1
|
Shen D, Guo H, Zhang F, Chen X, Tong X, Li H, Wu W, Mei S. Highly-sensitive and logic platform based on spatially-constrained T7 transcription enhanced Cas13a for DNA repair enzyme detection and intracellular imaging. Biosens Bioelectron 2025; 280:117406. [PMID: 40179700 DOI: 10.1016/j.bios.2025.117406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/27/2025] [Accepted: 03/20/2025] [Indexed: 04/05/2025]
Abstract
The activity of DNA repair enzymes, particularly Flap endonuclease 1 (FEN1) and apurinic/apyrimidinic endonuclease 1 (APE1), plays a critical role in disease prevention, diagnosis, and prognosis. Accurate detection of these enzymes is therefore essential. Recent advancements in CRISPR-Cas technology, particularly its programmable and trans-cleavage activity, have paved the way for the development of innovative detection methods. However, there is a need for a simple, low-background, highly sensitive detection platform with logical capabilities for FEN1 and APE1. In this study, we present a novel detection platform that integrates spatially constrained T7 transcription with the CRISPR-Cas13a system. This biosensor minimizes background interference and achieves high sensitivity, with limits of detection as low as 5 × 10-7 U/μL for FEN1 and 2 × 10-8 U/μL for APE1, making it one of the most sensitive methods available for detecting these enzymes. The platform supports both OR and logic detection, offering enhanced versatility. It demonstrates robustness by detecting FEN1 activity at concentrations as low as 1 cell/μL and screening enzyme inhibitors. Additionally, the system was successfully used for intracellular imaging of FEN1 activity in cells and reliably measured APE1 activity in ovarian tissue samples, confirming its clinical applicability. This biosensor represents a promising tool for detecting FEN1 and APE1, further expanding the potential of CRISPR-Cas13a in diagnostic applications.
Collapse
Affiliation(s)
- Dongsheng Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China
| | - Hong Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China
| | - Fubin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Street, Ningbo, 315010, Zhejiang Province, China
| | - Xixi Chen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xiaowen Tong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China
| | - Huaifang Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China.
| | - Wenjun Wu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Shuaikang Mei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
2
|
Hirano T. Mitotic genome folding. J Cell Biol 2025; 224:e202504075. [PMID: 40492990 DOI: 10.1083/jcb.202504075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/30/2025] [Accepted: 06/02/2025] [Indexed: 06/12/2025] Open
Abstract
Mitotic genome folding, or mitotic chromosome assembly, is essential for the faithful segregation of genetic information into daughter cells. While this process was once thought to be highly complex, requiring a myriad of protein components, recent studies have begun to revise this conventional view. An emerging view is that the core reaction of mitotic genome folding is mediated by a dynamic interplay of a limited number of structural components, namely, condensins, topoisomerase II (topo II), and histones. Condensins and topo II are two distinct classes of ATPases that cooperate to actively form and manipulate DNA loops, both accumulating at the central axial regions of the resulting chromosomes. In contrast, nucleosomes and linker histones help to compact DNA loops by cooperating and competing with the action of these ATPases. In this review, I will focus on the recent advances in the field, with an emphasis on the mechanistic aspects of mitotic genome folding.
Collapse
|
3
|
Simon AG, Lyu SI, Schultheis AM, Stahl D, Wuerdemann N, Walter S, Hieggelke L, Buettner R, Bruns CJ, Eysel P, Schiffmann LM, Knipper K, Mallmann P, Quaas A, Ullrich R. Exploration of histone protein γ-H2AX as a prognostic factor in soft tissue sarcomas and its association with biological behavior, immune cell environment and survival in leiomyosarcoma. Int J Cancer 2025; 156:2237-2250. [PMID: 39707602 PMCID: PMC11970547 DOI: 10.1002/ijc.35310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
This study evaluates the H2AX/γ-H2AX expression in soft tissue sarcomas (STS), its implications for biological behavior and immune environment, and its potential as a prognostic biomarker. RNA-Seq data from 237 STS were obtained from The Cancer Genome Atlas project. Patients were stratified by H2AX mRNA expression using a survival-associated cutoff. Differentially expressed genes and pathways as well as immune signatures between H2AXhigh- and H2AXlow tumors were identified with DESeq2 analysis, gene set enrichment analyses (GSEA), Enrichr pathway analysis and CIBERSORTx. Tissue microarrays of a different cohort of 291 STS were generated for immunohistochemical staining to assess γ-H2AX protein expression, followed by statistical evaluation. High H2AX mRNA expression was associated with shorter overall survival (OS) in STS (p = 0.02), particularly in leiomyosarcomas (LMS) (p < 0.001), and was a negative prognostic factor in LMS (HR 11.15, p < 0.001). H2AXhigh LMS tumors showed upregulation of cell cycle-related pathways, while H2AXlow LMS exhibited increased inflammatory activity, including elevated M1 macrophage signatures and resting mast cell signatures (both p < 0.001). High γ-H2AX protein levels were an independent negative prognostic factor in the total LMS cohort (HR 12.12, p = 0.025) and in the subgroup of non-uterine LMS (HR 153.80, p = 0.013). Consistent with CIBERSORTx analysis, γ-H2AXlow LMS showed higher mast cell infiltration than γ-H2AXhigh LMS (p = 0.038). In conclusion, H2AX mRNA and γ-H2AX protein expression are associated with distinct biological behavior, differences in the immune cell environment, and might serve as useful prognostic biomarkers in LMS.
Collapse
Affiliation(s)
- Adrian Georg Simon
- Institute of Pathology, University Hospital Cologne, Faculty of MedicineUniversity of CologneCologneGermany
| | - Su Ir Lyu
- Institute of Pathology, University Hospital Cologne, Faculty of MedicineUniversity of CologneCologneGermany
| | - Anne Maria Schultheis
- Institute of Pathology, University Hospital Cologne, Faculty of MedicineUniversity of CologneCologneGermany
- Institute for Surgical Pathology, Medical Center‐University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburg im BreisgauGermany
| | - David Stahl
- Department I of Internal Medicine/Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University Hospital Cologne, Faculty of MedicineUniversity of CologneCologneGermany
| | - Nora Wuerdemann
- Department I of Internal Medicine/Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University Hospital Cologne, Faculty of MedicineUniversity of CologneCologneGermany
| | - Sebastian Walter
- Department for Orthopedics and Trauma Surgery, University Hospital Cologne, Faculty of MedicineUniversity of CologneCologneGermany
| | - Lena Hieggelke
- Institute of Pathology, University Hospital Cologne, Faculty of MedicineUniversity of CologneCologneGermany
| | - Reinhard Buettner
- Institute of Pathology, University Hospital Cologne, Faculty of MedicineUniversity of CologneCologneGermany
| | - Christiane Josephine Bruns
- Department of General, Visceral and Cancer and Transplant Surgery, University Hospital of Cologne, Faculty of MedicineUniversity of CologneCologneGermany
| | - Peer Eysel
- Department for Orthopedics and Trauma Surgery, University Hospital Cologne, Faculty of MedicineUniversity of CologneCologneGermany
| | - Lars Mortimer Schiffmann
- Department of General, Visceral and Cancer and Transplant Surgery, University Hospital of Cologne, Faculty of MedicineUniversity of CologneCologneGermany
| | - Karl Knipper
- Department of General, Visceral and Cancer and Transplant Surgery, University Hospital of Cologne, Faculty of MedicineUniversity of CologneCologneGermany
| | - Peter Mallmann
- Department of Obstetrics and Gynecology, University Hospital of Cologne, Faculty of MedicineUniversity of CologneCologneGermany
| | - Alexander Quaas
- Institute of Pathology, University Hospital Cologne, Faculty of MedicineUniversity of CologneCologneGermany
| | - Roland Ullrich
- Department I of Internal Medicine/Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University Hospital Cologne, Faculty of MedicineUniversity of CologneCologneGermany
- Centre for Molecular MedicineUniversity of CologneCologneGermany
| |
Collapse
|
4
|
Lyu X, Sze KMF, Lee JMF, Husain A, Tian L, Imbeaud S, Zucman-Rossi J, Ng IOL, Ho DWH. Disparity landscapes of viral-induced structural variations in HCC: Mechanistic characterization and functional implications. Hepatology 2025; 81:1805-1821. [PMID: 39270063 PMCID: PMC12077337 DOI: 10.1097/hep.0000000000001087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND AND AIMS HCC is the most common type of primary liver cancer and is a common malignancy worldwide. About half of all new liver cancers worldwide each year occur in China, including Hong Kong, due to a high prevalence of HBV infection. HBV DNA integrates into the human genome, disrupting the endogenous tumor suppressors/regulatory genes or enhancing the activity of proto-oncogenes. It would be useful to examine the different NGS-based databases to provide a more unbiased and comprehensive survey of HBV integration. APPROACH AND RESULTS We aimed to take advantage of publicly available data sets of different regional cohorts to determine the disparity landscapes of integration events among sample cohorts, tissue types, chromosomal positions, individual host, and viral genes, as well as genic locations. By comparing HCC tumors with non tumorous livers, the landscape of HBV integration was delineated in gene-independent and gene-dependent manners. Moreover, we performed mechanistic investigations on how HBV-TERT integration led to TERT activation and derived a score to predict patients' prognostication according to their clonal disparity landscape of HBV integration. CONCLUSIONS Our study uncovered the different levels of clonal enrichment of HBV integration and identified mechanistic insights and prognostic biomarkers. This strengthens our understanding of HBV-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Xueying Lyu
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Karen Man-Fong Sze
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Joyce Man-Fong Lee
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Abdullah Husain
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Lu Tian
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Sandrine Imbeaud
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, Paris, France
- FunGeST lab, Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, Paris, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, Paris, France
- FunGeST lab, Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, Paris, France
| | - Irene Oi-Lin Ng
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Daniel Wai-Hung Ho
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
5
|
Kubeš J, Karabanovich G, Cong ATQ, Melnikova I, Lenčová O, Kollárová P, Bavlovič Piskáčková H, Keresteš V, Applová L, Arrouye LCM, Alvey JR, Paluncic J, Witter TL, Jirkovská A, Kuneš J, Štěrbová-Kovaříková P, Austin CA, Štěrba M, Šimůnek T, Roh J, Schellenberg MJ. Topobexin targets the Topoisomerase II ATPase domain for beta isoform-selective inhibition and anthracycline cardioprotection. Nat Commun 2025; 16:4928. [PMID: 40425539 PMCID: PMC12116762 DOI: 10.1038/s41467-025-60167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Topoisomerase II alpha and beta (TOP2A and TOP2B) isoenzymes perform essential and non-redundant cellular functions. Anthracyclines induce their potent anti-cancer effects primarily via TOP2A, but at the same time they induce a dose limiting cardiotoxicity through TOP2B. Here we describe the development of the obex class of TOP2 inhibitors that bind to a previously unidentified druggable pocket in the TOP2 ATPase domain to act as allosteric catalytic inhibitors by locking the ATPase domain conformation with the capability of isoform-selective inhibition. Through rational drug design we have developed topobexin, which interacts with residues that differ between TOP2A and TOP2B to provide inhibition that is both selective for TOP2B and superior to dexrazoxane. Topobexin is a potent protectant against chronic anthracycline cardiotoxicity in an animal model. This demonstration of TOP2 isoform-specific inhibition underscores the broader potential to improve drug specificity and minimize adverse effects in various medical treatments.
Collapse
Affiliation(s)
- Jan Kubeš
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University; Hradec, Králové, 500 03, Czech Republic
| | - Galina Karabanovich
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University; Hradec, Králové, 500 03, Czech Republic
| | - Anh T Q Cong
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, 55905, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, 55905, MN, USA
| | - Iuliia Melnikova
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University; Hradec, Králové, 500 03, Czech Republic
| | - Olga Lenčová
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University; Hradec, Králové, 500 03, Czech Republic
| | - Petra Kollárová
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University; Hradec, Králové, 500 03, Czech Republic
| | - Hana Bavlovič Piskáčková
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University; Hradec, Králové, 500 03, Czech Republic
| | - Veronika Keresteš
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University; Hradec, Králové, 500 03, Czech Republic
| | - Lenka Applová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University; Hradec, Králové, 500 03, Czech Republic
| | - Lise C M Arrouye
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, 55905, MN, USA
| | - Julia R Alvey
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, 55905, MN, USA
| | - Jasmina Paluncic
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, 55905, MN, USA
| | - Taylor L Witter
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, 55905, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, 55905, MN, USA
| | - Anna Jirkovská
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University; Hradec, Králové, 500 03, Czech Republic
| | - Jiří Kuneš
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University; Hradec, Králové, 500 03, Czech Republic
| | - Petra Štěrbová-Kovaříková
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University; Hradec, Králové, 500 03, Czech Republic
| | - Caroline A Austin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Martin Štěrba
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University; Hradec, Králové, 500 03, Czech Republic.
| | - Tomáš Šimůnek
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University; Hradec, Králové, 500 03, Czech Republic.
| | - Jaroslav Roh
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University; Hradec, Králové, 500 03, Czech Republic.
| | - Matthew J Schellenberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, 55905, MN, USA.
| |
Collapse
|
6
|
Khong QT, Marron L, Huang SYN, Dalilian M, Saha S, Goncharova EI, Woldemichael GM, Pommier Y, O'Keefe BR, Wilson BAP, Du L. Furanoheliangolides from Centratherum punctatum and a General Approach for Stereochemical Assignment of Flexible Chiral Side Chains. JOURNAL OF NATURAL PRODUCTS 2025. [PMID: 40402310 DOI: 10.1021/acs.jnatprod.5c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Human topoisomerase 3β (TOP3B) is a potential molecular therapeutic target for cancer and viral infections. A high-throughput differential cell viability assay using colon cancer cell lines was developed to identify natural product modulators of TOP3B-associated cancer cell viability. The assay identified an organic extract of the plant Centratherum punctatum as having cytotoxic activity. Seven new furanoheliangolides, centratherolides A-G (1-7), along with two known analogues (2,3-epoxybutyryloxy)-goyazensolanolide (8) and goyazensolide (9), were isolated. Compounds 1, 8, and 9 exhibited selective cytotoxic activities against the TOP3B-knockout (TOP3B-KO) human colon carcinoma HCT116 cells compared with the wild-type HCT116 cells (TOP3B-WT). The challenging absolute configuration determination of the flexible chiral side chains in selected analogues (1-4 and 8) was resolved by combined approaches, including synthesis of chemical standards, DFT ECD calculation, and chiral HPLC analysis. Application of this elucidation methodology to a commercial sesquiterpene lactone clarified a contradiction in the stereochemical assignments reported for centaurepensin/chlorohyssopifolin A and 17-epi-chlorohyssopifolin A.
