1
|
Chen LR, Zhou SS, Yang JX, Liu XQ. Effect of hypoxia on the mucus system and intragastric microecology in the gastrointestinal tract. Microb Pathog 2025; 205:107615. [PMID: 40355054 DOI: 10.1016/j.micpath.2025.107615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 04/03/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
Digestive diseases have a high incidence worldwide, with various geographic, age, and gender factors influencing the occurrence and development of the diseases. The main etiologic factors involve genetics, environment, lifestyle, and dietary habits. In a low-oxygen environment, however, the body's tissue cells activate hypoxia-inducible factor (HIF), which produces different inflammatory mediators. Hypoxia impacts health at the molecular level by modulating cellular stress responses, metabolic pathways, and immune functions. It also alters gene expression and cellular behavior, thereby affecting gastrointestinal function. Under normal physiological conditions, the gastrointestinal mucus system serves as a crucial protective barrier, defending against mechanical injury, pathogenic invasion, and exposure to harmful chemicals. The integrity and functionality of this barrier are dependent on the synthesis and regulation of mucins and mucus, which are influenced by multiple factors. Additionally, the composition and diversity of the gastric microbiota are shaped by factors such as Helicobacter pylori infection, diet, and lifestyle. A balanced gastric microbiota supports gastrointestinal health and fortifies the mucus barrier. However, hypoxia can disrupt this equilibrium, leading to inflammation, alterations in the mucus layer, and destabilization of the gastric microbiota. Understanding the interplay between hypoxia, the mucus system, and the gastric microbiota is essential for identifying novel therapeutic strategies. Future research should elucidate the mechanisms through which hypoxia influences these systems and develop interventions to mitigate its adverse effects on gastrointestinal health. We examined the impact of hypoxia on the gastrointestinal mucus system and gastric microbiota, highlighting its implications for human health and potential therapeutic approaches.
Collapse
Affiliation(s)
- Li Rong Chen
- Qinghai University, Xining, 810001, PR China; Affiliated People's Hospital of Qinghai University, Xining, 810001, PR China
| | - Si Si Zhou
- Affiliated People's Hospital of Qinghai University, Xining, 810001, PR China; Department of Gastroenterology, Qinghai Provincial People's Hospital, Xining, 810001, PR China; Qinghai Provincial Clinical Medical Research Center for Digestive Diseases, Xining, 810001, PR China.
| | - Ji Xiang Yang
- Qinghai University, Xining, 810001, PR China; Affiliated People's Hospital of Qinghai University, Xining, 810001, PR China
| | - Xiao Qian Liu
- Qinghai University, Xining, 810001, PR China; Affiliated People's Hospital of Qinghai University, Xining, 810001, PR China
| |
Collapse
|
2
|
Tian P, Zhao J, Guo J, Guo G, Zeng L, Lei Q, Chen W, Fu X, Shi X, Xu Z, Zhao D, Zhang Z, Zhang H. Lnc-HZ06 down-regulates HIF1α protein levels in CoCl 2-exposed hypoxic trophoblast cells and villous tissues of miscarriage patients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 978:179477. [PMID: 40262219 DOI: 10.1016/j.scitotenv.2025.179477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025]
Abstract
Hypoxia plays significant roles in various biological processes. In recent study, we have found that a novel lnc-HZ06 promotes the SUMOylation of HIF1α in hypoxic human trophoblast cells. Since environmental cobalt (Co) exposure causes trophoblast cell hypoxia, whether and how lnc-HZ06 might regulate the protein levels of HIF1α, an important biomarker of hypoxia, in CoCl2-exposed hypoxic trophoblast cells is still unexplored. In this study, we find that lnc-HZ06 is highly expressed in CoCl2-exposed trophoblast cells; and lnc-HZ06 further down-regulates HIF1α protein levels. In details, (1) lnc-HZ06 up-regulates METTL14 (methyltransferase-like 14) and increases m6A (N6-methyladenosine) RNA modification levels on VHL (a ubiquitin E3 ligase of HIF1α) mRNA, and thus enhances its mRNA stability and up-regulates VHL mRNA levels. (2) VHL interacts with the SUMOylated HIF1α and promotes the ubiquitination of HIF1α, and finally lnc-HZ06 promotes the ubiquitination degradation of HIF1α protein in CoCl2-exposed hypoxic trophoblast cells. Therefore, lnc-HZ06 promotes VHL-mediated HIF1α protein degradation and down-regulates HIF1α protein levels. The cellular mechanisms in hypoxic trophoblast cells were partially consistent to those in villous tissues of patients with unexplained miscarriage (UM), expect for no significantly different Co content in UM and healthy control (HC) villous tissues. Collectively, this study discovers novel regulatory roles of lnc-HZ06 and m6A modification and post-translational modification (SUMO/Ubiquitin) in HIF1α protein levels in hypoxic human trophoblast cells.
Collapse
Affiliation(s)
- Peng Tian
- Department of Pathology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi 563003, China
| | - Jingsong Zhao
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Jiarong Guo
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Geng Guo
- Department of Emergency, Cerebrovascular Disease Center, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Liqin Zeng
- Department of Obstetrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Qiong Lei
- Department of Obstetrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Weina Chen
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Xia Fu
- Department of Nursing, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Xianjie Shi
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhongyan Xu
- Clinical Laboratory, Bethune International Peace Hospital, 398 Zhongshan Road, Shijiazhuang, Hebei 050082, China.
| | - Depeng Zhao
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, China.
| | - Zhihong Zhang
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China.
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
3
|
Li Z, Shen L, Tu Y, Lu S, Liu B. Hypoxia-inducible factor-prolyl hydroxylase inhibitors in treatment of anemia with chronic disease. Chin Med J (Engl) 2025:00029330-990000000-01559. [PMID: 40405347 DOI: 10.1097/cm9.0000000000003470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Indexed: 05/24/2025] Open
Abstract
ABSTRACT Anemia of chronic disease (ACD) is the most frequent clinical issue in patients with chronic disease, ACD is usually secondary to chronic kidney disease (CKD), cancer, and chronic infection, which is associated with poor health outcomes, increased morbidity and mortality, and substantial economic costs. Current treatment options for ACD are very limited. The discovery of the hypoxia-inducible factor-prolyl hydroxylase (HIF-PHD) pathway made it possible to develop novel therapeutic agents (such as hypoxia-inducible factor-prolyl hydroxylase inhibitor, HIF-PHI) to treat ACD by stabilizing HIF and subsequently promoting endogenous erythropoietin (EPO) production and iron absorption and utilization. Thus, HIF-PHIs appear to open a new door for the treatment of ACD patients with a novel mechanism. Here, we comprehensively reviewed the latest advancements in the application of HIF-PHIs in ACD. Specifically, we highlighted the key features of HIF-PHIs on ACD, such as stimulation of endogenous EPO, handling iron metabolism, inflammation-independent, and prolonging lifespan of red blood cells. In conclusion, the success of HIF-PHIs in the treatment of ACD may expand the therapeutic opportunity for other types of anemia beyond renal anemia.
