. 3D digital light process bioprinting: Cutting-edge platforms for resolution of organ fabrication. Mater Today Bio 2024; 29:101284. [PMID: 39430572 PMCID: PMC11490710 DOI: 10.1016/j.mtbio.2024.101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Research in the field of regenerative medicine, which replaces or restores the function of human damaged organs is advancing rapidly. These advances are fostering important innovations in the development of artificial organs. In recent years, three-dimensional (3D) bioprinting has emerged as a promising technology for regenerative medicine applications. Among various techniques, digital light process (DLP) 3D bioprinting stands out for its ability to precisely create high-resolution, structurally complex artificial organs. This review explores the types and usage trends of DLP printing equipment, bioinks, and photoinitiators. Building on this foundation, the applications of DLP bioprinting for creating precise microstructures of human organs and for regenerating tissue and organ models in regenerative medicine are examined. Finally, challenges and future perspectives regarding DLP-based bioprinting, particularly for precision printing applications in regenerative medicine, are discussed.
Collapse
Affiliation(s)
- Yun Geun Jeong
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-Gu, Suwon, 16499, South Korea
| | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-Gu, Suwon, 16499, South Korea
| |
Collapse
|
14
|
Davletbaeva IM, Sazonov OO. Macromolecular Architecture in the Synthesis of Micro- and Mesoporous Polymers. Polymers (Basel) 2024; 16:3267. [PMID: 39684011 DOI: 10.3390/polym16233267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Polymers with micro- and mesoporous structure are promising as materials for gas storage and separation, encapsulating agents for controlled drug release, carriers for catalysts and sensors, precursors of nanostructured carbon materials, carriers for biomolecular immobilization and cellular scaffolds, as materials with a low dielectric constant, filtering/separating membranes, proton exchange membranes, templates for replicating structures, and as electrode materials for energy storage. Sol-gel technologies, track etching, and template synthesis are used for their production, including in micelles of surfactants and microemulsions and sublimation drying. The listed methods make it possible to obtain pores with variable shapes and sizes of 5-50 nm and achieve a narrow pore size distribution. However, all these methods are technologically multi-stage and require the use of consumables. This paper presents a review of the use of macromolecular architecture in the synthesis of micro- and mesoporous polymers with extremely high surface area and hierarchical porous polymers. The synthesis of porous polymer frameworks with individual functional capabilities, the required chemical structure, and pore surface sizes is based on the unique possibilities of developing the architecture of the polymer matrix.
Collapse
Affiliation(s)
- Ilsiya M Davletbaeva
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia
| | - Oleg O Sazonov
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia
| |
Collapse
|
15
|
Adebowale K, Liao R, Suja VC, Kapate N, Lu A, Gao Y, Mitragotri S. Materials for Cell Surface Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210059. [PMID: 36809574 DOI: 10.1002/adma.202210059] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Cell therapies are emerging as a promising new therapeutic modality in medicine, generating effective treatments for previously incurable diseases. Clinical success of cell therapies has energized the field of cellular engineering, spurring further exploration of novel approaches to improve their therapeutic performance. Engineering of cell surfaces using natural and synthetic materials has emerged as a valuable tool in this endeavor. This review summarizes recent advances in the development of technologies for decorating cell surfaces with various materials including nanoparticles, microparticles, and polymeric coatings, focusing on the ways in which surface decorations enhance carrier cells and therapeutic effects. Key benefits of surface-modified cells include protecting the carrier cell, reducing particle clearance, enhancing cell trafficking, masking cell-surface antigens, modulating inflammatory phenotype of carrier cells, and delivering therapeutic agents to target tissues. While most of these technologies are still in the proof-of-concept stage, the promising therapeutic efficacy of these constructs from in vitro and in vivo preclinical studies has laid a strong foundation for eventual clinical translation. Cell surface engineering with materials can imbue a diverse range of advantages for cell therapy, creating opportunities for innovative functionalities, for improved therapeutic efficacy, and transforming the fundamental and translational landscape of cell therapies.
Collapse
Affiliation(s)
- Kolade Adebowale
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Rick Liao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Vineeth Chandran Suja
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Neha Kapate
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Andrew Lu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
| | - Yongsheng Gao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| |
Collapse
|
16
|
DePolo G, Iedema P, Shull K, Hermans J. Comprehensive Characterization of Drying Oil Oxidation and Polymerization Using Time-Resolved Infrared Spectroscopy. Macromolecules 2024; 57:8263-8276. [PMID: 39281840 PMCID: PMC11394013 DOI: 10.1021/acs.macromol.4c01164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/18/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024]
Abstract
Drying oils like linseed oil are composed of multifunctional triglyceride molecules that can cure through three-dimensional free-radical polymerization into complex polymer networks. In the context of oil paint conservation, it is important to understand how factors like paint composition and curing conditions affect the chemistry and network structure of the oil polymer network and subsequently the links between the structure and long-term paint stability. Here, we employed time-resolved ATR-FTIR spectroscopy and comprehensive data analysis to study the curing behavior of five types of drying oil and the effects of curing temperature as well as the presence of a curing catalyst (PbO). Extracted concentration curves of key reactive functional groups point to a phase transition similar to a gel point that is especially pronounced in the presence of PbO, after which curing reactivity slows down dramatically. Analysis of kinetic parameters suggests that PbO induces a network structure with a more heterogeneous cross-link density, and the ATR-FTIR spectra indicate lower levels of oxidation in those cases. Finally, lower temperatures appear to favor the formation of carboxylic acid groups in oil mixtures with PbO.
Collapse
Affiliation(s)
- Gwen DePolo
- Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, Amsterdam 1090 GD, The Netherlands
| | - Piet Iedema
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, Amsterdam 1090 GD, The Netherlands
| | - Kenneth Shull
- Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Joen Hermans
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, Amsterdam 1090 GD, The Netherlands
- Conservation & Restoration, Amsterdam School of Heritage, Memory and Material Culture, University of Amsterdam, P.O. Box 94551, Amsterdam 1090 GN, The Netherlands
- Conservation & Science, Rijksmuseum, P.O. Box 74888, Amsterdam 1070 DN, The Netherlands
| |
Collapse
|
17
|
Li Z, Zhou D. Acrylate-Based PEG Hydrogels with Ultrafast Biodegradability for 3D Cell Culture. Biomacromolecules 2024; 25:6195-6202. [PMID: 39136362 DOI: 10.1021/acs.biomac.4c01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Poly(ethylene glycol) (PEG)-based hydrogels are particularly challenging to degrade, which hinders efficient cell harvesting within the gel matrix. Here, highly branched copolymers of PEG methyl ether acrylate (PEGMA) and disulfide diacrylate (DSDA) (PEG-DS) with short primary chains and multiple pendent vinyl groups were synthesized by a "vinyl oligomer combination" approach. PEG-DS readily cross-links with thiolated gelatin (Gel-SH) to form hydrogels. Results demonstrate that shortening the primary chains of PEG-DS significantly enhances the viability of bone marrow mesenchymal stem cells (BMSCs) by up to 193.2%. Importantly, DS junctions can be easily cleaved into short primary chains using dithiothreitol (DTT), triggering ultrafast degradation of PEG-DS/Gel-SH hydrogels within 2 min under mild conditions and release of the encapsulated BMSCs. This study establishes a novel strategy to enhance the degradation of acrylate-based PEG hydrogels for three-dimensional (3D) cell culture and harvesting. These findings expand the potential applications of such hydrogels in various biomedical fields.