Collapse
Affiliation(s)
- Quan T Khong
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Lindsay Marron
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Shar-Yin Naomi Huang
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Masoumeh Dalilian
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Sourav Saha
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Ekaterina I Goncharova
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Girma M Woldemichael
- Leidos Biomedical Res., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21701, United States
| | - Brice A P Wilson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Lin Du
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
7
|
Goli M, Sandilya V, Ghandour B, Hajj HE, Kobeissy F, Darwiche N, Mechref Y. Exploring the Anti-Leukemic Effect of the Synthetic Retinoid ST1926 on Malignant T Cells: A Comprehensive Proteomics Approach. Int J Mol Sci 2025; 26:4651. [PMID: 40429796 PMCID: PMC12111145 DOI: 10.3390/ijms26104651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/01/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
T-cell malignancies represent a group of complex cancers arising from T cells and include aggressive subtypes such as Adult T-cell Leukemia/Lymphoma (ATL) and T-cell Acute Lymphoblastic Leukemia (T-ALL). Patients with these aggressive subtypes still represent an unmet medical condition. The synthetic adamantyl retinoid ST1926, a potent DNA polymerase-α inhibitor, proved a promising potency in preclinical models of ATL and peripheral T-cell lymphoma. Using advanced liquid chromatography-mass spectrometry (LC-MS/MS) techniques, we explored the effects of ST1926 on global protein expression in ATL (HuT-102) and T-ALL (MOLT-4) cells. We demonstrate that ST1926 triggers differentiation and apoptosis in malignant T-cells while halting tumor progression. Evidence at the proteomics level reveals the impact of ST1926 on crucial DNA replication enzymes and cell cycle regulation, highlighting its potential to reduce leukemogenesis and promote apoptosis. Our findings underscore the potential of ST1926 as an innovative therapeutic approach to address these aggressive T-cell malignancies, providing valuable insights into developing new targeted therapies and improving the outcomes and prognosis of patients with these challenging diseases.
Collapse
Affiliation(s)
- Mona Goli
- Chemistry and Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA; (M.G.); (V.S.)
| | - Vishal Sandilya
- Chemistry and Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA; (M.G.); (V.S.)
| | - Botheina Ghandour
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (B.G.); (F.K.); (N.D.)
| | - Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (B.G.); (F.K.); (N.D.)
- Center for Neurotrauma, Multiomics & Biomarkers, Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (B.G.); (F.K.); (N.D.)
| | - Yehia Mechref
- Chemistry and Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA; (M.G.); (V.S.)
| |
Collapse
|
8
|
Scalf SM, Wu Q, Guo S. Molecular basis of cell fate plasticity - insights from the privileged cells. Curr Opin Genet Dev 2025; 93:102354. [PMID: 40327951 DOI: 10.1016/j.gde.2025.102354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025]
Abstract
In the post-Yamanaka era, the rolling balls on Waddington's hilly landscape not only roll downward, but also go upward or sideways. This new-found mobility implies that the tantalizing somatic cell plasticity fueling regeneration, once only known to planarians and newts, might be sparking in the cells of mice and humans, if only we knew how to fully unlock it. The hope for ultimate regeneration was made even more tangible by the observations that partial reprogramming by the Yamanaka factors reverses many hallmarks of aging [76], even though the underlying mechanism remains unclear. We intend to revisit the milestones in the evolving understanding of cell fate plasticity and glean molecular insights from an unusual somatic cell state, the privileged cell state that reprograms in a manner defying the stochastic model. We synthesize our view of the molecular underpinning of cell fate plasticity, from which we speculate how to harness it for regeneration and rejuvenation. We propose that senescence, aging and malignancy represent distinct cell states with definable biochemical and biophysical parameters.
Collapse
Affiliation(s)
- Stephen Maxwell Scalf
- Department of Cell Biology, Yale University, Yale Stem Cell Center, Yale University, United States
| | - Qiao Wu
- Department of Cell Biology, Yale University, Yale Stem Cell Center, Yale University, United States
| | - Shangqin Guo
- Department of Cell Biology, Yale University, Yale Stem Cell Center, Yale University, United States.
| |
Collapse
|
9
|
Call N, Tomkinson AE. Joining of DNA breaks- interplay between DNA ligases and poly (ADP-ribose) polymerases. DNA Repair (Amst) 2025; 149:103843. [PMID: 40347914 DOI: 10.1016/j.dnarep.2025.103843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/28/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
The joining of DNA single- and double-strand breaks (SSB and DSB) is essential for maintaining genome stability and integrity. While this is ultimately accomplished in human cells by the DNA ligases encoded by the LIG1, LIG3 and LIG4 genes, these enzymes are recruited to DNA breaks through specific interactions with proteins involved in break sensing and recognition and/or break processing. In this review, we focus on the interplay between the DNA break-activated poly (ADP-ribose) polymerases, PARP1 and PARP2, poly (ADP-ribose) (PAR) and the DNA ligases in DNA replication and repair. The most extensively studied example of this interplay is the recruitment of DNA ligase IIIα (LigIIIα) and other repair proteins to SSBs through an interaction between XRCC1, a scaffold protein and partner protein of nuclear LigIIIα, and PAR synthesized by PARP1 and to a lesser extent PARP2. Recently, these proteins have been implicated in a back-up pathway for joining Okazaki fragments that appears to have a critical function even in cells with no defect in the major LigI-dependent pathway. Finally, we discuss the effects of FDA-approved PARP1/2 inhibitors on DNA replication and repair in cancer and non-malignant cells and the potential utility of DNA ligase inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Nicolas Call
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Alan E Tomkinson
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.
| |
Collapse
|
10
|
Tumini E, Wellinger RE, Herrera-Moyano E, Navarro-Cansino P, García-Rubio M, Salas-Lloret D, Losada A, Muñoz-Alonso MJ, Gaillard H, Luna R, Aguilera A. Patulin and Xestoquinol are inhibitors of DNA topoisomerase 1. Proc Natl Acad Sci U S A 2025; 122:e2421167122. [PMID: 40273104 PMCID: PMC12054845 DOI: 10.1073/pnas.2421167122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/11/2025] [Indexed: 04/26/2025] Open
Abstract
DNA topoisomerase 1 (TOP1) is essential for transcription, replication, and repair. Its function relies on two catalytic steps, DNA breakage and rejoining. Inhibitors of the second step prevent DNA rejoining and lead to persistent DNA breaks, acting as topoisomerase poisons, used as anticancer drugs. However, reliable inhibitors of the first step are not available. Here, we provide genetic and molecular evidence supporting that Patulin and, to a lesser extent, Xestoquinol inhibit the first catalytic step of TOP1 in vitro, in yeast and in human cells. Particularly, Patulin prevents the accumulation of TOP1 cleavage complexes caused by the TOP1 poison camptothecin (CPT) in human cells. Moreover, Patulin pretreatment of human or yeast cells reduces DNA damage and the accumulation of DNA breaks upon CPT exposure. Consistent with the protective role of TOP1 against harmful R-loops, Patulin treatment increases R-loops and R-loop-associated cytotoxicity, mimicking the effect of TOP1 silencing. Altogether our findings indicate that Patulin and Xestoquinol are nonpoisoning inhibitors of TOP1, which should potentiate new research approaches in molecular biology and medicine.
Collapse
Affiliation(s)
- Emanuela Tumini
- Department of Genome Biology, Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Seville, Spain
| | - Ralf E. Wellinger
- Department of Genome Biology, Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville41092, Spain
| | - Emilia Herrera-Moyano
- Department of Genome Biology, Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville41092, Spain
| | - Patricia Navarro-Cansino
- Department of Genome Biology, Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Seville, Spain
| | - María García-Rubio
- Department of Genome Biology, Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville41092, Spain
| | - Daniel Salas-Lloret
- Department of Genome Biology, Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Seville, Spain
| | - Alejandro Losada
- Research and Development, Oncology Business Unit, PharmaMar Sociedad Anónima, Madrid28770, Spain
| | - María J. Muñoz-Alonso
- Research and Development, Oncology Business Unit, PharmaMar Sociedad Anónima, Madrid28770, Spain
| | - Hélène Gaillard
- Department of Genome Biology, Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville41092, Spain
| | - Rosa Luna
- Department of Genome Biology, Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville41092, Spain
| | - Andrés Aguilera
- Department of Genome Biology, Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville41092, Spain
| |
Collapse
|
11
|
Kang X, Li X, Zhou J, Zhang Y, Qiu L, Tian C, Deng Z, Liang X, Zhang Z, Du S, Hu S, Wang N, Yue Z, Xu Y, Gao Y, Dai J, Wang Z, Yu C, Chen J, Wu Y, Chen L, Yao Y, Yao S, Yang X, Yan L, Wen Q, Depies OM, Chan K, Liang X, Li G, Zi Z, Liu X, Gan H. Extrachromosomal DNA replication and maintenance couple with DNA damage pathway in tumors. Cell 2025:S0092-8674(25)00414-3. [PMID: 40300601 DOI: 10.1016/j.cell.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/19/2025] [Accepted: 04/06/2025] [Indexed: 05/01/2025]
Abstract
Extrachromosomal DNA (ecDNA) drives the evolution of cancer cells. However, the functional significance of ecDNA and the molecular components involved in its replication and maintenance remain largely unknown. Here, using CRISPR-C technology, we generated ecDNA-carrying (ecDNA+) cell models. By leveraging these models alongside other well-established systems, we demonstrated that ecDNA can replicate and be maintained in ecDNA+ cells. The replication of ecDNA activates the ataxia telangiectasia mutated (ATM)-mediated DNA damage response (DDR) pathway. Topoisomerases, such as TOP1 and TOP2B, play a role in ecDNA replication-induced DNA double-strand breaks (DSBs). A subset of these elevated DSBs persists into the mitotic phase and is primarily repaired by the alternative non-homologous end joining (alt-NHEJ) pathway, which involves POLθ and LIG3. Correspondingly, ecDNA maintenance requires DDR, and inhibiting DDR impairs the circularization of ecDNA. In summary, we demonstrate reciprocal interactions between ecDNA maintenance and DDR, providing new insights into the detection and treatment of ecDNA+ tumors.
Collapse
Affiliation(s)
- Xing Kang
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xinran Li
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Zhou
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yang Zhang
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lingyu Qiu
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Congcong Tian
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhiwen Deng
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaoyan Liang
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ziwei Zhang
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Songlin Du
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Suili Hu
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Nan Wang
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhen Yue
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yajing Xu
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuan Gao
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhiquan Wang
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Chuanhe Yu
- Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Jinyi Chen
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuchun Wu
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; School of Basic Medicine, Qingdao University, Qingdao, China
| | - Liangming Chen
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuan Yao
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Sitong Yao
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinran Yang
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lixia Yan
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Wen
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Olivia M Depies
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kuiming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Xiaohuan Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Gang Li
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Zhike Zi
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiangyu Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Haiyun Gan
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
12
|
Yun L, Garnier F, Strick T, Nadal M. Deciphering the human TopIIIα activity modulated by Rmi1 using magnetic tweezers. Nucleic Acids Res 2025; 53:gkaf308. [PMID: 40266687 PMCID: PMC12016800 DOI: 10.1093/nar/gkaf308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/25/2025] Open
Abstract
Topoisomerases IA (TopoIAs) are universal and essential enzymes present in the three domains of life. Most of the Metazoa exhibit two TopoIAs-TopIIIα and TopIIIβ-assuming different roles in the cell. TopIIIα is essential for genome stability by disentangling precatenanes and hemicatenanes during DNA replication or dissolving the double Holliday junctions in recombination, with the help of several partners, such as Rmi1. However, the detail of the TopIIIα enzymatic cycle and the precise role of Rmi1 remain essentially unknown. The single-molecule approach allows to deconvolute the different early reaction steps and distinguish between intrinsic catalytic characteristics of human TopIIIα that are invariable and those that can be modulated by Rmi1. We determined that the limiting step is the TopIIIα-DNA binding, which requires a small single-stranded region. TopIIIα punctuates its catalytic cycle with long pause times to stabilize the open cleaved complex. Rmi1 helps TopIIIα trap the single-stranded DNA and therefore greatly increases the efficiency of the binding step. Rmi1 also enhances the stabilization of the open cleaved complex to favour intermolecular reactions with improved discrimination of DNA substrates. Rmi1 is therefore a crucial partner for TopIIIα in ensuring that the DNA transaction processes run smoothly in vivo.