Collapse
Affiliation(s)
- Zuolin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210009, China
| | - Lan Shen
- Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yan Tu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210009, China
| | - Shun Lu
- Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Bicheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210009, China
| |
Collapse
|
4
|
Yan H, Zhao L, He K, Liu H, Zhang C, Liu Q, Song K, Yang H, Xu T, Yang S. EPO Enhances Adaptation to Hypoxic Environment in the Freshwater Teleost ( Micropterus salmoides) through the PI3K/AKT Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8402-8416. [PMID: 40239033 DOI: 10.1021/acs.est.5c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Hypoxia has become one of the most common environmental stress events in the life history of aquatic organisms due to accelerated global warming. Exploring the adaptation mechanisms of aquatic organisms in hypoxic environments is important to deepen our understanding of environmental toxicology and to design breeding programs. In this study, the largemouth bass Micropterus salmoides exhibited greater hypoxic adaptability after 4 weeks of intermittent hypoxic exposure (IHE), with the O2 tension for loss of equilibrium decreased from 1.17 ± 0.20 to 0.66 ± 0.10 mg/L. Combined transcriptomics, biochemical detection, and immunostaining results revealed that the hypoxia-tolerant phenotype driven by IHE was strongly correlated with the activation of erythropoietin (EPO). EPO promoted phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) signaling to alleviate hepatic damage under acute hypoxic exposure (AHE) by selectively regulating the expression of genes related to antioxidant defense, antiapoptosis, and cell proliferation, which plays an important role in regulating hypoxic adaptation. The inhibition of EPO impaired cell survival in hypoxic environments, but intervention with the PI3K agonist 740 Y-P reversed this process. This novel finding provides insights into exploring how aquatic organisms cope with the challenges of hypoxia under increasing environmental risks.
Collapse
Affiliation(s)
- Haoxiao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chengxian Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Kaige Song
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hangyu Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
5
|
Sergi CM, Guerra L, Hager J. Autosomal Dominant Polycystic Kidney Disease-Related Multifocal Renal Cell Carcinoma: A Narrative Iconographic Review. Int J Mol Sci 2025; 26:3965. [PMID: 40362206 PMCID: PMC12072103 DOI: 10.3390/ijms26093965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/19/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most common inheritable disease of cystic degeneration in the kidney. ADPKD is a significant cause of end-stage renal disease (ESRD). Autosomal Dominant Polycystic Liver Disease (ADPLD) results in substantial PLD with minimal PKD. Currently, there are eight genes which have been associated with ADPKD (PKD1 and PKD2), ADPLD (PRKCSH, SEC63, LRP5, ALG8, and SEC61B), or both (GANAB). The severity of ADPKD can show an extremely broad range, but the evolution to ESRD is doubtless unavoidable. In some patients, carcinogenesis develops with inflammation as a potential promoting factor. In this chapter, we illustrate the severity of ADPKD and the fate to develop renal cell carcinoma (RCC).
Collapse
Affiliation(s)
- Consolato M. Sergi
- Anatomic Pathology, Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Luis Guerra
- Pediatric Urology, Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON K1H 8L1, Canada;
| | - Josef Hager
- Pediatric Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
6
|
Bhandari S, Spencer S, Oliveira B, Mikhail A, Brooks O, Bryant G, Willicombe M, Baines R, Alldridge L, Haslam-England S. UK kidney association clinical practice guideline: update of anaemia of chronic kidney disease. BMC Nephrol 2025; 26:193. [PMID: 40240983 PMCID: PMC12004666 DOI: 10.1186/s12882-025-04115-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025] Open
Abstract
Anaemia is common in chronic kidney disease (CKD) encompassing non-dialysis dependent CKD (NDD-CKD) and dialysis dependent CKD (DD-CKD); people on peritoneal dialysis (PD) and haemodialysis (HD); and kidney transplant recipients (KTR). Iron deficiency and erythropoietin deficiency are the most common causes of anaemia in people with CKD, especially those requiring kidney replacement therapy (KRT). The Renal National Service Framework and National Institute for Health and Clinical Excellence in the UK, and Kidney Disease Improving Global Outcomes (KDIGO), all advocate treatment of anaemia in people with CKD. Blood transfusions are infrequently required, and newer therapies such as Hypoxia-Inducible Factor (HIF-PHI) stabilisers are now in current use. This guideline provides evidence based graded practice guidance on the use of iron; comments on iron deficiency without anaemia in people with CKD; provide further information on anaemia management in people with a transplant and provide guidance in the use of the new HIF-PHI drugs. It also provides audit and research recommendations.
Collapse
Affiliation(s)
| | | | | | | | - Owain Brooks
- Swansea Bay University Health Board, Swansea, UK
| | - Gareth Bryant
- Cardiff and Vale University Health Board, Cardiff, UK
| | | | - Richard Baines
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | | | | |
Collapse
|
7
|
Yuan M, Tang T, Li Y, Wang X, Wang C, Zhang X, Huang Y, Tao F, Wang G, Zhu D, Geng F, Su P. Associations of metals with hemoglobin and anemia in a Chinese early adolescent cohort. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118122. [PMID: 40203704 DOI: 10.1016/j.ecoenv.2025.118122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND The relationship between exposure to metals with hemoglobin levels and anemia in children and adolescents has shown inconsistency. This study aimed to evaluate the associations of individual metals and metal mixtures with hemoglobin levels and anemia risk, as well as potential sex differences, in a Chinese early adolescent cohort. METHODS Data was obtained from a Chinese early adolescent cohort with two-year follow-up periods. Serum concentrations of 12 metals were measured using inductively coupled plasma mass spectrometry (ICP-MS). To examine the individual associations of metals with hemoglobin levels and anemia risk, a series of single-metal and multi-metal adjusted generalized linear mixed models (GLMMs) were applied. Additionally, quantile g-computation (qgcomp) and Bayesian kernel machine regression (BKMR) were used to analyze the effects of metal mixture. Furthermore, all analyses were stratified by sex. RESULTS The multi-metal adjusted GLMMs identified significant associations of As (β=2.31; 95 % CI: 0.15, 4.47), Cd (β=-2.11; 95 % CI: -4.11, -0.11), Cr (β=-10.19; 95 % CI: -19.09, -1.30), Cu (β=-7.27; 95 % CI: -14.27, 0.26), Fe (β=13.71; 95 % CI: 10.03, 17.38), Pb (β=7.87; 95 % CI: 4.21, 11.5), V(β=-13.60; 95 % CI: -21.32, -5.88), and Zn (β=14.77; 95 % CI: 4.38, 25.15) with hemoglobin concentration, as well as As (OR=0.26; 95 % CI: 0.11, 0.60), Co(OR=4.27; 95 % CI: 1.25, 14.6), Cr (OR=10.49; 95 % CI: 1.61, 68.39), Fe (OR=0.03; 95 % CI: 0.01, 0.12) and Pb (OR=0.18; 95 % CI: 0.04, 0.80) with anemia risk. Moreover, the qgcomp revealed no association of metal mixture with hemoglobin concentration (β=0.94; 95 % CI=-0.45, 2.33) or anemia risk (OR=0.81; 95 % CI: 0.51, 1.27). After stratification by sex, the qgcomp demonstrated no significant overall effect of the metal mixture on hemoglobin concentration or anemia risk in either boys (β=0.93; 95 % CI: -0.84, 2.71 for hemoglobin, and OR=0.64; 95 % CI: 0.27, 1.52 for anemia) or girls (β=0.93, 95 % CI: -1.16, 3.01 for hemoglobin, and OR=0.72; 95 % CI: 0.40, 1.32 for anemia). Similarly, sex-stratified BKMR models also revealed no significant association between the metal mixture and hemoglobin concentration or anemia risk in either boys or girls. CONCLUSIONS This study highlights the individual and collective impacts of 12 metals on hemoglobin and anemia during early adolescence, underscoring the need for experimental and larger cohort studies to further corroborate these findings.
