1
|
Duan S, Zhang H, Liu Z, Li J, Gao L, Jiang H, Wang J. Photoelectrochemical and fluorescent dual-mode sensitive detection of circulating tumor cells based on aptamer DNA-linked CdTe QDs/Bi 2MoO 6/CdS "double Z-scheme" system. Talanta 2025; 292:127922. [PMID: 40086317 DOI: 10.1016/j.talanta.2025.127922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/25/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Herein, a novel dual-mode biosensor integrating photoelectrochemical (PEC) and fluorescence (FL) sensing detection was developed for circulating tumor cells (CTCs) based on aptamer DNA-linked CdTe QDs (Apt-CdTe QDs)/Bi2MoO6/CdS "dual Z-scheme" sensing system. Apt-CdTe QDs were assembled on FTO/CdS/Bi2MoO6/cDNA electrode through hybridization with cDNA, resulting in the formation of a double Z-scheme CdS/Bi2MoO6/CdTe heterostructure that significantly enhanced the separation of photo-generated charge carriers, thereby improving photocatalytic efficiency. Upon the presence of MCF-7 cells, Apt-QDs were captured and subsequently released from the captured electrode, leading to a decrease in photocurrent and an increase in fluorescence intensity, thus enabling effective PEC-FL dual-mode detection. The detection of CTCs exhibited a linear relationship within the concentration range from 50 to 100000 cells mL-1 with limit of detection of 1 cell mL-1 in both PEC and FL modes. This approach effectively corrected systematic errors, improved detection accuracy and sensitivity, and held great potential in the clinical detection of CTCs.
Collapse
Affiliation(s)
- Shihao Duan
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, China
| | - Haipeng Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, China
| | - Zhaopeng Liu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, China
| | - Jian Li
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, China
| | - Liming Gao
- The First Hospital in Qinhuangdao, Qinhuangdao, 066004, China
| | - Hong Jiang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, China.
| | - Jidong Wang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|
2
|
Woo HK, Nam Y, Park HG, Lee H. Bridging laboratory innovation to translational research and commercialization of extracellular vesicle isolation and detection. Biosens Bioelectron 2025; 282:117475. [PMID: 40300344 PMCID: PMC12076185 DOI: 10.1016/j.bios.2025.117475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/04/2025] [Accepted: 04/13/2025] [Indexed: 05/01/2025]
Abstract
Extracellular vesicles (EVs) have emerged as promising biomarkers for various diseases. Encapsulating biomolecules reflective of their parental cells, EVs are readily accessible in bodily fluids. The prospect for minimally invasive, repeatable molecular testing has stimulated significant research; however, challenges persist in isolating EVs from complex biological matrices and characterizing their limited molecular cargo. Technical advances have been pursued to address these challenges, producing innovative EV-specific platforms. This review highlights recent technological developments, focusing on EV isolation and molecular detection methodologies. Furthermore, it explores the translation of these laboratory innovations to clinical applications through the analysis of patient samples, providing insights into the potential diagnostic and prognostic utility of EV-based technologies.
Collapse
Affiliation(s)
- Hyun-Kyung Woo
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yoonho Nam
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Qiu P, Yu X, Zheng F, Gu X, Huang Q, Qin K, Hu Y, Liu B, Xu T, Zhang T, Chen G, Liu Y. Advancements in liquid biopsy for breast Cancer: Molecular biomarkers and clinical applications. Cancer Treat Rev 2025; 139:102979. [PMID: 40540857 DOI: 10.1016/j.ctrv.2025.102979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 05/22/2025] [Accepted: 06/13/2025] [Indexed: 06/22/2025]
Abstract
Breast cancer is characterized by significant molecular heterogeneity; therefore, there are distinct clinical features, treatment modalities, and prognostic outcomes across its various molecular subtypes. In the era of precision medicine, liquid biopsy has emerged as a convenient and minimally invasive technique capable of dynamically representing the comprehensive tumor gene spectrum. This review systematically elaborates the clinical value of liquid biopsy as a breakthrough tool for precision diagnosis and treatment in breast cancer through dynamic detection of key biomarkers, including circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), exosomes, and non-coding RNA (ncRNA). Specific genetic mutations and methylation signatures in ctDNA can be applied to early breast cancer screening, minimal residual disease monitoring, and tracking drug resistance mechanisms. CTCs enumeration (≥1/7.5 mL in early-stage cancer or ≥ 5/7.5 mL in metastatic cancer) and PD-L1 expression levels demonstrate direct correlations with prognostic stratification and the efficacy of immunotherapy. As the specificity and sensitivity of liquid biopsy continue to improve, personalized treatment strategies, informed by biomarker analysis and targeted precision therapies, have unveiled new avenues of hope for patients with breast cancer. However, several challenges persist in the practical application of liquid biopsy. Despite persistent challenges, such as insufficient standardization and difficulties in resolving low-abundance variants, future advancements should focus on multi-omics integration and AI-driven technological breakthroughs to overcome bottlenecks in clinical translation. This review summarizes cutting-edge liquid biopsy technologies for identifying clinically significant molecular biomarkers, focusing on discussing critical challenges in the strategies to advance precision oncology applications for optimized treatment guidance and disease surveillance in breast cancer.
Collapse
Affiliation(s)
- Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004 Liaoning Province, China
| | - Xiaopeng Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004 Liaoning Province, China
| | - Fushuang Zheng
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004 Liaoning Province, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004 Liaoning Province, China
| | - QianQiu Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004 Liaoning Province, China
| | - Ke Qin
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004 Liaoning Province, China
| | - Yueting Hu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004 Liaoning Province, China
| | - Bowen Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004 Liaoning Province, China
| | - Tianming Xu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004 Liaoning Province, China
| | - Tao Zhang
- Department of Colorectal and Hernia Surgery, The Fourth Affiliated Hospital of China Medical University, 110004 Shenyang, Liaoning, China
| | - Guanglei Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004 Liaoning Province, China.
| | - Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004 Liaoning Province, China.
| |
Collapse
|
4
|
Monette A, Aguilar-Mahecha A, Altinmakas E, Angelos MG, Assad N, Batist G, Bommareddy PK, Bonilla DL, Borchers CH, Church SE, Ciliberto G, Cogdill AP, Fattore L, Hacohen N, Haris M, Lacasse V, Lie WR, Mehta A, Ruella M, Sater S, Spatz A, Taouli B, Tarhoni I, Gonzalez-Kozlova E, Tirosh I, Wang X, Gnjatic S. The Society for Immunotherapy of Cancer Perspective on Liquid Biopsy- and Radiomics-Based Technologies for Immuno-oncology Biomarker Discovery and Application. Clin Cancer Res 2025; 31:2278-2293. [PMID: 40197626 DOI: 10.1158/1078-0432.ccr-24-3791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/28/2025] [Accepted: 03/19/2025] [Indexed: 04/10/2025]
Abstract
Immuno-oncology is increasingly becoming the standard of care for cancers, with the identification of biomarkers that reliably classify immune checkpoint inhibitor response, resistance, and toxicity becoming the next frontier toward improvements in immunomodulatory treatment regimens. Recent advances in multiparametric, multiomics, and computational data platforms generating an unprecedented depth of data may assist in the discovery of increasingly robust biomarkers for enhanced patient selection and more personalized or longitudinal treatment approaches. Which emerging technologies to implement in future research and clinical settings, used alone or in combination, relies on weighing the pros and cons that aid in maximizing data outputs while minimizing patient sampling, with high reproducibility and representativeness, and minimal turnaround time and data fragmentation toward later private and public dataset harmonization strategies. The Society for Immunotherapy of Cancer Biomarkers Committee convened to identify important advances in biomarker technologies and highlight advances in biomarker discovery using liquid biopsy and in vivo imaging technologies. We address advances in liquid biopsy technologies monitoring cells, proteins, nucleic acids, antibodies, and drugs or analytes and radiomics technologies monitoring whole host-level imaging methods, including immuno-PET and MRI technologies, which are able to couple biomarkers with physical location. We include a summary of key metrics obtained by these technologies and their ease of interpretation, limitations and dependencies, technical improvements, and outward comparisons. By highlighting some of the most interesting recent examples contributed by these technologies and providing examples of improved outputs, we hope to guide correlative research directions and assist in their becoming clinically useful in immuno-oncology.
Collapse
Affiliation(s)
- Anne Monette
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Adriana Aguilar-Mahecha
- Lady Davis Institute for Medical Research, The Segal Cancer Center, Jewish General Hospital, Montreal, Canada
| | - Emre Altinmakas
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Radiology, Koç University School of Medicine, Istanbul, Turkey
| | - Mathew G Angelos
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nima Assad
- Department of Immunology and Immunotherapy, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gerald Batist
- McGill Centre for Translational Research, Jewish General Hospital, Montreal, Canada
| | | | | | - Christoph H Borchers
- Division of Experimental Medicine and Department of Pathology, Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Segal Cancer Proteomics Centre, McGill University, Montreal, Canada
| | | | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Luigi Fattore
- Department of Life Health Sciences and Health Professions, Link Campus University, Rome, Italy
| | - Nir Hacohen
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Mohammad Haris
- Department of Radiology, Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Vincent Lacasse
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Canada
| | | | - Arnav Mehta
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Marco Ruella
- Division of Hematology-Oncology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sam Sater
- Cleveland Clinic, Carol and Robert Weissman Cancer Center, Stuart, Florida
| | - Alan Spatz
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, McGill University Health Center, Montreal, Canada
| | - Bachir Taouli
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Imad Tarhoni
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, Illinois
| | - Edgar Gonzalez-Kozlova
- Department of Immunology and Immunotherapy, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Xiaodong Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Sacha Gnjatic
- Department of Immunology and Immunotherapy, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
5
|
Si H, Xu Q, Sun Y, Du D, Wang Y, Li S, Li L, Tang B. Fusion of Molecular and Mechanical Phenotypes Enables High-Purity and Low-Loss Reacquisition of Viable CTCs for Transcriptome Analysis. Anal Chem 2025; 97:11896-11906. [PMID: 40444355 DOI: 10.1021/acs.analchem.5c01806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
The high-purity and low-loss reacquisition of viable circulating tumor cells (CTCs) is crucial for enabling downstream omics analysis of CTCs and currently represents key challenges limiting their application in clinical diagnosis and pathological research. Given the limitations of traditional methods that rely solely on a molecular or mechanical phenotype for CTCs acquisition, this study introduces an innovative approach that fuses the inherent molecular and mechanical phenotypes of CTCs into a new mechanical phenotype, thereby achieving high-purity preconcentration and low-loss reacquisition of CTCs. Specifically, CTCs in blood are immunomodified using calcium carbonate microspheres (CCMSs) conjugated with antibodies, transforming the molecular phenotype (membrane protein expression) into an additional mechanical phenotype (increased size and reduced deformability). This transformation enhances the mechanical phenotype distinctions between CTCs and white blood cells, enabling high-purity preconcentration of CTCs on a single-cell trapping array chip. Since CCMSs can be reversibly eliminated under weak acid, captured CTCs can be nondestructively reacquired with 93.10% in microliter-scale solution, allowing for subsequent omics analysis. In a breast cancer mouse model, the counts and transcriptome analysis of CTCs provide valuable insights into assessing tumor occurrence and progression.
Collapse
Affiliation(s)
- Haibin Si
- Department College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Qing Xu
- Department College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Yan Sun
- Department College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Dexin Du
- Department College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Yiguo Wang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250012, P. R. China
| | - Simin Li
- Department College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Lu Li
- Department College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- Department College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
- Laoshan Laboratory, Qingdao 266237, P. R. China
| |
Collapse
|
6
|
Allgayer H, Mahapatra S, Mishra B, Swain B, Saha S, Khanra S, Kumari K, Panda VK, Malhotra D, Patil NS, Leupold JH, Kundu GC. Epithelial-to-mesenchymal transition (EMT) and cancer metastasis: the status quo of methods and experimental models 2025. Mol Cancer 2025; 24:167. [PMID: 40483504 PMCID: PMC12144846 DOI: 10.1186/s12943-025-02338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/19/2025] [Indexed: 06/11/2025] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a crucial cellular process for embryogenesis, wound healing, and cancer progression. It involves a shift in cell interactions, leading to the detachment of epithelial cells and activation of gene programs promoting a mesenchymal state. EMT plays a significant role in cancer metastasis triggering tumor initiation and stemness, and activates metastatic cascades resulting in resistance to therapy. Moreover, reversal of EMT contributes to the formation of metastatic lesions. Metastasis still needs to be better understood functionally in its major but complex steps of migration, invasion, intravasation, dissemination, which contributes to the establishment of minimal residual disease (MRD), extravasation, and successful seeding and growth of metastatic lesions at microenvironmentally heterogeneous sites. Therefore, the current review article intends to present, and discuss comprehensively, the status quo of experimental models able to investigate EMT and metastasis in vitro and in vivo, for researchers planning to enter the field. We emphasize various methods to understand EMT function and the major steps of metastasis, including diverse migration, invasion and matrix degradation assays, microfluidics, 3D co-culture models, spheroids, organoids, or latest spatial and imaging methods to analyze complex compartments. In vivo models such as the chorionallantoic membrane (CAM) assay, cell line-derived and patient-derived xenografts, syngeneic, genetically modified, and humanized mice, are presented as a promising arsenal of tools to analyze intravasation, site specific metastasis, and treatment response. Furthermore, we give a brief overview on methods detecting dissemination and MRD in carcinomas, highlighting its significance in tracking the course of disease and response to treatment. Enhanced lineage tracking tools, dynamic in vivo imaging, and therapeutically useful in vivo models as powerful preclinical tools may still better reveal functional interdependencies between metastasis and EMT. Future directions are discussed in light of emerging views on the biology, diagnosis, and treatment of EMT and metastasis.
Collapse
Affiliation(s)
- Heike Allgayer
- Department of Experimental Surgery-Cancer Metastasis, Mannheim Medical Faculty, Ruprecht-Karls University of Heidelberg, Ludolf-Krehl-Str. 13-17, Mannheim, 68167, Germany.
| | - Samikshya Mahapatra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Barnalee Mishra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Biswajit Swain
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Suryendu Saha
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Sinjan Khanra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Kavita Kumari
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Venketesh K Panda
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Nitin S Patil
- Department of Experimental Surgery-Cancer Metastasis, Mannheim Medical Faculty, Ruprecht-Karls University of Heidelberg, Ludolf-Krehl-Str. 13-17, Mannheim, 68167, Germany
| | - Jörg H Leupold
- Department of Experimental Surgery-Cancer Metastasis, Mannheim Medical Faculty, Ruprecht-Karls University of Heidelberg, Ludolf-Krehl-Str. 13-17, Mannheim, 68167, Germany
| | - Gopal C Kundu
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India.
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to Be University, Bhubaneswar, 751024, India.
| |
Collapse
|
7
|
Ma C, Li Y, Zhu H, Li Z, Liu Y. Clinical applications of circulating tumor cell detection: challenges and strategies. Clin Chem Lab Med 2025; 63:1060-1068. [PMID: 39610299 DOI: 10.1515/cclm-2024-0959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024]
Abstract
Circulating tumor cells (CTCs) are pivotal in the distant metastasis of tumors, serving as one of the primary materials for liquid biopsy. They hold significant clinical importance in assessing prognosis, predicting efficacy, evaluating therapeutic outcomes, and studying recurrence, metastasis, and resistance mechanisms in cancer patients. Nevertheless, the rareness and heterogeneity of CTC and the complexity of metastasis make the clinical application of CTC detection confront many challenges, which may need to be settled by some practical strategies. This article will review the content mentioned above.