Collapse
Affiliation(s)
- Long Yun
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, PSL University, INSERM, CNRS, Paris 75005, France
| | - Florence Garnier
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, PSL University, INSERM, CNRS, Paris 75005, France
- Université de Versailles Saint-Quentin-en-Yvelines, Versailles 78000, France
- Programme Equipes Labellisées, Ligue Nationale Contre le Cancer, Paris 75013, France
| | - Terence R Strick
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, PSL University, INSERM, CNRS, Paris 75005, France
- Programme Equipes Labellisées, Ligue Nationale Contre le Cancer, Paris 75013, France
| | - Marc Nadal
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, PSL University, INSERM, CNRS, Paris 75005, France
- Programme Equipes Labellisées, Ligue Nationale Contre le Cancer, Paris 75013, France
- Department of Life Sciences, Université Paris Cité, Paris 75013, France
| |
Collapse
|
13
|
Adugna A, Amare GA, Jemal M. Machine Learning Approach and Bioinformatics Analysis Discovered Key Genomic Signatures for Hepatitis B Virus-Associated Hepatocyte Remodeling and Hepatocellular Carcinoma. Cancer Inform 2025; 24:11769351251333847. [PMID: 40291818 PMCID: PMC12033511 DOI: 10.1177/11769351251333847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Hepatitis B virus (HBV) causes liver cancer, which is the third most common cause of cancer-related death worldwide. Chronic inflammation via HBV in the host hepatocytes causes hepatocyte remodeling (hepatocyte transformation and immortalization) and hepatocellular carcinoma (HCC). Recognizing cancer stages accurately to optimize early screening and diagnosis is a primary concern in the outlook of HBV-induced hepatocyte remodeling and liver cancer. Genomic signatures play important roles in addressing this issue. Recently, machine learning (ML) models and bioinformatics analysis have become very important in discovering novel genomic signatures for the early diagnosis, treatment, and prognosis of HBV-induced hepatic cell remodeling and HCC. We discuss the recent literature on the ML approach and bioinformatics analysis revealed novel genomic signatures for diagnosing and forecasting HBV-associated hepatocyte remodeling and HCC. Various genomic signatures, including various microRNAs and their associated genes, long noncoding RNAs (lncRNAs), and small nucleolar RNAs (snoRNAs), have been discovered to be involved in the upregulation and downregulation of HBV-HCC. Moreover, these genetic biomarkers also affect different biological processes, such as proliferation, migration, circulation, assault, dissemination, antiapoptosis, mitogenesis, transformation, and angiogenesis in HBV-infected hepatocytes.
Collapse
Affiliation(s)
- Adane Adugna
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Ethiopia
| | - Gashaw Azanaw Amare
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Ethiopia
| |
Collapse
|
14
|
Jeon J, Kang TH. Transcription-Coupled Repair and R-Loop Crosstalk in Genome Stability. Int J Mol Sci 2025; 26:3744. [PMID: 40332372 PMCID: PMC12027824 DOI: 10.3390/ijms26083744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
Transcription-coupled repair (TCR) and R-loops are two interrelated processes critical to the maintenance of genome stability during transcription. TCR, a specialized sub-pathway of nucleotide excision repair, rapidly removes transcription-blocking lesions from the transcribed strand of active genes, thereby safeguarding transcription fidelity and cellular homeostasis. In contrast, R-loops, RNA-DNA hybrid structures formed co-transcriptionally, play not only regulatory roles in gene expression and replication but can also contribute to genome instability when persistently accumulated. Recent experimental evidence has revealed dynamic crosstalk between TCR and R-loop resolution pathways. This review highlights current molecular and cellular insights into TCR and R-loop biology, discusses the impact of their crosstalk, and explores emerging therapeutic strategies aimed at optimizing DNA repair and reducing disease risk in conditions such as cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Tae-Hong Kang
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea;
| |
Collapse
|
15
|
Hildebrandt J, Bauerschlag DO, Fricker G, Girreser U, Konukiewitz B, Kellers F, Maass N, Clement B, Flörkemeier I. In Vivo and In Vitro Pharmacokinetic Studies of a Dual Topoisomerase I/II Inhibitor. ACS Pharmacol Transl Sci 2025; 8:1050-1071. [PMID: 40242581 PMCID: PMC11997890 DOI: 10.1021/acsptsci.4c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 04/18/2025]
Abstract
Due to high mortality rates, new and more effective drugs are urgently needed in cancer therapy. The novel dual topoisomerase inhibitor P8-D6, a dimethylaminoethyl-substituted pyridophenanthroline, showed in vitro impressive induction of apoptosis in tumors such as ovarian cancer or multiple myeloma compared to the current standard therapy. The purpose of this study was to investigate its in vitro and in vivo pharmacokinetics and to discover further potential drug candidates. Samples of plasma, various tissues, urine, feces, and cell culture supernatants were examined by HPLC. In addition, the efficacy of the metabolites against ovarian cancer was determined in vitro. Three phase I metabolites were identified in vitro and in vivo, and one phase II metabolite was identified in vivo. Among the metabolites, N-dealkylated P8-D6 (P8-D6 mono) achieved efficacy similar to that of P8-D6 in ovarian cancer. P8-D6 showed a relevant inhibitory effect on the efflux pumps P-GP (IC50 = 20.63 μM) and BCRP (16.32 μM). The calculated oral bioavailability in Sprague-Dawley rats was 21.5%, while P8-D6 had a high plasma protein binding of 99% and an extensive tissue distribution with an apparent volume of distribution between 57.69 (i.v.) and 82.92 (p.o.) L/m2. Both P8-D6 and its metabolites were detected in urine and feces. This study provides a basis for the clinical application of P8-D6 and has also identified P8-D6 mono as a very potent and metabolically stable drug candidate.
Collapse
Affiliation(s)
- Jonas Hildebrandt
- Christian-Albrechts-University
Kiel, Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, Kiel 24118, Germany
| | - Dirk O. Bauerschlag
- Department
of Gynaecology and Obstetrics, University
and University Medical Center Schleswig-Holstein Campus Kiel, Kiel 24105, Germany
- Department
of Gynecology and Reproductive Medicine, Jena University Hospital, Jena 07747, Germany
| | - Gert Fricker
- Ruprecht-Karls
University, Institute of Pharmacy and Molecular Biotechnology, Heidelberg 69120, Germany
| | - Ulrich Girreser
- Christian-Albrechts-University
Kiel, Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, Kiel 24118, Germany
| | - Björn Konukiewitz
- Department
of Pathology, University and University
Medical Center Schleswig-Holstein Campus Kiel, Kiel 24105, Germany
| | - Franziska Kellers
- Department
of Pathology, University and University
Medical Center Schleswig-Holstein Campus Kiel, Kiel 24105, Germany
| | - Nicolai Maass
- Department
of Gynaecology and Obstetrics, University
and University Medical Center Schleswig-Holstein Campus Kiel, Kiel 24105, Germany
| | - Bernd Clement
- Christian-Albrechts-University
Kiel, Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, Kiel 24118, Germany
| | - Inken Flörkemeier
- Christian-Albrechts-University
Kiel, Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, Kiel 24118, Germany
- Department
of Gynaecology and Obstetrics, University
and University Medical Center Schleswig-Holstein Campus Kiel, Kiel 24105, Germany
| |
Collapse
|
16
|
Warrick JE, Attili D, van Eeuwen T, Hoffmann-Weitsman SE, Forsyth NC, Barmada SJ, Kearse MG. An autism spectrum disorder mutation in Topoisomerase 3β causes accumulation of covalent mRNA intermediates by disrupting metal binding within the zinc finger domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.11.647616. [PMID: 40370956 PMCID: PMC12077875 DOI: 10.1101/2025.04.11.647616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
The loss and mutation of Topoisomerase 3β (TOP3B), the only known eukaryotic topoisomerase with the ability to catalyze RNA strand passage reactions, is linked to schizophrenia, autism, and intellectual disability. Uniquely, TOP3B primarily localizes to the cytoplasm and has been shown to regulate translation and stability of a subset of mRNA transcripts. Three neurological disease-linked de novo TOP3B point mutations outside of the active site have been identified but their impact on TOP3B activity in cells remains poorly understood. Upon establishing a new Neuro2A cell-based TOP3B activity assay, we provide genetic and biochemical evidence that the autism-linked C666R mutation causes accumulation of unresolved TOP3B•mRNA covalent intermediates by directly disrupting metal coordination via an atypical D1C3-type metal binding motif within the zinc finger domain. Furthermore, we show that primary neurons are sensitive to high levels of TOP3B•mRNA covalent intermediates and that such adducts are capable of causing ribosome collisions. Together, these data identify a previously underappreciated role of the zinc finger domain and how non-active site disease-linked mutations affect TOP3B activity.
Collapse
Affiliation(s)
- Julia E. Warrick
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Durga Attili
- Department of Neurology, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Trevor van Eeuwen
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10065 USA
| | - Sarah E. Hoffmann-Weitsman
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Nicholas C. Forsyth
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Sami J. Barmada
- Department of Neurology, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael G. Kearse
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Retzer TM, Rajappa LT, Takahashi M, Hamdan SM, Duderstadt KE. Real-time imaging of rotation during synthesis by the replisome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646591. [PMID: 40291678 PMCID: PMC12026505 DOI: 10.1101/2025.04.01.646591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
During chromosome replication, unwinding by the helicase and synthesis by the polymerases can lead to overwinding and supercoiling of DNA. The mechanical consequences of these events and resulting local dynamics at the replication fork are not well understood. To address these issues, we developed a transverse DNA flow-stretching approach to spatially resolve the parental, leading and lagging strands in real-time. Using bacteriophage T7 as a model system, this approach revealed bursts of high-speed replisome rotation that support continuous DNA synthesis. Surprisingly, excessive rotation does not reduce replisome speed, but increases pausing, reduces processivity, and increases polymerase exchange. Taken together, our observations reveal intrinsic pathways to overcome challenges posed by unfavorable DNA topologies during DNA replication.
Collapse
|
18
|
Harper JA, Brown GGB, Neale MJ. Spo11: from topoisomerase VI to meiotic recombination initiator. Biochem Soc Trans 2025; 53:BST20253019. [PMID: 40181639 DOI: 10.1042/bst20253019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025]
Abstract
Meiotic recombination is required to break up gene linkage and facilitate faithful chromosome segregation during gamete formation. By inducing DNA double-strand breaks, Spo11, a protein that is conserved in all meiotic organisms, initiates the process of recombination. Here, we chart the evolutionary history of Spo11 and compare the protein to its ancestors. Evolving from the A subunit of archaeal topoisomerase VI (Topo VI), a heterotetrameric type II topoisomerase, Spo11 appears to have evolved alongside meiosis and been present in the last eukaryotic common ancestor. There are many differences between Spo11 and TopVIA, particularly in regulation, despite similarities in structure and mechanism of action. Critical to its function as an inducer of recombination, Spo11 has an apparently amputated activity that, unlike topoisomerases, does not re-seal the DNA breaks it creates. We discuss how and why Spo11 has taken its path down the tree of life, considering its regulation and its roles compared with those of its progenitor Topo VI, in both meiotic and non-meiotic species. We find some commonality between different forms and orthologs of Spo11 in different species and touch upon how recent biochemical advances are beginning to finally unlock the molecular secrets hidden within this fundamental yet enigmatic protein.
Collapse
Affiliation(s)
- Jon A Harper
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, U.K
| | - George G B Brown
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, U.K
| | - Matthew J Neale
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, U.K
| |
Collapse
|
19
|
Bournique E, Sanchez A, Oh S, Ghazarian D, Mahieu AL, Manjunath L, Ednacot E, Ortega P, Masri S, Marazzi I, Buisson R. ATM and IRAK1 orchestrate two distinct mechanisms of NF-κB activation in response to DNA damage. Nat Struct Mol Biol 2025; 32:740-755. [PMID: 39753776 PMCID: PMC11997730 DOI: 10.1038/s41594-024-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 10/02/2024] [Indexed: 01/25/2025]
Abstract
DNA damage in cells induces the expression of inflammatory genes. However, the mechanism by which cells initiate an innate immune response in the presence of DNA lesions blocking transcription remains unknown. Here we find that genotoxic stresses lead to an acute activation of the transcription factor NF-κB through two distinct pathways, each triggered by different types of DNA lesions and coordinated by either ataxia-telangiectasia mutated (ATM) or IRAK1 kinases. ATM stimulates NF-κB in cells with DNA double-strand breaks. By contrast, IRAK1-induced NF-κB signaling occurs in neighboring cells through IL-1α secretion from transcriptionally stressed cells caused by DNA lesions blocking RNA polymerases. Subsequently, both pathways stimulate TRAF6 and the IKK complex to promote NF-κB-mediated inflammatory gene expression. These findings provide an alternative mechanism for damaged cells with impaired transcription to initiate an inflammatory response without relying on their own gene expression, a necessary step that injured cells depend on during canonical innate immune responses.