Collapse
Affiliation(s)
- Mengyuan Yuan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Fourth People's Hospital in Hefei, Hefei, Anhui 230022, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China
| | - Ting Tang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yonghan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xinhui Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Cong Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xueying Zhang
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA; Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China
| | - Gengfu Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China
| | - Daomin Zhu
- Fourth People's Hospital in Hefei, Hefei, Anhui 230022, China.
| | - Feng Geng
- Department of Psychology and Sleep Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230001, China.
| | - Puyu Su
- Department of Psychology and Sleep Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230001, China; School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Center for Big Data and Population Health of IHM, Anhui Medical University, No.81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
8
|
Chalkias A. On the Intensity of the Microvascular Magnetic Field in Normal State and Septic Shock. J Clin Med 2025; 14:2496. [PMID: 40217945 PMCID: PMC11989563 DOI: 10.3390/jcm14072496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
Background: Capillary tortuosity is a morphological variant of microcirculation. However, the mechanisms by which tortuous vessels meet metabolic requirements in health and disease remain unknown. We recently reported that capillary tortuosity score (CTS) is significantly higher in patients with septic shock than in steady-state individuals, and that CTS is significantly associated with alveolar-to-arterial oxygen (A-a O2) gradient and oxygen debt in septic shock patients. Objective: We aimed to investigate the characteristics of the magnetic fields in the sublingual microcirculation of individuals with normal physiology and patients with septic shock. Methods: Systemic hemodynamics were recorded, and sublingual microcirculation was monitored using sidestream dark field (SDF+) imaging. The number of capillary red blood cells (NRBC), the intensity of the magnetic field of a red blood cell (HRBC), the intensity of the magnetic field of each capillary (HCAP), and the intensity with which the magnetic field of a capillary acts on an RBC (FCAP) were calculated. Results: Significant differences in macro- and microhemodynamic variables were observed between the two groups. Although NRBC was significantly higher in individuals with steady-state physiology [87.4 (87.12) vs. 12.23 (6.9)], HRBC was significantly stronger in patients with septic shock [5.9 × 10-16 (6.9 × 10-16) A m-1 vs. 1.6 × 10-15 (1.4 × 10-15) A m-1]. No significant difference was observed in HCAP [2.16 × 10-14 (2.17 × 10-14) A m-1 vs. 1.34 × 10-14 (1.23 × 10-14) A m-1] and FCAP [1.66 × 10-24 (3.36 × 10-24) A m-1 vs. 6.44 × 10-25 (1.1 × 10-24) A m-1] between the two groups. In patients with septic shock, HRBC was associated with De Backer score (rho = -0.608) and venous-arterial carbon dioxide difference (rho = 0.569). In the same group, HCAP was associated with convective oxygen flow (rho = 0.790) and oxygen extraction ratio (rho = -0.596). Also, FCAP was significantly associated with base deficit (rho = 0.701), A-a O2 gradient (rho = 0.658), and oxygen debt (rho = -0.769). Conclusions: Despite the microcirculatory impairment in patients with septic shock, HRBC was significantly stronger in that group than in steady-state individuals. Also, HCAP and FCAP were comparable between the two groups. Tortuous vessels may function as biomagnetic coils that amplify RBC-induced magnetic fields, enhancing perfusion and oxygenation of adjacent tissues.
Collapse
Affiliation(s)
- Athanasios Chalkias
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5158, USA;
- OUTCOMES RESEARCH Consortium, Houston, TX 77030, USA
- Department of Critical Care Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece
| |
Collapse
|
9
|
Shang T, Jia Z, Li J, Cao H, Xu H, Cong L, Ma D, Wang X, Liu J. Unraveling the triad of hypoxia, cancer cell stemness, and drug resistance. J Hematol Oncol 2025; 18:32. [PMID: 40102937 PMCID: PMC11921735 DOI: 10.1186/s13045-025-01684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
In the domain of addressing cancer resistance, challenges such as limited effectiveness and treatment resistance remain persistent. Hypoxia is a key feature of solid tumors and is strongly associated with poor prognosis in cancer patients. Another significant portion of the development of acquired drug resistance is attributed to tumor stemness. Cancer stem cells (CSCs), a small tumor cell subset with self-renewal and proliferative abilities, are crucial for tumor initiation, metastasis, and intra-tumoral heterogeneity. Studies have shown a significant association between hypoxia and CSCs in the context of tumor resistance. Recent studies reveal a strong link between hypoxia and tumor stemness, which together promote tumor survival and progression during treatment. This review elucidates the interplay between hypoxia and CSCs, as well as their correlation with resistance to therapeutic drugs. Targeting pivotal genes associated with hypoxia and stemness holds promise for the development of novel therapeutics to combat tumor resistance.
Collapse
Affiliation(s)
- Tongxuan Shang
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Ziqi Jia
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiayi Li
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Heng Cao
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hengyi Xu
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Cong
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Dongxu Ma
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiang Wang
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jiaqi Liu
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
10
|
Chalkias A, Papagiannakis N, Katsifa K, Destounis A, Gravos A, Kanakaki S, Karapiperis G, Koufaki F, Prekates A, Tselioti P. Characterization of Sublingual Microvascular Tortuosity in Steady-State Physiology and Septic Shock. Biomedicines 2025; 13:691. [PMID: 40149667 PMCID: PMC11939869 DOI: 10.3390/biomedicines13030691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/02/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Background: The characteristics of hemodynamic coherence in healthy states and disease remain unknown. Capillary tortuosity is a morphologic variant of microcirculatory vessels, but its effects have generally not been considered in the assessment of tissue perfusion and oxygenation. We investigated the role of sublingual capillary tortuosity in the hemodynamic coherence of anesthetized adult individuals with steady-state physiology (ASA 1) and patients with septic shock requiring emergency abdominal surgery (ASA 4E and 5E). Methods: Sublingual macro and microcirculatory variables, oxygen transport, metabolic parameters, and the capillary tortuosity score (CTS) were assessed. Results: Mean (SD) CTS was 0.55 (0.76) and 3.31 (0.86) in the steady-state and septic shock group, respectively (p < 0.001). In patients with septic shock, CTS was significantly associated with alveolar-to-arterial oxygen gradient (r = 0.658, p = 0.015) and oxygen debt (r = -0.769, p = 0.002). Significant differences were also observed in Consensus Proportion of Perfused Vessels (PPV; p < 0.001), Consensus PPV (small) (p < 0.001), Microvascular Flow Index (p < 0.001), vessel diameter (p < 0.001) and length (p < 0.001), wall shear stress (p < 0.001), lactate (p < 0.001), oxygen extraction ratio (p = 0.001), arterial oxygen content (p < 0.001), venous oxygen content (p < 0.001), oxygen delivery (p < 0.001), oxygen consumption (p < 0.001), and oxygen debt (p = 0.002) between the two groups. Conclusions: Sublingual tortuosity was essentially absent in individuals with steady-state physiology. In contrast, it was significantly increased and associated with Alveolar-to-arterial oxygen gradient and oxygen debt in critically ill patients with septic shock.