Collapse
Affiliation(s)
- Zhili Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dezhong Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
18
|
Hofmann D, Sychev D, Zagradska-Paromova Z, Bittrich E, Auernhammer GK, Gaitzsch J. Surface Topology of Redox- and Thermoresponsive Nanogel Droplets. Macromol Rapid Commun 2024; 45:e2400049. [PMID: 38685191 DOI: 10.1002/marc.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/27/2024] [Indexed: 05/02/2024]
Abstract
Hydrogels are usually depicted as a homogenous polymer block with a distinct surface. While defects in the polymer structure are looked into frequently, structural irregularities on the hydrogel surface are often neglected. In this work, thin hydrogel layers of ≈100 nm thickness (nanogels) are synthesized and characterized for their structural irregularities, as they represent the surface of macrogels. The nanogels contain a main-chain responsiveness (thermo responsive) and a responsiveness in the cross-linking points (redox responsive). By combining data from ellipsometry using box-model and two-segment-model analysis, as well as atomic force microscopy, a more defined model of the nanogel surface can be developed. Starting with a more densely cross-linked network at the silica wafer surface, the density of cross-linking gradually decreases toward the hydrogel-solvent interface. Thermo-responsive behavior of the main chain affects the entire network equally as all chain segments change solubility. Cross-linker-based redox-responsiveness, on the other hand, is only governed by the inner, more cross-linked layers of the network. Such dual responsive nanogels hence allow for developing a more detailed model of a hydrogel surface from free radical polymerization. It provides a better understanding of structural defects in hydrogels and how they are affected by responsive functionalities.
Collapse
Affiliation(s)
- Doreen Hofmann
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Dmitrii Sychev
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
- Chair of Physical Chemistry of Polymeric Materials, Technische Universität Dresden, 01069, Dresden, Germany
| | - Zlata Zagradska-Paromova
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Eva Bittrich
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Günter K Auernhammer
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Jens Gaitzsch
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| |
Collapse
|
19
|
Aditya L, Vu HP, Johir MAH, Mao S, Ansari A, Fu Q, Nghiem LD. Synthesizing cationic polymers and tuning their properties for microalgae harvesting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170423. [PMID: 38281644 DOI: 10.1016/j.scitotenv.2024.170423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
This study reports a facile technique to synthesize and tune the cationic polymer, poly(3-acrylamidopropyl)trimethylammonium chloride (PAPTAC), in terms of molecular weight and surface change for harvesting three microalgae species (Scenedesmus sp., P.purpureum, and C. vulgaris). The PAPTAC polymer was synthesised by UV-induced free-radical polymerisation. Polymer tuning was demonstrated by regulating the monomer concentration (60 to 360 mg/mL) and UV power (36 and 60 W) for polymerisation. The obtained PAPTAC polymer was evaluated for harvesting three different microalgae species and compared to a commercially available polymer. The highest flocculation efficiency for Scenedesmus sp. and P. purpureum was observed at a dosage of 25 mg-polymer/g of dry biomass by using PAPTAC-90, resulting in higher flocculation efficiency than the commercial polymer. Results in this study show evidence of effective neutralisation of the negative charge surface of microalgae cells by the produced cationic PAPTAC polymer and polymer bridging for effective flocculation. The obtained PAPTAC polymer was less effective for harvesting C. vulgaris, possibly due to other factors such as cell morphology and composition of extracellular polymeric substances of at the cell membrane that may also influence harvesting performance.
Collapse
Affiliation(s)
- Lisa Aditya
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Hang P Vu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Md Abu Hasan Johir
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Shudi Mao
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Ashley Ansari
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Qiang Fu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia.
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia.
| |
Collapse
|
20
|
Zou H, Zhao S, Wu Q, Chu B, Zhou L. One-Pot Synthesis, Circularly Polarized Luminescence, and Controlled Self-Assembly of Janus-Type Miktoarm Star Copolymers. ACS Macro Lett 2024:227-233. [PMID: 38300520 DOI: 10.1021/acsmacrolett.3c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
With the aim of broadening the scope of Janus-type polymers with new functionalities, Janus-type miktoarm star copolymers comprising helical poly(phenyl isocyanide) (PPI) and a vinyl polymer were designed and synthesized via a combination of Pd(II)-initiated isocyanide polymerization and atom transfer radical polymerization (ATRP). A functional β-cyclodextrin bearing 7 Pd(II) complexes at one side and 14 bromine groups at the other side ((Pd(II))7-CD-(Br)14) was prepared and used as an initiator for the one-pot polymerization of phenyl isocyanide and the ATRP of vinyl monomers in a living and controlled manner. A variety of Janus-type copolymers with different structures and tunable compositions were facilely obtained by using this method. Thus, Janus-type copolymers composed of helical PPIs and tetraphenylethylene-modified vinyl polymers exhibited a significant circularly polarized luminescence performance in both soluble and aggregated states. Meanwhile, Janus-type copolymers containing PPIs and hydrophilic vinyl polymers presented amphiphilicity and self-assembled into diverse morphologies.
Collapse
Affiliation(s)
- Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009 Anhui, China
| | - Shuyang Zhao
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009 Anhui, China
| | - Qiliang Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009 Anhui, China
| | - Benfa Chu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, 23200 Anhui, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009 Anhui, China
| |
Collapse
|
21
|
Wang C, He W, Wang F, Yong H, Bo T, Yao D, Zhao Y, Pan C, Cao Q, Zhang S, Li M. Recent progress of non-linear topological structure polymers: synthesis, and gene delivery. J Nanobiotechnology 2024; 22:40. [PMID: 38280987 PMCID: PMC10821314 DOI: 10.1186/s12951-024-02299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/03/2024] [Indexed: 01/29/2024] Open
Abstract
Currently, many types of non-linear topological structure polymers, such as brush-shaped, star, branched and dendritic structures, have captured much attention in the field of gene delivery and nanomedicine. Compared with linear polymers, non-linear topological structural polymers offer many advantages, including multiple terminal groups, broad and complicated spatial architecture and multi-functionality sites to enhance gene delivery efficiency and targeting capabilities. Nevertheless, the complexity of their synthesis process severely hampers the development and applications of nonlinear topological polymers. This review aims to highlight various synthetic approaches of non-linear topological architecture polymers, including reversible-deactivation radical polymerization (RDRP) including atom-transfer radical polymerization (ATRP), nitroxide-mediated polymerization (NMP), reversible addition-fragmentation chain transfer (RAFT) polymerization, click chemistry reactions and Michael addition, and thoroughly discuss their advantages and disadvantages, as well as analyze their further application potential. Finally, we comprehensively discuss and summarize different non-linear topological structure polymers for genetic materials delivering performance both in vitro and in vivo, which indicated that topological effects and nonlinear topologies play a crucial role in enhancing the transfection performance of polymeric vectors. This review offered a promising guideline for the design and development of novel nonlinear polymers and facilitated the development of a new generation of polymer-based gene vectors.