Collapse
Affiliation(s)
- Chunhui Ma
- Faculty of Medical Imaging, Naval Medical University, Shanghai, China
| | - Yang Li
- Faculty of Medical Imaging, Naval Medical University, Shanghai, China
| | - Hai Zhu
- Faculty of Medical Imaging, Naval Medical University, Shanghai, China
| | - Zhiyong Li
- Faculty of Medical Imaging, Naval Medical University, Shanghai, China
| | - Yi Liu
- 26460 The Fifth Medical Center of Chinese PLA General Hospital , Beijing, China
| |
Collapse
|
8
|
Sánchez-Quesada C, Toledo E, Jiménez-Moleón JJ, Gaforio JJ. Viable Cryopreservation Strategy for Extending the Timeframe of Circulating Tumor Cell Detection in Breast Cancer Clinical Trials. Biomolecules 2025; 15:723. [PMID: 40427618 PMCID: PMC12109437 DOI: 10.3390/biom15050723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Circulating tumor cells (CTCs) hold recognized prognostic value in various cancers, including breast cancer, where their presence correlates with survival outcomes. However, the typical 24 h window for blood processing and CTC isolation poses a logistical challenge, particularly for multicenter studies. This study aimed to evaluate cryopreservation at different stages of CTC isolation and immunocytological detection to extend the blood sample processing period. Using spiked peripheral blood samples with MDA-MB-231, SKBR3, and MCF7 breast cancer cell lines, four distinct cryopreservation points were assessed: following Ficoll gradient separation, immunomagnetic separation, cytocentrifugation, and cytokeratin labeling. Our findings demonstrated that cryopreservation of the mononuclear and granulocytic cell fraction after double-density Ficoll gradient separation was the only viable method for subsequent CTC detection. This approach allowed for consistent recovery of CK+ CTCs, with an average recovery rate of over 81% after one year of cryopreservation. In contrast, cryopreservation at later stages resulted in undetectable CTCs or only cellular debris. In conclusion, cryopreservation following density gradient centrifugation is a feasible strategy for delaying CTC isolation and immunocytological analysis in breast cancer research, facilitating its application in multicenter clinical trials.
Collapse
Affiliation(s)
- Cristina Sánchez-Quesada
- Department of Health Sciences, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain;
- University Institute of Research on Olive and Olive Oils (INUO), University of Jaen, Campus las Lagunillas s/n, 23071 Jaén, Spain
- Agrifood Campus of International Excellence (ceiA3), 14071 Córdoba, Spain
| | - Estefanía Toledo
- Department of Preventive Medicine and Public Health, University of Navarra, C/Irunlarrea, 1, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - José Juan Jiménez-Moleón
- Department of Preventive Medicine and Public Health, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - José Juan Gaforio
- Department of Health Sciences, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain;
- University Institute of Research on Olive and Olive Oils (INUO), University of Jaen, Campus las Lagunillas s/n, 23071 Jaén, Spain
- Agrifood Campus of International Excellence (ceiA3), 14071 Córdoba, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
9
|
Sawai K, Koneri K, Kimura Y, Goi T. CD133 Expression in Circulating Tumor Cells as a Prognostic Marker in Colorectal Cancer. Int J Mol Sci 2025; 26:4740. [PMID: 40429879 PMCID: PMC12111574 DOI: 10.3390/ijms26104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/25/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Identifying prognostic markers in colorectal cancer (CRC) is crucial for improving treatment outcomes. Although carcinoembryonic antigen (CEA) is recommended in the guidelines of the National Comprehensive Cancer Network, its sensitivity and specificity are inconsistent, limiting its utility in patients with normal CEA levels. Circulating tumor cells (CTCs), including those expressing CD133-a cancer stem cell marker involved in tumor progression and therapy resistance-are associated with metastasis and survival outcomes. This study evaluated the prognostic significance of CD133-positive CTCs, and their combined effect with CEA, in patients with CRC. Peripheral blood samples from 195 patients with CRC (stages I-IV) were analyzed. CTCs were isolated using OncoQuick tubes and CD133 mRNA expression was detected by reverse transcription polymerase chain reaction. In clinicopathological analysis, CD133-positive CTCs were detected in 27.2% of cases, correlating with serosal invasion (p = 0.016). Multivariate Cox analysis showed that CD133-positive CTCs were associated with worse disease-specific survival (p = 0.001). Patients with CD133-positive CTCs and CEA ≥ 5 ng/mL (high CEA) had a significantly poorer prognosis (p < 0.001), whereas those with CD133-negative CTCs and CEA < 5 ng/mL (low CEA) had a better prognosis (p = 0.039). CD133 expression in CTCs, especially in combination with CEA, may serve as a valuable prognostic marker in CRC.
Collapse
Affiliation(s)
- Katsuji Sawai
- First Department of Surgery, University of Fukui, Fukui 910-1193, Japan; (Y.K.); (T.G.)
| | - Kenji Koneri
- First Department of Surgery, University of Fukui, Fukui 910-1193, Japan; (Y.K.); (T.G.)
| | | | | |
Collapse
|
10
|
Poggiana C, Piazza AF, Catoni C, Gallingani I, Piccin L, Pellegrini S, Aneloni V, Salizzato V, Pigozzo J, Fabozzi A, Facchinetti A, Menin C, Del Fiore P, Mocellin S, Chiarion-Sileni V, Rosato A, Scaini MC. A model workflow for microfluidic enrichment and genetic analysis of circulating melanoma cells. Sci Rep 2025; 15:15329. [PMID: 40316673 PMCID: PMC12048555 DOI: 10.1038/s41598-025-99153-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/17/2025] [Indexed: 05/04/2025] Open
Abstract
Circulating melanoma cells (CMCs) are responsible for the hematogenous spread of melanoma and, ultimately, metastasis. However, their study has been limited by the low abundance in patient blood and the heterogeneous expression of surface markers. The FDA-approved CellSearch platform enriches CD146-positive CMCs, whose number correlates with progression-free survival and overall survival. However, a single marker may not be sufficient to identify them all. The Parsortix system allows enrichment of CMCs based on their size and deformability, keeping them viable and suitable for downstream molecular analyses. In this study, we tested the strengths, weaknesses and potential convergences of both platforms to integrate the counting of CMCs with a protocol for their genetic analysis. Samples run on Parsortix were labeled with a customized melanoma antibody cocktail, which efficiently labeled and distinguished CMCs from endothelial cells/leukocytes. The capture rate of CellSearch and Parsortix was comparable for cell lines, but Parsortix had a higher capture rate in real-life samples. Moreover, double enrichment with both CellSearch and Parsortix succeeded in removing most of the leukocyte contamination, resulting in an almost pure CMC sample suitable for genetic analysis. In this regard, a proof-of-concept analysis of CMCs from a paradigmatic case of a metastatic uveal melanoma patient led to the identification of multiple genetic alterations. In particular, the GNAQ p.Q209L was identified as homozygous, while a deletion in BAP1 exon 9 was found hemizygous. Moreover, an isochromosome 8 and a homozygous deletion of the CDKN2A gene were detected. In conclusion, we have optimized an approach to successfully enrich and retrieve viable CMCs from metastatic melanoma patients. Moreover, this study provides proof-of-principle for the feasibility of a marker-agnostic CMC enrichment followed by CMC phenotypic identification and genetic analysis.Kindly check and confirm the processed contributed equally is correctly identify We confirm.
Collapse
Affiliation(s)
- Cristina Poggiana
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | | | - Cristina Catoni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy.
| | - Ilaria Gallingani
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy.
| | - Luisa Piccin
- Medical Oncology 2, Veneto Institute of Oncology, IOV-IRCCS, Padova, Italy
| | - Stefania Pellegrini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Vittorio Aneloni
- UOC Immunotrasfusionale, University-Hospital of Padova, Padova, Italy
| | | | - Jacopo Pigozzo
- Medical Oncology 2, Veneto Institute of Oncology, IOV-IRCCS, Padova, Italy
| | - Alessio Fabozzi
- Oncology Unit 3, Veneto Institute of Oncology IOV-IRCCS, Padova, 35128, Italy
| | - Antonella Facchinetti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Chiara Menin
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Paolo Del Fiore
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Simone Mocellin
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | | | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Maria Chiara Scaini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| |
Collapse
|
11
|
Grancher A, Beaussire-Trouvay L, Vernon V, Dutherage M, Blondin V, Elie C, Bouhier-Leporrier K, Galais MP, Clabaut T, Bignon AL, Parzy A, Gangloff A, Schwarz L, Lévêque E, Sabourin JC, Michel P, Vasseur N, Sefrioui D, Gilibert A, Di Fiore F. ctDNA variations according to treatment intensity in first-line metastatic colorectal cancer. Br J Cancer 2025; 132:814-821. [PMID: 40089635 PMCID: PMC12041588 DOI: 10.1038/s41416-025-02971-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/14/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Circulating tumor DNA variations (∆ctDNA) were reported to be associated with treatment efficacy in metastatic colorectal cancer (mCRC). The present study evaluated ∆ctDNA according to first-line treatment intensity. METHODS Patients from two prospective ctDNA collections were divided into Group ≤ 2 drugs and Group ≥ 3 drugs. ∆ctDNA were analysed from baseline to cycle 3 or 4 (C3-4) according to three predefined subgroups: ∆ctDNA ≥ 80%_ undetectable, ∆ctDNA ≥ 80%_ detectable, and ∆ctDNA < 80%. Impact of ∆ctDNA on progression-free survival (PFS) and overall survival (OS) were analysed. RESULTS Pretreatment ctDNA was detected in 129/152 (84.9%) of patients. A ∆ctDNA ≥ 80%_undetectable was more frequent in Group ≥ 3 than ≤ 2 drugs (respectively 51.5% vs. 32.7%, p = 0.015). Patients with ∆ctDNA ≥ 80%_undetectable had longer survival than other ∆ctDNA subgroups, in Group ≥ 3 drugs (mPFS 11.5 vs 7.8 vs 6.3 months, p = 0.02: mOS 30.2 vs 18.1 vs 16.4 month, p = 0.04) and in Group ≤ 2 drugs (mPFS 8.4 vs 6.0 vs 5.3 months, p = 0.05; mOS 29.6 vs 14.6 vs 14.6 months, p = 0.007). DISCUSSION Early ∆ctDNA are associated to treatment intensity in first line mCRC with a significant impact on prognosis.
Collapse
Affiliation(s)
- Adrien Grancher
- Normandie Univ, UNIROUEN, Inserm U1245, IRON group, Normandy Centre for Genomic and Personalized Medicine and Department of Hepato-gastroenterology and Digestive Oncology, Rouen University Hospital, Rouen, France
| | - Ludivine Beaussire-Trouvay
- Normandie Univ, UNIROUEN, Inserm U1245, IRON group, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, Rouen, France
| | - Virginie Vernon
- Normandie Univ, UNIROUEN, Inserm U1245, IRON group, Normandy Centre for Genomic and Personalized Medicine and Department of Hepato-gastroenterology and Digestive Oncology, Rouen University Hospital, Rouen, France
| | - Marie Dutherage
- Normandie Univ, UNIROUEN, Inserm U1245, IRON group, Normandy Centre for Genomic and Personalized Medicine and Department of Hepato-gastroenterology and Digestive Oncology, Rouen University Hospital, Rouen, France
| | - Valérie Blondin
- CHI Elbeuf, Department of Hepatogastroenterology, Elbeuf, France
| | - Caroline Elie
- CHI Elbeuf, Department of Hepatogastroenterology, Elbeuf, France
| | | | - Marie-Pierre Galais
- Department of Hepatogastroenterology, Francois Baclesse Centre, Caen, France
| | - Tifenn Clabaut
- Department of Biostatistics, Rouen University Hospital, Rouen, France
| | - Anne-Laure Bignon
- Department of Hepatogastroenterology, Caen University Hospital, Caen, France
| | - Aurélie Parzy
- Department of Hepatogastroenterology, Francois Baclesse Centre, Caen, France
| | | | - Lilian Schwarz
- Department of Digestive Surgery, Rouen University Hospital, Rouen, France
| | - Emilie Lévêque
- Clinical Research Unit, Centre Henri Becquerel, Rouen, France
| | | | - Pierre Michel
- Normandie Univ, UNIROUEN, Inserm U1245, IRON group, Normandy Centre for Genomic and Personalized Medicine and Department of Hepato-gastroenterology and Digestive Oncology, Rouen University Hospital, Rouen, France
| | - Nasrin Vasseur
- Normandie Univ, UNIROUEN, Inserm U1245, IRON group, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, Rouen, France
| | - David Sefrioui
- Normandie Univ, UNIROUEN, Inserm U1245, IRON group, Normandy Centre for Genomic and Personalized Medicine and Department of Hepato-gastroenterology and Digestive Oncology, Rouen University Hospital, Rouen, France
| | - André Gilibert
- Department of Biostatistics, Rouen University Hospital, Rouen, France
| | - Frédéric Di Fiore
- Normandie Univ, UNIROUEN, Inserm U1245, IRON group, Normandy Centre for Genomic and Personalized Medicine and Department of Hepato-gastroenterology and Digestive Oncology, Rouen University Hospital, Rouen, France.
| |
Collapse
|
12
|
Comino-Méndez I, Velasco-Suelto J, Pascual J, López-López E, Quirós-Ortega ME, Gaona-Romero C, Martín-Muñoz A, Losana P, Heredia Y, Alba E, Guerrero-Zotano A. Identification of minimal residual disease using the clonesight test for ultrasensitive ctDNA detection to anticipate late relapse in early breast cancer. Breast Cancer Res 2025; 27:65. [PMID: 40312346 PMCID: PMC12044774 DOI: 10.1186/s13058-025-02016-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/04/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Early-stage breast cancer (BC) diagnosis significantly reduces mortality, yet relapse remains a concern due to undetectable minimal residual disease (MRD). Liquid biopsies offer real-time insights into tumor dynamics, aiding MRD detection and therapy response evaluation. However, MRD detection is challenging due to low tumor DNA levels in circulation. METHODS This prospective study included 20 HR + BC patients who had completed at least 5 years of adjuvant endocrine therapy (ET). Plasma samples were collected every 6 months over a median follow-up period of 2 years. Tumor-specific somatic variants identified through tumor tissue sequencing served as biomarkers for a patient-informed circulating tumor DNA (ctDNA) assay (CloneSight), which utilized a multiplex PCR-based next-generation sequencing (NGS) workflow. RESULTS ctDNA was detected in patients who experienced clinical relapse, with positivity observed up to 68 months (5.7 years) prior to overt recurrence, highlighting its potential for early relapse identification. In non-relapsed patients, ctDNA remained undetectable in 93% of cases, reflecting a potential high level of specificity. The assay detected ctDNA in 50% of relapsed patients, while no ctDNA signal was identified in the majority of non-relapsed cases. CONCLUSION Our exploratory findings indicate that CloneSight could be a promising tool for MRD detection and relapse prediction, providing a cost-effective, patient-informed approach to ctDNA monitoring. The ability of this approach to detect relapse prior to clinical recurrence suggests its potential relevance in improving patient monitoring. These findings suggest that ctDNA-based MRD assays could play a role in future surveillance strategies for HR + BC, though further studies in larger cohorts are needed to confirm their clinical applicability.
Collapse
Affiliation(s)
- Iñaki Comino-Méndez
- Medical Oncology Department, Hospital Universitario Virgen de la Victoria, 29010, Malaga, Spain.
- The Biomedical Research Institute of Málaga, IBIMA-CIMES-UMA), 29010, Malaga, Spain.