Collapse
Affiliation(s)
- Elodie Bournique
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Ambrocio Sanchez
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Daniel Ghazarian
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Alisa L Mahieu
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Lavanya Manjunath
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Eirene Ednacot
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Pedro Ortega
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Selma Masri
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Ivan Marazzi
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA.
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
- Center for Virus Research, University of California Irvine, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
20
|
Marian AJ. Causes and consequences of DNA double-stranded breaks in cardiovascular disease. Mol Cell Biochem 2025; 480:2043-2064. [PMID: 39404936 DOI: 10.1007/s11010-024-05131-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/29/2024] [Indexed: 04/02/2025]
Abstract
The genome, whose stability is essential for survival, is incessantly exposed to internal and external stressors, which introduce an estimated 104 to 105 lesions, such as oxidation, in the nuclear genome of each mammalian cell each day. A delicate homeostatic balance between the generation and repair of DNA lesions maintains genomic stability. To initiate transcription, DNA strands unwind to form a transcription bubble and provide a template for the RNA polymerase II (RNAPII) complex to synthesize nascent RNA. The process generates DNA supercoils and introduces torsional stress. To enable RNAPII processing, the supercoils are released by topoisomerases by introducing strand breaks, including double-stranded breaks (DSBs). Thus, DSBs are intrinsic genomic features of gene expression. The breaks are quickly repaired upon processing of the transcription. DNA lesions and damaged proteins involved in transcription could impede the integrity and efficiency of RNAPII processing. The impediment, which is referred to as transcription stress, not only could lead to the generation of aberrant RNA species but also the accumulation of DSBs. The latter is particularly the case when topoisomerase processing and/or the repair mechanisms are compromised. The DSBs activate the DNA damage response (DDR) pathways to repair the damaged DNA and/or impose cell cycle arrest and cell death. In addition, the release of DSBs into the cytosol activates the cytosolic DNA-sensing proteins (CDSPs), which along with the nuclear DDR pathways induce the expression of senescence-associated secretory phenotype (SASP), cell cycle arrest, senescence, cell death, inflammation, and aging. The primary stimulus in hereditary cardiomyopathies is a mutation(s) in genes encoding the protein constituents of cardiac myocytes; however, the phenotype is the consequence of intertwined complex interactions among numerous stressors and the causal mutation(s). Increased internal DNA stressors, such as oxidation, alkylation, and cross-linking, are expected to be common in pathological conditions, including in hereditary cardiomyopathies. In addition, dysregulation of gene expression also imposes transcriptional stress and collectively with other stressors provokes the generation of DSBs. In addition, the depletion of nicotinamide adenine dinucleotide (NAD), which occurs in pathological conditions, impairs the repair mechanism and further facilitates the accumulation of DSBs. Because DSBs activate the DDR pathways, they are expected to contribute to the pathogenesis of cardiomyopathies. Thus, interventions to reduce the generation of DSBs, enhance their repair, and block the deleterious DDR pathways would be expected to impart salubrious effects not only in pathological states, as in hereditary cardiomyopathies but also aging.
Collapse
Affiliation(s)
- A J Marian
- Center for Cardiovascular Genetic Studies, Institute of Molecular Medicine, The University of Texas Health Science Center, 6770 Bertner Street, Suite C900A, Houston, TX, 77030, USA.
| |
Collapse
|
21
|
Mamun Y, Aguado A, Preza A, Kadel A, Mogallur A, Gonzalez B, De La Rosa J, Diaz D, Evdokimova P, Karki U, Tse-Dinh YC, Chapagain P. Substrate binding of human and bacterial type IA topoisomerase: An experimentation with AlphaFold 3.0. Comput Struct Biotechnol J 2025; 27:1342-1349. [PMID: 40235641 PMCID: PMC11999072 DOI: 10.1016/j.csbj.2025.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/17/2025] Open
Abstract
Advancements in biophysical techniques such as X-ray crystallography and Cryo-EM have allowed the determination of three-dimensional structures of many proteins and nucleic acids. There, however, is still a lack of 3D structures of proteins that are difficult to crystallize or proteins in complex with other macromolecules. With the advent of deep learning applications such as AlphaFold and RoseTTAFold, it is becoming possible to obtain 3D structures of proteins from their 1D sequences while also generating models of protein-nucleic acid complexes that have been difficult to capture through traditional methods. In this project, we utilized AlphaFold3 (AF3) to create a large number of predicted complexes of two type IA topoisomerases: human topoisomerase 3 beta (hTOP3B) and Mycobacterium tuberculosis topoisomerase I bound to a single-stranded DNA (ssDNA). Topoisomerases are enzymes responsible for resolving topological barriers that arise during regular cellular activity. Obtaining structures of topoisomerase complexed with a ssDNA will allow us to discover possible sequence preferences of this enzyme and obtain structures that can be used to screen potential inhibitors. Our analysis showed that AF3 can predict the structure of the enzymes, especially the N-terminal domain, with high confidence. However, predicted protein-DNA complexes, especially with longer (> 25-mer) oligos, are unreliable. The models generated with shorter (9-mer) oligos are obtained with improved confidence and the substrates are placed similarly to crystal structures, but they do not reliably replicate the sequence specificity of the DNA binding of topoisomerase observed in biochemical assays and crystal structures.
Collapse
Affiliation(s)
- Yasir Mamun
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Ally Aguado
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Ana Preza
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Abhilasha Kadel
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Anjani Mogallur
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Briana Gonzalez
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Jayleen De La Rosa
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Daniel Diaz
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Polina Evdokimova
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Ukesh Karki
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Prem Chapagain
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Department of Physics, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
22
|
Ihara D, Rasli NR, Katsuyama Y. How do neurons live long and healthy? The mechanism of neuronal genome integrity. Front Neurosci 2025; 19:1552790. [PMID: 40177377 PMCID: PMC11961891 DOI: 10.3389/fnins.2025.1552790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/17/2025] [Indexed: 04/05/2025] Open
Abstract
Genome DNA of neurons in the brain is unstable, and mutations caused by inaccurate repair can lead to neurodevelopmental and neurodegenerative disorders. Damage to the neuronal genome is induced both exogenously and endogenously. Rapid cell proliferation of neural stem cells during embryonic brain development can lead to errors in genome duplication. Electrical excitations and drastic changes in gene expression in functional neurons cause risks of damaging genomic DNA. The precise repair of DNA damages caused by events making genomic DNA unstable maintains neuronal functions. The maintenance of the DNA sequence and structure of the genome is known as genomic integrity. Molecular mechanisms that maintain genomic integrity are critical for healthy neuronal function. In this review, we describe recent progress in understanding the genome integrity in functional neurons referring to their disruptions reported in neurological diseases.
Collapse
Affiliation(s)
| | | | - Yu Katsuyama
- Division of Neuroanatomy, Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
23
|
Khalili S, Mohseninia A, Liu C, Banister CE, Heine P, Khazan M, Morrison SE, Gokare P, Cowley GS, Weir BA, Pocalyko D, Bachman KE, Buckhaults PJ. Comprehensive genomic dependency landscape of a human colon cancer organoid. Commun Biol 2025; 8:436. [PMID: 40082551 PMCID: PMC11906589 DOI: 10.1038/s42003-025-07822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/26/2025] [Indexed: 03/16/2025] Open
Abstract
Identifying genetic dependencies in human colon cancer could help identify effective treatment strategies. Genome-wide CRISPR-Cas9 dropout screens have the potential to reveal genetic dependencies, some of which could be exploited as therapeutic targets using existing drugs. In this study, we comprehensively characterized genetic dependencies present in a colon cancer organoid avatar, and validated tumor-specific selectivity of select pharmacologic agents. We conducted a genome-wide CRISPR dropout screen to elucidate the genetic dependencies that interacted with select driver somatic mutations. We found distinct genetic dependencies that interacted with WNT, MAPK, PI3K, TP53, and mismatch repair pathways and validated targets that could be exploited as treatments for this specific subtype of colon cancer. These findings demonstrate the utility of functional genomic screening in the context of personalized medicine.
Collapse
Affiliation(s)
| | | | | | | | - Paige Heine
- University of South Carolina, Columbia, SC, US
| | | | | | - Prashanth Gokare
- Janssen Research and Development, LLC Spring House, Spring House, PA, US
| | - Glenn S Cowley
- Janssen Research and Development, LLC Cambridge, Cambridge, MA, US
| | - Barbara A Weir
- Janssen Research and Development, LLC Cambridge, Cambridge, MA, US
| | - David Pocalyko
- Janssen Research and Development, LLC Spring House, Spring House, PA, US
| | - Kurtis E Bachman
- Janssen Research and Development, LLC Spring House, Spring House, PA, US
| | | |
Collapse
|
24
|
Chang TY, Lin CJ, Wen SN, Wu YC, Wei CY, Huang JY, Tsao YH, Chen YJ, Tang WC, Wu YC, Lee WH, Huang TY, Kuo TM, Li WF, Lai MT. Preclinical evaluation of a novel antibody-drug conjugate OBI-992 for Cancer therapy. Sci Rep 2025; 15:8735. [PMID: 40082588 PMCID: PMC11906863 DOI: 10.1038/s41598-025-92697-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
Trophoblast cell surface antigen 2 (TROP2), a transmembrane glycoprotein highly expressed in a variety of epithelial cancers, has been considered as a primary therapeutic target for the development of antibody-drug conjugates (ADCs). OBI-992, an investigational TROP2-targeted ADC, is composed of a novel TROP2 antibody (R4702) conjugated to the topoisomerase I (TOP1) inhibitor exatecan through a hydrophilic enzyme-cleavable linker. This study aimed to characterize R4702 and OBI-992 in vitro. TROP2-targeted antibodies sacituzumab and datopotamab were employed as the comparators for R4702. ADCs sacituzumab govitecan (SG) and datopotamab deruxtecan (Dato-DXd) were used as benchmarks for OBI-992. Results revealed that R4702 binds to an epitope that is distinct from sacituzumab and datopotamab. The cytotoxicity of the OBI-992, SG, and Dato-DXd against different cancer cells is comparable despite they have different internalization profile. Upregulation of breast cancer resistance protein (BCRP) was observed in SG-resistant and Dato-DXd-resistant cells, but not in OBI-992-resistant cells. In addition, significant downregulation of TROP2 expression was detected with Dato-DXd-resistant cells and only slightly downregulation with SG- and OBI-992-resistant cells was observed. Moreover, substantial enhancement of cytotoxicity and DNA damage was found in the combination of OBI-992 with a poly (ADP-ribose) polymerase (PARP) inhibitor (talazoparib). Taken together, the findings in this study support further clinical development of OBI-992.
Collapse
Affiliation(s)
- Ting-Yu Chang
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan
| | - Chun-Jung Lin
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan
| | - Shih-Ni Wen
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan
| | - Yi-Chen Wu
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan
| | - Cheng-Yen Wei
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan
| | - Jye-Yu Huang
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan
| | - Yu-Hsuan Tsao
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan
| | - Yu-Jung Chen
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan
| | - Wei-Chien Tang
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan
| | - Yuen-Chin Wu
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan
| | - Wei-Han Lee
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan
| | - Teng-Yi Huang
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan
| | - Tzer-Min Kuo
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan
| | - Wan-Fen Li
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan
| | - Ming-Tain Lai
- OBI Pharma, Inc., 6F, No. 508, Section 7 Zhongxiao East Road, Nangang District, Taipei, Taiwan.
| |
Collapse
|
25
|
Zhou Z, Luquette LJ, Dong G, Kim J, Ku J, Kim K, Bae M, Shao DD, Sahile B, Miller MB, Huang AY, Nathan WJ, Nussenzweig A, Park PJ, Lagier-Tourenne C, Lee EA, Walsh CA. Recurrent patterns of widespread neuronal genomic damage shared by major neurodegenerative disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.641186. [PMID: 40093130 PMCID: PMC11908196 DOI: 10.1101/2025.03.03.641186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's disease (AD) are common neurodegenerative disorders for which the mechanisms driving neuronal death remain unclear. Single-cell whole-genome sequencing of 429 neurons from three C9ORF72 ALS, six C9ORF72 FTD, seven AD, and twenty-three neurotypical control brains revealed significantly increased burdens in somatic single nucleotide variant (sSNV) and insertion/deletion (sIndel) in all three disease conditions. Mutational signature analysis identified a disease-associated sSNV signature suggestive of oxidative damage and an sIndel process, affecting 28% of ALS, 79% of FTD, and 65% of AD neurons but only 5% of control neurons (diseased vs. control: OR=31.20, p = 2.35×10-10). Disease-associated sIndels were primarily two-basepair deletions resembling signature ID4, which was previously linked to topoisomerase 1 (TOP1)-mediated mutagenesis. Duplex sequencing confirmed the presence of sIndels and identified similar single-strand events as potential precursor lesions. TOP1-associated sIndel mutagenesis and resulting genome instability may thus represent a common mechanism of neurodegeneration.