Collapse
Affiliation(s)
- Chenfei Wang
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| | - Wei He
- School of Medicine, Anhui University of Science and Technology, Huainan, 232000, Anhui, China
| | - Feifei Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Haiyang Yong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Tao Bo
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Dingjin Yao
- Shanghai EditorGene Technology Co., Ltd, Shanghai, 200000, China
| | - Yitong Zhao
- School of Medicine, Anhui University of Science and Technology, Huainan, 232000, Anhui, China
| | - Chaolan Pan
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Qiaoyu Cao
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Si Zhang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Ming Li
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| |
Collapse
|
22
|
Balafouti A, Forys A, Trzebicka B, Gerardos AM, Pispas S. Anionic Hyperbranched Amphiphilic Polyelectrolytes as Nanocarriers for Antimicrobial Proteins and Peptides. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7702. [PMID: 38138846 PMCID: PMC10745097 DOI: 10.3390/ma16247702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
This manuscript presents the synthesis of hyperbranched amphiphilic poly (lauryl methacrylate-co-tert-butyl methacrylate-co-methacrylic acid), H-P(LMA-co-tBMA-co-MAA) copolymers via reversible addition fragmentation chain transfer (RAFT) copolymerization of tBMA and LMA, and their post-polymerization modification to anionic amphiphilic polyelectrolytes. The focus is on investigating whether the combination of the hydrophobic characters of LMA and tBMA segments, as well as the polyelectrolyte and hydrophilic properties of MAA segments, both distributed within a unique hyperbranched polymer chain topology, would result in intriguing, branched copolymers with the potential to be applied in nanomedicine. Therefore, we studied the self-assembly behavior of these copolymers in aqueous media, as well as their ability to form complexes with cationic proteins, namely lysozyme (LYZ) and polymyxin (PMX). Various physicochemical characterization techniques, including size exclusion chromatography (SEC) and proton nuclear magnetic resonance (1H-NMR), verified the molecular characteristics of these well-defined copolymers, whereas light scattering and fluorescence spectroscopy techniques revealed promising nanoparticle (NP) self- and co-assembly properties of the copolymers in aqueous media.
Collapse
Affiliation(s)
- Anastasia Balafouti
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece; (A.B.); (A.M.G.)
- Department of Chemistry, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Angelica Maria Gerardos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece; (A.B.); (A.M.G.)
- Department of Chemistry, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece; (A.B.); (A.M.G.)
| |
Collapse
|
23
|
Zhou J, Huang Q, Zhang L, Tan J. Exploiting the Monomer-Feeding Mechanism of RAFT Emulsion Polymerization for Polymerization-Induced Self-Assembly of Asymmetric Divinyl Monomers. ACS Macro Lett 2023; 12:1457-1465. [PMID: 37844283 DOI: 10.1021/acsmacrolett.3c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
We exploited the monomer-feeding mechanism of reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization to achieve the successful polymerization-induced self-assembly (PISA) of asymmetric divinyl monomers. Colloidally stable cross-linked block copolymer nanoparticles with various morphologies, such as vesicles, were directly prepared at high solids. Morphologies of the cross-linked block copolymer nanoparticles could be controlled by varying the monomer concentration, degree of polymerization (DP) of the core-forming block, and length of the macro-RAFT agent. X-ray photoelectron spectroscopy (XPS) characterization confirmed the presence of unreacted vinyl groups within the obtained block copolymer nanoparticles, providing a landscape for further functionalization via thiol-ene chemistry. Finally, the obtained block copolymer nanoparticles were employed as additives to tune the mechanical properties of hydrogels. We expect that this study not only offers considerable opportunities for the preparation of well-defined cross-linked block copolymer nanoparticles, but also provides important insights into the controlled polymerization of multivinyl monomers.
Collapse
Affiliation(s)
- Jiaxi Zhou
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Qian Huang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
24
|
Jeong J, An SY, Hu X, Zhao Y, Yin R, Szczepaniak G, Murata H, Das SR, Matyjaszewski K. Biomass RNA for the Controlled Synthesis of Degradable Networks by Radical Polymerization. ACS NANO 2023; 17:21912-21922. [PMID: 37851525 PMCID: PMC10655241 DOI: 10.1021/acsnano.3c08244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Nucleic acids extracted from biomass have emerged as sustainable and environmentally friendly building blocks for the fabrication of multifunctional materials. Until recently, the fabrication of biomass nucleic acid-based structures has been facilitated through simple crosslinking of biomass nucleic acids, which limits the possibility of material properties engineering. This study presents an approach to convert biomass RNA into an acrylic crosslinker through acyl imidazole chemistry. The number of acrylic moieties on RNA was engineered by varying the acylation conditions. The resulting RNA crosslinker can undergo radical copolymerization with various acrylic monomers, thereby offering a versatile route for creating materials with tunable properties (e.g., stiffness and hydrophobic characteristics). Further, reversible-deactivation radical polymerization methods, such as atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT), were also explored as additional approaches to engineer the hydrogel properties. The study also demonstrated the metallization of the biomass RNA-based material, thereby offering potential applications in enhancing electrical conductivity. Overall, this research expands the opportunities in biomass-based biomaterial fabrication, which allows tailored properties for diverse applications.
Collapse
Affiliation(s)
- Jaepil Jeong
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - So Young An
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiaolei Hu
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yuqi Zhao
- Department
of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongguan Yin
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- University
of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland
| | - Hironobu Murata
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Subha R. Das
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
25
|
Mörsdorf JM, Ballmann J. Coordination-Induced Radical Generation: Selective Hydrogen Atom Abstraction via Controlled Ti-C σ-Bond Homolysis. J Am Chem Soc 2023; 145:23452-23460. [PMID: 37861658 DOI: 10.1021/jacs.3c05748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
A method for the generation of transient alkyl radicals via homolytic Ti-C bond cleavage was developed by employing a tailor-made organotitanium half-cage complex. In contrast to established metal-mediated radical initiation protocols via thermal or photochemical M-C σ-bond homolysis, radical formation is triggered solely by coordination of a solvent molecule (thf) to a titanium(IV) center. During the reaction, the nonstabilized alkyl radical is formed along with a persistent titanium(III) metalloradical, thus taming the former transient radical (persistent radical effect). Radical coupling and hydrogen atom abstraction (HAT) reactions have been explored not only experimentally but also computationally and by means of kinetic analysis. Exploiting these findings led to the development of selective HAT transformations, for example, with 9,10-dihydroanthracene. Deuterium labeling studies using selectively deuterated alkyls and 9,10-dihydroanthracene-d4 confirmed a radical pathway, which was underpinned by developing a radical-radical cross-coupling reaction for transferring the alkyl radical to a stable Sn-centered radical. To set the stage for an application in organic synthesis, a 5-endo-trig radical cyclization based on our methodology was established, and a dihydroxylated sesquiterpene was thus prepared in high diastereomeric excess.