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC - CB16, 12/00481), 28029, Madrid, Spain.
| | - Jesús Velasco-Suelto
- Medical Oncology Department, Hospital Universitario Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga, IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC - CB16, 12/00481), 28029, Madrid, Spain
| | - Javier Pascual
- Medical Oncology Department, Hospital Universitario Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga, IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC - CB16, 12/00481), 28029, Madrid, Spain
| | - Esperanza López-López
- Medical Oncology Department, Hospital Universitario Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga, IBIMA-CIMES-UMA), 29010, Malaga, Spain
| | - Maria Elena Quirós-Ortega
- Medical Oncology Department, Hospital Universitario Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga, IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC - CB16, 12/00481), 28029, Madrid, Spain
| | - Celia Gaona-Romero
- Medical Oncology Department, Hospital Universitario Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga, IBIMA-CIMES-UMA), 29010, Malaga, Spain
| | - Alejandro Martín-Muñoz
- Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), Madrid, Spain
- Altum Sequencing Co, Madrid, Spain
| | | | | | - Emilio Alba
- Medical Oncology Department, Hospital Universitario Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga, IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC - CB16, 12/00481), 28029, Madrid, Spain
- Faculty of Medicine, University of Málaga, 29010, Malaga, Spain
| | - Angel Guerrero-Zotano
- Medical Oncology Department, Fundación Instituto Valenciano de Oncología, Valencia, Spain.
| |
Collapse
|
13
|
Kim DH. Personalized Medical Approach in Gastrointestinal Surgical Oncology: Current Trends and Future Perspectives. J Pers Med 2025; 15:175. [PMID: 40423047 DOI: 10.3390/jpm15050175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/28/2025] Open
Abstract
Advances in artificial intelligence (AI), multi-omic profiling, and sophisticated imaging technologies have significantly advanced personalized medicine in gastrointestinal surgical oncology. These technological innovations enable precise patient stratification, tailored surgical strategies, and individualized therapeutic approaches, thereby significantly enhancing clinical outcomes. Despite remarkable progress, challenges persist, including the standardization and integration of diverse data types, ethical concerns regarding patient privacy, and rigorous clinical validation of predictive models. Addressing these challenges requires establishing international standards for data interoperability, such as Fast Healthcare Interoperability Resources, and adopting advanced security methods, such as homomorphic encryption, to facilitate secure multi-institutional data sharing. Moreover, ensuring model transparency and explainability through techniques such as explainable AI is critical for fostering trust among clinicians and patients. The successful integration of these advanced technologies necessitates strong multidisciplinary collaboration among surgeons, radiologists, geneticists, pathologists, and oncologists. Ultimately, the continued development and effective implementation of these personalized medical strategies complemented by human expertise promise a transformative shift toward patient-centered care, improving long-term outcomes for patients with gastrointestinal cancer.
Collapse
Affiliation(s)
- Dae Hoon Kim
- Department of Surgery, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
- Department of Surgery, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea
| |
Collapse
|
14
|
Hollanda CN, Gualberto ACM, Motoyama AB, Pittella-Silva F. Advancing Leukemia Management Through Liquid Biopsy: Insights into Biomarkers and Clinical Utility. Cancers (Basel) 2025; 17:1438. [PMID: 40361366 PMCID: PMC12070883 DOI: 10.3390/cancers17091438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Liquid biopsy is classically defined as the detection of biomarkers in bodily fluids. One of these biomarkers can be circulating cell-free DNA (cfDNA) released by healthy or cancer cells during apoptosis. These fragments can be quantified and molecularly characterized by techniques like digital droplet PCR (ddPCR) or next-generation sequencing (NGS). By identifying common genetic and epigenetic alterations associated with specific cancer types, cfDNA or circulating tumor DNA (ctDNA) can serve as robust biomarkers for monitoring tumor initiation and progression. Other biomarkers, such as circulating microRNAs (miRNAs), extracellular vesicles, or circulating tumor cells (CTCs) are also applied in this context. Liquid biopsy has gained attention as a versatile tool for cancer diagnostics, prognosis, therapeutic monitoring, and minimal residual disease (MRD) detection across various malignancies, including hematological cancers like myeloid and lymphoid leukemias. Herein, we present a comprehensive review of liquid biopsy usage in leukemia, with a specific focus on the clinical utility of ctDNA, miRNAs, and exosomes in monitoring treatment response, tracking clonal evolution, and detecting minimal residual disease. Our review emphasizes the translational implications of these tools for improving patient outcomes and outlines current challenges in their integration into clinical practice.
Collapse
Affiliation(s)
| | | | | | - Fabio Pittella-Silva
- Laboratory of Molecular Pathology of Cancer, Faculty of Health Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (C.N.H.); (A.C.M.G.); (A.B.M.)
| |
Collapse
|
15
|
Li H, Jia F, Wang X, Yang T, Wang JH. Efficient and Discriminative Isolation of Circulating Cancer Stem Cells and Non-Stem-like Circulating Tumor Cells Using a Click-Handle-Loaded M13 Phage-Based Surface. Anal Chem 2025; 97:8080-8087. [PMID: 40192481 DOI: 10.1021/acs.analchem.5c00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Circulating tumor cells (CTCs) are crucial for cancer research and clinical applications, with circulating cancer stem cells (cCSCs) being a rare but key subpopulation responsible for metastasis, recurrence, and therapy resistance. Current limitations in efficiently isolating these cells, particularly distinguishing cCSCs from non-stem-like CTCs (nsCTCs), hinder our understanding of cancer progression and precision medicine strategies. Herein, we developed a novel CTC isolation approach that integrates cell metabolic chemical tagging with a click-handle-loaded M13 phage-based surface (CHPhace). The multivalent nature of flexible M13 nanofibers, featuring thousands of modification sites for click reactions, significantly enhances CTC capture across diverse tumor types. Leveraging the unique slow-cycling characteristic of cCSCs, CHPhace demonstrated selective cCSCs isolation through metabolic labeling and demetabolism processes. The robust performance of CHPhace allows efficient isolation of both cCSCs and nsCTCs from complex blood sample matrices, achieving capture efficiencies exceeding 80%. This approach represents a promising tool for advancing our understanding of cancer progression and enhancing precision in clinical diagnosis and cancer prognosis.
Collapse
Affiliation(s)
- Huida Li
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Fengting Jia
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Xin Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
16
|
Tataranu LG. Liquid Biopsy as a Diagnostic and Monitoring Tool in Glioblastoma. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:716. [PMID: 40283007 PMCID: PMC12028463 DOI: 10.3390/medicina61040716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025]
Abstract
Glioblastoma (GBM) is the most prevalent and aggressive primary central nervous system (CNS) tumor in adults. GBMs exhibit genetic and epigenetic heterogeneity, posing difficulties in surveillance and being associated with high rates of recurrence and mortality. Nevertheless, due to the high infiltrating ability of glioblastoma cells, and regardless of the considerable progress made in radiotherapeutic, chemotherapeutic, and surgical protocols, the treatment of GBM is still inefficient. Conventional diagnostic approaches, such as neuroimaging techniques and tissue biopsies, which are invasive maneuvers, present certain challenges and limitations in providing real-time information, and are incapable of differentiating pseudo-progression related to treatment from real tumor progression. Liquid biopsy, the analysis of biomarkers such as nucleic acids (DNA/RNA), circulating tumor cells (CTCs), extracellular vesicles (EVs), or tumor-educated platelets (TEPs) that are present in body fluids, provides a minimally invasive and dynamic method of diagnosis and continuous monitoring for GBM. It represents a new preferred approach that enables a superior manner to obtain data on possible tumor risk, prognosis, and recurrence assessment. This article is a literature review that aims to provide updated information about GBM biomarkers in body fluids and to analyze their clinical efficiency.
Collapse
Affiliation(s)
- Ligia Gabriela Tataranu
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Neurosurgery, Bagdasar-Arseni Emergency Clinical Hospital, 041915 Bucharest, Romania
| |
Collapse
|
17
|
Zhang JT, Liu SY, Gao X, Liu SYM, Yan B, Huang C, Jiao Z, Yan HH, Pan Y, Dong S, Gao W, Gong Y, Tu HY, Xia XF, Zhou Q, Zhong WZ, Yang XN, Yi X, Wu YL. Follow-up Analysis Enhances Understanding of Molecular Residual Disease in Localized Non-Small Cell Lung Cancer. Clin Cancer Res 2025; 31:1305-1314. [PMID: 39853318 PMCID: PMC11959268 DOI: 10.1158/1078-0432.ccr-24-2909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/12/2024] [Accepted: 01/21/2025] [Indexed: 01/26/2025]
Abstract
PURPOSE The prognostic value of molecular residual disease (MRD) in non-small cell lung cancer (NSCLC) is well established, with treatment-guiding results anticipated. Here, we present updated analyses from our previously published cohort study of 261 patients with NSCLC undergoing complete resection. EXPERIMENTAL DESIGN A total of 261 patients with stage I to III lung cancer who underwent radical surgery were enrolled. Enrolled patients underwent follow-up blood draws according to the predefined time points after surgery. As of December 31, 2023, with a median follow-up of 43.4 months, 948 postoperative blood samples were collected. RESULTS Landmark and longitudinal MRD exhibited positive predictive values of 91.3% and 92.8%, respectively, with a median lead time of 5.2 months. Negative predictive values were 76.5% and 93.2%, respectively. Patients with landmark undetectable MRD could not benefit from adjuvant therapy through the updated follow-up (P = 0.529). Among the 13 patients with recurrent NSCLC and longitudinal undetectable MRD, seven (53.8%) had brain-only metastases, and four (30.8%) had no updated blood samples for over 6 months prior to recurrence. Besides, for those with longitudinal detectable MRD, higher maximum variant allele frequency (>0.55%) and ctDNA level (>13 hGE/mL) were associated with a high risk of short-term recurrence. Additionally, updated follow-up data further support that the peak time for detectable MRD was 18 months after landmark detection. CONCLUSIONS These findings suggest the significant potential of MRD in guiding personalized treatment for NSCLC. Postoperative longitudinal undetectable MRD can indicate a cured population.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/blood
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Non-Small-Cell Lung/surgery
- Carcinoma, Non-Small-Cell Lung/mortality
- Neoplasm, Residual/pathology
- Neoplasm, Residual/diagnosis
- Neoplasm, Residual/genetics
- Female
- Male
- Lung Neoplasms/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/blood
- Lung Neoplasms/therapy
- Lung Neoplasms/surgery
- Middle Aged
- Follow-Up Studies
- Aged
- Prognosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/blood
- Adult
- Neoplasm Staging
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/genetics
- Aged, 80 and over
- Circulating Tumor DNA/blood
Collapse
Affiliation(s)
- Jia-Tao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Si-Yang Liu
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xuan Gao
- Geneplus-Beijing Institute, Beijing, China
| | - Si-Yang Maggie Liu
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Chinese Thoracic Oncology Group (CTONG), Guangzhou, China
| | - Bingfa Yan
- Geneplus-Beijing Institute, Beijing, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chen Huang
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | | | - Hong-Hong Yan
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yi Pan
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Song Dong
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wei Gao
- Geneplus-Beijing Institute, Beijing, China
| | - Yuhua Gong
- Geneplus-Beijing Institute, Beijing, China
| | - Hai-Yan Tu
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | | | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xue-Ning Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xin Yi
- Geneplus-Beijing Institute, Beijing, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Mastronicola R, Kayser E, Le Roux P, Barrat A, Aubertin A, Casse A, Nominé L, Villard H, Cortese S, Beulque E, Merlin JL, Dolivet G. Study of the survival of patients with head and neck cancer in relation to Circulating Tumor Cells (CTCs). PLoS One 2025; 20:e0320485. [PMID: 40168331 PMCID: PMC11960953 DOI: 10.1371/journal.pone.0320485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 02/19/2025] [Indexed: 04/03/2025] Open
Abstract
Distant metastasis in head and neck cancer are one of the first factors contributing to death. Currently, it is difficult to detect them early with our conventional techniques such as Positron Emission Tomography scanner (PET-scanner) and Magnetic Resonance Imaging (MRI). Therefore, it is important to find new markers that can help us in the care of the patient. This study aimed at comparing two methods (Reverse Transcription-Polymerase Chain Reaction and CellSearch) to detect circulating tumor cells (CTC) as a prognosticator. Results were statistically significant for markers EphB4 (p-value = 0.0003), CEA (p-value = 0.0006), CK 18 (p-value = 0.0011) and Ep-CAM (p-value = 0.0299) and demonstrate that our detection techniques could be used by optimizing our protocol. In addition, results of the rate of CTCs helped identify this as an indicator of a prognosis for the patient. Indeed, the study revealed that most patients in remission exhibited a decrease in post-operative CTCs, whereas patients experiencing relapses demonstrated an increase in CTCs, which was correlated with a poor prognosis.
Collapse
Affiliation(s)
- Romina Mastronicola
- Institut de Cancérologie de Lorraine ICL, Vandœuvre-lès-Nancy, France
- CRAN, CNRS, UMR, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Elise Kayser
- Institut de Cancérologie de Lorraine ICL, Vandœuvre-lès-Nancy, France
| | - Pauline Le Roux
- Institut de Cancérologie de Lorraine ICL, Vandœuvre-lès-Nancy, France
| | - Agathe Barrat
- Institut de Cancérologie de Lorraine ICL, Vandœuvre-lès-Nancy, France
| | | | - Aurore Casse
- Institut de Cancérologie de Lorraine ICL, Vandœuvre-lès-Nancy, France
| | - Léa Nominé
- Institut de Cancérologie de Lorraine ICL, Vandœuvre-lès-Nancy, France
| | - Hélèna Villard
- Institut de Cancérologie de Lorraine ICL, Vandœuvre-lès-Nancy, France
| | - Sophie Cortese
- Institut de Cancérologie de Lorraine ICL, Vandœuvre-lès-Nancy, France
| | - Emilie Beulque
- Institut de Cancérologie de Lorraine ICL, Vandœuvre-lès-Nancy, France
| | - Jean-Louis Merlin
- Institut de Cancérologie de Lorraine ICL, Vandœuvre-lès-Nancy, France
- CRAN, CNRS, UMR, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Gilles Dolivet
- Institut de Cancérologie de Lorraine ICL, Vandœuvre-lès-Nancy, France
- CRAN, CNRS, UMR, Université de Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
19
|
Mitra S, Jang HJ, Kuncheria A, Kang SW, Choi JM, Shim JS, Lee C, Ranchod P, Jindra P, Ramineni M, Patel M, Ripley RT, Groth SS, Blackmon SH, Burt BM, Lee HS. Soluble mesothelin-related peptide as a prognosticator in pleural mesothelioma patients receiving checkpoint immunotherapy. J Thorac Cardiovasc Surg 2025; 169:1082-1095.e4. [PMID: 39395787 PMCID: PMC11949723 DOI: 10.1016/j.jtcvs.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/27/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Immune checkpoint therapy (ICT) has significantly impacted the treatment of malignant pleural mesothelioma (MPM). Despite some promising results from combination therapies, nearly half of MPM patients do not benefit, underscoring the urgent need for reliable predictive biomarkers. This study assesses the prognostic value of serum soluble mesothelin-related peptide (SMRP) and PD-L1 levels in MPM patients receiving ICT. METHODS We conducted a retrospective analysis of 125 MPM patients treated with ICT by measuring pre-ICT serum levels of SMRP and PD-L1. We also examined the correlation of these serum levels with tumor mRNA expressions of mesothelin and PD-L1. Both univariable and multivariable Cox regression analyses were used to determine independent prognosticators for overall survival (OS). A prospective ICT clinical trial and our historical cohort were included for validation. RESULTS Seventy-seven patients (62%) were treated with either anti-PD-(L)1 monotherapy, and the remaining 38% received combination ICT. Higher pre-ICT SMRP levels were observed in epithelioid MPM compared to nonepithelioid MPM. Serum PD-L1 levels did not differ significantly between the different histologic groups. Univariable analysis identified durable clinical benefit, development of immune-related adverse events, and SMRP levels as significantly associated with OS. Multivariable analysis confirmed SMRP as an independent prognostic factor, with lower levels (≤1.35 nmol/L) correlating with improved OS. The association of high SMRP with worse prognosis was validated in the prospective ICT clinical trial cohort and not in our historical cohort treated without ICT. CONCLUSIONS SMRP is a promising serum biomarker for predicting survival in MPM patients treated with ICT and warrants prospective investigation.