Collapse
Affiliation(s)
- Zinan Zhou
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
| | | | - Guanlan Dong
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Bioinformatics and Integrative Genomics Program, Harvard Medical School; Boston, MA, USA
| | - Junho Kim
- Department of Biological Sciences, Sungkyunkwan University; Suwon, South Korea
| | - Jayoung Ku
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
| | - Kisong Kim
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
| | - Mingyun Bae
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
| | - Diane D. Shao
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital; Boston, MA, USA
| | - Bezawit Sahile
- Program in Neuroscience, Harvard Medical School; Boston, MA, USA
| | - Michael B. Miller
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Division of Neuropathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - August Yue Huang
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - William J. Nathan
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Peter J. Park
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA, USA
| | - Clotilde Lagier-Tourenne
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital; Boston, MA, USA
- Department of Pediatrics, Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Howard Hughes Medical Institute; Boston, MA, USA
| |
Collapse
|
26
|
Fu H, Huang M, Wu H, Zheng H, Gong Y, Xing L, Gong J, An R, Li Q, Jie X, Ma X, Tang TS, Guo C. SART3 promotes homologous recombination repair by stimulating DNA-RNA hybrids removal and DNA end resection. Nat Commun 2025; 16:2244. [PMID: 40050279 PMCID: PMC11885473 DOI: 10.1038/s41467-025-57599-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 02/27/2025] [Indexed: 03/09/2025] Open
Abstract
DNA-RNA hybrids triggered by double-strand breaks (DSBs) are crucial intermediates during DSB repair, and their timely resolution requires numbers of RNA helicases, including DEAD box 1 (DDX1). However, how these helicases are recruited to DSB-induced hybrids in time remains largely unclear. Here, we revealed that squamous cell carcinoma antigen recognized by T cells 3 (SART3) promotes DDX1 binding to DNA-RNA hybrids at DSBs for optimal homologous recombination (HR) repair. SART3 itself associates with DNA-RNA hybrids and PAR chains and accumulates at DSBs in both PARylation- and DNA-RNA hybrids-dependent fashion. SART3 also associates with DDX1 and is necessary for DDX1 enrichment at DSBs. The defective SART3-DDX1 association observed in cells expressing the cancer-associated variant SART3-R836W impairs not only the accumulation of DDX1, but also hybrid removal and HR efficiency. Moreover, SART3 promotes DNA end resection through enhancing USP15-BARD1 association and BRCA1-BARD1 retention. Together, our study reveals an role of SART3 in DSB repair, rendering SART3 a promising target for cancer therapy.
Collapse
Affiliation(s)
- Hui Fu
- China National Center for Bioinformation, 100101, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Min Huang
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Honglin Wu
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
| | - Hui Zheng
- China National Center for Bioinformation, 100101, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yifei Gong
- China National Center for Bioinformation, 100101, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lingyu Xing
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Juanjuan Gong
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Ruiyuan An
- China National Center for Bioinformation, 100101, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qian Li
- China National Center for Bioinformation, 100101, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xinyu Jie
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
| | - Xiaolu Ma
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- College of Biomedical Engineering, Taiyuan University of Technology, 030024, Taiyuan, China
| | - Tie-Shan Tang
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China.
| | - Caixia Guo
- China National Center for Bioinformation, 100101, Beijing, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
27
|
Xiong Y, Lei J, Wen M, Ma Y, Zhao J, Tian Y, Wan Z, Li X, Zhu J, Wang W, Ji X, Sun Y, Yang J, Zhang J, Xin S, Liu Y, Jia L, Han Y, Jiang T. CENPF (+) cancer cells promote malignant progression of early-stage TP53 mutant lung adenocarcinoma. Oncogenesis 2025; 14:5. [PMID: 40044674 PMCID: PMC11882812 DOI: 10.1038/s41389-025-00546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/18/2024] [Accepted: 01/23/2025] [Indexed: 03/09/2025] Open
Abstract
The prevention and precise treatment of early-stage lung adenocarcinoma (LUAD) characterized by small nodules (stage IA) remains a significant challenge for clinicians, which is due largely to the limited understanding of the oncogenic mechanisms spanning from preneoplasia to invasive adenocarcinoma. Our study highlights the pivotal role of cancer cells exhibiting high expression of centromere protein F (CENPF), driven by TP53 mutations, which become increasingly prevalent during the transition from preneoplasia to invasive LUAD. Biologically, cancer cells (CENPF+) exhibited robust proliferative and stem-like capabilities, thereby propelling the malignant progression of early-stage LUAD. Clinically, autoantibodies against CENPF in the serum and elevated cancer cells (CENPF+) in tissue correlated positively with the progression of early-stage LUAD, especially those in stage IA. Our findings suggest that cancer cells (CENPF+) play a central role in orchestrating the malignant evolution of LUAD and hold potential as a novel biomarker for early-stage detection and management of the disease.
Collapse
Affiliation(s)
- Yanlu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Innovation Center for Advanced Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Thoracic Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jie Lei
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Miaomiao Wen
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yongfu Ma
- Department of Thoracic Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jinbo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yahui Tian
- Department of Thoracic Surgery, Air Force Medical Center, PLA, Beijing, China
| | - Zitong Wan
- College of Life Sciences, Northwestern University, Xi'an, China
| | - Xiaoyan Li
- Department of Blood Transfusion, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Jianfei Zhu
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Wenchen Wang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaohong Ji
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ying Sun
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Yang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiao Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Shaowei Xin
- Department of Thoracic Surgery, Air Force Medical Center, PLA, Beijing, China
| | - Yang Liu
- Department of Thoracic Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Lintao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Yong Han
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
- Department of Thoracic Surgery, Air Force Medical Center, PLA, Beijing, China.
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
28
|
Shastri VM, Chauhan L, Gbadamosi M, Alonzo TA, Wang YC, Aplenc R, Hirsch BA, Kolb EA, Gamis AS, Meshinchi S, Lamba JK. DNA Damage Response Pharmacogenomic (DDR_PGx) Score Predicts Response to Chemotherapy Consisting of Gemtuzumab Ozogamicin in Pediatric AML: A Report from the Children's Oncology Group. Clin Cancer Res 2025; 31:890-898. [PMID: 38197878 PMCID: PMC11233425 DOI: 10.1158/1078-0432.ccr-23-2073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/08/2023] [Accepted: 01/08/2024] [Indexed: 01/11/2024]
Abstract
PURPOSE Comprehensive pharmacogenomics (PGx) evaluation of calicheamicin pathway to identify predictive PGx markers of response to gemtuzumab ozogamicin (GO) treatment in acute myeloid leukemia (AML). EXPERIMENTAL DESIGN SNPs in DNA damage response (DDR) pathway genes were tested for association with event-free survival (EFS), overall survival (OS), and risk of relapse after induction 1 (RR1) in patients treated with standard chemotherapy consisting of Ara-C, daunorubicin, and etoposide (ADE) with or without addition of GO on COG-AAML03P1 and COGAAAML0531 trials (ADE+GO, n = 755; ADE n = 470). SNPs with significant association with any endpoint within ADE+GO arm but not in the ADE arm were tested using multi-SNP modeling to develop DDR_PGx7 score. RESULTS Patients with low DDR_PGx7 score (<0) had significantly worse EFS [HR = 1.51, 95% confidence interval (CI: 1.21-1.89), P < 0.001], worse OS [HR = 1.59, 95% CI (1.22-2.08), P < 0.001], and higher RR1 [HR = 1.87, 95% CI (1.41-2.47), P < 0.0001] compared with patients with highDDR_PGx7 score (≥0)when treated withGO (ADE+GO cohort). However, no difference between low and high DDR_PGx7 score groups was observed for EFS, OS, and RR1 (all P > 0.3) in patients treated on ADE arm. CONCLUSIONS Our results suggest that DDR pathway-based pharmacogenomic score holds potential to predict outcome in patients treated with GO which consists of DNA damaging cytotoxin, calicheamicin. The potential clinical relevance for this score to personalize GO in AML requires further validation in independent and expanded cohorts.
Collapse
MESH Headings
- Humans
- Gemtuzumab/administration & dosage
- Child
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Male
- Female
- Adolescent
- Child, Preschool
- DNA Damage/genetics
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Polymorphism, Single Nucleotide
- Treatment Outcome
- Infant
- Pharmacogenetics/methods
- Prognosis
- Daunorubicin/administration & dosage
- Etoposide/administration & dosage
- Cytarabine/administration & dosage
Collapse
Affiliation(s)
- Vivek M. Shastri
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL USA
| | - Lata Chauhan
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL USA
| | - Mohammed Gbadamosi
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL USA
| | - Todd A. Alonzo
- Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | | | - Richard Aplenc
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Betsy A. Hirsch
- Children’s Hospitals and Clinic of Minnesota, University of Minnesota, Minneapolis, MN USA
| | - Edward A Kolb
- Division of Oncology, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE
| | - Alan S. Gamis
- Division of Hematology/Oncology/Bone Marrow Transplantation, Children’s Mercy Hospitals and Clinics, Kansas City, MO USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Jatinder K. Lamba
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL USA
- UF Health Cancer Center, University of Florida, Gainesville, FL USA
| |
Collapse
|
29
|
Zhang J, Yang T, Wang K, Pan J, Qiu J, Zheng S, Li X, Li G. Multi-omics analysis reveals the panoramic picture of TOP2A in pan-cancer. Sci Rep 2025; 15:6046. [PMID: 39972040 PMCID: PMC11840046 DOI: 10.1038/s41598-025-85929-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/07/2025] [Indexed: 02/21/2025] Open
Abstract
Topoisomerases are critical nuclear enzymes that resolve DNA topological challenges during genetic processes. However, there is currently a lack of comprehensive multi-omics analysis of TOP2A from a pan-cancer perspective, despite its significance. A multiomics analysis was conducted to investigate TOP2A across various cancer types. This study involved the integration of over 10,000 multidimensional genomic datasets from 33 distinct cancer types, obtained from The Cancer Genome Atlas (TCGA). The analysis focused on evaluating the overall activity levels of TOP2A in pan-cancers, which encompassed differential expression, clinical significance, immune cell infiltration, and the regulation of pathways related to cancer. Aberrant epigenetic modifications and genomic alterations have been identified as being associated with the dysregulation of TOP2A expression levels. These molecular changes have substantial impacts on cancer progression, intratumoral heterogeneity, immunological status, and the regulation of pathways related to cancer biomarkers. Consequently, patient prognosis varies significantly based on the presence and specific nature of these alterations. The potential of TOP2A to serve as a novel biomarker for prognosis may offer valuable insights into the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tianxiao Yang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Kenie Wang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jie Pan
- Department of Spine, Shanghai East Hospital, Shanghai, China
| | - Junjun Qiu
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shengnai Zheng
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Xuesong Li
- Department of Pediatric Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| | - Guanghao Li
- Department of Urology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
30
|
Lovejoy CA, Wessel SR, Bhowmick R, Hatoyama Y, Kanemaki MT, Zhao R, Cortez D. SRBD1 facilitates chromosome segregation by promoting topoisomerase IIα localization to mitotic chromosomes. Nat Commun 2025; 16:1675. [PMID: 39955279 PMCID: PMC11830093 DOI: 10.1038/s41467-025-56911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025] Open
Abstract
Accurate sister chromatid segregation requires remodeling chromosome architecture, decatenation, and attachment to the mitotic spindle. Some of these events are initiated during S-phase, but they accelerate and conclude during mitosis. Here we describe SRBD1 as a histone and nucleic acid binding protein that prevents DNA damage in interphase cells, localizes to nascent DNA during replication and the chromosome scaffold in mitosis, and is required for chromosome segregation. SRBD1 inactivation causes micronuclei, chromatin bridges, and cell death. Inactivating SRBD1 immediately prior to mitotic entry causes anaphase failure, with a reduction in topoisomerase IIα localization to mitotic chromosomes and defects in properly condensing and decatenating chromosomes. In contrast, SRBD1 is not required to complete cell division after chromosomes are condensed. Strikingly, depleting condensin II reduces the severity of the anaphase defects in SRBD1-deficient cells by restoring topoisomerase IIα localization. Thus, SRBD1 is an essential genome maintenance protein required for mitotic chromosome organization and segregation.