Collapse
Affiliation(s)
- Jean-Marc Mörsdorf
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, D-69120 Heidelberg, Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, D-69120 Heidelberg, Germany
| |
Collapse
|
26
|
Lee K, Corrigan N, Boyer C. Polymerization Induced Microphase Separation for the Fabrication of Nanostructured Materials. Angew Chem Int Ed Engl 2023; 62:e202307329. [PMID: 37429822 DOI: 10.1002/anie.202307329] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
Polymerization induced microphase separation (PIMS) is a strategy used to develop unique nanostructures with highly useful morphologies through the microphase separation of emergent block copolymers during polymerization. In this process, nanostructures are formed with at least two chemically independent domains, where at least one domain is composed of a robust crosslinked polymer. Crucially, this synthetically simple method is readily used to develop nanostructured materials with the highly coveted co-continuous morphology, which can also be converted into mesoporous materials by selective etching of one domain. As PIMS exploits a block copolymer microphase separation mechanism, the size of each domain can be tightly controlled by modifying the size of block copolymer precursors, thus providing unparalleled control over nanostructure and resultant mesopore sizes. Since its inception 11 years ago, PIMS has been used to develop a vast inventory of advanced materials for an extensive range of applications including biomedical devices, ion exchange membranes, lithium-ion batteries, catalysis, 3D printing, and fluorescence-based sensors, among many others. In this review, we provide a comprehensive overview of the PIMS process, summarize latest developments in PIMS chemistry, and discuss its utility in a wide variety of relevant applications.
Collapse
Affiliation(s)
- Kenny Lee
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
27
|
Dolui S, Sahu B, Mohammad SA, Banerjee S. Multi-Stimuli Responsive Sequence Defined Multi-Arm Star Diblock Copolymers for Controlled Drug Release. JACS AU 2023; 3:2117-2122. [PMID: 37654577 PMCID: PMC10466323 DOI: 10.1021/jacsau.3c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023]
Abstract
Star-shaped polymeric materials provide very high efficiency toward various engineering and biomedical applications. Due to the absence of straightforward and versatile synthetic protocols, the synthesis of sequence-defined star-shaped (co)polymers has remained a major challenge. Here, a facile approach is developed that allows synthesis of a series of unprecedented discrete, multifunctional four-, six-, and eight-arm star-shaped complex macromolecular architectures based on a well-defined triple (thermo/pH/light)-stimuli-responsive poly(N-isopropylacrylamide)-block-poly(methacrylic acid)-umbelliferone (PNIPAM-b-PMAA)n-UMB diblock copolymer, based on temperature responsive PNIPAM segment, pH-responsive PMAA segment, and photoresponsive UMB end groups. Thus, developed star-shaped copolymers self-assemble in water to form spherical nanoaggregates of diameter 90 ± 20 nm, as measured by FESEM. The star-shaped copolymer's response to external stimuli has been assessed against changes in temperature, pH, and light irradiation. The star-shaped copolymer was employed as a nanocarrier for pH responsive release of an anticancer drug, doxorubicin. This study opens up new avenues for efficient star-shaped macromolecular architecture construction for engineering and biomedical applications.
Collapse
Affiliation(s)
- Subrata Dolui
- Department of Chemistry, Indian
Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Bhanendra Sahu
- Department of Chemistry, Indian
Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Sk Arif Mohammad
- Department of Chemistry, Indian
Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Sanjib Banerjee
- Department of Chemistry, Indian
Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| |
Collapse
|
28
|
Coats JP, Cochereau R, Dinu IA, Messmer D, Sciortino F, Palivan CG. Trends in the Synthesis of Polymer Nano- and Microscale Materials for Bio-Related Applications. Macromol Biosci 2023; 23:e2200474. [PMID: 36949011 DOI: 10.1002/mabi.202200474] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/24/2023] [Indexed: 03/24/2023]
Abstract
Polymeric nano- and microscale materials bear significant potential in manifold applications related to biomedicine. This is owed not only to the large chemical diversity of the constituent polymers, but also to the various morphologies these materials can achieve, ranging from simple particles to intricate self-assembled structures. Modern synthetic polymer chemistry permits the tuning of many physicochemical parameters affecting the behavior of polymeric nano- and microscale materials in the biological context. In this Perspective, an overview of the synthetic principles underlying the modern preparation of these materials is provided, aiming to demonstrate how advances in and ingenious implementations of polymer chemistry fuel a range of applications, both present and prospective.
Collapse
Affiliation(s)
- John Peter Coats
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Rémy Cochereau
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Ionel Adrian Dinu
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Daniel Messmer
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Flavien Sciortino
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
- National Centre for Competence in Research - Molecular Systems Engineering, Mattenstrasse 24a, Basel, CH-4058, Switzerland
- Swiss Nanoscience Institute, Klingelbergstrasse 82, Basel, CH-4056, Switzerland
| |
Collapse
|
29
|
Mohite P, Shah SR, Singh S, Rajput T, Munde S, Ade N, Prajapati BG, Paliwal H, Mori DD, Dudhrejiya AV. Chitosan and chito-oligosaccharide: a versatile biopolymer with endless grafting possibilities for multifarious applications. Front Bioeng Biotechnol 2023; 11:1190879. [PMID: 37274159 PMCID: PMC10235636 DOI: 10.3389/fbioe.2023.1190879] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Chito-oligosaccharides (COS), derived from chitosan (CH), are attracting increasing attention as drug delivery carriers due to their biocompatibility, biodegradability, and mucoadhesive properties. Grafting, the process of chemically modifying CH/COS by adding side chains, has been used to improve their drug delivery performance by enhancing their stability, targeted delivery, and controlled release. In this review, we aim to provide an in-depth study on the recent advances in the grafting of CH/COS for multifarious applications. Moreover, the various strategies and techniques used for grafting, including chemical modification, enzymatic modification, and physical modification, are elaborated. The properties of grafted CH/COS, such as stability, solubility, and biocompatibility, were reported. Additionally, the review detailed the various applications of grafted CH/COS in drug delivery, including the delivery of small drug molecule, proteins, and RNA interference therapeutics. Furthermore, the effectiveness of grafted CH/COS in improving the pharmacokinetics and pharmacodynamics of drugs was included. Finally, the challenges and limitations associated with the use of grafted CH/COS for drug delivery and outline directions for future research are addressed. The insights provided in this review will be valuable for researchers and drug development professionals interested in the application of grafted CH/COS for multifarious applications.