Collapse
Affiliation(s)
- Athanasios Chalkias
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5158, USA
- OUTCOMES RESEARCH Consortium, Houston, TX 77030, USA
- Department of Critical Care Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece
| | - Nikolaos Papagiannakis
- First Department of Neurology, Eginition University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Konstantina Katsifa
- Department of Critical Care Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece
| | - Antonios Destounis
- Department of Critical Care Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece
| | - Athanasios Gravos
- Department of Critical Care Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece
| | - Sofia Kanakaki
- Department of Critical Care Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece
| | - Georgios Karapiperis
- Department of Critical Care Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece
| | - Faidra Koufaki
- Department of Critical Care Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece
| | - Athanasios Prekates
- Department of Critical Care Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece
| | - Paraskevi Tselioti
- Department of Critical Care Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece
| |
Collapse
|
11
|
Zhang Y, Zhu JH, Zhou Y, Li ZT, Liu H, Ma RX, Li ZL. Activation of HIF-1α C-terminal transactivation domain promotes tubulointerstitial fibrosis through hexokinase 2-mediated metabolic reprogramming. Cell Signal 2025; 127:111531. [PMID: 39615773 DOI: 10.1016/j.cellsig.2024.111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/05/2024] [Accepted: 11/24/2024] [Indexed: 12/08/2024]
Abstract
BACKGROUND The hypoxia-inducible factor-1α (HIF-1α), a master transcription factor for adaptive responses to hypoxia, possesses two transcriptional activation domains [TAD, N-terminal (NTAD) and C-terminal (CTAD)]. However, the exact effects of HIF-1α CTAD in chronic kidney disease (CKD) are poorly understood. METHODS Here, two independent mouse models of hypoxia-induced CKD, including ischemia/reperfusion-induced kidney injury and unilateral ureteral obstruction-induced nephropathy, were established using HIF-1α CTAD knockout (HIF-1α CTAD-/-) mice. Further, hexokinase 2 (HK2) and glycolysis pathway were modulated using genetic and pharmacological interventions, respectively. RESULTS We found that HIF-1α CTAD knockout significantly ameliorated tubulointerstitial fibrosis in two models of hypoxia-induced CKD. Further, we found that tubular HIF-1α CTAD transcriptionally regulated HK2 and subsequently induced proinflammatory and profibrotic tubule phenotype. Mechanistically, HK2 deficiency, which resulted from HIF-1α CTAD knockout, ameliorated tubulointerstitial fibrosis through inhibiting glycolysis. HK2 overexpression markedly promoted tubulointerstitial fibrosis by inducing proinflammatory and profibrotic tubule phenotype in HIF-1α CTAD-/- mice. Finally, glycolysis inhibition with a specific inhibitor significantly ameliorated tubulointerstitial fibrosis and reduced proinflammatory and profibrotic tubule phenotype in CKD mice. CONCLUSIONS Activation of HIF-1α CTAD promotes hypoxia-induced tubulointerstitial fibrosis through hexokinase 2-mediated glycolysis. Our findings suggested that the HIF-1α CTAD-HK2 pathway represents a novel mechanism of the kidney responses to hypoxia in CKD, providing a promising therapeutic strategy for hypoxia-induced CKD.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jin-Hua Zhu
- Department of Nephrology, People's Hospital of Yangzhong city, Zhenjiang, Jiangsu, China
| | - Yan Zhou
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Zhong-Tang Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Hong Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Rui-Xia Ma
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
12
|
Geis L, Kurtz A. Oxygen sensing in the kidney. Nephrol Dial Transplant 2025; 40:446-454. [PMID: 39496526 DOI: 10.1093/ndt/gfae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Indexed: 11/06/2024] Open
Abstract
The kidneys fulfil several essential homeostatic functions for the body. One of them is the maintenance of sufficient oxygen supply to the organs. For this purpose, the kidneys control the formation of red blood cells by the production of the hormone erythropoietin. This control of red cell formation is not only relevant to prevent states of oxygen deficiency but also to prevent an unwanted increase of red cell numbers causing thromboembolic risks. The adequate production of erythropoietin requires a sensing of the arterial oxygen content and transduction to hormone production. This oxygen sensing is a two-step process which includes a translation of the arterial oxygen content to respective oxygen tension in the tubulointerstitium and a perception of the resulting local interstitial oxygen tension to translate them into specific cellular responses such as the production of erythropoietin. This contribution will describe these steps of oxygen sensing for the healthy kidney and for the changes occurring during states of chronic renal disease, which are commonly associated with anemia. In this context a special focus will also be set on intrarenal hypoxia and oxygen sensing in the diabetic kidney including the treatment with tubular glucose transport (sodium-glucose cotransporter 2) inhibitors which might influence the oxygen sensing in the kidney. Finally, we will consider the effects of prolyl-hydroxylase inhibitors (HIF-PHIs), which fundamentally interfere with the cellular oxygen sensing and which are meanwhile treatment options in renal anemia.
Collapse
Affiliation(s)
- Lisa Geis
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
13
|
He J, He M, Sun M, Chen H, Dou Z, Nie R, Zhou J, Tang Q, Che C, Liu J, Li T. The Mechanism of Acupuncture Regulating Autophagy: Progress and Prospect. Biomolecules 2025; 15:263. [PMID: 40001566 PMCID: PMC11852493 DOI: 10.3390/biom15020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Autophagy plays a crucial role in the physiopathological mechanisms of diseases by regulating cellular functions and maintaining cellular homeostasis, which has garnered extensive attention from researchers worldwide. The holistic regulation and bidirectional regulation effects of acupuncture can modulate cellular autophagy, promoting or restoring the homeostasis of the body's internal environment to achieve therapeutic outcomes. This paper systematically reviews the research progress on the use of acupuncture for treating various diseases via the autophagy pathway, summarizes signal pathways related to acupuncture regulating autophagy, and analyzes the deficiencies present in the existing research. The review results indicate that the mechanism of action of acupuncture on autophagy dysfunction is reflected in the changes in LC3, Beclin1, p53, and autophagy-associated (ATG) protein expression, and regulates signaling pathways and key proteins or genes. The regulatory effect of acupuncture on autophagy capacity is bidirectional: it inhibits the abnormal activation of autophagy to prevent exacerbation of injury and reduce apoptosis, while also activating or enhancing autophagy to promote the elimination of inflammation and reduce oxidative stress. Further analysis suggests that the mechanisms of acupuncture regulating autophagy are insufficiently explored. Future research should prioritize the development of more appropriate animal models, analyzing the accuracy of relevant pathways and the specificity of indicators, exploring the synergistic effects among targets and signaling pathways, clarifying the regulatory mechanisms of acupuncture at various stages of autophagy, and evaluating the efficacy of acupuncture in autophagy modulating. This paper offers valuable insights into the regulation of autophagy by acupuncture.
Collapse
Affiliation(s)
- Jing He
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Min He
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Mengmeng Sun
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Hongxiu Chen
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Zhiqiang Dou
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Ru Nie
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Jun Zhou
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Qingqing Tang
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Cong Che
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Jie Liu
- Academic Affairs Office, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Tie Li
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| |
Collapse
|
14
|
Meyron-Holtz EG. How to prioritize between oxygen and iron. Blood 2025; 145:465-467. [PMID: 39883440 DOI: 10.1182/blood.2024026858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
|
15
|
Hu J, Yang B, Tao Z, Chen J, Zhang X, Wang S, Xing G, Ngeng NA, Malik A, Appiah-Kubi K, Farina M, Skalny AV, Tinkov AA, Aschner M, Lu R. The role of HIF-1α/BNIP3/mitophagy in acrylonitrile-induced neuronal death in HT22 cells and mice: A potential neuroprotection target. Chem Biol Interact 2025; 406:111327. [PMID: 39615733 DOI: 10.1016/j.cbi.2024.111327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/07/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
Acrylonitrile (AN) is a widely utilized organic compound in the production of diverse industrial synthetic materials. While acute exposure to AN can cause neurotoxicity, the precise mechanism remains unclear. Hypoxia-inducible factor 1 alpha (HIF-1α) is a pivotal transcription factor that coordinates and orchestrates multiple physiological processes to adapt to hypoxic conditions, ensuring cellular survival and homeostasis. In this study, we used in vitro (cultured mouse hippocampal neuronal cell line, HT22) and in vivo (AN exposed mice) approaches to investigate the potential modulator effects of HIF-1α in AN-induced neurotoxicity. In vitro, AN exposure caused concentration-dependent toxicity in HT22 cells, which was paralleled by increased Bax levels while decreasing Bcl-2. Exposure to AN resulted in reduced protein levels of HIF-1α, Bcl-2 19-kDa interacting protein 3 (BNIP3), microtubule-associated protein 1 light chain 3 beta (LC3B) and Beclin1, while increased the protein levels of the translocase of outer mitochondrial membrane 20 (TOM20). Furthermore, mitochondrial morphology and function were compromised, suggesting that AN impaired HIF-1α/BNIP3-mediated mitochondrial autophagy and promoted apoptosis. Treatment with a HIF-1α activator, cobalt chloride (CoCl2), reversed these effects, while pretreatment with a HIF-1α inhibitor, 2-methoxyestradiol (2-MeOE2), augmented them. In BNIP3 overexpressing HT22 cells, enhanced cell viability and reduced apoptosis rates were observed. Furthermore, the HIF-1α/BNIP3 pathway was activated by the prolyl hydroxylase (PHD2) inhibitor, deferoxamine (DFO), which increased HT22 cell viability. Similarly, the activation of HIF-1α by administering 20 mg/kg of CoCl2 was found to alleviate neurotoxicity in mice. This treatment enhanced elevations of autophagy protein expression and co-localization of BNIP3 and LC3B. In summary, under normoxia, AN induced neurotoxicity by promoting PHD2-mediated HIF-1α degradation, disrupted the BNIP3-mediated mitophagy pathway, and enhanced apoptosis. Our findings underscore the effect of the HIF-1α/BNIP3-mediated mitochondrial autophagy in AN-induced neurotoxicity and suggest potential therapeutic strategies involving HIF-1α activation or BNIP3 overexpression for AN poisoning treatment.