Collapse
Affiliation(s)
- Sonali Mitra
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Hee-Jin Jang
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Allen Kuncheria
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Sung Wook Kang
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Jong Min Choi
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Ji Seon Shim
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Claire Lee
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Priyanka Ranchod
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Peter Jindra
- Immune Evaluation Laboratory, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Maheshwari Ramineni
- Department of Pathology, Baylor College of Medicine, Houston, Tex; Dan L Ducan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Tex
| | - Meera Patel
- Dan L Ducan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Tex; Division of Hemato-Oncology, Department of Medicine, Baylor College of Medicine, Houston, Tex
| | - R Taylor Ripley
- Dan L Ducan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Tex; David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Shawn S Groth
- Dan L Ducan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Tex; David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Shanda H Blackmon
- Dan L Ducan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Tex; David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Bryan M Burt
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex; Division of Thoracic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, Calif.
| | - Hyun-Sung Lee
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex; Division of Hemato-Oncology, Department of Medicine, Baylor College of Medicine, Houston, Tex; David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex.
| |
Collapse
|
20
|
Shah DD, Chorawala MR, Raghani NR, Patel R, Fareed M, Kashid VA, Prajapati BG. Tumor microenvironment: recent advances in understanding and its role in modulating cancer therapies. Med Oncol 2025; 42:117. [PMID: 40102282 DOI: 10.1007/s12032-025-02641-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
Tumor microenvironment (TME) denotes the non-cancerous cells and components presented in the tumor, including molecules produced and released by them. Interactions between cancer cells, immune cells, stromal cells, and the extracellular matrix within the TME create a dynamic ecosystem that can either promote or hinder tumor growth and spread. The TME plays a pivotal role in either promoting or inhibiting tumor growth and dissemination, making it a critical factor to consider in the development of effective cancer therapies. Understanding the intricate interplay within the TME is crucial for devising effective cancer therapies. Combination therapies involving inhibitors of immune checkpoint blockade (ICB), and/or chemotherapy now offer new approaches for cancer therapy. However, it remains uncertain how to best utilize these strategies in the context of the complex tumor microenvironment. Oncogene-driven changes in tumor cell metabolism can impact the TME to limit immune responses and present barriers to cancer therapy. Cellular and acellular components in tumor microenvironment can reprogram tumor initiation, growth, invasion, metastasis, and response to therapies. Components in the TME can reprogram tumor behavior and influence responses to treatments, facilitating immune evasion, nutrient deprivation, and therapeutic resistance. Moreover, the TME can influence angiogenesis, promoting the formation of blood vessels that sustain tumor growth. Notably, the TME facilitates immune evasion, establishes a nutrient-deprived milieu, and induces therapeutic resistance, hindering treatment efficacy. A paradigm shift from a cancer-centric model to a TME-centric one has revolutionized cancer research and treatment. However, effectively targeting specific cells or pathways within the TME remains a challenge, as the complexity of the TME poses hurdles in designing precise and effective therapies. This review highlights challenges in targeting the tumor microenvironment to achieve therapeutic efficacy; explore new approaches and technologies to better decipher the tumor microenvironment; and discuss strategies to intervene in the tumor microenvironment and maximize therapeutic benefits.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| | - Neha R Raghani
- Department of Pharmacology and Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar, Gujarat, 382355, India
| | - Rajanikant Patel
- Department of Product Development, Granules Pharmaceuticals Inc., 3701 Concorde Parkway, Chantilly, VA, 20151, USA
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, 13713, Riyadh, Saudi Arabia
| | - Vivekanand A Kashid
- MABD Institute of Pharmaceutical Education and Research, Babhulgaon, Yeola, Nashik, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
21
|
Stojchevski R, Sutanto EA, Sutanto R, Hadzi-Petrushev N, Mladenov M, Singh SR, Sinha JK, Ghosh S, Yarlagadda B, Singh KK, Verma P, Sengupta S, Bhaskar R, Avtanski D. Translational Advances in Oncogene and Tumor-Suppressor Gene Research. Cancers (Basel) 2025; 17:1008. [PMID: 40149342 PMCID: PMC11940485 DOI: 10.3390/cancers17061008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025] Open
Abstract
Cancer, characterized by the uncontrolled proliferation of cells, is one of the leading causes of death globally, with approximately one in five people developing the disease in their lifetime. While many driver genes were identified decades ago, and most cancers can be classified based on morphology and progression, there is still a significant gap in knowledge about genetic aberrations and nuclear DNA damage. The study of two critical groups of genes-tumor suppressors, which inhibit proliferation and promote apoptosis, and oncogenes, which regulate proliferation and survival-can help to understand the genomic causes behind tumorigenesis, leading to more personalized approaches to diagnosis and treatment. Aberration of tumor suppressors, which undergo two-hit and loss-of-function mutations, and oncogenes, activated forms of proto-oncogenes that experience one-hit and gain-of-function mutations, are responsible for the dysregulation of key signaling pathways that regulate cell division, such as p53, Rb, Ras/Raf/ERK/MAPK, PI3K/AKT, and Wnt/β-catenin. Modern breakthroughs in genomics research, like next-generation sequencing, have provided efficient strategies for mapping unique genomic changes that contribute to tumor heterogeneity. Novel therapeutic approaches have enabled personalized medicine, helping address genetic variability in tumor suppressors and oncogenes. This comprehensive review examines the molecular mechanisms behind tumor-suppressor genes and oncogenes, the key signaling pathways they regulate, epigenetic modifications, tumor heterogeneity, and the drug resistance mechanisms that drive carcinogenesis. Moreover, the review explores the clinical application of sequencing techniques, multiomics, diagnostic procedures, pharmacogenomics, and personalized treatment and prevention options, discussing future directions for emerging technologies.
Collapse
Affiliation(s)
- Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Edward Agus Sutanto
- CUNY School of Medicine, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA;
| | - Rinni Sutanto
- New York Institute of Technology College of Osteopathic Medicine, Glen Head, NY 11545, USA;
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.)
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.)
| | - Sajal Raj Singh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, Uttar Pradesh, India (J.K.S.)
| | - Jitendra Kumar Sinha
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, Uttar Pradesh, India (J.K.S.)
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, Uttar Pradesh, India (J.K.S.)
| | | | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology (SCIT), Rajiv Gandhi InfoTech Park, Hinjawadi, Pune 411057, Maharashtra, India;
| | - Prashant Verma
- School of Management, BML Munjal University, NH8, Sidhrawali, Gurugram 122413, Haryana, India
| | - Sonali Sengupta
- Department of Gastroenterology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
22
|
Brown JC, Compton SLE, Kang A, Jayaraman A, Gilmore LA, Kirby BJ, Greenway FL, Yang S, Spielmann G. Effects of exercise on inflammation, circulating tumor cells, and circulating tumor DNA in colorectal cancer. JOURNAL OF SPORT AND HEALTH SCIENCE 2025:101036. [PMID: 40107449 DOI: 10.1016/j.jshs.2025.101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/24/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND The biological mechanisms by which postdiagnosis physical activity improves disease-free survival in colorectal cancer survivors remain incompletely understood. This trial tested the hypothesis that 12 wk of moderate-intensity aerobic exercise, when compared with a control group, would change inflammation, CTCs, and ctDNA in a manner consistent with an improved cancer prognosis. METHODS This trial randomized Stages I-III colorectal cancer survivors to 12 wk of home-based moderate-intensity aerobic exercise or a waitlist control group. The co-primary endpoints were high-sensitivity C-reactive protein (hs-CRP) and interleukin-6 (IL-6), secondary endpoints were soluble tumor necrosis factor-α receptor 2 (sTNFαR2) and circulating tumor cells (CTCs), and the exploratory endpoint was tumor fraction quantified from circulating tumor DNA. RESULTS Sixty subjects were randomized (age = 60.6 ± 10.8 years, mean ± SD; 39 (65%) females; 46 (77%) colonic primary tumor), and 59 (98%) subjects completed the study. Over 12 wk, exercise adherence was 92% (95% confidence interval (95%CI): 86‒99). Exercise improved submaximal fitness capacity (0.36 metabolic equivalents; 95%CI: 0.05‒0.67; p = 0.025) and objectively measured moderate-to-vigorous-intensity physical activity (34.8%, 95%CI: 11.3‒63.1; p = 0.002) compared to control. Exercise did not change hs-CRP (20.9%, 95%CI: -17.1 to 76.2; p = 0.32), IL-6 (11.4%, 95%CI: -7.5 to 34.0; p = 0.25), or sTNFαR2 (-3.6%, 95%CI: -13.7 to 7.7; p = 0.52) compared to control. In the subgroup of subjects with elevated baseline hs-CRP (n = 35, 58.3%), aerobic exercise reduced hs-CRP (-35.5%, 95%CI: -55.3 to -3.8; p = 0.031). Exercise did not change CTCs (0.59 cells/mL, 95%CI: -0.33 to 1.51; p = 0.21) or tumor fraction (0.0005, 95%CI: -0.0024 to 0.0034; p = 0.73). In exploratory analyses, higher aerobic exercise adherence correlated with a reduction in CTCs (ρ = -0.37, 95%CI: -0.66 to -0.08; p = 0.013). CONCLUSION Colorectal cancer survivors achieved high adherence to a home-based moderate-intensity aerobic exercise prescription that improved fitness capacity and physical activity but did not reduce inflammation or change tumor endpoints from a liquid biopsy.
Collapse
Affiliation(s)
- Justin C Brown
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; Louisiana State University Health Sciences Center, New Orleans School of Medicine, New Orleans, LA 70112, USA; Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Louisiana Cancer Research Center, New Orleans, LA 70112, USA.
| | | | - Andrew Kang
- College of Engineering, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Anjana Jayaraman
- College of Engineering, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - L Anne Gilmore
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brian J Kirby
- College of Engineering, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Frank L Greenway
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Shengping Yang
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Guillaume Spielmann
- School of Kinesiology, College of Human Sciences & Education, Louisiana State University, Baton Rouge, LA 70802, USA
| |
Collapse
|
23
|
Parisi FM, Lentini M, Chiesa-Estomba CM, Mayo-Yanez M, Leichen JR, White M, Giurdanella G, Cocuzza S, Bianco MR, Fakhry N, Maniaci A. Liquid Biopsy in HPV-Associated Head and Neck Cancer: A Comprehensive Review. Cancers (Basel) 2025; 17:977. [PMID: 40149311 PMCID: PMC11940600 DOI: 10.3390/cancers17060977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Objectives: Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer globally, with HPV-positive cases emerging as a distinct subtype with unique clinical and molecular characteristics. Current diagnostic methods, including tissue biopsy and imaging, face limitations in terms of invasiveness, static disease assessment, and difficulty in distinguishing recurrence from treatment-related changes. This review aimed to assess the potential of liquid biopsy as a minimally invasive tool for the diagnosis, treatment monitoring, and surveillance of HPV-associated HNSCC. Methods: This systematic review analyzed literature from PubMed/MEDLINE, Embase, and Web of Science, focusing on original research and reviews related to liquid biopsy applications in HPV-positive HNSCC. Included studies were evaluated based on the robustness of the study design, clinical relevance, and analytical performance of liquid biopsy technologies. Biomarker types, detection methods, and implementation strategies were assessed to identify advancements and challenges in this field. Results: Liquid biopsy technologies, including circulating HPV DNA, ctDNA, and extracellular vesicles, demonstrated high sensitivity (90-95%) and specificity (>98%) in detecting HPV-positive HNSCC. These methods enabled real-time monitoring of tumor dynamics, early detection of recurrence, and insights into treatment resistance. Longitudinal analysis revealed that biomarker clearance during treatment correlates strongly with patient outcomes. Conclusions: Liquid biopsy is a transformative diagnostic and monitoring tool for HPV-associated HNSCC, offering minimally invasive, real-time insights into tumor biology. While challenges remain in standardization and clinical implementation, ongoing research and technological innovations hold promise for integrating liquid biopsy into personalized cancer care, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Federica Maria Parisi
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, ENT Section, University of Catania, 95125 Catania, Italy; (F.M.P.); (S.C.)
| | - Mario Lentini
- Department of Otolaryngology, ASP 7, Ragusa Hospital, 97100 Ragusa, Italy
| | - Carlos M. Chiesa-Estomba
- Department of Otorhinolaryngology-Head and Neck Surgery, Hospital Universitario Donostia, 20001 San Sebastian, Spain
| | - Miguel Mayo-Yanez
- Otorhinolaryngology-Head and Neck Surgery Department, Complexo Hospitalario Universitario A Coruña (CHUAC), 15006 La Coruña, Spain;
- Otorhinolaryngology-Head and Neck Surgery Department, Hospital San Rafael (HSR) de A Coruña, 15006 La Coruña, Spain
- Otorhinolaryngology-Head and Neck Surgery Research Group, Institute of Biomedical Research of A Coruña, (INIBIC), Complexo Hospitalario Universitario de A Corñna (CHUAC), Universidade da Corñna (UDC), 15494 La Coruña, Spain
| | - Jerome R. Leichen
- Department of Human Anatomy and Experimental Oncology, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMons), 7011 Mons, Belgium;
| | - Matthew White
- Division of Otorhinolaryngology, Head and Neck Surgery, University of Cape Town, Cape Town 8001, South Africa;
| | - Giovanni Giurdanella
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy;
| | - Salvatore Cocuzza
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, ENT Section, University of Catania, 95125 Catania, Italy; (F.M.P.); (S.C.)
| | - Maria Rita Bianco
- Otolaryngology-Department of Health Science, University of Catanzaro, 88100 Catanzaro, Italy;
| | - Nicolas Fakhry
- Department of Oto-Rhino-Laryngology Head and Neck Surgery, La Conception University Hospital, AP-HM, Aix Marseille Université, 13006 Marseille, France;
| | - Antonino Maniaci
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy;
| |
Collapse
|
24
|
Song J, Ye X, Xiao H. Liquid biopsy entering clinical practice: Past discoveries, current insights, and future innovations. Crit Rev Oncol Hematol 2025; 207:104613. [PMID: 39756526 DOI: 10.1016/j.critrevonc.2025.104613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025] Open
Abstract
In recent years, liquid biopsy has gained prominence as an emerging biomarker in cancer research, providing critical insights into tumor biology and metastasis. Technological advancements have enabled its integration into clinical practice, with ongoing trials demonstrating encouraging outcomes. Key applications of liquid biopsy include early cancer detection, cancer staging, prognosis evaluation, and real-time monitoring of tumor progression to optimize treatment decisions. In this review, we present a comprehensive conceptual framework for liquid biopsy, discuss the challenges in its research and clinical application, and highlight its significant potential in identifying therapeutic targets and resistance mechanisms across various cancer types. Furthermore, we explore the emerging role of liquid biopsy-based multicancer screening, which has shown promising advancements. Looking ahead, standardization, multi-omics coanalysis, and the advancement of precision medicine and personalized treatments are expected to drive the future development and integration of liquid biopsy into routine clinical workflows, enhancing cancer diagnosis and treatment management.