Collapse
Affiliation(s)
- Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Sunny R. Shah
- B. K. Mody Government Pharmacy College, Gujarat Technological University, Rajkot, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Tanavirsing Rajput
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Shubham Munde
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Nitin Ade
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, India
| | - Himanshu Paliwal
- Drug Delivery System Excellence Centre, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Dhaval D. Mori
- B. K. Mody Government Pharmacy College, Gujarat Technological University, Rajkot, India
| | - Ashvin V. Dudhrejiya
- B. K. Mody Government Pharmacy College, Gujarat Technological University, Rajkot, India
| |
Collapse
|
30
|
Xiong A, Li J. Constructing stable transparent hydrophobic POSS@epoxy-group coatings for waterproofing protection of decorative-painting surfaces. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04780-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
31
|
Polanowski P, Jeszka JK, Matyjaszewski K. Crosslinking and Gelation of Polymer Brushes and Free Polymer Chains in a Confined Space during Controlled Radical Polymerization─A Computer Simulation Study. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
32
|
Zhu S, Zhao M, Zhou H, Wen Y, Wang Y, Liao Y, Zhou X, Xie X. One-pot synthesis of hyperbranched polymers via visible light regulated switchable catalysis. Nat Commun 2023; 14:1622. [PMID: 36959264 PMCID: PMC10036521 DOI: 10.1038/s41467-023-37334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
Switchable catalysis promises exceptional efficiency in synthesizing polymers with ever-increasing structural complexity. However, current achievements in such attempts are limited to constructing linear block copolymers. Here we report a visible light regulated switchable catalytic system capable of synthesizing hyperbranched polymers in a one-pot/two-stage procedure with commercial glycidyl acrylate (GA) as a heterofunctional monomer. Using (salen)CoIIICl (1) as the catalyst, the ring-opening reaction under a carbon monoxide atmosphere occurs with high regioselectivity (>99% at the methylene position), providing an alkoxycarbonyl cobalt acrylate intermediate (2a) during the first stage. Upon exposure to light, the reaction enters the second stage, wherein 2a serves as a polymerizable initiator for organometallic-mediated radical self-condensing vinyl polymerization (OMR-SCVP). Given the organocobalt chain-end functionality of the resulting hyperbranched poly(glycidyl acrylate) (hb-PGA), a further chain extension process gives access to a core-shell copolymer with brush-on-hyperbranched arm architecture. Notably, the post-modification with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) affords a metal-free hb-PGA that simultaneously improves the toughness and glass transition temperature of epoxy thermosets, while maintaining their storage modulus.
Collapse
Affiliation(s)
- Shuaishuai Zhu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Maoji Zhao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Hongru Zhou
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Yingfeng Wen
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Yong Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China.
| | - Yonggui Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Xingping Zhou
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Xiaolin Xie
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| |
Collapse
|
33
|
Li Z, Yong H, Wang K, Zhou YN, Lyu J, Liang L, Zhou D. (Controlled) Free radical (co)polymerization of multivinyl monomers: strategies, topological structures and biomedical applications. Chem Commun (Camb) 2023; 59:4142-4157. [PMID: 36919482 DOI: 10.1039/d3cc00250k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Free radical (co)polymerization (FRP/FRcP) of multivinyl monomers (MVMs) has emerged as a powerful strategy for the synthesis of chemically and topologically complex polymers due to its unique reaction kinetics, which enables the preparation of polymers with multiple functional groups and novel macromolecular structures. However, conventional FRP/FRcP of MVMs inevitably leads to insoluble crosslinked materials. Therefore, the development of advanced strategies for the controlled polymerization of MVMs is essential for the preparation of chemically and topologically complex polymers. In this review, we introduce the gelation mechanism of conventional FRP of MVMs and present the strategies of controlled polymerization of MVMs for the preparation of chemically and topologically complex polymers. We also discuss polymers with unique topologies synthesized by controlled polymerization of MVMs, such as crosslinked networks, (hyper)branched, star, cyclic, and single-chain cyclized/knotted structures. Finally, biomedical applications of various advanced polymeric materials prepared by controlled polymerization of MVMs are highlighted and the challenges is this field are discussed.
Collapse
Affiliation(s)
- Zhili Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Haiyang Yong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Kaixuan Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Ya-Nan Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Jing Lyu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Lirong Liang
- Department of Clinical Epidemiology, Beijing Institute of Respiratory Medicine and Beijing Chao Yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Dezhong Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
34
|
Dawson F, Jafari H, Rimkevicius V, Kopeć M. Gelation in Photoinduced ATRP with Tuned Dispersity of the Primary Chains. Macromolecules 2023; 56:2009-2016. [PMID: 36938508 PMCID: PMC10018774 DOI: 10.1021/acs.macromol.2c02159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/20/2023] [Indexed: 02/24/2023]
Abstract
We investigated gelation in photoinduced atom transfer radical polymerization (ATRP) as a function of Cu catalyst loading and thus primary chain dispersity. Using parallel polymerizations of methyl acrylate with and without the addition of a divinyl crosslinker (1,6-hexanediol diacrylate), the approximate values of molecular weights and dispersities of the primary chains at incipient gelation were obtained. In accordance with the Flory-Stockmayer theory, experimental gelation occurred at gradually lower conversions when the dispersity of the primary chains increased while maintaining a constant monomer/initiator/crosslinker ratio. Theoretical gel points were then calculated using the measured experimental values of dispersity and initiation efficiency. An empirical modification to the Flory-Stockmayer equation for ATRP was implemented, resulting in more accurate predictions of the gel point. Increasing the dispersity of the primary chains was found not to affect the distance between the theoretical and experimental gel points and hence the extent of intramolecular cyclization. Furthermore, the mechanical properties of the networks, such as equilibrium swelling ratio and shear storage modulus showed little variation with catalyst loading and depended primarily on the crosslinking density.
Collapse
Affiliation(s)
- Frances Dawson
- Department of Chemistry, University
of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - Hugo Jafari
- Department of Chemistry, University
of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - Vytenis Rimkevicius
- Department of Chemistry, University
of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - Maciej Kopeć
- Department of Chemistry, University
of Bath, Claverton Down, Bath BA2
7AY, U.K.
| |
Collapse
|
35
|
He J, Yun L, Cheng X. Organic-soluble chitosan-g-PHMA (PEMA/PBMA)-bodipy fluorescent probes and film by RAFT method for selective detection of Hg2+/Hg+ ions. Int J Biol Macromol 2023; 237:124255. [PMID: 36996960 DOI: 10.1016/j.ijbiomac.2023.124255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Chitosan as the plentiful and easily available natural polymer, its solubility in organic solvents is still a challenge. In this article, three different chitosan-based fluorescent co-polymers were prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization. They could not only dissolve in several organic solvents, but also could selectively recognize Hg2+/Hg+ ions. Firstly, allyl boron-dipyrrolemethene (bodipy) was prepared, and used as one of the monomers in the subsequent RAFT polymerization. Secondly, chitosan-based chain transfer agent (CS-RAFT) was synthesized through classical reactions for dithioester preparation. Finally, three methacrylic ester monomers and bodipy bearing monomers were polymerized and grafted as branched-chains onto chitosan respectively. By RAFT polymerization, three chitosan-based macromolecular fluorescent probes were prepared. These probes could be readily dissolved in DMF, THF, DCM, and acetone. All of them exhibited the 'turn-on' fluorescence with selective and sensitive detection for Hg2+/Hg+. Among them, chitosan-g-polyhexyl methacrylate-bodipy (CS-g-PHMA-BDP) had the best performance, its fluorescence intensity could be increased to 2.7 folds. In addition, CS-g-PHMA-BDP could be processed into films and coatings. When loading on the filter paper, fluorescent test paper was prepared and it could realize the portable detection of Hg2+/Hg+ ions. These organic-soluble chitosan-based fluorescent probes could enlarge the applications of chitosan.