Collapse
Affiliation(s)
- Jing Hu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Bobo Yang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Zehua Tao
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jian Chen
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xinyu Zhang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Suhua Wang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Guangwei Xing
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Ngwa Adeline Ngeng
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Abdul Malik
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 212001, China
| | - Kwaku Appiah-Kubi
- Department of Applied Biology, C. K. Tedam University of Technology and Applied Sciences, Navrongo, UK-0215-5321, Ghana
| | - Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Anatoly V Skalny
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow, 119146, Russia; Orenburg State University, Pobedy Ave.13, Orenburg, 460018, Russia
| | - Alexey A Tinkov
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow, 119146, Russia; Orenburg State University, Pobedy Ave.13, Orenburg, 460018, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150000, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; Experimental Research Center, Affiliated Kunshan Hospital, Jiangsu University, Kunshan, Jiangsu, 215300, China.
| |
Collapse
|
16
|
Lu CM, Hsu YH, Lin IH, Kuo KL, Liao JF, Huang HF, Lu PH. Conventional and complementary alternative medicine therapies for renal anemia: a literature review. Front Endocrinol (Lausanne) 2025; 15:1342873. [PMID: 39911241 PMCID: PMC11797209 DOI: 10.3389/fendo.2024.1342873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/17/2024] [Indexed: 02/07/2025] Open
Abstract
Renal anemia stems mainly from chronic inflammation with elevated hepcidin levels, iron deficiency, and reduced red blood cell lifespan. Inadequate erythropoietin (EPO) production, worsened kidney function, leads to symptoms such as low energy, fatigue, and impaired physical function, significantly affecting patients' quality of life. We conducted a comprehensive search across electronic databases including PubMed, Embase, Cochrane Library, Chinese National Knowledge Infrastructure, Airiti library, and Wanfang, to compile recent clinical trials and pilot studies on conventional and complementary alternative medicine approaches for renal anemia. This discussion focuses on the hypoxia-inducible factor prolyl hydroxylase domain (HIF-PHD) axis theory, from lab research to clinical applications. It explores non-extracorporeal treatments for renal anemia, including pharmaceutical interventions, dietary strategies, and complementary and alternative medicine (CAM). The article details the effects of Roxadustat, Ferumoxytol, and Epodion. Clinical studies show that modulating the gut microbiome can reduce inflammation and improve renal anemia. Clinical trials suggest that CAM therapy can improve renal anemia through mechanisms such as enhanced iron metabolism, anti-inflammatory effects, reduced hepcidin levels, and increased EPO and HIF expressions. By synthesizing this information, the review aims to furnish valuable insights and treatment recommendations aimed at ameliorating renal anemia in individuals grappling with chronic kidney disease.
Collapse
Affiliation(s)
- Ching-Ming Lu
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Yuan-Hsuan Hsu
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - I-Hsin Lin
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ko-Lin Kuo
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Jian-Fu Liao
- Division of Nephrology, Tai An Hospital, Taipei, Taiwan
| | - Hui-Fen Huang
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Ping-Hsun Lu
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| |
Collapse
|
17
|
Zhang C, Hu L, Wang S, Chen G, Brito LF, Li B, Xu Q, Wang Y. Heat Tolerance-Associated circRNA3685 Regulates Apoptosis and Autophagy in Bovine Mammary Epithelial Cells via Sponging bta-miR-138. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1656-1671. [PMID: 39714428 DOI: 10.1021/acs.jafc.4c07967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Heat stress negatively affects dairy cow production, and health, leading to significant losses. Identifying mechanisms associated with heat tolerance is crucial for developing breeding strategies. Circular RNAs (circRNAs), a type of noncoding RNA, regulate cell functions like autophagy, apoptosis and proliferation. In this study, dairy cows were classified into heat stress tolerant (HST, n = 15) and heat stress sensitive (HSS, n = 15) groups based on respiratory and drooling score during the heat stress. A significant difference in milk production decline was observed, with the HST group showing less decline, indicating better heat tolerance. Blood transcriptomics analysis identified 166 differentially expressed circRNAs with circRNA3685 being highlighted as a key candidate linked to heat tolerance. Overexpression of circRNA3685 in bovine mammary (MAC-T) cells inhibited autophagy and apoptosis. The circRNA3685 was found to interact with bta-miR-138, targeting HIF1A. These findings provide insights into circRNAs' role in heat stress adaptation in dairy cows.
Collapse
Affiliation(s)
- Congcong Zhang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Lirong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shuhui Wang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Gong Chen
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850000, China
| | - Qing Xu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
18
|
Hertzog N, Duman M, Bochud M, Brügger-Verdon V, Gerhards M, Schön F, Dorndecker F, Meijer D, Fledrich R, Stassart R, Sankar DS, Dengjel J, López SR, Jacob C. Hypoxia-induced conversion of sensory Schwann cells into repair cells is regulated by HDAC8. Nat Commun 2025; 16:515. [PMID: 39779705 PMCID: PMC11711395 DOI: 10.1038/s41467-025-55835-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
After a peripheral nerve injury, Schwann cells (SCs), the myelinating glia of the peripheral nervous system, convert into repair cells that foster axonal regrowth, and then remyelinate or re-ensheath regenerated axons, thereby ensuring functional recovery. The efficiency of this mechanism depends however on the time needed for axons to regrow. Here, we show that ablation of histone deacetylase 8 (HDAC8) in SCs accelerates the regrowth of sensory axons and sensory function recovery. We found that HDAC8 is specifically expressed in sensory SCs and regulates the E3 ubiquitin ligase TRAF7, which destabilizes hypoxia-inducible factor 1-alpha (HIF1α) and counteracts the phosphorylation and upregulation of c-Jun, a major inducer of the repair SC phenotype. Our study indicates that this phenotype switch is regulated by different mechanisms in sensory and motor SCs and is accelerated by HDAC8 downregulation, which promotes sensory axon regeneration and sensory function recovery.
Collapse
Affiliation(s)
- Nadège Hertzog
- Institute of Developmental Biology and Neurobiology, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Mert Duman
- Institute of Developmental Biology and Neurobiology, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Maëlle Bochud
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Maren Gerhards
- Institute of Developmental Biology and Neurobiology, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Felicia Schön
- Institute of Developmental Biology and Neurobiology, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Franka Dorndecker
- Institute of Developmental Biology and Neurobiology, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dies Meijer
- Center for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Robert Fledrich
- Paul Flechsig Institute, Center of Neuropathology and Brain Sciences, University of Leipzig, Leipzig, Germany
| | - Ruth Stassart
- Paul Flechsig Institute, Center of Neuropathology and Brain Sciences, University of Leipzig, Leipzig, Germany
| | | | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Sofía Raigón López
- Institute of Developmental Biology and Neurobiology, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claire Jacob
- Institute of Developmental Biology and Neurobiology, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany.