Collapse
Affiliation(s)
- Jinghan Song
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiong Ye
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Hui Xiao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
25
|
Bharde A, Nadagouda S, Dongare M, Hariramani K, Basavalingegowda M, Haldar S, D'Souza A, Jadhav B, Prajapati S, Jadhav V, Joshi S, Vasudevan A, Uttarwar M, Zhou W, Kishore S, Prabhash K, Khandare J, Shafi G. ctDNA-based liquid biopsy reveals wider mutational profile with therapy resistance and metastasis susceptibility signatures in early-stage breast cancer patients. THE JOURNAL OF LIQUID BIOPSY 2025; 7:100284. [PMID: 40027235 PMCID: PMC11863978 DOI: 10.1016/j.jlb.2024.100284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 03/05/2025]
Abstract
A minimally invasive analysis of plasma cell-free DNA (cfDNA) offers a genomic profiling of early-stage breast cancer (EBC), potentially identifying mutational signatures linked to metastasis and therapy resistance. In this study, paired plasma and tissue samples from 40 hormone receptor-positive (HR+) EBC patients were sequenced using a custom-designed comprehensive gene panel, OncoIndx. The genomic landscape of circulating tumor DNA (ctDNA) showed a broader mutation spectrum compared to tumor tissue DNA (tDNA), and provided reliable assessments of microsatellite instability (MSI), tumor mutation burden (TMB), homologous recombination deficiency (HRD), and loss of heterogeneity (LOH), all indicating high genomic instability. Importantly, early detection of estrogen receptor α (ESR1) mutations in ctDNA was achieved, highlighting its potential to identify patients at risk for endocrine resistance, a standard of care for HR + breast tumors. Mutations, particularly in DNA damage response (DDR) and proliferative signaling pathways (phosphatidyl inositol-4,5-bisphosphate 3-kinase; PIK3CA) suggest an increased risk of therapy resistance, pointing to opportunities for risk stratification and tailored treatment strategies in EBC. ctDNA-based liquid biopsy may provide minimally invasive comprehensive genomic analysis of EBC for identifying actionable targets and risk prediction for better disease management.
Collapse
Affiliation(s)
- Atul Bharde
- OneCell Diagnostics, Wakad, Pune, 411057, India
- OneCell Dx, Cupertino, CA, 95014, USA
| | | | - Manoj Dongare
- OneCell Diagnostics, Wakad, Pune, 411057, India
- Dr. D.Y. Patil Medical College, Hospital & Research Centre, Pimpri, Pune, 411017, India
| | - Kanchan Hariramani
- OneCell Diagnostics, Wakad, Pune, 411057, India
- iNDX.Ai, Cupertino, CA, 95014, USA
| | | | - Sumit Haldar
- OneCell Diagnostics, Wakad, Pune, 411057, India
- iNDX.Ai, Cupertino, CA, 95014, USA
| | | | | | | | - Vikas Jadhav
- OneCell Diagnostics, Wakad, Pune, 411057, India
- Dr. D.Y. Patil Medical College, Hospital & Research Centre, Pimpri, Pune, 411017, India
| | - Sujit Joshi
- OneCell Diagnostics, Wakad, Pune, 411057, India
| | - Aravindan Vasudevan
- OneCell Diagnostics, Wakad, Pune, 411057, India
- OneCell Dx, Cupertino, CA, 95014, USA
| | - Mohan Uttarwar
- OneCell Diagnostics, Wakad, Pune, 411057, India
- OneCell Dx, Cupertino, CA, 95014, USA
- iNDX.Ai, Cupertino, CA, 95014, USA
| | - Wenhui Zhou
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sirish Kishore
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Division of Interventional Radiology, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, 400012, India
| | - Jayant Khandare
- OneCell Diagnostics, Wakad, Pune, 411057, India
- OneCell Dx, Cupertino, CA, 95014, USA
| | - Gowhar Shafi
- OneCell Diagnostics, Wakad, Pune, 411057, India
- OneCell Dx, Cupertino, CA, 95014, USA
| |
Collapse
|
26
|
Normanno N, Morabito A, Rachiglio AM, Sforza V, Landi L, Bria E, Delmonte A, Cappuzzo F, De Luca A. Circulating tumour DNA in early stage and locally advanced NSCLC: ready for clinical implementation? Nat Rev Clin Oncol 2025; 22:215-231. [PMID: 39833354 DOI: 10.1038/s41571-024-00985-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
Circulating tumour DNA (ctDNA) can be released by cancer cells into biological fluids through apoptosis, necrosis or active release. In patients with non-small-cell lung cancer (NSCLC), ctDNA levels correlate with clinical and pathological factors, including histology, tumour size and proliferative status. Currently, ctDNA analysis is recommended for molecular profiling in patients with advanced-stage NSCLC. In this Review, we summarize the increasing evidence suggesting that ctDNA has potential clinical applications in the management of patients with early stage and locally advanced NSCLC. In those with early stage NSCLC, detection of ctDNA before and/or after surgery is associated with a greater risk of disease recurrence. Longitudinal monitoring after surgery can further increase the prognostic value of ctDNA testing and enables detection of disease recurrence earlier than the assessment of clinical or radiological progression. In patients with locally advanced NSCLC, the detection of ctDNA after chemoradiotherapy is also associated with a greater risk of disease progression. Owing to the limited number of patients enrolled and the different technologies used for ctDNA testing in most of the clinical studies performed thus far, their results are not sufficient to currently support the routine clinical use of ctDNA monitoring in patients with early stage or locally advanced NSCLC. Therefore, we discuss the need for interventional studies to provide evidence for implementing ctDNA testing in this setting.
Collapse
Affiliation(s)
- Nicola Normanno
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Alessandro Morabito
- Thoracic Department, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Anna Maria Rachiglio
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Vincenzo Sforza
- Thoracic Department, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Lorenza Landi
- Clinical Trials Center: Phase 1 and Precision Medicine, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Emilio Bria
- Medical Oncology Unit, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Medical Oncology, Ospedale Isola Tiberina Gemelli Isola, Roma, Italy
| | - Angelo Delmonte
- Medical Oncology Department, IRCCS IRST "Dino Amadori", Meldola, Italy
| | - Federico Cappuzzo
- Division of Medical Oncology 2, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Antonella De Luca
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| |
Collapse
|
27
|
Wang P, Yang RK, Jelloul FZ, Luthra R, Routbort MJ, Chen H, Loghavi S, Ok CY, Kanagal-Shamanna R, Roy-Chowdhuri S, Medeiros LJ, Patel KP. Routine Clinical Liquid Biopsy Testing for Solid Tumors Delivers the Promise of Minimally Invasive Detection of Genomic Variants With a Faster Turnaround Time. JCO Precis Oncol 2025; 9:e2400299. [PMID: 40138600 DOI: 10.1200/po.24.00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 01/07/2025] [Accepted: 02/12/2025] [Indexed: 03/29/2025] Open
Abstract
PURPOSE A 70-gene liquid biopsy (LB) panel (LBP-70) was implemented at our institution to identify genetic alterations in the plasma of patients with solid tumors. We report the clinical utility of LBP-70 in a retrospective study of 1,243 consecutively tested patients. MATERIALS AND METHODS Electronic medical records were reviewed for relevant clinicopathologic and radiologic information and preanalytical variables, including circulating cell-free DNA yield. The clinical utility of the LBP-70 assay was evaluated on the basis of its ability to identify major tumor drivers and/or targetable alterations and the concordance of the LBP-70 results with tissue genotyping and radiologic findings. RESULTS Positive LB findings were reported in 75% of patients, ranging from 67% to 85% among various tumor types and 60% to 77% in different tumor stages within an average of seven workdays. The mutant allele frequency (AF) ranged from 0.1% to 90%, and 50% of the variants were detected at AF <2%. Overall, LBP-70 provided clinically informative findings in 87% of the patients. In patients with non-small cell lung cancer (NSCLC) and colorectal cancer without tissue specimens, LBP-70 identified informative findings in 74% of patients, including EGFR exon 18-21 mutations in 22% of patients with NSCLC and RAS and/or BRAF V600E mutations in 44% of patients with colorectal cancer. LBP-70 results showed 62% concordance with tissue genotyping and 79% concordance with radiologic findings. CONCLUSION The results of this study demonstrated the clinical utility of LBP-70 in identifying clinically informative findings. LBP-70 is an alternative to tissue-based tumor genotyping and provides a more rapid method for detecting actionable genetic alterations.
Collapse
Affiliation(s)
- Peng Wang
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Richard Kenneth Yang
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Fatima Zahra Jelloul
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rajyalakshmi Luthra
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Mark J Routbort
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hui Chen
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sanam Loghavi
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Chi Young Ok
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rashmi Kanagal-Shamanna
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sinchita Roy-Chowdhuri
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - L Jeffrey Medeiros
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Keyur P Patel
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
28
|
Osei-Poku P, Tritten L, Fordjour F, Kwarteng A. Cell-free DNA as a complementary diagnostic tool for neglected tropical diseases towards achieving the WHO NTDs elimination by 2030. THE JOURNAL OF LIQUID BIOPSY 2025; 7:100283. [PMID: 40027229 PMCID: PMC11863940 DOI: 10.1016/j.jlb.2024.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 03/05/2025]
Abstract
Neglected Tropical Diseases (NTDs) continue to ravage the poorest regions of the world, with over 600 million people being affected in Sub-Saharan Africa. The global burden of NTDs within these regions is staggering, particularly post-COVID-19 pandemic, where the emerging infection intercepted the existing eradication efforts and protocols such as the Mass Drug Administration (MDA). This further complicated the approaches laid down to achieve the endgame program of eliminating the neglect and transmission of NTDs. To compensate for the detriment of COVID-19's interruption, accurate and timely diagnoses play a vital role in attaining the objectives of the WHO's goal of NTD elimination by 2030. To this effect, alternative approaches in diagnostics are urgently needed, particularly with the inadequacy of current diagnostic strategies for NTDs. Cell-free DNA (cfDNA) has shown great promise in detecting NTDs. Several studies have demonstrated its potential for diagnosing diseases such as malaria, leishmaniasis, and schistosomiasis. However, the adoption of cfDNA in NTD research faces several challenges, including the cost of the procedure, standardization, and technical expertise. Proper capacity building and training can mitigate some of these challenges. However, despite these limitations, the affordability of cfDNA detection is improving due to increased awareness of the approach and researchers' integration considerations into current diagnostic routines. In conclusion, while there are challenges to adopting cfDNA in NTD research, it remains a promising alternative strategy to be considered in the fight against NTDs.
Collapse
Affiliation(s)
- Priscilla Osei-Poku
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Lucienne Tritten
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Fatima Fordjour
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
- Department of Microbiology, University for Development Studies, Ghana
| | - Alexander Kwarteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| |
Collapse
|
29
|
Zhu G, Rahman CR, Getty V, Odinokov D, Baruah P, Carrié H, Lim AJ, Guo YA, Poh ZW, Sim NL, Abdelmoneim A, Cai Y, Lakshmanan LN, Ho D, Thangaraju S, Poon P, Lau YT, Gan A, Ng S, Koo SL, Chong DQ, Tay B, Tan TJ, Yap YS, Chok AY, Ng MCH, Tan P, Tan D, Wong L, Wong PM, Tan IB, Skanderup AJ. A deep-learning model for quantifying circulating tumour DNA from the density distribution of DNA-fragment lengths. Nat Biomed Eng 2025; 9:307-319. [PMID: 40055581 DOI: 10.1038/s41551-025-01370-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/12/2025] [Indexed: 03/21/2025]
Abstract
The quantification of circulating tumour DNA (ctDNA) in blood enables non-invasive surveillance of cancer progression. Here we show that a deep-learning model can accurately quantify ctDNA from the density distribution of cell-free DNA-fragment lengths. We validated the model, which we named 'Fragle', by using low-pass whole-genome-sequencing data from multiple cancer types and healthy control cohorts. In independent cohorts, Fragle outperformed tumour-naive methods, achieving higher accuracy and lower detection limits. We also show that Fragle is compatible with targeted sequencing data. In plasma samples from patients with colorectal cancer, longitudinal analysis with Fragle revealed strong concordance between ctDNA dynamics and treatment responses. In patients with resected lung cancer, Fragle outperformed a tumour-naive gene panel in the prediction of minimal residual disease for risk stratification. The method's versatility, speed and accuracy for ctDNA quantification suggest that it may have broad clinical utility.
Collapse
Affiliation(s)
- Guanhua Zhu
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Centre for Novostics, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chowdhury Rafeed Rahman
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- School of Computing, National University of Singapore, Singapore, Singapore
| | - Victor Getty
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Denis Odinokov
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Probhonjon Baruah
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hanaé Carrié
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- School of Computing, National University of Singapore, Singapore, Singapore
- Institute of Data Science, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme, Graduate School, National University of Singapore, Singapore, Singapore
| | - Avril Joy Lim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- School of Computing, National University of Singapore, Singapore, Singapore
| | - Yu Amanda Guo
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Zhong Wee Poh
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Ngak Leng Sim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ahmed Abdelmoneim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yutong Cai
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | - Danliang Ho
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Saranya Thangaraju
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Polly Poon
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yi Ting Lau
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Anna Gan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sarah Ng
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Si-Lin Koo
- National Cancer Center Singapore, Singapore, Singapore
| | - Dawn Q Chong
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
- National Cancer Center Singapore, Singapore, Singapore
| | - Brenda Tay
- National Cancer Center Singapore, Singapore, Singapore
| | - Tira J Tan
- National Cancer Center Singapore, Singapore, Singapore
| | - Yoon Sim Yap
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
- National Cancer Center Singapore, Singapore, Singapore
| | | | - Matthew Chau Hsien Ng
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
- National Cancer Center Singapore, Singapore, Singapore
| | - Patrick Tan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Daniel Tan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
- National Cancer Center Singapore, Singapore, Singapore
| | - Limsoon Wong
- School of Computing, National University of Singapore, Singapore, Singapore
| | - Pui Mun Wong
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Iain Beehuat Tan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
- National Cancer Center Singapore, Singapore, Singapore
| | - Anders Jacobsen Skanderup
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- School of Computing, National University of Singapore, Singapore, Singapore.
- National Cancer Center Singapore, Singapore, Singapore.
| |
Collapse
|
30
|
Mansor M, Yang C, Chong KL, Jamrus MA, Liu K, Yu M, Ahmad MR, Ren X. Label-Free and Rapid Microfluidic Design Rules for Circulating Tumor Cell Enrichment and Isolation: A Review and Simulation Analysis. ACS OMEGA 2025; 10:6306-6322. [PMID: 40028152 PMCID: PMC11866005 DOI: 10.1021/acsomega.4c08606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 03/05/2025]
Abstract
Enriching and isolating circulating tumor cells (CTCs) have attracted significant interest due to their important role in early cancer diagnosis and prognosis, allowing for minimally invasive approaches and providing vital information about metastasis at the cellular level. This review comprehensively summarizes the recent developments in microfluidic devices for CTC enrichment and isolation. The advantages and limitations of several microfluidic devices are discussed, and the design specifications of microfluidic devices for CTC enrichment are highlighted. We also developed a set of methodologies and design rules of label-free microfluidics such as spiral, deterministic lateral displacement (DLD) and dielectrophoresis (DEP) to allow researchers to design and develop microfluidic devices systematically and effectively, promoting rapid research on design, fabrication, and experimentation.