Collapse
|
36
|
He Y, Jiang T, Li C, Zhou C, Yang G, Nie J, Wang F, Lu C, Yin D, Yang X, Chen Z. Thiol-ene-mediated degradable POSS-PEG/PEG hybrid hydrogels as potential cell scaffolds in tissue engineering. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
37
|
Abe M, Kametani Y, Uemura T. Fabrication of Double-Stranded Vinyl Polymers Mediated by Coordination Nanochannels. J Am Chem Soc 2023; 145:2448-2454. [PMID: 36656961 DOI: 10.1021/jacs.2c11723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although double-stranded structures are commonly found in biopolymers, a general and versatile methodology for fabricating double-stranded synthetic polymers has not yet been developed. Here, we report a new approach for synthesizing double-stranded polymers composed of polystyrene and poly(methyl methacrylate). We conducted crosslinking radical polymerization inside a metal-organic framework (MOF), which had one-dimensional channels with diameters similar to the thickness of two polymer chains. Effective spatial constraint within the MOF pores facilitated highly regulated crosslinking reactions between two polymer chains with extended conformations. Remarkably, the obtained double-stranded polymers were soluble in many organic solvents, even at a high crosslinking ratio (20%), unlike conventional crosslinked polymers. Notably, this stable duplex topology, which was inaccessible using previous methods, endowed the double-stranded vinyl polymers with unusual properties in the solution and bulk states. By designing the properties of the MOF nanochannels, the proposed technique can contribute to the development of a wide range of synthetic polymer duplexes.
Collapse
Affiliation(s)
- Masahiro Abe
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuki Kametani
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
38
|
Lyu J, Li Y, Li Z, Polanowski P, Jeszka JK, Matyjaszewski K, Wang W. Modelling Development in Radical (Co)Polymerization of Multivinyl Monomers. Angew Chem Int Ed Engl 2023; 62:e202212235. [PMID: 36413108 PMCID: PMC10108291 DOI: 10.1002/anie.202212235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Radical polymerization (RP) of multivinyl monomers (MVMs) provides a facile solution for manipulating polymer topology and has received increasing attention due to their industrial and academic significance. Continuous efforts have been made to understand their mechanism, which is the key to regulating materials structure. Modelling techniques have become a powerful tool that can provide detailed information on polymerization kinetics which is inaccessible by experiments. Many publications have reported the combination of experiments and modelling for free radical polymerization (FRP) and reversible-deactivation radical polymerizations (RDRP) of MVMs. Herein, a minireview is presented for the most important modelling techniques and their applications in FRP/RDRP of MVMs. This review hopes to illustrate that the combination of modelling and wet experiments can be a great asset to polymer researchers and inspire new thinking for the future MVMs experiment optimization and product design.
Collapse
Affiliation(s)
- Jing Lyu
- Charles Institute of DermatologySchool of MedicineUniversity College DublinDublinIreland
| | - Yinghao Li
- Charles Institute of DermatologySchool of MedicineUniversity College DublinDublinIreland
| | - Zishan Li
- Charles Institute of DermatologySchool of MedicineUniversity College DublinDublinIreland
| | - Piotr Polanowski
- Department of Molecular PhysicsTechnical University of Lodz90-924LodzPoland
| | - Jeremiasz K. Jeszka
- Department of Mechanical EngineeringInformatics and Chemistry of Polymer MaterialsTechnical University of Lodz90-924LodzPoland
| | - Krzysztof Matyjaszewski
- Center for Macromolecular EngineeringDepartment of ChemistryCarnegie Mellon UniversityPittsburghPA 15213USA
| | - Wenxin Wang
- Charles Institute of DermatologySchool of MedicineUniversity College DublinDublinIreland
- School of Mechanical and Materials EngineeringUniversity College DublinDublinIreland
- School of Public HealthAnhui University of Science and TechnologyHuainanChina
| |
Collapse
|
39
|
Balafouti A, Pispas S. Hyperbranched Polyelectrolyte Copolymers as Novel Candidate Delivery Systems for Bio-Relevant Compounds. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1045. [PMID: 36770053 PMCID: PMC9921860 DOI: 10.3390/ma16031045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/12/2023]
Abstract
In this study, reversible addition-fragmentation chain transfer (RAFT) polymerization is utilized in order to synthesize novel hyperbranched poly(oligoethylene glycol) methyl ether methacrylate-co-tert-butyl methacrylate-co-methacrylic acid) (H-[P(OEGMA-co-tBMA-co-MAA)]) copolymers in combination with selective hydrolysis reactions. The copolymers showing amphiphilicity induced by the polar OEGMA and hydrophobic tBMA monomeric units, and polyelectrolyte character due to MAA units, combined with unique macromolecular architecture were characterized by physicochemical techniques, such as size exclusion chromatography (SEC) and 1H-NMR spectroscopy. The hyperbranched copolymers were investigated in terms of their ability to self-assemble into nanostructures when dissolved in aqueous media. Dynamic light scattering and fluorescence spectroscopy revealed multimolecular aggregates of nanoscale dimensions with low critical aggregation concentration, the size and mass of which depend on copolymer composition and solution conditions, whereas zeta potential measurements indicated pH sensitive features. In addition, aiming to evaluate their potential use as nanocarriers, the copolymers were studied in terms of their drug encapsulation and protein complexation ability utilizing curcumin and lysozyme, as a model hydrophobic drug and a model cationic protein, respectively.