Collapse
Affiliation(s)
- Courtney A Lovejoy
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Sarah R Wessel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- BPGbio, Framingham, MA, USA
| | - Rahul Bhowmick
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yuki Hatoyama
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka, Japan
- Graduate School for Advanced Studies, SOKENDAI, Yata 1111, Mishima, Shizuoka, Japan
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka, Japan
- Graduate School for Advanced Studies, SOKENDAI, Yata 1111, Mishima, Shizuoka, Japan
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Runxiang Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
31
|
Deng X, Wang Y, Yang X, Yu Q, Huang R, Chen H, Li W, He Y. Synthesis, Structural Modification, and Antismall Cell Lung Cancer Activity of 3-Arylisoquinolines with Dual Inhibitory Activity on Topoisomerase I and II. J Med Chem 2025; 68:3518-3546. [PMID: 39844445 DOI: 10.1021/acs.jmedchem.4c02689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
To overcome the compensatory effect between Topo I and II, one of the reasons accounting for the resistance of SCLC patients, we are pioneering the use of 3-arylisoquinolines to develop dual inhibitors of Topo I/II for the management of SCLC. A total of 46 new compounds were synthesized. Compounds 3g (IC50 = 1.30 μM for NCI-H446 cells and 1.42 μM for NCI-H1048 cells) and 3x (IC50 = 1.32 μM for NCI-H446 cells and 2.45 μM for NCI-H1048 cells) were selected for detailed pharmacological investigation, due to their outstanding cytotoxicity and dual Topo I and II inhibitory activity. 3g and 3x effectively prevent SCLC cell proliferation, invasion, and migration in vitro, byinducing mitochondrial apoptosis and inhibiting the PI3K/Akt/mTOR pathway. Their in vivo tumor inhibition rate is comparable to etoposide with lower toxicity. These results indicated their potential therapeutic values as dual Topo I and II inhibitors for treating SCLC.
Collapse
Affiliation(s)
- Xuemei Deng
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yuying Wang
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Xiongqi Yang
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Quanwei Yu
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Ridong Huang
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Hai Chen
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yang He
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
32
|
Joshi G, Yadav UP, Rafiq Z, Grewal P, Kumar M, Singh T, Jha V, Sharma P, Eriksson LA, Srinivas L, Dahibhate NL, Srivastava P, Bhutani P, Mishra UK, Sharon A, Banerjee UC, Sharma N, Chatterjee J, Tikoo K, Singh S, Kumar R. Design and Synthesis of Topoisomerases-Histone Deacetylase Dual Targeted Quinoline-Bridged Hydroxamates as Anticancer Agents. J Med Chem 2025; 68:2849-2868. [PMID: 39808731 DOI: 10.1021/acs.jmedchem.4c02135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The multifactorial nature of cancer requires treatment that involves simultaneous targeting of associated overexpressed proteins and cell signaling pathways, possibly leading to synergistic effects. Herein, we present a systematic study that involves the simultaneous inhibition of human topoisomerases (hTopos) and histone deacetylases (HDACs) by multitargeted quinoline-bridged hydroxamic acid derivatives. These compounds were rationally designed considering pharmacophoric features and catalytic sites of the cross-talk proteins, synthesized, and assessed for their anticancer potential. Our findings revealed that the compound 5c significantly produced anticancer effects in vitro and in vivo by reducing the tumor growth and its size in the A549 cell-induced lung cancer xenograft model through multiple mechanisms, primarily by multi-inhibition of hTopoI/II and HDACs, especially HDAC1 via atypical binding. The present paper discusses detailed mechanistic biological investigations, structure-activity effects supported by computational docking studies, and DMPK studies and provides future scope for lead optimization and modification.
Collapse
Affiliation(s)
- Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India
| | - Umesh Prasad Yadav
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Zahid Rafiq
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, India
| | - Preeti Grewal
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, India
| | - Manvendra Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India
| | - Tashvinder Singh
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Vibhu Jha
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg 405 30, Sweden
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, U.K
| | - Praveen Sharma
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg 405 30, Sweden
| | | | | | | | | | - Uttam Kumar Mishra
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Ashoke Sharon
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Uttam C Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, India
| | - Nisha Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, India
| | - Joydeep Chatterjee
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, India
| | - Sandeep Singh
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India
| |
Collapse
|
33
|
de Klein B, Eickhoff N, Zwart W. The emerging regulatory interface between DNA repair and steroid hormone receptors in cancer. Trends Mol Med 2025:S1471-4914(25)00006-1. [PMID: 39934021 DOI: 10.1016/j.molmed.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/13/2025]
Abstract
Human cells potentiate highly diverse functions through tight transcriptional regulation and maintenance of genome integrity. While the DNA damage response (DDR) safeguards the genome, ligand-activated transcription factors, such as steroid hormone receptors (SHRs), provide complex transcriptional outputs. Interestingly, an increasing body of evidence reveals a direct biological and functional interplay between DDR factors and SHR cascades in cancer. SHRs can directly affect DDR gene expression, but DDR factors in turn act as transcriptional coregulators, enabling oncogenic SHR-mediated signaling, which has the potential for novel therapeutic interventions. With a focus on breast and prostate cancer, we describe in this review recent developments in, and insights into, the complex interplay between SHR signaling and the DDR, highlighting opportunities for future clinical interventions.
Collapse
Affiliation(s)
- Bim de Klein
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Nils Eickhoff
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, 5600, MB, Eindhoven, The Netherlands.
| |
Collapse
|
34
|
Imbert F, Langford D. Comprehensive SUMO Proteomic Analyses Identify HIV Latency-Associated Proteins in Microglia. Cells 2025; 14:235. [PMID: 39937027 PMCID: PMC11817477 DOI: 10.3390/cells14030235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
SUMOylation, the post-translational modification of proteins by small ubiquitin-like modifiers, plays a critical role in regulating various cellular processes, including innate immunity. This modification is essential for modulating immune responses and influencing signaling pathways that govern the activation and function of immune cells. Recent studies suggest that SUMOylation also contributes to the pathophysiology of central nervous system (CNS) viral infections, where it contributes to the host response and viral replication dynamics. Here, we explore the multifaceted role of SUMOylation in innate immune signaling and its implications for viral infections within the CNS. Notably, we present novel proteomic analyses aimed at elucidating the role of the small ubiquitin-related modifier (SUMO) in human immunodeficiency virus (HIV) latency in microglial cells. Our findings indicate that SUMOylation may regulate key proteins involved in maintaining viral latency, suggesting a potential mechanism by which HIV evades immune detection in the CNS. By integrating insights from proteomics with functional studies, we anticipate these findings to be the groundwork for future studies on HIV-host interactions and the mechanisms that underlie SUMOylation during latent and productive infection.
Collapse
Affiliation(s)
- Fergan Imbert
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ 08084, USA
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Dianne Langford
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ 08084, USA
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| |
Collapse
|
35
|
Friedenson B. Identifying Safeguards Disabled by Epstein-Barr Virus Infections in Genomes From Patients With Breast Cancer: Chromosomal Bioinformatics Analysis. JMIRX MED 2025; 6:e50712. [PMID: 39885374 PMCID: PMC11796484 DOI: 10.2196/50712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 02/01/2025]
Abstract
Background The causes of breast cancer are poorly understood. A potential risk factor is Epstein-Barr virus (EBV), a lifelong infection nearly everyone acquires. EBV-transformed human mammary cells accelerate breast cancer when transplanted into immunosuppressed mice, but the virus can disappear as malignant cells reproduce. If this model applies to human breast cancers, then they should have genome damage characteristic of EBV infection. Objective This study tests the hypothesis that EBV infection predisposes one to breast cancer by causing permanent genome damage that compromises cancer safeguards. Methods Publicly available genome data from approximately 2100 breast cancers and 25 ovarian cancers were compared to cancers with proven associations to EBV, including 70 nasopharyngeal cancers, 90 Burkitt lymphomas, 88 diffuse large B-cell lymphomas, and 34 gastric cancers. Calculation algorithms to make these comparisons were developed. Results Chromosome breakpoints in breast and ovarian cancer clustered around breakpoints in EBV-associated cancers. Breakpoint distributions in breast and EBV-associated cancers on some chromosomes were not confidently distinguished (P>.05), but differed from controls unrelated to EBV infection. Viral breakpoint clusters occurred in high-risk, sporadic, and other breast cancer subgroups. Breakpoint clusters disrupted gene functions essential for cancer protection, which remain compromised even if EBV infection disappears. As CRISPR (clustered regularly interspaced short palindromic repeats)-like reminders of past infection during evolution, EBV genome fragments were found regularly interspaced between Piwi-interacting RNA (piRNA) genes on chromosome 6. Both breast and EBV-associated cancers had inactivated genes that guard piRNA defenses and the major histocompatibility complex (MHC) locus. Breast and EBV-associated cancer breakpoints and other variations converged around the highly polymorphic MHC. Not everyone develops cancer because MHC differences produce differing responses to EBV infection. Chromosome shattering and mutation hot spots in breast cancers preferentially occurred at incorporated viral sequences. On chromosome 17, breast cancer breakpoints that clustered around those in EBV-mediated cancers were linked to estrogen effects. Other breast cancer breaks affected sites where EBV inhibits JAK-STAT and SWI-SNF signaling pathways. A characteristic EBV-cancer gene deletion that shifts metabolism to favor tumors was also found in breast cancers. These changes push breast cancer into metastasis and then favor survival of metastatic cells. Conclusions EBV infection predisposes one to breast cancer and metastasis, even if the virus disappears. Identifying this pathogenic viral damage may improve screening, treatment, and prevention. Immunizing children against EBV may protect against breast, ovarian, other cancers, and potentially even chronic unexplained diseases.
Collapse
Affiliation(s)
- Bernard Friedenson
- Department of Biochemistry and Medical Genetics, Cancer Center, University of Illinois Chicago, 900 s Ashland, Chicago, IL, 60617, United States, 1 8479124216
| |
Collapse
|
36
|
Liu T, Wang Y, An XZ, Liu J, Wu Y, Xiang Y, Zhang YJ, Huang L, Li JC, Li YZP, Yu J. Identification of a novel TOP2B::AFF2 fusion gene in B-cell acute lymphoblastic leukemia. Sci Rep 2025; 15:3280. [PMID: 39863655 PMCID: PMC11763246 DOI: 10.1038/s41598-025-86865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Genetic alterations play a pivotal role in leukemic clonal transformation, significantly influencing disease pathogenesis and clinical outcomes. Here, we report a novel fusion gene and investigate its pathogenic role in acute lymphoblastic leukemia (ALL). We engineer a transposon transfection system expressing the TOP2B::AFF2 transcript and introduce it into Ba/F3 cells. Functional studies, including proliferation, cell cycle, and apoptosis assays, were conducted to assess the fusion gene's impact. In vitro assays reveal that the TOP2B::AFF2 fusion significantly enhances Ba/F3 cell proliferation and G1/S phase transition while suppressing differentiation and apoptosis. This study identifies TOP2B::AFF2 as a potential oncogenic driver. However, further validation through in vivo studies are warranted to fully elucidate the fusion gene's role in leukemogenesis.
Collapse
Affiliation(s)
- Tao Liu
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China
| | - Yang Wang
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China
- Department of Hematology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xi-Zhou An
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China
| | - Jiaqi Liu
- Shanghai Cinopath Medical Testing Co Ltd, Shanghai, China
| | - Yuqin Wu
- Laboratory Medicine Department, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Xiang
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China
| | - Yong-Jie Zhang
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China
| | - Lan Huang
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China
| | - Jia-Cheng Li
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China
| | - Yu-Zhuo-Pu Li
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China
| | - Jie Yu
- Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China.
| |
Collapse
|
37
|
Yao S, Yue Z, Ye S, Liang X, Li Y, Gan H, Zhou J. Identification of MCM2-Interacting Proteins Associated with Replication Initiation Using APEX2-Based Proximity Labeling Technology. Int J Mol Sci 2025; 26:1020. [PMID: 39940790 PMCID: PMC11816892 DOI: 10.3390/ijms26031020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 02/16/2025] Open
Abstract
DNA replication is a crucial biological process that ensures the accurate transmission of genetic information, underpinning the growth, development, and reproduction of organisms. Abnormalities in DNA replication are a primary source of genomic instability and tumorigenesis. During DNA replication, the assembly of the pre-RC at the G1-G1/S transition is a crucial licensing step that ensures the successful initiation of replication. Although many pre-replication complex (pre-RC) proteins have been identified, technical limitations hinder the detection of transiently interacting proteins. The APEX system employs peroxidase-mediated rapid labeling with high catalytic efficiency, enabling protein labeling within one minute and detection of transient protein interactions. MCM2 is a key component of the eukaryotic replication initiation complex, which is essential for DNA replication. In this study, we fused MCM2 with enhanced APEX2 to perform in situ biotinylation. By combining this approach with mass spectrometry, we identified proteins proximal to the replication initiation complex in synchronized mouse ESCs and NIH/3T3. Through a comparison of the results from both cell types, we identified some candidate proteins. Interactions between MCM2 and the candidate proteins CD2BP2, VRK1, and GTSE1 were confirmed by bimolecular fluorescence complementation. This research establishes a basis for further study of the component proteins of the conserved DNA replication initiation complex and the transient regulatory network involving its proximal proteins.
Collapse
Affiliation(s)
- Sitong Yao
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (S.Y.); (X.L.)
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Z.Y.); (H.G.)
| | - Zhen Yue
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Z.Y.); (H.G.)
| | - Shaotang Ye
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (S.Y.); (X.L.)
| | - Xiaohuan Liang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (S.Y.); (X.L.)