Collapse
Affiliation(s)
- Muhammad
Asraf Mansor
- Department
of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Chun Yang
- School
of Microelectronics, Tianjin University, Tianjin 300072, China
| | - Kar Lok Chong
- Department
of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Muhammad Asyraf Jamrus
- Department
of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Kewei Liu
- Sino-German
College of Intelligent Manufacturing, Shenzhen
Technology University, Shenzhen 518118, China
| | - Miao Yu
- Department
of Research and Development, Stedical Scientific, Carlsbad, California 92010, United States
| | - Mohd Ridzuan Ahmad
- Department
of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Xiang Ren
- School
of Microelectronics, Tianjin University, Tianjin 300072, China
| |
Collapse
|
31
|
Qi X, Lin S, Li M. Atomic force microscopy combined with microfluidics for label-free sorting and automated nanomechanics of circulating tumor cells in liquid biopsy. NANOSCALE 2025; 17:4695-4712. [PMID: 39865849 DOI: 10.1039/d4nr04033c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Liquid biopsies are expected to advance cancer management, and particularly physical cues are gaining attention for indicating tumorigenesis and metastasis. Atomic force microscopy (AFM) has become a standard and important tool for detecting the mechanical properties of single living cells, but studies of developing AFM-based methods to efficiently measure the mechanical properties of circulating tumor cells (CTCs) in liquid biopsy for clinical utility are still scarce. Herein, we present a proof-of-concept study based on the complementary combination of AFM and microfluidics, which allows label-free sorting of individual CTCs and subsequent automated AFM measurements of the mechanical properties of CTCs. With the use of a microfluidic system containing contraction-expansion microchannels, specific cancer cell types were separated and harvested in a marker-independent manner. Subsequently, automated AFM indentation and force spectroscopy experiments were performed on the enriched cells under the precise guidance of the label-free identification of cells using a deep learning optical image recognition model. The effectiveness of the presented method was verified on three experimental sample systems, including mixed microspheres with different sizes, a mixture of different types of cancer cells, and a mixture of cancer cells and blood cells. The study illustrates a feasible framework based on the integration of AFM and microfluidics for non-destructive and efficient nanomechanical phenotyping of CTCs in bodily fluids, which offers additional possibilities for the clinical applications of AFM-based nanomechanical analysis and will also benefit the field of mechanobiology as well as cancer liquid biopsy.
Collapse
Affiliation(s)
- Xiaoqun Qi
- School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, China
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Sen Lin
- School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, China
| | - Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
32
|
Demir T, Moloney C, Mahalingam D. Threading the Needle: Navigating Novel Immunotherapeutics in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2025; 17:715. [PMID: 40075563 PMCID: PMC11898821 DOI: 10.3390/cancers17050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/08/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with a poor prognosis. Currently, chemotherapy is the only option for most patients with advanced-stage PDAC. Further, conventional immunotherapies and targeted therapies improve survival outcomes only in rare PDAC patient subgroups. To date, combinatory immunotherapeutic strategies to overcome the immune-hostile PDAC tumor microenvironment (TME) have resulted in limited efficacy in clinical studies. However, efforts are ongoing to develop new treatment strategies for patients with PDAC with the evolving knowledge of the TME, molecular characterization, and immune resistance mechanisms. Further, the growing arsenal of various immunotherapeutic agents, including novel classes of immune checkpoint inhibitors and oncolytic, chimeric antigen receptor T cell, and vaccine therapies, reinforces these efforts. This review will focus on the place of immunotherapy and future possible strategies in PDAC.
Collapse
Affiliation(s)
| | | | - Devalingam Mahalingam
- Developmental Therapeutics, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (T.D.); (C.M.)
| |
Collapse
|
33
|
Schott D, Pizon M, Drozdz S, Mäurer I, Wurschi G, Pachmann K, Mäurer M. Circulating Epithelial Tumor Cells (CETC/CTC) in Prostate Cancer: Potential Prognostic Marker for the Risk of Recurrence During Radiotherapy. Int J Mol Sci 2025; 26:1548. [PMID: 40004014 PMCID: PMC11855499 DOI: 10.3390/ijms26041548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Prostate cancer is a leading cause of cancer-related mortality in men, with radiotherapy (RT) playing a pivotal role in treatment. However, reliable biomarkers for assessing relapse risk following RT remain scarce. This study aimed to evaluate circulating epithelial tumor cells (CETC/CTC) as potential biomarkers for assessing relapse risk in prostate cancer patients undergoing RT. Peripheral blood samples were collected from 52 prostate cancer patients, and CETC/CTC were detected using the EpCAM surface marker. Patients received definitive, adjuvant, or salvage RT, and CETC/CTC counts were measured before, at mid-treatment, and at the end of RT. The association between changes in CETC/CTC counts and relapse risk was examined. CETC/CTC were detected in 96% of patients prior to RT. A significant reduction in CETC/CTC counts during RT, particularly in patients who had undergone surgery, was associated with a lower relapse risk. In contrast, an increase in CETC/CTC counts during or after RT was associated with a higher relapse risk (hazard ratio = 8.8; p = 0.002). Furthermore, 36% of patients receiving adjuvant RT and 14% of those receiving definitive RT relapsed, with a higher risk observed in patients showing increasing CETC/CTC counts during RT. Among patients receiving salvage RT, 18% relapsed, though changes in CETC/CTC counts were less significantly associated with relapse. Monitoring CETC/CTC levels during RT offers important prognostic insights into relapse risk in prostate cancer patients. While changes in CETC/CTC counts correlated with relapse, PSA levels measured during the study did not reliably reflect relapse risk in this cohort. CETC/CTC shows promise as a prognostic marker, though further studies are required to validate its clinical superiority over PSA.
Collapse
Affiliation(s)
- Dorothea Schott
- Transfusion Medicine Center Bayreuth, Kurpromenade 2, 95448 Bayreuth, Germany; (M.P.); (K.P.)
| | - Monika Pizon
- Transfusion Medicine Center Bayreuth, Kurpromenade 2, 95448 Bayreuth, Germany; (M.P.); (K.P.)
| | - Sonia Drozdz
- Department of Radiotherapy and Radiation Oncology, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (S.D.); (M.M.)
| | - Irina Mäurer
- Department of Neurology, Neurooncology Center, University Hospital, Am Klinikum 1, 07747 Jena, Germany;
| | - Georg Wurschi
- Department of Radiotherapy and Radiation Oncology, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (S.D.); (M.M.)
- Clinician Scientist Program, Interdisciplinary Center for Clinical Research (IZKF), Jena Hospital, 07747 Jena, Germany
| | - Katharina Pachmann
- Transfusion Medicine Center Bayreuth, Kurpromenade 2, 95448 Bayreuth, Germany; (M.P.); (K.P.)
| | - Matthias Mäurer
- Department of Radiotherapy and Radiation Oncology, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (S.D.); (M.M.)
- Clinician Scientist Program OrganAge, Interdisciplinary Center for Clinical Research (IZKF), Jena Hospital, 07747 Jena, Germany
| |
Collapse
|
34
|
Sheriff S, Saba M, Patel R, Fisher G, Schroeder T, Arnolda G, Luo D, Warburton L, Gray E, Long G, Braithwaite J, Rizos H, Ellis LA. A scoping review of factors influencing the implementation of liquid biopsy for cancer care. J Exp Clin Cancer Res 2025; 44:50. [PMID: 39934875 PMCID: PMC11817833 DOI: 10.1186/s13046-025-03322-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Liquid biopsy (LB) offers a promising, minimally invasive alternative to traditional tissue biopsies in cancer care, enabling real-time monitoring and personalized treatment. Despite its potential, the routine implementation of LB in clinical practice faces significant challenges. This scoping review examines the barriers and facilitators influencing the implementation of liquid biopsies into standard cancer care. METHODS Four academic databases (PubMed, Scopus, Embase, and Web of Science) were systematically searched without language restrictions. We included peer-reviewed articles that were published between January 2019 and March 2024 that focused on the implementation of LB in cancer care or described barriers and facilitators to its implementation. Data relevant to the review objective, including key article characteristics; barriers and facilitators of implementation; and recommendations for advancement or optimisation; were extracted and analysed using thematic and visual network analyses. RESULTS The majority of the included articles were narrative review articles (84%), with most from China (24.2%) and the United States (20%). Thematic analysis identified four main categories and their associated barriers and facilitators to the implementation of LB in cancer care: (1) Laboratory and personnel requirements; (2) Disease specificity; (3) Biomarker-based liquid biopsy; and (4) Policy and regulation. The majority of barriers identified were concentrated in the pre-analytical phase, highlighting the lack of standardization in LB technologies and outcomes. CONCLUSIONS Through a thematic analysis of the barriers and facilitators to LB implementation, we present an integrated tool designed to encourage the standardization of testing methods for clinical practice guidelines in the field.
Collapse
Affiliation(s)
- Samran Sheriff
- Centre for Healthcare Resilience and Implementation Science, Australian Institute of Health Innovation, Macquarie University, Level 6, 75 Talavera Road, North Ryde, Sydney, NSW, Australia.
| | - Maree Saba
- Centre for Healthcare Resilience and Implementation Science, Australian Institute of Health Innovation, Macquarie University, Level 6, 75 Talavera Road, North Ryde, Sydney, NSW, Australia
| | - Romika Patel
- Centre for Healthcare Resilience and Implementation Science, Australian Institute of Health Innovation, Macquarie University, Level 6, 75 Talavera Road, North Ryde, Sydney, NSW, Australia
| | - Georgia Fisher
- Centre for Healthcare Resilience and Implementation Science, Australian Institute of Health Innovation, Macquarie University, Level 6, 75 Talavera Road, North Ryde, Sydney, NSW, Australia
| | - Tanja Schroeder
- Centre for Healthcare Resilience and Implementation Science, Australian Institute of Health Innovation, Macquarie University, Level 6, 75 Talavera Road, North Ryde, Sydney, NSW, Australia
| | - Gaston Arnolda
- Centre for Healthcare Resilience and Implementation Science, Australian Institute of Health Innovation, Macquarie University, Level 6, 75 Talavera Road, North Ryde, Sydney, NSW, Australia
| | - Dan Luo
- The Daffodil Centre, Sydney, NSW, Australia
| | - Lydia Warburton
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
- Department of Medical Oncology, Fiona Stanly Hospital, Murdoch, WA, Australia
| | - Elin Gray
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Georgina Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Royal North Shore and Mater Hospitals, North Sydney, Sydney, NSW, Australia
| | - Jeffrey Braithwaite
- Centre for Healthcare Resilience and Implementation Science, Australian Institute of Health Innovation, Macquarie University, Level 6, 75 Talavera Road, North Ryde, Sydney, NSW, Australia
| | - Helen Rizos
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Macquarie Medical School, Faculty of Medicine Health and Human Science, Macquarie University, Sydney, NSW, Australia
| | - Louise Ann Ellis
- Centre for Healthcare Resilience and Implementation Science, Australian Institute of Health Innovation, Macquarie University, Level 6, 75 Talavera Road, North Ryde, Sydney, NSW, Australia
| |
Collapse
|
35
|
Agrawal A, Javanmardi Y, Watson SA, Serwinski B, Djordjevic B, Li W, Aref AR, Jenkins RW, Moeendarbary E. Mechanical signatures in cancer metastasis. NPJ BIOLOGICAL PHYSICS AND MECHANICS 2025; 2:3. [PMID: 39917412 PMCID: PMC11794153 DOI: 10.1038/s44341-024-00007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/20/2024] [Indexed: 02/09/2025]
Abstract
The cancer metastatic cascade includes a series of mechanical barrier-crossing events, involving the physical movement of cancer cells from their primary location to a distant organ. This review describes the physical changes that influence tumour proliferation, progression, and metastasis. We identify potential mechanical signatures at every step of the metastatic cascade and discuss some latest mechanobiology-based therapeutic interventions to highlight the importance of interdisciplinary approaches in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ayushi Agrawal
- Department of Mechanical Engineering, University College London, London, UK
| | - Yousef Javanmardi
- Department of Mechanical Engineering, University College London, London, UK
| | - Sara A. Watson
- Department of Mechanical Engineering, University College London, London, UK
- Division of Biosciences, University College London, London, UK
| | - Bianca Serwinski
- Department of Mechanical Engineering, University College London, London, UK
- Northeastern University London, London, UK
| | - Boris Djordjevic
- Department of Mechanical Engineering, University College London, London, UK
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Amir R. Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Russell W. Jenkins
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
- Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London, UK
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| |
Collapse
|
36
|
Liu Z, Shi Z, Jiang W, Shen Z, Chen W, Shen K, Sun Y, Tang Z, Wang X. Circulating tumor DNA analysis for prediction of prognosis and molecular insights in patients with resectable gastric cancer: results from a prospective study. MedComm (Beijing) 2025; 6:e70065. [PMID: 39830022 PMCID: PMC11742430 DOI: 10.1002/mco2.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 12/03/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
This study aimed to evaluate the prognostic value of plasma circulating tumor DNA (ctDNA) level in patients with resectable gastric cancer (GC). A total of 59 patients were prospectively enrolled, with their ctDNA detected and paired tumor tissue collected at various peri-operative time points. Patients with higher 1-month post-operative ctDNA levels demonstrated shorter overall survival status (hazard ratio [HR] = 5.30, p = 0.0022) and a higher risk of recurrence (HR = 3.85, p = 0.011). The model combining ctDNA with conventional serum tumor markers for GC, including carcinoembryonic antigen, carbohydrate antigen 19-9, and CA72-4, shows high predictive effectiveness for GC prognosis with an area under the curve of 0.940 (p = 0.002), which is higher than net ctDNA and other models without ctDNA. Patients with lower ctDNA levels were more likely to have positive stromal programmed cell death ligand 1 expression (p = 0.046). Additionally, DCAF4L2 mutation was identified as the crucial gene mutation in ctDNA suggesting poor prognosis of patients with GC. Overall, this study highlights that post-operative ctDNA can serve as an effective biomarker for prognostic prediction and recurrence surveillance in resectable GC.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Gastrointestinal SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Gastric Cancer CenterZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Zhongyi Shi
- Department of Gastrointestinal SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Gastric Cancer CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Wenchao Jiang
- Department of Gastrointestinal SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Gastric Cancer CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Zhenbin Shen
- Department of Gastrointestinal SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Gastric Cancer CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Weidong Chen
- Department of Gastrointestinal SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Gastric Cancer CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Kuntang Shen
- Department of Gastrointestinal SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Gastric Cancer CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Yihong Sun
- Department of Gastrointestinal SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Gastric Cancer CenterZhongshan HospitalFudan UniversityShanghaiChina
- Department of General SurgeryZhongshan Hospital (Xiamen Branch)Fudan UniversityShanghaiChina
| | - Zhaoqing Tang
- Department of Gastrointestinal SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Gastric Cancer CenterZhongshan HospitalFudan UniversityShanghaiChina
- Department of General SurgeryZhongshan Hospital (Xiamen Branch)Fudan UniversityShanghaiChina
| | - Xuefei Wang
- Department of Gastrointestinal SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Gastric Cancer CenterZhongshan HospitalFudan UniversityShanghaiChina
- Department of General SurgeryZhongshan Hospital (Xiamen Branch)Fudan UniversityShanghaiChina
| |
Collapse
|
37
|
Peppicelli S, Calorini L, Bianchini F, Papucci L, Magnelli L, Andreucci E. Acidity and hypoxia of tumor microenvironment, a positive interplay in extracellular vesicle release by tumor cells. Cell Oncol (Dordr) 2025; 48:27-41. [PMID: 39023664 PMCID: PMC11850579 DOI: 10.1007/s13402-024-00969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
The complex and continuously evolving features of the tumor microenvironment, varying between tumor histotypes, are characterized by the presence of host cells and tumor cells embedded in a milieu shaped by hypoxia and low pH, resulting from the frequent imbalance between vascularity and tumor cell proliferation. These microenvironmental metabolic stressors play a crucial role in remodeling host cells and tumor cells, contributing to the stimulation of cancer cell heterogeneity, clonal evolution, and multidrug resistance, ultimately leading to progression and metastasis. The extracellular vesicles (EVs), membrane-enclosed structures released into the extracellular milieu by tumor/host cells, are now recognized as critical drivers in the complex intercellular communication between tumor cells and the local cellular components in a hypoxic/acidic microenvironment. Understanding the intricate molecular mechanisms governing the interactions between tumor and host cells within a hypoxic and acidic microenvironment, triggered by the release of EVs, could pave the way for innovative strategies to disrupt the complex interplay of cancer cells with their microenvironment. This approach may contribute to the development of an efficient and safe therapeutic strategy to combat cancer progression. Therefore, we review the major findings on the release of EVs in a hypoxic/acidic tumor microenvironment to appreciate their role in tumor progression toward metastatic disease.