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
19
|
Kawase K, Hamamoto S, Unno R, Taguchi K, Okada A, Yasui T. Prolyl hydroxylase domain inhibitors prevent kidney crystal formation by suppressing inflammation. Urolithiasis 2024; 53:16. [PMID: 39724472 DOI: 10.1007/s00240-024-01677-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/01/2024] [Indexed: 12/28/2024]
Abstract
The early stages of kidney crystal formation involve inflammation and hypoxia-induced cell injury; however, the role of the hypoxic response in kidney crystal formation remains unclear. This study investigated the effects of a prolyl hydroxylase domain inhibitor (roxadustat) on renal calcium oxalate (CaOx) crystal formation through in vitro and in vivo approaches. In the in vitro experiment, murine renal tubular cells (RTCs) were exposed to varying roxadustat concentrations and CaOx crystals. CaOx monohydrate (COM) crystal adhesion was evaluated using fluorescent labels, whereas western blotting was used to examine protein expression. Quantitative real-time polymerase chain reaction was used to analyze gene expression changes. Macrophage responses were investigated by co-culturing them with RTCs treated with COM. In the in vivo experiment, C57BL/6J mice were injected with roxadustat or saline for 2 days, followed by glyoxylate for 6 days to induce renal crystal deposition. Biochemical measurements recorded plasma erythropoietin, urinary data, and pH levels. Roxadustat suppressed the adhesion of COM crystals to RTCs and the expression of proinflammatory genes, such as chemokine (C-C motif) ligand 2 (Ccl2) and secreted phosphoprotein 1 (Spp1). Roxadustat decreased the expression levels of Ccl2, tumor necrosis factor (Tnf), and interleukin 6 (Il6) in co-cultured macrophages. In the in vivo experiment, the amount of renal CaOx crystal deposits was significantly lower in the roxadustat-treated group than in the vehicle group. Roxadustat treatment decreased Ccl2, Tnf, and adheision G protein-coupled receptor E1 (Adgre1) expression in the kidneys. Roxadustat reduced kidney inflammation and CaOx crystal deposition, suggesting its potential as a therapeutic option for kidney stone prevention.
Collapse
Affiliation(s)
- Kengo Kawase
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | - Shuzo Hamamoto
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Japan.
| | - Rei Unno
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | - Kazumi Taguchi
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | - Atsushi Okada
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | - Takahiro Yasui
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| |
Collapse
|
20
|
Chen CH, Hsu WL, Tsai PSJ, Lai CF, Wu MT, Lee YJ. Evaluation of hypoxia-inducible factor-1α and urine non-transferrin-bound iron concentrations in cats with chronic kidney disease. Front Vet Sci 2024; 11:1482998. [PMID: 39748872 PMCID: PMC11694447 DOI: 10.3389/fvets.2024.1482998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction Hypoxia-inducible factors (HIF) regulate gene transcription, which aids hypoxia adaptation while promoting renal fibrosis. Non-transferrin-bound iron (NTBI) is a catalytic form of iron that can lead to oxidative damage. However, NTBI in cat biofluids has rarely been evaluated. Aims We assessed cat plasma and urine HIF-1α (pHIF-1α/uHIF-1α) concentrations and urine NTBI (uNTBI) concentrations to investigate their relationship with chronic kidney disease (CKD) severity. Methods pHIF-1α and uHIF-1α concentrations were measured using commercial ELISA kits, while uNTBI concentrations were detected by inductively coupled plasma mass spectrometry. Results Healthy cats (n = 35) and cats with CKD (n = 84) formed the study cohorts. pHIF-1α concentrations increased from 9.48 pg./mL (median) in the healthy cohort to 11.42 pg./mL in early-stage CKD cats but decreased to 8.50 pg./mL in late-stage CKD cats. uHIF-1α concentrations gradually decreased with a significant difference between the control group (44.61 pg./mL) and the late-stage CKD group (36.79 pg./mL, p < 0.001). Cats with proteinuria had significantly higher uNTBI concentrations (35.61 ppb) than non-proteinuric cats (25.13 ppb, p = 0.019). Finally, the concentrations of pHIF-1α and uHIF-1α were positively correlated independent of renal function. Conclusion and clinical importance Overall, pHIF-1α and uHIF-1α concentrations are lower in advanced CKD cats, while uNTBI concentrations are significantly higher in proteinuric cats.
Collapse
Affiliation(s)
- Chien-Hui Chen
- School of Veterinary Medicine, College of Bio-Resources and Agriculture, Institute of Veterinary Clinical Science, National Taiwan University, Taipei, Taiwan
- Veterinary Hospital, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Wei-Li Hsu
- College of Veterinary Medicine, Graduate Institute of Microbiology and Public Health, National Chung-Hsing University, Taichung, Taiwan
| | - Pei-Shiue Jason Tsai
- School of Veterinary Medicine, College of Bio-Resources and Agriculture, Institute of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Fu Lai
- National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meng-Ting Wu
- Department of Chemistry, College of Science, National Taiwan University, Taipei, Taiwan
| | - Ya-Jane Lee
- School of Veterinary Medicine, College of Bio-Resources and Agriculture, Institute of Veterinary Clinical Science, National Taiwan University, Taipei, Taiwan
- Veterinary Hospital, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
21
|
Sergunin A, Vávra J, Pašek D, Shimizu T, Martínková M. Multiple roles for iron in microbial physiology: Bacterial oxygen sensing by heme-based sensors. Adv Microb Physiol 2024; 86:257-329. [PMID: 40404271 DOI: 10.1016/bs.ampbs.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Bacterial oxygen sensing embodies a fascinating interplay between evolutionary pressures and physiological adaptations to varying oxygen levels. Throughout Earth's history, the composition of the atmosphere has undergone significant changes, from anoxic conditions to the gradual accumulation of oxygen. In response, microbial life has evolved diverse strategies to cope with these shifting oxygen levels, ranging from anaerobic metabolism to oxygen-dependent pathways crucial for energy production and cellular processes typical for eukaryotic, multicellular organisms. Of particular interest is the role of iron in bacterial oxygen sensing systems, which play pivotal roles in adaptation to changing oxygen levels. Only free iron, heme-iron, and non-heme iron directly sense oxygen. These iron-containing proteins, such as heme-containing sensors and iron-sulfur cluster proteins, regulate the expression of genes and activity of enzymes involved in oxidative stress defence, virulence, and biofilm formation, highlighting their significance in bacterial pathogenesis and environmental adaptation. Special attention in the review is paid to the mechanisms of oxygen detection and signal transduction from heme-containing sensing to functional domains in the case of bacterial heme-based oxygen sensors.