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (S.Y.); (X.L.)
| | - Haiyun Gan
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Z.Y.); (H.G.)
| | - Jiaqi Zhou
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Z.Y.); (H.G.)
| |
Collapse
|
38
|
Matsubara J, Li YF, Koul S, Mukohyama J, Salazar LEV, Isobe T, Qian D, Clarke MF, Sahoo D, Altman RB, Dalerba P. The E2F4 transcriptional repressor is a key mechanistic regulator of colon cancer resistance to irinotecan (CPT-11). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.633435. [PMID: 39896677 PMCID: PMC11785039 DOI: 10.1101/2025.01.22.633435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Background Colorectal carcinomas (CRCs) are seldom eradicated by cytotoxic chemotherapy. Cancer cells with stem-like functional properties, often referred to as "cancer stem cells" (CSCs), display preferential resistance to several anti-tumor agents used in cancer chemotherapy, but the molecular mechanisms underpinning their selective survival remain only partially understood. Methods In this study, we used Transcription Factor Target Genes (TFTG) enrichment analysis to identify transcriptional regulators (activators or repressors) that undergo preferential activation by chemotherapy in CRC cells with a "bottom-of-the-crypt" phenotype (EPCAM+/CD44+/CD166+; CSC-enriched) as compared to CRC cells with a "top-of-the-crypt" phenotype (EPCAM+/CD44neg/CD166neg; CSC-depleted). The two cell populations were purified in parallel by fluorescence-activated cell sorting (FACS) from a patient-derived xenograft (PDX) line representative of a moderately differentiated human CRC, following in vivo chemotherapy with irinotecan (CPT-11). The transcriptional regulators identified as differentially activated were tested for differential expression in normal vs. cancer tissues, and in cell populations enriched in stem/progenitor cell-types as compared to differentiated lineages (goblet cells, enterocytes) in the mouse colon epithelium. Finally, the top candidate was tested for mechanistic contribution to drug-resistance by selective down-regulation using short-hairpin RNAs (shRNAs). Results Our analysis identified E2F4 and TFDP1, two core components of the DREAM transcriptional repression complex, as transcriptional modulators preferentially activated by irinotecan in EPCAM+/CD44+/CD166+ as compared to EPCAM+/CD44neg/CD166neg cancer cells. The expression levels of both genes (E2F4, TFDP1) were found up-regulated in CRCs as compared to human normal colon tissues, and in a sub-population of mouse colon epithelial cells enriched in stem/progenitor elements (Epcam+/Cd44+/Cd66alow/Kitneg) as compared to other sub-populations enriched in either goblet cells (Epcam+/Cd44+/Cd66alow/Kit+) or enterocytes (Epcam+/Cd44neg/Cd66ahigh). Most importantly, E2F4 down-regulation using shRNAs dramatically enhanced the sensitivity of human CRCs to in vivo treatment with irinotecan, across three independent PDX models. Conclusions Our data identified E2F4 and the DREAM repressor complex as critical regulators of human CRC resistance to irinotecan, and as candidate targets for the development of chemo-sensitizing agents.
Collapse
Affiliation(s)
- Junichi Matsubara
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA (USA)
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto (Japan)
| | - Yong Fuga Li
- Department of Genetics, Stanford University, Stanford, CA (USA)
- Department of Bioengineering, Stanford University, Stanford, CA (USA)
- Illumina Inc., San Diego, CA (USA)
| | - Sanjay Koul
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health (HMH), Nutley, NJ (USA)
- Department of Biological Sciences and Geology, Queensborough Community College (QCC), The City University of New York (CUNY), Bayside, NY (USA)
- Department of Pathology and Cell Biology, Columbia University, New York, NY (USA)
- Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, NY (USA)
- Columbia Stem Cell Initiative (CSCI), Columbia University, New York, NY (USA)
| | - Junko Mukohyama
- Department of Pathology and Cell Biology, Columbia University, New York, NY (USA)
- Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, NY (USA)
- Columbia Stem Cell Initiative (CSCI), Columbia University, New York, NY (USA)
- Department of Surgery, Institute of Medical Science, University of Tokyo, Tokyo (Japan)
| | - Luis E. Valencia Salazar
- Department of Pathology and Cell Biology, Columbia University, New York, NY (USA)
- Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, NY (USA)
- Columbia Stem Cell Initiative (CSCI), Columbia University, New York, NY (USA)
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY (USA)
| | - Taichi Isobe
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA (USA)
- Department of Comprehensive Oncology, Graduate School of Medicine, Kyushu University, Fukuoka (Japan)
| | - Dalong Qian
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA (USA)
| | - Michael F. Clarke
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA (USA)
| | - Debashis Sahoo
- Department of Computer Science and Engineering, University of California San Diego (UCSD), San Diego, CA (USA)
- Department of Pediatrics, University of California San Diego (UCSD), San Diego, CA (USA); Department of Medicine (Division of Digestive and Liver Diseases), Columbia University, New York, NY (USA)
| | - Russ B. Altman
- Department of Genetics, Stanford University, Stanford, CA (USA)
- Department of Bioengineering, Stanford University, Stanford, CA (USA)
| | - Piero Dalerba
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health (HMH), Nutley, NJ (USA)
- Department of Pathology and Cell Biology, Columbia University, New York, NY (USA)
- Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, NY (USA)
- Columbia Stem Cell Initiative (CSCI), Columbia University, New York, NY (USA)
- Digestive and Liver Disease Research Center (DLDRC), Columbia University, New York, NY (USA)
- Department of Medical Sciences, Hackensack Meridian School of Medicine (HMSOM), Nutley, NJ (USA)
- Lombardi Comprehensive Cancer Center (LCCC), Georgetown University, Washington, DC (USA)
| |
Collapse
|
39
|
Yang X, Chen X, Yang W, Pommier Y. Structural insights into human topoisomerase 3β DNA and RNA catalysis and nucleic acid gate dynamics. Nat Commun 2025; 16:834. [PMID: 39828754 PMCID: PMC11743793 DOI: 10.1038/s41467-025-55959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
Type IA topoisomerases (TopoIAs) are present in all living organisms. They resolve DNA/RNA catenanes, knots and supercoils by breaking and rejoining single-stranded DNA/RNA segments and allowing the passage of another nucleic acid segment through the break. Topoisomerase III-β (TOP3B), the only RNA topoisomerase in metazoans, promotes R-loop disassembly and translation of mRNAs. Defects in TOP3B lead to severe neurological diseases. We present a series of cryo-EM structures of human TOP3B with its cofactor TDRD3 during cleavage and rejoining of DNA or RNA, thus elucidating the roles of divalent metal ions and key enzyme residues in each step of the catalytic cycle. We also obtained the structure of an open-gate configuration that addresses the long-standing question of the strand-passage mechanism. Our studies reveal how TOP3B catalyzes both DNA and RNA relaxation, while TOP3A acts only on DNA.
Collapse
Affiliation(s)
- Xi Yang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Xuemin Chen
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
- School of Life Sciences, Anhui University, Hefei, China
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA.
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
40
|
Sun Y, Jenkins LM, El Touny LH, Zhu L, Yang X, Jo U, Escobedo L, Maity TK, Saha LK, Uribe I, Saha S, Takeda S, Leung AKL, Cheng K, Pommier Y. Flap endonuclease 1 repairs DNA-protein cross-links via ADP-ribosylation-dependent mechanisms. SCIENCE ADVANCES 2025; 11:eads2919. [PMID: 39792662 PMCID: PMC11721697 DOI: 10.1126/sciadv.ads2919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025]
Abstract
DNA-protein cross-links (DPCs) are among the most detrimental genomic lesions. They are ubiquitously produced by formaldehyde (FA), and failure to repair FA-induced DPCs blocks chromatin-based processes, leading to neurodegeneration and cancer. The type, structure, and repair of FA-induced DPCs remain largely unknown. Here, we profiled the proteome of FA-induced DPCs and found that flap endonuclease 1 (FEN1) resolves FA-induced DPCs. We revealed that FA also damages DNA bases adjoining the DPCs, leading to DPC-conjugated 5' flap structures via the base excision repair (BER) pathway. We also found that FEN1 repairs enzymatic topoisomerase II (TOP2)-DPCs. Furthermore, we report that both FA-induced and TOP2-DPCs are adenosine diphosphate (ADP) ribosylated by poly(ADP-ribose) polymerase 1 (PARP1). PARylation of the DPCs in association with FEN1 PARylation at residue E285 is required for the recruitment of FEN1. Our work unveils the identity of proteins forming FA-induced DPCs and a previously unrecognized PARP1-FEN1 nuclease pathway repairing both FA- and TOP2-DPCs.
Collapse
Affiliation(s)
- Yilun Sun
- Department of Pharmacology, Physiology and Drug Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- University of Maryland Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, Baltimore, MD 21201, USA
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Lisa M. Jenkins
- Mass Spectrometry Section, Collaborative Protein Technology Resource, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Lara H. El Touny
- Function Genomics Laboratory, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Linying Zhu
- Department of Pharmacology, Physiology and Drug Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- University of Maryland Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Xi Yang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Ukhyun Jo
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Lauren Escobedo
- Department of Pharmacology, Physiology and Drug Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- University of Maryland Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Tapan K. Maity
- Mass Spectrometry Section, Collaborative Protein Technology Resource, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Liton Kumar Saha
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Isabel Uribe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sourav Saha
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Shunichi Takeda
- Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ken Cheng
- Function Genomics Laboratory, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| |
Collapse
|
41
|
Liang Q, Shi S, Zhang Q, Wang Y, Ye S, Xu B. Etoposide targets 2A protease to inhibit enterovirus 71 replication. Microbiol Spectr 2025; 13:e0220024. [PMID: 39555929 PMCID: PMC11705958 DOI: 10.1128/spectrum.02200-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
Enterovirus 71 (EV71) is a major pathogen that causes hand, foot, and mouth disease (HFMD) in infants and children. Notably, no clinically approved drugs specifically target EV71. The EV71 2A protease (2Apro), a cysteine protease produced by the virus, is essential for the virus' replication and has a significant impact on the functioning of host cells. Thus, it presents a valuable target for the discovery of antiviral medications. In this study, based on the monomers and their derivatives in the Library of Traditional Chinese Medicine (TCM), we performed virtual screening and biological experiments. We identified a derivative of a traditional herbal monomer, Etoposide, commonly isolated from the roots and rhizomes of Podophyllum spp. Etoposide inhibited replication of EV71 A, B, C, and CVA16 viruses in a concentration-dependent manner in a variety of cell lines with minimal cytotoxicity. Furthermore, both molecular dynamics simulations and site-directed mutagenesis assays revealed that Etoposide inhibited the activity of the EV71 2A protease by mainly binding to two residues, Y89 and P107. The findings indicate that Etoposide serves as a promising inhibitor of the EV71 2Apro, demonstrating strong antiviral properties and positioning itself as a formidable candidate for clinical trials against EV71.IMPORTANCEWe first used a drug screening approach focused on monomeric compounds and their derivatives from traditional Chinese medicine to identify an EV71 2Apro inhibitor-Etoposide. We then performed biological experiments to validate that Etoposide suppresses the replication of the EV71 virus in a concentration-dependent manner with minimal cytotoxicity to various cell lines. Remarkably, it shows inhibitory activity against EV71 A, B, C, and CVA16, suggesting that Etoposide may be a potential broad-spectrum inhibitor. We revealed a novel mechanism that Etoposide inhibits EV71 proliferation by targeting 2Apro, and the interactions with Y89 and P107 are of great importance. The findings suggest that Etoposide serves as a promising inhibitor of EV71 2Apro, demonstrating significant antiviral properties. It stands out as a strong candidate for broad-spectrum applications in clinical research.
Collapse
Affiliation(s)
- Qinqin Liang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Sai Shi
- Department of Medical and Pharmaceutical Informatics, Hebei Medical University, Shijiazhuang, China
| | - Qingjie Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Yaxin Wang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Sheng Ye
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Binghong Xu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
42
|
Hall PM, Mayse LA, Bai L, Smolka MB, Pugh BF, Wang MD. High-Resolution Genome-Wide Maps Reveal Widespread Presence of Torsional Insulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.11.617876. [PMID: 39416127 PMCID: PMC11482950 DOI: 10.1101/2024.10.11.617876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Torsional stress in chromatin plays a fundamental role in cellular functions, influencing key processes such as transcription, replication, and chromatin organization. Transcription and other processes may generate and be regulated by torsional stress. In the genome, the interplay of these processes creates complicated patterns of both positive (+) and negative (-) torsion. However, a challenge in generating an accurate torsion map is determining the zero-torsion baseline signal, which is conflated with chromatin accessibility. Here, we introduce a high-resolution method based on the intercalator trimethylpsoralen (TMP) to address this challenge. We describe a method to establish the zero-torsion baseline while preserving the chromatin state of the genome of S. cerevisiae. This approach enables both high-resolution mapping of accessibility and torsional stress in chromatin in the cell. Our analysis shows transcription-generated torsional domains consistent with the twin-supercoiled-domain model of transcription and suggests a role for torsional stress in recruiting topoisomerases and in regulating 3D genome architecture via cohesin. Significantly, we reveal that insulator sequence-specific transcription factors decouple torsion between divergent promoters, whereas torsion spreads between divergent promoters lacking these factors, suggesting that torsion serves as a regulatory mechanism in these regions. Although insulators are known to decouple gene expression, our finding provides a physical explanation of how such decoupling may occur. This new method provides a potential path forward for using TMP to measure torsional stress in the genome without the confounding contribution of accessibility in chromatin.