Collapse
Affiliation(s)
- Silvia Peppicelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy.
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| |
Collapse
|
38
|
Bergmann L, Afflerbach AK, Yuan T, Pantel K, Smit DJ. Lessons (to be) learned from liquid biopsies: assessment of circulating cells and cell-free DNA in cancer and pregnancy-acquired microchimerism. Semin Immunopathol 2025; 47:14. [PMID: 39893314 PMCID: PMC11787191 DOI: 10.1007/s00281-025-01042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Tumors constantly shed cancer cells that are considered the mediators of metastasis via the blood stream. Analysis of circulating cells and circulating cell-free DNA (cfDNA) in liquid biopsies, mostly taken from peripheral blood, have emerged as powerful biomarkers in oncology, as they enable the detection of genomic aberrations. Similarly, liquid biopsies taken from pregnant women serve as prenatal screening test for an abnormal number of chromosomes in the fetus, e.g., via the analysis of microchimeric fetal cells and cfDNA circulating in maternal blood. Liquid biopsies are minimally invasive and, consequently, associated with reduced risks for the patients. However, different challenges arise in oncology and pregnancy-acquired liquid biopsies with regard to the analyte concentration and biological (background) noise among other factors. In this review, we highlight the unique biological properties of circulating tumor cells (CTC), summarize the various techniques that have been developed for the enrichment, detection and analysis of CTCs as well as for analysis of genetic and epigenetic aberrations in cfDNA and highlight the range of possible clinical applications. Lastly, the potential, but also the challenges of liquid biopsies in oncology as well as their translational value for the analysis of pregnancy-acquired microchimerism are discussed.
Collapse
Affiliation(s)
- Lina Bergmann
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Ann-Kristin Afflerbach
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Tingjie Yuan
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| | - Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| |
Collapse
|
39
|
Schmid A, Lausch U, Runkel A, Kiefer J, Pauli T, Boerries M, Bogner B, Eisenhardt SU, Braig D. Improved Quantification of Circulating Tumor DNA in Translocation-Associated Myxoid Liposarcoma by Simultaneous Detection of Breakpoints and Single Nucleotide Variants. Cancer Med 2025; 14:e70704. [PMID: 39980272 PMCID: PMC11842865 DOI: 10.1002/cam4.70704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/19/2024] [Accepted: 02/08/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Myxoid liposarcomas (MLS) can exhibit a disseminated metastatic pattern, necessitating extensive diagnostics during follow-up. With no tumor markers available, early diagnosis of recurrences and tumor monitoring is difficult. The detection of circulating tumor DNA (ctDNA; liquid biopsy) in MLS with the characteristic translocations t(12;16) and t(12;22) can provide an additional diagnostic. However, due to the often very low tumor fraction, distinguishing actual tumor variants from sequencing artifacts remains a key challenge. METHODS Using MLS as a model for translocation-driven tumors, this study evaluates a refined analytical approach for detecting both single nucleotide variants (SNVs) and structural variants (SVs) with the highest possible sensitivity and specificity. Different analysis pipelines using Unique Molecular Identifiers (UMIs) were compared in dilution series of tumor DNA from MLS patients (n = 11) and a cell line. The results were validated on plasma samples (n = 36) from two MLS patients and one patient with Synovial Sarcoma (SS). RESULTS In dilution series, the use of UMIs significantly reduced false positive events in SNV analysis while maintaining high sensitivity without significant differences. In SV analysis, the effect of UMIs was not consistently detectable, as some dilution series exhibited no false positive events even without UMI correction. Additional filter criteria further improved specificity without significantly compromising assay sensitivity. Validation on patient plasma samples confirmed these findings, demonstrating the advantages of the differentiated analytical approach. CONCLUSION By integrating a refined analytical approach for SNVs and SVs, we achieved reliable ctDNA detection that corresponded with the clinical course of the patients' disease. This method enables non-invasive tumor detection in translocation-driven tumors with low mutational burden and can easily be adapted into routine clinical diagnostics.
Collapse
Affiliation(s)
- A. Schmid
- Department of Plastic and Hand SurgeryMedical Center ‐ University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - U. Lausch
- Department of Plastic and Hand SurgeryMedical Center ‐ University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - A. Runkel
- Department of Plastic and Hand SurgeryMedical Center ‐ University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - J. Kiefer
- Department of Plastic and Hand SurgeryMedical Center ‐ University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - T. Pauli
- Institute of Medical Bioinformatics and Systems MedicineMedical Center–University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - M. Boerries
- Institute of Medical Bioinformatics and Systems MedicineMedical Center–University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - B. Bogner
- Department of RadiologyMedical Center–University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - S. U. Eisenhardt
- Department of Plastic and Hand SurgeryMedical Center ‐ University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - D. Braig
- Department of Plastic and Hand SurgeryMedical Center ‐ University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| |
Collapse
|
40
|
Tsukamoto R, Sugimoto K, Ii Y, Irie T, Kawaguchi M, Kobari A, Tsuchiya Y, Honjo K, Kawai M, Ishiyama S, Takahashi M, Sakamoto K. Prognostic Impact of the Postoperative Carcinoembryonic Antigen Level after Curative Resection of Locally Advanced Rectal Cancer. J Anus Rectum Colon 2025; 9:69-78. [PMID: 39882227 PMCID: PMC11772802 DOI: 10.23922/jarc.2024-035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/03/2024] [Indexed: 01/31/2025] Open
Abstract
Objectives This study was conducted to investigate whether preoperative or postoperative carcinoembryonic antigen (CEA) with a new cut-off value is more optimal for predicting long-term outcomes in patients with Stage II/III rectal cancer, and to investigate the effectiveness of postoperative adjuvant chemotherapy (POAC) based on the CEA values. Methods Serum CEA levels were measured preoperatively (pre-CEA) and postoperatively (post-CEA). The area under the receiver operating curve (AUROC) was used to determine a cut-off for CEA. The cut-off for CEA relative to recurrence-free survival (RFS) was established as that giving the highest AUROC. In comparison of superiority between pre- and post- CEA levels, Akaike's information criterion (AIC) was used in the Cox proportional-hazard regression model. Results The subjects were 323 patients who underwent curative surgical treatment for Stage II/III rectal cancer. AIC values indicated that RFS was better stratified by a post-CEA level with a cut-off of 2.3 ng/ml compared with other classifications of pre- or post- CEA. In Stage III or high-risk Stage II cases, there was no effect of POAC on RFS in those with post-CEA <2.3 ng/ml (p=0.39), but in those with post-CEA ≥2.3 ng/ml there was a trend for better RFS in patients who received POAC compared to those without POAC (p=0.06). Conclusions Patients with post-CEA ≥2.3 ng/ml had worse long-term outcomes compared with those with post-CEA <2.3 ng/ml. Post-CEA with a cut-off of 2.3 ng/ml may be useful in determining the indication for POAC for in Stage III or high-risk Stage II cases.
Collapse
Affiliation(s)
- Ryoichi Tsukamoto
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kiichi Sugimoto
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yuki Ii
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Takahiro Irie
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Megumi Kawaguchi
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Aya Kobari
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yuki Tsuchiya
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kumpei Honjo
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Masaya Kawai
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Shun Ishiyama
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Makoto Takahashi
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kazuhiro Sakamoto
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
41
|
Cao L, Duan Q, Zhu Z, Xu X, Liu J, Li B. Liquid biopsy technologies: innovations and future directions in breast cancer biomarker detection. Biomed Microdevices 2025; 27:4. [PMID: 39849252 DOI: 10.1007/s10544-025-00734-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 01/25/2025]
Abstract
Globally, breast cancer is the most frequent type of cancer, and its early diagnosis and screening can significantly improve the probability of survival and quality of life of those affected. Liquid biopsy-based targets such as circulating tumor cells, circulating tumor DNA, and exosomes have been instrumental in the early discovery of cancer, and have been found to be effective in stage therapy, recurrence monitoring, and drug selection. Biosensors based on these target related biomarkers convert the tested substances into quantifiable signals such as electrical and optical signals through signal transduction, which has the advantages of high sensitivity, simple operation, and low invasiveness. This review provides an overview of the latest progress of liquid biopsy biomarkers in the diagnosis, prognosis and treatment of breast cancer, compares the application and advantages of different biosensors based on these biomarkers in the diagnosis of breast cancer, and analyzes the limitations and solutions of biosensor based methods.
Collapse
Affiliation(s)
- Linhong Cao
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory, Luzhou, Sichuan, China
| | - Qingli Duan
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory, Luzhou, Sichuan, China
| | - Zixin Zhu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory, Luzhou, Sichuan, China
| | - Xuejing Xu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory, Luzhou, Sichuan, China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China.
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China.
- Molecular Diagnosis of Clinical Diseases Key Laboratory, Luzhou, Sichuan, China.
| | - Baolin Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China.
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China.
- Molecular Diagnosis of Clinical Diseases Key Laboratory, Luzhou, Sichuan, China.
| |
Collapse
|
42
|
Schreier S, Budchart P, Borwornpinyo S, Adireklarpwong L, Chirappapha P, Triampo W, Lertsithichai P. Rare Cell Population Analysis in Early-Stage Breast Cancer Patients. Breast Cancer (Auckl) 2025; 19:11782234241310596. [PMID: 39803593 PMCID: PMC11724413 DOI: 10.1177/11782234241310596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Background Circulating rare cells participate in breast cancer evolution as systemic components of the disease and thus, are a source of theranostic information. Exploration of cancer-associated rare cells is in its infancy. Objectives We aimed to investigate and classify abnormalities in the circulating rare cell population among early-stage breast cancer patients using fluorescence marker identification and cytomorphology. In addition, we sought to determine the dependency of these markers on the presence of tumors. Design We evaluated the validity of a multi-rare-cell detection platform and demonstrated the utility of a specific rare cell subset as a novel approach to characterize the breast cancer system. Sampling was conducted both before and after tumor resection. Methods Linearity of the Rarmax platform was established using a spike-in approach. The platform includes red blood cell lysis, leukocyte depletion and high-resolution fluorescence image recording. Rare cell analysis was conducted on 28 samples (before and after surgery) from 14 patients with breast cancer, 20 healthy volunteers and 9 noncancer control volunteers. In-depth identification of rare cells, including circulating tumor cells, endothelial-like cells, erythroblasts, and inflammation-associated cells, was performed using a phenotype and morphology-based classification system. Results The platform performed linearly over a range of 5 to 950 spiked cells, with an average recovery of 84.6%. Circulating epithelial and endothelial-like cell subsets have been demonstrated to be associated with or independent of cancer with tumor presence. Furthermore, certain cell profile patterns may be associated with treatment-related adverse effects. The sensitivity in detecting tumor-presence and cancer-associated abnormality before surgery was 43% and 85.7%, respectively, and the specificity was 100% and 96.6%, respectively. Conclusion This study supports the idea of a cancer-associated rare cell abnormality to represent tumor entities as well as systemic cancer. The latter is independent of the apparent clinical cancer.
Collapse
Affiliation(s)
- Stefan Schreier
- School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, Thailand
- MUSC Centre of Excellence in STEM Education, School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, Thailand
- Premise Biosystems Co., Ltd. Bangkok, Thailand
| | | | - Suparerk Borwornpinyo
- Premise Biosystems Co., Ltd. Bangkok, Thailand
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Lakkana Adireklarpwong
- Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Prakasit Chirappapha
- Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wannapong Triampo
- MUSC Centre of Excellence in STEM Education, School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, Thailand
- Biophysics Lab, Department of Physics, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Panuwat Lertsithichai
- Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
43
|
Aschero R, Simao M, Catala-Mora J, L Chantada G. Risk Factors for Extraocular Relapse in Retinoblastoma. Semin Ophthalmol 2025:1-11. [PMID: 39789868 DOI: 10.1080/08820538.2025.2450682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/12/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025]
Abstract
BACKGROUND Metastatic retinoblastoma remains a significant challenge in pediatric oncology, with stark disparities in survival outcomes between high-income countries (HICs) and low-income countries (LICs). Delayed diagnosis and treatment, driven by socioeconomic factors and limitations in healthcare systems, contribute to poorer outcomes in LICs. Histopathological characteristics, including high-risk pathology factors (HRPFs) and the extent of ocular tumor invasion, are critical for predicting metastatic risk and guiding treatment strategies. METHODS This review examines the role of clinical, histopathological, and molecular characteristics in assessing metastatic risk in retinoblastoma. Literature on HRPFs, tumor invasion, and molecular subtypes was analyzed to understand their impact on risk stratification and therapy optimization, particularly in resource-limited settings. RESULTS Retinoblastoma is increasingly recognized as a heterogeneous disease with at least two distinct molecular subtypes. High-risk cases frequently exhibit genetic alterations that underscore the need to incorporate molecular profiling into risk assessment. Current adjuvant therapy approaches, however, vary widely, and debates persist regarding their necessity based on tumor characteristics. Integrated strategies that combine clinical, histopathological, and molecular data show promise in improving management and survival outcomes. CONCLUSIONS Addressing the disparities in metastatic retinoblastoma outcomes requires a multifaceted approach. By integrating clinical, histopathological, and molecular insights, management strategies can be optimized to improve survival, particularly in resource-limited settings where challenges are most pronounced.
Collapse
Affiliation(s)
- Rosario Aschero
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Margarida Simao
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Jaume Catala-Mora
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
- Servicio de Oftalmología, Unidad de Tumores Intraoculares de la Infancia, Servicio de Oftalmología, Hospital Sant Joan de Deú, Barcelona, Spain
| | - Guillermo L Chantada
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
- Hematology Oncology Service, Hospital Pereira Rossell, Montevideo, Uruguay
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
44
|
Zhang Y, Yuan X. Minimal residue disease detection in early-stage breast cancer: a review. Mol Biol Rep 2025; 52:106. [PMID: 39777588 DOI: 10.1007/s11033-024-10198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Over the past five years, circulating tumor DNA (ctDNA) testing has emerged as a game-changer in cancer research, serving as a less invasive and highly sensitive method to monitor tumor dynamics. CtDNA testing has a wide range of potential applications in breast cancer (BC) management, including diagnosis, monitoring treatment responses, identifying resistance mutations, predicting prognosis, and detecting future relapses. In this review, we focus on the prognostic and predictive value of ctDNA testing for BC in both neoadjuvant and adjuvant settings. We also examine the rationale behind mainstream minimal residue disease (MRD) tracking methods and highlight key considerations for successful MRD testing. Clinical evidence has shown that ctDNA-based MRD testing can accurately detect molecular relapse 8-12 months before clinical relapse in early-stage BC. Compared to advanced-stage BC, detecting ctDNA in early-stage BC is more challenging and requires ultra-sensitive testing methods due to the low levels of ctDNA released into the bloodstream, particularly in post-surgical settings, after effective neoadjuvant chemotherapy, and in late adjuvant settings that require longer follow-up. Therefore, future efforts are needed to generate additional clinical evidence in these settings to support the clinical utility and widespread adoption of ctDNA-based MRD testing.