Collapse
Affiliation(s)
- Artur Sergunin
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov), Prague, Czech Republic
| | - Jakub Vávra
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov), Prague, Czech Republic; National Radiation Protection Institute, Bartoskova, Prague, Czech Republic
| | - Dominik Pašek
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov), Prague, Czech Republic
| | - Toru Shimizu
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov), Prague, Czech Republic
| | - Markéta Martínková
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov), Prague, Czech Republic.
| |
Collapse
|
22
|
Zhang Z, Wang D, Xu R, Li X, Wang Z, Zhang Y. The Physiological Functions and Therapeutic Potential of Hypoxia-Inducible Factor-1α in Vascular Calcification. Biomolecules 2024; 14:1592. [PMID: 39766299 PMCID: PMC11674127 DOI: 10.3390/biom14121592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
HIF-1α plays a crucial regulatory role in vascular calcification (VC), primarily influencing the osteogenic differentiation of VSMCs through oxygen-sensing mechanisms. Under hypoxic conditions, the stability of HIF-1α increases, avoiding PHD and VHL protein-mediated degradation, which promotes its accumulation in cells and then activates gene expressions related to calcification. Additionally, HIF-1α modulates the metabolic state of VSMCs by regulating the pathways that govern the switch between glycolysis and oxidative phosphorylation, thereby further advancing the calcification process. The interaction between HIF-1α and other signaling pathways, such as nuclear factor-κB, Notch, and Wnt/β-catenin, creates a complex regulatory network that serves as a critical driving force in VC. Therefore, a deeper understanding of the role and regulatory mechanism of the HIF-1α signaling during the development and progression of VC is of great significance, as it is not only a key molecular marker for understanding the pathological mechanisms of VC but also represents a promising target for future anti-calcification therapies.
Collapse
Affiliation(s)
- Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
| | - Defan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen 361102, China;
| | - Renfeng Xu
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
| | - Xiang Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| |
Collapse
|
23
|
Huang H, Huang S, Li C, Zhang C, Wang R, Wei L, Wu J, Mo P, Li Z, Li S, Chen J. Jian-Pi-Yi-Shen formula ameliorates renal fibrosis-induced anemia in rats with chronic kidney disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118607. [PMID: 39069029 DOI: 10.1016/j.jep.2024.118607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jian-Pi-Yi-Shen (JPYS) formula is an effective herbal therapy against renal injury, and JPYS has been clinically applied to ameliorate chronic kidney disease (CKD) and CKD-associated anemia. Increasing evidence supports the link between renal fibrosis and anemia in CKD. JPYS possessed anti-fibrosis effects in experimental CKD. Nevertheless, research on the mechanisms of JPYS in ameliorating renal anemia (RA) through suppressing renal fibrosis remains to be clarified. AIM OF THE STUDY Our study here was carried out to investigate the mechanisms of JPYS in protecting against RA. MATERIALS AND METHODS An adenine-induced anemia model in rats with CKD at three different time points was established, and bio-samples taken from each group were analyzed. Biochemical analysis was employed to detect kidney function and hematological parameters. Masson staining was used to evaluate renal fibrosis of rats. Western blot and immunohistochemistry were utilized to evaluate the expressions of fibrotic markers, erythropoietin (EPO) and hypoxia inducible factor-2α (HIF-2α) in the kidneys of rats. Subsequently, transcriptomic analysis was conducted to disclose the possible mechanisms of JPYS in treating RA. Finally, the expression levels of key targets were analyzed and validated by using Western blot and enzyme-linked immunosorbent assay (ELISA). RESULTS JPYS treatment improved kidney function, suppressed renal fibrosis and enhanced hematological parameters in CKD rats. Moreover, JPYS treatment restored the increased expression levels of fibrotic markers and the declined EPO with time dependence. In parallel, data indicated JPYS treatment stimulated the translocation of HIF-2α into nucleus in the renal interstitium and thus promoted the expression of EPO. Transcriptomic profiling disclosed that activations of both nuclear factor kappa B (NF-κB) and transforming growth factor-β (TGF-β)/Smad pathways were closely associated with RA. Ultimately, experimental validation results presented that the increased expressions of target proteins from the above-mentioned two pathways in the kidneys were decreased significantly after JPYS treatment. CONCLUSION Our findings suggest that JPYS may improve RA by alleviating renal fibrosis, and the mechanisms of which involve in inhibiting the NF-κB and TGF-β/Smad pathways.
Collapse
Affiliation(s)
- Haipiao Huang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Shiying Huang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Changhui Li
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Chi Zhang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Rui Wang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Lifang Wei
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Jinru Wu
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Pingli Mo
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Zhonggui Li
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Shunmin Li
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
| | - Jianping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
| |
Collapse
|
24
|
Xu M, Taylor MS, Hill BG, Li X, Rouchka EC, McClain CJ, Song M. Intestine epithelial-specific hypoxia-inducible factor-1α overexpression ameliorates western diet-induced MASLD. Hepatol Commun 2024; 8:e0572. [PMID: 39585307 PMCID: PMC11596589 DOI: 10.1097/hc9.0000000000000572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/15/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Intestine epithelial hypoxia-inducible factor-1α (HIF-1α) plays a critical role in maintaining gut barrier function. The aim of this study was to determine whether pharmacological or genetic activation of intestinal HIF-1α ameliorates western diet-induced metabolic dysfunction-associated steatotic liver disease. METHODS Metabolic effects of pharmacological activation of HIF-1α by dimethyloxalylglycine were evaluated in HIF-α luciferase reporter (ODD-luc) mice. Male and/or female intestinal epithelial-specific Hif1α overexpression mice (Hif1αLSL/LSL;VilERcre) and wild-type littermates (Hif1αLSL/LSL) were fed with regular chow diet, high fructose (HFr) or high-fat (60% Kcal) high-fructose diet (HFHFr) for 8 weeks. Metabolic phenotypes were profiled. RESULTS Dimethyloxalylglycine treatment led to increased intestine HIF-α luciferase activity and decreased blood glucose levels in HFr diet-fed male ODD-luc mice. Male Hif1αLSL/LSL;VilERcre mice exhibited markedly improved glucose tolerance compared to Hif1αLSL/LSL mice in response to HFr diet. Eight weeks HFHFr feeding led to obesity in both Hif1αLSL/LSL;VilERcre and Hif1αLSL/LSL mice. However, male Hif1αLSL/LSL;VilERcre mice exhibited markedly attenuated hepatic steatosis along with reduced liver size and liver weight compared to male Hif1αLSL/LSL mice. Moreover, HFHFr-induced systemic inflammatory responses were mitigated in male Hif1αLSL/LSL;VilERcre mice compared to male Hif1αLSL/LSL mice, and those responses were not evident in female mice. Ileum RNA-seq analysis revealed that glycolysis/gluconeogenesis was up in male Hif1αLSL/LSL;VilERcre mice, accompanied by increased epithelial cell proliferation. Moreover, an in vitro study showed that HIF stabilization enhances glycolysis in intestine organoids. CONCLUSIONS Our data provide evidence that pharmacological or genetic activation of intestinal HIF-1α markedly ameliorates western diet-induced metabolic dysfunction-associated steatotic liver disease in a sex-dependent manner. The underlying mechanism is likely attributed to HIF-1α activation-induced upregulation of glycolysis, which, in turn, leads to enhanced epithelial cell proliferation and augmented gut barrier function.