Collapse
Affiliation(s)
- Porter M. Hall
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Lauren A. Mayse
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
| | - Marcus B. Smolka
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - B. Franklin Pugh
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Michelle D. Wang
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
43
|
Goyzueta-Mamani LD, Pagliara Lage D, Barazorda-Ccahuana HL, Paco-Chipana M, Candia-Puma MA, Davila-Del-Carpio G, Galdino AS, Machado-de-Avila RA, Cordeiro Giunchetti R, D’Antonio EL, Ferraz Coelho EA, Chávez-Fumagalli MA. Exploring the Potential of Malvidin and Echiodinin as Probable Antileishmanial Agents Through In Silico Analysis and In Vitro Efficacy. Molecules 2025; 30:173. [PMID: 39795229 PMCID: PMC11722285 DOI: 10.3390/molecules30010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Leishmaniasis, a neglected tropical disease caused by Leishmania species, presents serious public health challenges due to limited treatment options, toxicity, high costs, and drug resistance. In this study, the in vitro potential of malvidin and echioidinin is examined as antileishmanial agents against L. amazonensis, L. braziliensis, and L. infantum, comparing their effects to amphotericin B (AmpB), a standard drug. Malvidin demonstrated greater potency than echioidinin across all parasite stages and species. Against L. amazonensis, malvidin's IC50 values were 197.71 ± 17.20 µM (stationary amastigotes) and 258.07 ± 17 µM (axenic amastigotes), compared to echioidinin's 272.99 ± 29.90 μM and 335.96 ± 19.35 μM. AmpB was more potent, with IC50 values of 0.06 ± 0.01 µM and 0.10 ± 0.03 µM. Malvidin exhibited lower cytotoxicity (CC50: 2920.31 ± 80.29 µM) than AmpB (1.06 ± 0.12 µM) and a favorable selectivity index. It reduced infection rates by 35.75% in L. amazonensis-infected macrophages. The in silico analysis revealed strong binding between malvidin and Leishmania arginase, with the residues HIS139 and PRO258 playing key roles. Gene expression analysis indicated malvidin's modulation of oxidative stress and DNA repair pathways, involving genes like GLO1 and APEX1. These findings suggest malvidin's potential as a safe, natural antileishmanial compound, warranting further in vivo studies to confirm its therapeutic efficacy and pharmacokinetics in animal models.
Collapse
Affiliation(s)
- Luis Daniel Goyzueta-Mamani
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (L.D.G.-M.); (H.L.B.-C.); (M.P.-C.); (M.A.C.-P.)
| | - Daniela Pagliara Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (D.P.L.); (E.A.F.C.)
| | - Haruna Luz Barazorda-Ccahuana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (L.D.G.-M.); (H.L.B.-C.); (M.P.-C.); (M.A.C.-P.)
| | - Margot Paco-Chipana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (L.D.G.-M.); (H.L.B.-C.); (M.P.-C.); (M.A.C.-P.)
| | - Mayron Antonio Candia-Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (L.D.G.-M.); (H.L.B.-C.); (M.P.-C.); (M.A.C.-P.)
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru;
| | - Gonzalo Davila-Del-Carpio
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru;
| | - Alexsandro Sobreira Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal São João Del-Rei, Divinópolis 35501-296, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Biotecnologia Industrial (INCT-BI), Distrito Federal, Brasilia 70070-010, Brazil
| | | | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
- Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais (INCT-DT), Salvador 40110-160, Brazil
| | - Edward L. D’Antonio
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC 29909, USA;
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (D.P.L.); (E.A.F.C.)
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (L.D.G.-M.); (H.L.B.-C.); (M.P.-C.); (M.A.C.-P.)
| |
Collapse
|
44
|
Mann CA, Osheroff N. DNA Cleavage Mediated by Bacterial Type II Topoisomerases. Methods Mol Biol 2025; 2928:63-71. [PMID: 40372637 DOI: 10.1007/978-1-0716-4550-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
The maintenance of DNA topology is critical for cellular processes. Topoisomerases are a class of enzymes found in eukaryotic and prokaryotic organisms that modulate the topology of DNA during replication and transcription. Bacterial type II topoisomerases, DNA gyrase and topoisomerase IV, are essential for bacterial cell survival. These enzymes pass an intact double helix through a transient double-stranded break in a separate segment of DNA in order to carry out their specific functions. The DNA cleavage step is crucial for the activity of the type II enzymes. However, prolongation of this process, for example, with exposure to antibacterial agents, can lead to bacterial cell death. The DNA cleavage assay is an in vitro method used to study the effects of type II topoisomerase-targeting compounds on enzyme-mediated DNA cleavage. This chapter outlines a protocol for measuring DNA cleavage mediated by Escherichia coli gyrase in the presence or absence of antibacterial drugs.
Collapse
Affiliation(s)
- Chelsea A Mann
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
45
|
Fritsch C, Berger JM. Expression, Purification, and Measurement of DNA Supercoil Relaxation Activity by Eukaryotic Topoisomerase II. Methods Mol Biol 2025; 2928:75-87. [PMID: 40372638 DOI: 10.1007/978-1-0716-4550-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Topoisomerases play a critical role in safeguarding the genome by resolving topological challenges that both result from and interfere with transcription and replication. These enzymes have been the subject of research not only for understanding their complex mechanisms of action, but also because of their therapeutic utility as drug targets. To gain a better understanding of topoisomerases and how they function, in vitro assays are necessary to measure their activity under various conditions. In this chapter, we describe the expression and purification of a eukaryotic type II topoisomerase (human topo IIα) from budding yeast cells and a gel-based assay that permits measurement of its ability to relax supercoiled DNA.
Collapse
Affiliation(s)
- Clark Fritsch
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
46
|
Van Ravenstein SX, Dewar JM. Use of Xenopus Egg Extracts to Study the Effects of Topoisomerase Poisons During Vertebrate DNA Replication. Methods Mol Biol 2025; 2928:151-172. [PMID: 40372644 DOI: 10.1007/978-1-0716-4550-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Topoisomerases unlink chromosomes and relieve topological stress. Topoisomerase "poisons" are widely used chemotherapeutics that stabilize topoisomerase complexes on DNA, leading to cytotoxic DNA breaks and cancer cell killing. It is well established that topoisomerase poisons interfere with DNA replication, which is thought to be a major physiological target of these drugs. However, many questions remain about the mechanisms by which topoisomerase poisons impact DNA replication and the downstream consequences. Here, we describe assays to study topoisomerase poisons during vertebrate DNA replication using Xenopus egg extracts. These approaches allow for replication intermediates formed following poison treatment to be carefully monitored with high temporal resolution.
Collapse
Affiliation(s)
| | - James M Dewar
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
47
|
Cowell IG, Ling EM, Austin CA. Topoisomerase II DNA Cleavage Assay Using Fluorescently Labelled Double-Stranded Oligonucleotides. Methods Mol Biol 2025; 2928:97-108. [PMID: 40372640 DOI: 10.1007/978-1-0716-4550-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
DNA topoisomerase II (TOP2) regulates DNA topological states including supercoiling and knotting via a strand-passage reaction that involves transiently breaking and rejoining both strands of the DNA. These enzymes are the targets of a category of drugs termed topoisomerase poisons, which block the rejoining reaction, leading to DNA cleavage. In vitro DNA cleavage assays have been very useful in studying various properties of TOP2, including cleavage site preferences and the effects of TOP2 amino acid substitutions or reaction conditions on DNA cleavage. These assays employ purified or recombinant TOP2 in the presence or absence of TOP2 poisons, followed by electrophoretic separation of DNA cleavage products. The substrates for these assays have typically been radioactively end-labelled DNA fragments. Here, we describe an alternative method employing fluorescently labelled oligonucleotide substrates, combined with convenient mini-gel electrophoretic separation. This methodology combines stable, long-lived substrates with an easily used gel system and convenient imaging and quantification.
Collapse
Affiliation(s)
- Ian G Cowell
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Elise M Ling
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Caroline A Austin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
48
|
Tu T, McQuaid TJ, Jacobson IM. HBV-Induced Carcinogenesis: Mechanisms, Correlation With Viral Suppression, and Implications for Treatment. Liver Int 2025; 45:e16202. [PMID: 39720865 DOI: 10.1111/liv.16202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/29/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Chronic hepatitis B virus (HBV) infection is a common but underdiagnosed and undertreated health condition and is the leading cause of hepatocellular carcinoma (HCC) worldwide. HBV (rated a Grade 1 carcinogen by the International Agency for Research on Cancer) drives the transformation of hepatocytes in multiple ways by inducing viral DNA integrations, genetic dysregulation, chromosomal translocations, chronic inflammation, and oncogenic pathways facilitated by some HBV proteins. Importantly, these mechanisms are active throughout all phases of HBV infection. Nevertheless, most clinical guidelines for antiviral therapy recommend treatment based on a complex combination of HBV DNA levels, transaminasemia, liver histology, and demographic factors, rather than prompt treatment for all people with infection. AIMS To determine if current frameworks for antiviral treatment address the impacts of chronic HBV infection particularly preventing cancer development. MATERIALS AND METHODS We reviewed the recent data demonstrating pro-oncogenic factors acting throughout a chronic HBV infection can be inhibited by antiviral therapy. RESULTS We extensively reviewed Hepatitis B virology data and correlating clinical outcome data. From thi, we suggest that new findings support simplifying and expanding treatment initiation to reduce the incidence ofnew infections, progressive liver disease, and risk of hepatocellular carcinoma. We also consider lessons learned from other blood-borne pathogens, including the benefits of antiviral treatment in preventing transmission, reducing stigma, and reframing treatment as cancer prevention. CONCLUSION Incorporating these practice changes into treatment is likely to reduce the overall burden of chronic HBV infections and HCC. Through this, we may better achieve the World Health Organization's goal of eliminating viral hepatitis as a public health threat and minimise its impact on people's lives.
Collapse
Affiliation(s)
- Thomas Tu
- Storr Liver Centre, Westmead Clinical School, Centre for Infectious Diseases and Microbiology and Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
49
|
Yao Q, Zhu L, Shi Z, Banerjee S, Chen C. Topoisomerase-modulated genome-wide DNA supercoiling domains colocalize with nuclear compartments and regulate human gene expression. Nat Struct Mol Biol 2025; 32:48-61. [PMID: 39152238 DOI: 10.1038/s41594-024-01377-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 07/24/2024] [Indexed: 08/19/2024]
Abstract
DNA supercoiling is a biophysical feature of the double helix with a pivotal role in biological processes. However, understanding of DNA supercoiling in the chromatin remains limited. Here, we developed azide-trimethylpsoralen sequencing (ATMP-seq), a DNA supercoiling assay offering quantitative accuracy while minimizing genomic bias and background noise. Using ATMP-seq, we directly visualized transcription-dependent negative and positive twin-supercoiled domains around genes and mapped kilobase-resolution DNA supercoiling throughout the human genome. Remarkably, we discovered megabase-scale supercoiling domains (SDs) across all chromosomes that are modulated mainly by topoisomerases I and IIβ. Transcription activities, but not the consequent supercoiling accumulation in the local region, contribute to SD formation, indicating the long-range propagation of transcription-generated supercoiling. Genome-wide SDs colocalize with A/B compartments in both human and Drosophila cells but are distinct from topologically associating domains (TADs), with negative supercoiling accumulation at TAD boundaries. Furthermore, genome-wide DNA supercoiling varies between cell states and types and regulates human gene expression, underscoring the importance of supercoiling dynamics in chromatin regulation and function.
Collapse
Affiliation(s)
- Qian Yao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Linying Zhu
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhen Shi
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Subhadra Banerjee
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chongyi Chen
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
50
|
Cooke MB, Herman C, Sivaramakrishnan P. Clues to transcription/replication collision-induced DNA damage: it was RNAP, in the chromosome, with the fork. FEBS Lett 2025; 599:209-243. [PMID: 39582266 DOI: 10.1002/1873-3468.15063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
DNA replication and RNA transcription processes compete for the same DNA template and, thus, frequently collide. These transcription-replication collisions are thought to lead to genomic instability, which places a selective pressure on organisms to avoid them. Here, we review the predisposing causes, molecular mechanisms, and downstream consequences of transcription-replication collisions (TRCs) with a strong emphasis on prokaryotic model systems, before contrasting prokaryotic findings with cases in eukaryotic systems. Current research points to genomic structure as the primary determinant of steady-state TRC levels and RNA polymerase regulation as the primary inducer of excess TRCs. We review the proposed mechanisms of TRC-induced DNA damage, attempting to clarify their mechanistic requirements. Finally, we discuss what drives genomes to select against TRCs.
Collapse
Affiliation(s)
- Matthew B Cooke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Priya Sivaramakrishnan
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, PA, USA
| |
Collapse
|