Collapse
Affiliation(s)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| |
Collapse
|
40
|
Blažic R, Marušić K, Vidović E. Swelling and Viscoelastic Properties of Cellulose-Based Hydrogels Prepared by Free Radical Polymerization of Dimethylaminoethyl Methacrylate in Cellulose Solution. Gels 2023; 9:94. [PMID: 36826264 PMCID: PMC9956197 DOI: 10.3390/gels9020094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
The grafting of a stimuli-responsive polymer (poly(dimethylaminoethyl methacrylate)) onto cellulose was achieved by performing free radical polymerization of a vinyl/divinyl monomer in cellulose solution. The grafting and crosslinking efficiency in the material have been increased by subsequent irradiation of the samples with ionizing radiation (doses of 10, 30, or 100 kGy). The relative amount of poly(dimethylaminoethyl methacrylate) in the prepared hydrogels was determined by infrared spectroscopy. The swelling behavior of the hydrogels was studied thoroughly, including microgelation extent, equilibrium swelling, and reswelling degree, as well as the dependence on the gelation procedure. The dynamic viscoelastic behavior of prepared hydrogels was also studied. The tan δ values indicate a solid-like behavior while the obtained hydrogels have a complex modulus in the range of 14-39 kPa, which is suitable for hydrogels used in biomedical applications. In addition, the incorporation of Ag particles and the adsorption of Fe3+ ions were tested to evaluate the additional functionalities of the prepared hydrogels. It was found that the introduction of PDMAEMA to the hydrogels enhanced their ability to synthesize Ag particles and absorb Fe3+ ions, providing a platform for the potential preparation of hydrogels for the treatment of wounds.
Collapse
Affiliation(s)
- Roko Blažic
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
| | - Katarina Marušić
- Radiation Chemistry and Dosimetry Laboratory, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Elvira Vidović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
| |
Collapse
|
41
|
Flynn S, Penrhyn-Lowe OB, Mckeating S, Wright S, Lomas S, Cassin SR, Chambon P, Rannard SP. Using temperature to modify the reaction conditions and outcomes of polymers formed using transfer-dominated branching radical telomerisation (TBRT). RSC Adv 2022; 12:31424-31431. [PMID: 36349025 PMCID: PMC9627727 DOI: 10.1039/d2ra06578a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 03/17/2023] Open
Abstract
Transfer-dominated Branching Radical Telomerisation (TBRT) enables the production of branched polymers with step-growth backbones using radical telomerisation chemistry. By conducting identical TBRTs over a broad temperature range, the role of temperature in telomer formation and branching has been evaluated. Elevated temperature limits telomer length, thereby allowing a >10% reduction in the amount of telogen required to produce near identical high molecular weight branched polymers.
Collapse
Affiliation(s)
- Sean Flynn
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK
- Materials Innovation Factory, University of Liverpool Crown Street L69 7ZD UK
| | - Oliver B Penrhyn-Lowe
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK
- Materials Innovation Factory, University of Liverpool Crown Street L69 7ZD UK
| | - Samuel Mckeating
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK
- Materials Innovation Factory, University of Liverpool Crown Street L69 7ZD UK
| | - Stephen Wright
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK
- Materials Innovation Factory, University of Liverpool Crown Street L69 7ZD UK
| | - Sarah Lomas
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK
- Materials Innovation Factory, University of Liverpool Crown Street L69 7ZD UK
| | - Savannah R Cassin
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK
- Materials Innovation Factory, University of Liverpool Crown Street L69 7ZD UK
| | - Pierre Chambon
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK
- Materials Innovation Factory, University of Liverpool Crown Street L69 7ZD UK
| | - Steve P Rannard
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK
- Materials Innovation Factory, University of Liverpool Crown Street L69 7ZD UK
| |
Collapse
|
42
|
Wang Q, Bai FY, Wang Y, Niu F, Zhang Y, Mi Q, Hu K, Pan X. Photoinduced Ion-Pair Inner-Sphere Electron Transfer-Reversible Addition-Fragmentation Chain Transfer Polymerization. J Am Chem Soc 2022; 144:19942-19952. [PMID: 36266241 DOI: 10.1021/jacs.2c08173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photoredox-mediated reversible deactivation radical polymerization (RDRP) is a promising method of precise synthesis of polymers with diverse structures and properties. However, its mechanism mainly based on the outer-sphere electron transfer (OSET) leads to stringent requirements for an efficient photocatalyst. In this paper, the zwitterionic organoboranes [L2B]+X- are prepared and applied in reversible addition-fragmentation chain transfer (RAFT) polymerization with the photoinduced ion-pair inner-sphere electron transfer (IP-ISET) mechanism. The ion-pair electron transfer mechanism and the formation of the radical [L2B]• are supported by electron paramagnetic resonance (EPR) radical capture experiments, 1H/11B NMR spectroscopy, spectroelectrochemical spectroscopy, transient absorption spectroscopy, theoretical calculation, and photoluminescence quenching experiments. Photoluminescence quenching experiments show that when [CTA]/[[L2B]+] ≥ 0.6, it is static quenching because of the in situ formation of [L2B]+[ZCS2]-, the real catalytic species. [L2B]+[C3H7SCS2]- is synthesized, and its photoluminescence lifetime is the same as the lifetime in the static quenching experiment, indicating the formation of [L2B]+[ZCS2]- in polymerization and the IP-ISET mechanism. The matrix-assisted laser desorption ionization time-of-flight mass (MALDI-TOF MS) spectra show that the structure of [C3H7SCS2] was incorporated into the polymer, indicating that ion-pair electron transfer occurs in catalytic species. The polymerization shows high catalytic activity at ppb catalyst loading, a wide range of monomers, excellent tolerance in the presence of 5 mol % phenolic inhibitors, and the synthesis of ultrahigh-molecular-weight polymers. This protocol with the IP-ISET mechanism exhibits a value in the development of new organic transformations and polymerization methods.
Collapse
Affiliation(s)
- Qianyi Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Feng-Yang Bai
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning 110034, China
| | - Yinling Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Fushuang Niu
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Yifei Zhang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning 110034, China
| | - Qixi Mi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ke Hu
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
43
|
Xiang L, Zhong Z, Liu S, Shang M, Luo ZH, Su Y. Kinetic Modeling Study on the Preparation of Branched Polymers with Various Feeding Strategies. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Liang Xiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Zihao Zhong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Saier Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Minjing Shang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Zheng-Hong Luo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Yuanhai Su
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai200240, P. R. China
| |
Collapse
|
44
|
Han J, Sun J, Lv K, Yang J, Li Y. Polymer Gels Used in Oil-Gas Drilling and Production Engineering. Gels 2022; 8:637. [PMID: 36286138 PMCID: PMC9602122 DOI: 10.3390/gels8100637] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Polymer gels are widely used in oil-gas drilling and production engineering for the purposes of conformance control, water shutoff, fracturing, lost circulation control, etc. Here, the progress in research on three kinds of polymer gels, including the in situ crosslinked polymer gel, the pre-crosslinked polymer gel and the physically crosslinked polymer gel, are systematically reviewed in terms of the gel compositions, crosslinking principles and properties. Moreover, the advantages and disadvantages of the three kinds of polymer gels are also comparatively discussed. The types, characteristics and action mechanisms of the polymer gels used in oil-gas drilling and production engineering are systematically analyzed. Depending on the crosslinking mechanism, in situ crosslinked polymer gels can be divided into free-radical-based monomer crosslinked gels, ionic-bond-based metal cross-linked gels and covalent-bond-based organic crosslinked gels. Surface crosslinked polymer gels are divided into two types based on their size and gel particle preparation method, including pre-crosslinked gel particles and polymer gel microspheres. Physically crosslinked polymer gels are mainly divided into hydrogen-bonded gels, hydrophobic association gels and electrostatic interaction gels depending on the application conditions of the oil-gas drilling and production engineering processes. In the field of oil-gas drilling engineering, the polymer gels are mainly used as drilling fluids, plugging agents and lost circulation materials, and polymer gels are an important material that are utilized for profile control, water shutoff, chemical flooding and fracturing. Finally, the research potential of polymer gels in oil-gas drilling and production engineering is proposed. The temperature resistance, salinity resistance, gelation strength and environmental friendliness of polymer gels should be further improved in order to meet the future technical requirements of oil-gas drilling and production.