Collapse
Affiliation(s)
- Yuan Zhang
- College of Art and Science, Northeast Agricultural University, Changjiang Road No. 600, Harbin, 150030, China
- Shuwen Biotech Co., Ltd., Moganshan National High tech Zone, Building 3, No. 333, Changhong Middle Street, Deqing, China
| | - Xiaoying Yuan
- Shuwen Biotech Co., Ltd., Moganshan National High tech Zone, Building 3, No. 333, Changhong Middle Street, Deqing, China.
| |
Collapse
|
45
|
Fan Z, Yang LC, Chen YQ, Wan WQ, Zhou DH, Mai HR, Li WL, Yang LH, Lan HK, Chen HQ, Guo BY, Zhen ZJ, Liu RY, Chen GH, Feng XQ, Liang C, Wang LN, Yu-Li, Luo JS, Huang DP, Luo XQ, Li B, Huang LB, Zhang XL, Tang YL. Prognostic significance of MRD and its correlation with arsenic concentration in pediatric acute promyelocytic leukemia: a retrospective study by SCCLG-APL group. Ther Adv Hematol 2025; 16:20406207241311774. [PMID: 39781038 PMCID: PMC11707783 DOI: 10.1177/20406207241311774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Background Treatment outcomes for acute promyelocytic leukemia (APL) have improved with all-trans-retinoic acid and arsenic trioxide, yet relapse remains a concern, especially in pediatric patients. The prognostic value of minimal residual disease (MRD) post-induction and the impact of arsenic levels during induction on MRD are not fully understood. Objectives To evaluate the relationship between post-induction MRD levels and relapse-free survival (RFS) in pediatric APL patients, and to investigate the correlation between blood arsenic concentration levels during induction therapy and MRD status. Design A retrospective analysis of pediatric APL patients enrolled in a clinical trial from September 2011 to July 2020. Methods We assessed the relationship between RFS and post-induction MRD levels using the log-rank test. The optimal MRD cut-off was determined using the "surv_cutpoint" function in the survminer R package. Arsenic concentration levels were monitored in 16 patients on days 7 and 14 of induction therapy, and Spearman correlation was used to analyze the relationship between arsenic concentrations and MRD levels. Results Among 176 pediatric APL patients, with a median follow-up of 6 years, 4 relapsed. Patients with MRD >3.1% had significantly lower RFS compared to those with MRD ⩽3.1% (94.6% vs 100%, p = 0.023). In addition, a negative correlation was found between blood arsenic concentration levels and post-induction MRD levels. Lower arsenic concentrations were associated with higher MRD levels, with significant correlations observed for trough concentrations (R = -0.666, p = 0.005) and peak concentrations (R = -0.499, p = 0.049) on day 7. Conclusion Our study highlights the prognostic significance of post-induction MRD assessment in pediatric APL. We also demonstrate a negative correlation between blood arsenic concentration levels and MRD, suggesting that lower arsenic concentrations during induction therapy may contribute to a higher MRD burden. These findings may inform strategies to optimize treatment and improve outcomes in pediatric APL.Trial registration: www.clinicaltrials.gov (NCT02200978).
Collapse
Affiliation(s)
- Zhong Fan
- Department of Paediatrics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang-Chun Yang
- Department of Paediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Qiao Chen
- Department of Paediatric Haematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Wu-Qing Wan
- Department of Paediatrics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dun-Hua Zhou
- Department of Paediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui-Rong Mai
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Wan-Li Li
- Department of Haematology, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Li-Hua Yang
- Department of Paediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - He-Kui Lan
- Department of Paediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hui-Qin Chen
- Department of Paediatrics, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bi-Yun Guo
- Department of Paediatrics, First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Zi-Jun Zhen
- Department of Paediatrics, Sun Yat-sen University Cancer Center, Guanzhou, Guangdong, China
| | - Ri-Yang Liu
- Department of Paediatrics, Huizhou Central People’s Hospital, Huizhou, Guangdong, China
| | - Guo-Hua Chen
- Department of Paediatrics, First People’s Hospital of Huizhou, Huizhou, Guangdong, China
| | - Xiao-Qin Feng
- Department of Paediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Cong Liang
- Department of Paediatrics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li-Na Wang
- Department of Paediatrics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu-Li
- Department of Paediatrics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie-Si Luo
- Department of Paediatrics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dan-Ping Huang
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Xue-Qun Luo
- Department of Paediatrics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bin Li
- Biostatistics Team, Clinical Trials Unit, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li-Bin Huang
- Department of Paediatrics, First Affiliated Hospital, Sun Yat-sen University, Zhongshan Er Road, No. 58, Guangzhou, Guangdong 510080, China
| | - Xiao-Li Zhang
- Department of Paediatrics, First Affiliated Hospital, Sun Yat-sen University, Zhongshan Er Road, No. 58, Guangzhou, Guangdong 510080, China
| | - Yan-Lai Tang
- Department of Paediatrics, First Affiliated Hospital, Sun Yat-sen University, Zhongshan Er Road, No. 58, Guangzhou, Guangdong 510080, China
| |
Collapse
|
46
|
Mishra A, Huang SB, Dubash T, Burr R, Edd JF, Wittner BS, Cunneely QE, Putaturo VR, Deshpande A, Antmen E, Gopinathan KA, Otani K, Miyazawa Y, Kwak JE, Guay SY, Kelly J, Walsh J, Nieman LT, Galler I, Chan P, Lawrence MS, Sullivan RJ, Bardia A, Micalizzi DS, Sequist LV, Lee RJ, Franses JW, Ting DT, Brunker PAR, Maheswaran S, Miyamoto DT, Haber DA, Toner M. Tumor cell-based liquid biopsy using high-throughput microfluidic enrichment of entire leukapheresis product. Nat Commun 2025; 16:32. [PMID: 39746954 PMCID: PMC11696112 DOI: 10.1038/s41467-024-55140-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025] Open
Abstract
Circulating Tumor Cells (CTCs) in blood encompass DNA, RNA, and protein biomarkers, but clinical utility is limited by their rarity. To enable tumor epitope-agnostic interrogation of large blood volumes, we developed a high-throughput microfluidic device, depleting hematopoietic cells through high-flow channels and force-amplifying magnetic lenses. Here, we apply this technology to analyze patient-derived leukapheresis products, interrogating a mean blood volume of 5.83 liters from seven patients with metastatic cancer. High CTC yields (mean 10,057 CTCs per patient; range 100 to 58,125) reveal considerable intra-patient heterogeneity. CTC size varies within patients, with 67% overlapping in diameter with WBCs. Paired single-cell DNA and RNA sequencing identifies subclonal patterns of aneuploidy and distinct signaling pathways within CTCs. In prostate cancers, a subpopulation of small aneuploid cells lacking epithelial markers is enriched for neuroendocrine signatures. Pooling of CNV-confirmed CTCs enables whole exome sequencing with high mutant allele fractions. High-throughput CTC enrichment thus enables cell-based liquid biopsy for comprehensive monitoring of cancer.
Collapse
Affiliation(s)
- Avanish Mishra
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Shih-Bo Huang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Howard Hughes Medical Institute, Bethesda, MD, 20815, USA
| | - Taronish Dubash
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Risa Burr
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jon F Edd
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ben S Wittner
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Quinn E Cunneely
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Victor R Putaturo
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Akansha Deshpande
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ezgi Antmen
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Kaustav A Gopinathan
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Keisuke Otani
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Yoshiyuki Miyazawa
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Ji Eun Kwak
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Sara Y Guay
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Justin Kelly
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - John Walsh
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Linda T Nieman
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Isabella Galler
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - PuiYee Chan
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Michael S Lawrence
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Ryan J Sullivan
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Aditya Bardia
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
- Hematology/Oncology, University of California, Los Angeles, USA
| | - Douglas S Micalizzi
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Lecia V Sequist
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Richard J Lee
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Joseph W Franses
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - David T Ting
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Patricia A R Brunker
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Shyamala Maheswaran
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - David T Miyamoto
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA.
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Daniel A Haber
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA.
- Howard Hughes Medical Institute, Bethesda, MD, 20815, USA.
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA.
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
- Shriners Children's Boston, Boston, MA, 02114, USA.
| |
Collapse
|
47
|
Cheng L, Xu S, Wang Y, Li S, Li B, Li X. Circulating Tumor DNA Detection for Recurrence Monitoring of Stage I Non-Small Cell Lung Cancer Treated With Microwave Ablation. Thorac Cancer 2025; 16:e15534. [PMID: 39825733 PMCID: PMC11742128 DOI: 10.1111/1759-7714.15534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/29/2024] [Accepted: 01/05/2025] [Indexed: 01/20/2025] Open
Abstract
PURPOSE As microwave ablation continues to be used in patients with inoperable stage I non-small cell lung cancer (NSCLC), it is particularly important to monitor efficacy. Whether plasma ctDNA detection can predict its efficacy should be illustrated. METHODS We recruited 43 patients with inoperative stage I NSCLC, all of whom underwent biopsy-synchronous microwave ablation (MWA). Peripheral blood samples were collected at baseline (n = 43), within 1 h post-MWA (n = 28), and at the landmark time point (n = 26) for MRD detection. Clinical outcomes were analyzed using Kaplan-Meier survival analysis. RESULTS Patients with undetectable ctDNA at baseline (p = 0.042) and within 1 h after MWA (p = 0.023) had better clinical outcomes. In particular, patients with undetectable ctDNA at the 1-h post-MWA time point did not experience recurrence. Detection of ctDNA at the landmark time point is considered an independent risk factor for prognosis and is strongly correlated with clinical outcomes (p = 0.001), the median time to recurrence indicated by ctDNA was 4.9 months earlier compared to imaging. The clinical outcomes of patients with ctDNA clearance were similar to those with no ctDNA (p = 0.570). Risk stratification indicated that patients with persistent ctDNA had worse clinical outcomes compared to those who never had detectable ctDNA (p = 0.004). CONCLUSION Our findings suggest that ctDNA monitoring can assist in predicting clinical outcomes in stage I NSCLC treated with microwave ablation. Patients with undetectable ctDNA within 1 h after MWA are determined to be clinically cured. Risk stratification based on ctDNA test results helps to differentiate high-risk patients.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Minimally Invasive Tumor Therapies CenterBeijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
- Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Sheng Xu
- Department of Minimally Invasive Tumor Therapies CenterBeijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Yu‐feng Wang
- Department of Minimally Invasive Tumor Therapies CenterBeijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Sheng‐wei Li
- Department of Minimally Invasive Tumor Therapies CenterBeijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Bin Li
- Department of Minimally Invasive Tumor Therapies CenterBeijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Xiao‐Guang Li
- Department of Minimally Invasive Tumor Therapies CenterBeijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
- Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
48
|
Pantel K, Alix-Panabières C. Minimal residual disease as a target for liquid biopsy in patients with solid tumours. Nat Rev Clin Oncol 2025; 22:65-77. [PMID: 39609625 DOI: 10.1038/s41571-024-00967-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/30/2024]
Abstract
Metastasis is the leading cause of cancer-related death in patients with solid tumours. Current imaging technologies are not sufficiently sensitive to detect minimal residual disease (MRD; also known as measurable or molecular residual disease) after initial surgery or chemotherapy, pointing to the need for more sensitive tests to detect remaining traces of cancer in the body. Liquid biopsy, or the analysis of tumour-derived or tumour-induced cells or cellular products in the blood or other body fluids, has opened a new diagnostic avenue to detect and monitor MRD. Liquid biopsy is already used in clinical decision making for patients with haematological malignancies. Here, we review current knowledge on the use of circulating tumour DNA (ctDNA) to detect and monitor MRD in patients with solid tumours. We also discuss how ctDNA-guided MRD detection and characterization could herald a new era of novel 'post-adjuvant therapies' with the potential to eliminate MRD and cure patients before terminal metastatic disease is evident on imaging.
Collapse
Affiliation(s)
- Klaus Pantel
- Department of Tumour Biology, University Medical, Center Hamburg-Eppendorf, Hamburg, Germany.
- European Liquid Biopsy Society (ELBS), Hamburg, Germany.
| | - Catherine Alix-Panabières
- European Liquid Biopsy Society (ELBS), Hamburg, Germany.
- Laboratory of Rare Human Circulating Cells (LCCRH) and Liquid Biopsy, University Medical Centre of Montpellier, Montpellier, France.
- CREEC (CREES), Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France.
| |
Collapse
|
49
|
Wong CHM, Ko ICH, Ng CF. Liquid biomarkers in prostate cancer: recent advancements and future directions. Curr Opin Urol 2025; 35:3-12. [PMID: 38712633 DOI: 10.1097/mou.0000000000001188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
PURPOSE OF REVIEW Traditional diagnostic approaches of prostate cancer like PSA are limited by high false-positive rates and insufficient capture of tumour heterogeneity, necessitating the development of more precise tools. This review examines the latest advancements in liquid biomarkers for prostate cancer, focusing on their potential to refine diagnostic accuracy and monitor disease progression. RECENT FINDINGS Liquid biomarkers have gained prominence because of their minimally invasive nature and ability to reflect the molecular characteristics of prostate cancer. Circulating tumour cells provide insight into tumour cell dissemination and are indicative of aggressive disease phenotypes, with single-cell analyses revealing genomic instability and treatment resistance. Circulating tumour DNA offers real-time tumour genomic information, aiding in treatment decision-making in advanced prostate cancer, where it has been associated with clinical progression. MicroRNAs act as oncogenes or tumour suppressors and exhibit diagnostic and prognostic potential; however, their clinical utility is constrained by the lack of consistent validation. Extracellular vesicles contain tumour-derived biomolecules, with specific proteins demonstrating prognostic relevance. Applications of these markers to urinary testing have been demonstrated. SUMMARY Liquid biomarkers show potential in refining prostate cancer management. Future research should aim to integrate these biomarkers into a cohesive framework in line with precision medicine principles.
Collapse
Affiliation(s)
- Chris Ho-Ming Wong
- SH Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | | |
Collapse
|
50
|
Tipatet KS, Hanna K, Davison-Gates L, Kerst M, Downes A. Subtype-Specific Detection in Stage Ia Breast Cancer: Integrating Raman Spectroscopy, Machine Learning, and Liquid Biopsy for Personalised Diagnostics. JOURNAL OF BIOPHOTONICS 2025; 18:e202400427. [PMID: 39587849 DOI: 10.1002/jbio.202400427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024]
Abstract
This study explores the integration of Raman spectroscopy (RS) with machine learning for the early detection and subtyping of breast cancer using blood plasma samples. We performed detailed spectral analyses, identifying significant spectral patterns associated with cancer biomarkers. Our findings demonstrate the potential for classifying the four major subtypes of breast cancer at stage Ia with an average sensitivity and specificity of 90% and 95%, respectively, and a cross-validated macro-averaged area under the curve (AUC) of 0.98. This research highlights efforts to integrate vibrational spectroscopy with machine learning, enhancing cancer diagnostics through a non-invasive, personalised approach for early detection and monitoring disease progression. This study is the first of its kind to utilise RS and machine learning to classify the four major breast cancer subtypes at stage Ia.
Collapse
Affiliation(s)
- Kevin Saruni Tipatet
- Institute for BioEngineering, School of Engineering, University of Edinburgh, Edinburgh, UK
- Promotionskolleg NRW, Bochum, Germany
| | - Katie Hanna
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Liam Davison-Gates
- Institute for BioEngineering, School of Engineering, University of Edinburgh, Edinburgh, UK
| | - Mario Kerst
- Faculty of Life Sciences, Rhine-Waal University of Applied Sciences, Kleve, Germany
| | - Andrew Downes
- Institute for BioEngineering, School of Engineering, University of Edinburgh, Edinburgh, UK
| |
Collapse
|