Collapse
Affiliation(s)
- Jinliang Han
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
- Institute of Engineering and Technology, PetroChina Coalbed Methane Company Limited, Xi’an 710082, China
| | - Jinsheng Sun
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Kaihe Lv
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jingbin Yang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yuhong Li
- Xi’an Institute of Measurement and Testing Technology, Xi’an 710068, China
| |
Collapse
|
45
|
Blažic R, Kučić Grgić D, Kraljić Roković M, Vidović E. Cellulose- g-poly(2-(dimethylamino)ethylmethacrylate) Hydrogels: Synthesis, Characterization, Antibacterial Testing and Polymer Electrolyte Application. Gels 2022; 8:636. [PMID: 36286137 PMCID: PMC9601901 DOI: 10.3390/gels8100636] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/21/2022] Open
Abstract
Hydrogels have been investigated due to their unique properties. These include high water content and biocompatibility. Here, hydrogels with different ratios of poly(2-(dimethylamino)ethylmethacrylate) (PDMAEMA) were grafted onto cellulose (Cel-g-PDMAEMA) by the free radical polymerization method and gamma-ray radiation was applied in order to increase crosslinking and content of PDMAEMA. Gamma irradiation enabled an increase of PDMAEMA content in hydrogels in case of higher ratio of 2-(dimethylamino)ethyl methacrylate in the initial reaction mixture. The swelling of synthesized hydrogels was monitored in dependence of pH (3, 5.5 and 10) during up to 60 days. The swelling increased from 270% to 900%. Testing of antimicrobial activity of selected hydrogel films showed weak inhibitory activity against Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis. The results obtained by the cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) indicate that chemically synthesized hydrogels have good characteristics for the supercapacitor application.
Collapse
Affiliation(s)
| | | | | | - Elvira Vidović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| |
Collapse
|
46
|
Progress in polymer single-chain based hybrid nanoparticles. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Baral S, Liu C, Mao X, Coates GW, Chen P. Tuning Single-Polymer Growth via Hydrogen Bonding in Conformational Entanglements. ACS CENTRAL SCIENCE 2022; 8:1116-1124. [PMID: 36032769 PMCID: PMC9413429 DOI: 10.1021/acscentsci.2c00415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Synthetic polymers have widespread applications in daily life and advanced materials applications. Making polymers efficiently and controllably is highly desired, for which modulating intramolecular and intermolecular interactions have been an effective approach. Recent real-time single-polymer growth studies uncovered nonequilibrium conformational entanglements that form stochastically under living polymerization conditions and which appear to plausibly play key roles in controlling the polymerization kinetics and dispersion. Here, using magnetic tweezers measurements, we study the real-time polymerization dynamics of single polynorbornene-based polymers in which we systematically tune the hydrogen-bonding interactions by titrating the OH content in the monomers and the formed polymers during ring opening metathesis polymerization. Using norbornenes with and without a hydroxyl group and a nonreactive monomer analogue, we show that intrachain and intermolecular hydrogen bonding compete, and both alter the microscopic properties of the nonequilibrium entanglements, leading to surprising multiphasic dependences of polymerization dynamics on the polymer's OH content. We further formulate a simple model to rationalize quantitatively the observed multiphasic behaviors by considering the different scaling relations of intrachain and intermolecular hydrogen bonding on the OH content. These results provide insights into the interconnected roles of intra-/intermolecular interactions, polymer chain conformations, and free monomers in solution in affecting polymerization kinetics and dispersion, and point to new opportunities in manipulating polymerization reactions.
Collapse
Affiliation(s)
- Susil Baral
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Chunming Liu
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
- Departments
of Polymer Science and Chemistry, The University
of Akron, Akron, Ohio 44325-3909, United States
| | - Xianwen Mao
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Geoffrey W. Coates
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Peng Chen
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| |
Collapse
|
48
|
Takebayashi S, Fayzullin RR, Bansal R. Direct observation of reversible bond homolysis by 2D EXSY NMR. Chem Sci 2022; 13:9202-9209. [PMID: 36093009 PMCID: PMC9383717 DOI: 10.1039/d2sc03028d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Bond homolysis is one of the most fundamental bond cleavage mechanisms. Thus, understanding of bond homolysis influences the development of a wide range of chemistry. Photolytic bond homolysis and its reverse process have been observed directly using time-resolved spectroscopy. However, direct observation of reversible bond homolysis remains elusive. Here, we report the direct observation of reversible Co-Co bond homolysis using two-dimensional nuclear magnetic resonance exchange spectroscopy (2D EXSY NMR). The characterization of species involved in this homolysis is firmly supported by diffusion ordered NMR spectroscopy (DOSY NMR). The unambiguous characterization of the Co-Co bond homolysis process enabled us to study ligand steric and electronic factors that influence the strength of the Co-Co bond. Understanding of these factors will contribute to rational design of multimetallic complexes with desired physical properties or catalytic activity.
Collapse
Affiliation(s)
- Satoshi Takebayashi
- Science and Technology Group Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son Okinawa 904-0495 Japan
| | - Robert R Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences 8 Arbuzov Street Kazan 420088 Russian Federation
| | - Richa Bansal
- Science and Technology Group Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son Okinawa 904-0495 Japan
| |
Collapse
|
49
|
Kim D, Kim S, Jeong S, Kim M, Ki Hong W, Bae Jeon H, Hong Cho Y, Man Noh S, Paik HJ. Thermally Latent Vinyl Crosslinking of Polymers via Sulfoxide Chemistry. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Elliss H, Dawson F, Nisa QU, Bingham NM, Roth PJ, Kopeć M. Fully Degradable Polyacrylate Networks from Conventional Radical Polymerization Enabled by Thionolactone Addition. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Harry Elliss
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Frances Dawson
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Qamar un Nisa
- Department of Chemistry, University of Surrey, Surrey, Guildford GU2 7XH, U.K
| | | | - Peter J. Roth
- Department of Chemistry, University of Surrey, Surrey, Guildford GU2 7XH, U.K
| | - Maciej Kopeć
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|