Collapse
Affiliation(s)
- Manman Xu
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Madison S. Taylor
- Department of Medicine, Division of Environmental Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Bradford G. Hill
- Department of Medicine, Division of Environmental Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Xiaohong Li
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, Louisville, Kentucky, USA
| | - Eric C. Rouchka
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, Louisville, Kentucky, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Craig J. McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
| | - Ming Song
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
25
|
Zhang X, Ye C, Lu F, Yang J, Xu Y, Wang C. Evaluation of renal oxygenation and perfusion in patients with chronic kidney disease: a preliminary prospective study based on functional magnetic resonance. Ren Fail 2024; 46:2428337. [PMID: 39584486 PMCID: PMC11590186 DOI: 10.1080/0886022x.2024.2428337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Renal hypoxia and ischemia significantly contribute to chronic kidney disease (CKD) progression, underscoring the need for noninvasive quantitative assessments. This study employs blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) and arterial spin labeling (ASL) MRI to comprehensively evaluate renal oxygenation and blood flow in CKD patients. METHODS Forty-two CKD patients across stages 1-5 and ten healthy volunteers underwent simultaneous BOLD-MRI and ASL-MRI. We measured oxygenation (T2* values) and renal blood flow (RBF) in both the renal cortex and medulla, assessing their correlations with estimated glomerular filtration rate (eGFR) and other renal function indicators. RESULTS BOLD and ASL revealed higher oxygenation and RBF in the renal cortex than in the medulla. Across CKD stages 2-5, both cortical and medullary oxygenation levels, as well as RBF, were lower than those in the control group and progressively decreased with CKD advancement. Additionally, renal oxygenation and blood flow levels positively correlated with serum creatinine (SCr), cystatin C (Cys C), and blood urea nitrogen (BUN), and negatively correlated with estimated glomerular filtration rate (eGFR) (p < 0.001). However, no significant correlation was observed with uric acid (UA) (p > 0.05). Notably, patients with CKD stages 1-3 exhibited strong correlations between renal oxygenation levels, RBF, and eGFR, while those with CKD stages 4-5 displayed weak correlations. CONCLUSION BOLD-MRI and ASL-MRI effectively measure renal oxygenation and perfusion noninvasively, confirming their utility in tracking CKD progression. These modalities provide accurate assessments of renal function and hypoxic-ischemic injuries across CKD stages, particularly in the early stages.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaoyang Ye
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fang Lu
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Yang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yizeng Xu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
26
|
Zhang W, Guo C, Li Y, Wang H, Wang H, Wang Y, Wu T, Wang H, Cheng G, Man J, Chen S, Fu S, Yang L. Mitophagy mediated by HIF-1α/FUNDC1 signaling in tubular cells protects against renal ischemia/reperfusion injury. Ren Fail 2024; 46:2332492. [PMID: 38584135 PMCID: PMC11000611 DOI: 10.1080/0886022x.2024.2332492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Acute kidney injury (AKI) is associated with a high mortality rate. Pathologically, renal ischemia/reperfusion injury (RIRI) is one of the primary causes of AKI, and hypoxia-inducible factor (HIF)-1α may play a defensive role in RIRI. This study assessed the role of hypoxia-inducible factor 1α (HIF-1α)-mediated mitophagy in protection against RIRI in vitro and in vivo. The human tubular cell line HK-2 was used to assess hypoxia/reoxygenation (H/R)-induced mitophagy through different in vitro assays, including western blotting, immunofluorescence staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and reactive oxygen species (ROS) measurement. Additionally, a rat RIRI model was established for evaluation by renal histopathology, renal Doppler ultrasound, and transmission electron microscopy to confirm the in vitro data. The selective HIF-1α inhibitor LW6 reduced H/R-induced mitophagy but increased H/R-induced apoptosis and ROS production. Moreover, H/R treatment enhanced expression of the FUN14 domain-containing 1 (FUNDC1) protein. Additionally, FUNDC1 overexpression reversed the effects of LW6 on the altered expression of light chain 3 (LC3) BII and voltage-dependent anion channels as well as blocked the effects of HIF-1α inhibition in cells. Pretreatment of the rat RIRI model with roxadustat, a novel oral HIF-1α inhibitor, led to decreased renal injury and apoptosis in vivo. In conclusion, the HIF-1α/FUNDC1 signaling pathway mediates H/R-promoted renal tubular cell mitophagy, whereas inhibition of this signaling pathway protects cells from mitophagy, thus aggravating apoptosis, and ROS production. Accordingly, roxadustat may protect against RIRI-related AKI.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Nephrology, Lanzhou University Affiliated Second Hospital, Lanzhou, China
- Gansu Provicne Clinical Research Center for Kidney Diseases, Lanzhou, China
| | - Chao Guo
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yi Li
- Department of Anesthesiology, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Hao Wang
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Huabing Wang
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Yingying Wang
- Department of Nephrology, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Tingting Wu
- Department of Functional Examination in Children, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Huinan Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Gang Cheng
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jiangwei Man
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Siyu Chen
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Shengjun Fu
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Li Yang
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
- Gansu Provicne Clinical Research Center for Urology, Lanzhou, China
| |
Collapse
|
27
|
Zhang W, Li Y, Wang J. Hypertension Induced by Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors in Treating Anemia in Patients With Chronic Kidney Disease: A Mini-Review. J Clin Hypertens (Greenwich) 2024; 26:1375-1383. [PMID: 39494784 PMCID: PMC11654843 DOI: 10.1111/jch.14924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
Hypoxia-inducible factor prolyl hydroxylase (HIF-PH) inhibitors are a new class of agents for the treatment of anemia in chronic kidney disease (CKD). Unlike traditional treatments such as erythropoiesis-stimulating agents (ESAs), HIF-PH inhibitors are orally administered drugs and may increase endogenous erythropoietin and improve iron homeostasis. However, a significant concern is their possible side effect on blood pressure. The current mini-review summarizes the data of 26 randomized controlled (placebo or ESAs) trials on six different HIF-PH inhibitors with regard to their potential influence on blood pressure and hypertension in the management of anemia in CKD. Overall, the use of HIF-PH inhibitors was associated with a higher risk of hypertension than placebo (pooled risk ratio 1.36, 95% confidence interval [CI] 1.16-1.59), but a lower risk of hypertension than ESA treatment (pooled risk ratio 0.92, 95% CI 0.86-0.98), especially in CKD patients not undergoing dialysis (pooled risk ratio 0.85, 95% CI 0.73-0.98). This review highlights the importance of blood pressure monitoring during the treatment of HIF-PH inhibitors, especially out-of-office blood pressure measurement.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of HypertensionRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yan Li
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of HypertensionRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ji‐Guang Wang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of HypertensionRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- National Research Centre for Translational Medicine at ShanghaiRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
28
|
Xu Y, Lu F, Wang M, Wang L, Ye C, Yang S, Wang C. Shen Shuai II recipe improves renal hypoxia to attenuate renal injury in 5/6 renal ablation/infarction rats and effect evaluation using blood oxygenation level-dependent functional magnetic resonance imaging. Ren Fail 2024; 46:2338565. [PMID: 38622926 PMCID: PMC11022919 DOI: 10.1080/0886022x.2024.2338565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/31/2024] [Indexed: 04/17/2024] Open
Abstract
Background: Renal hypoxia plays a key role in the progression of chronic kidney disease (CKD). Shen Shuai II Recipe (SSR) has shown good results in the treatment of CKD as a common herbal formula. This study aimed to explore the effect of SSR on renal hypoxia and injury in CKD rats. Methods: Twenty-five Wistar rats underwent 5/6 renal ablation/infarction (A/I) surgery were randomly divided into three groups: 5/6 (A/I), 5/6 (A/I) + losartan (LOS), and 5/6 (A/I) + SSR groups. Another eight normal rats were used as the Sham group. After 8-week corresponding interventions, blood oxygenation level-dependent functional magnetic resonance imaging (BOLD-fMRI) was performed to evaluate renal oxygenation in all rats, and biochemical indicators were used to measure kidney and liver function, hemoglobin, and proteinuria. The expression of fibrosis and hypoxia-related proteins was analyzed using immunoblotting examination. Results: Renal oxygenation, evaluated by BOLD-fMRI as cortical and medullary T2* values (COT2* and MET2*), was decreased in 5/6 (A/I) rats, but increased after SSR treatment. SSR also downregulated the expression of hypoxia-inducible factor-1α (HIF-1α) in 5/6 (A/I) kidneys. With the improvement of renal hypoxia, renal function and fibrosis were improved in 5/6 (A/I) rats, accompanied by reduced proteinuria. Furthermore, the COT2* and MET2* were significantly positively correlated with the levels of creatinine clearance rate (Ccr) and hemoglobin, but negatively associated with the levels of serum creatinine (SCr), blood urea nitrogen (BUN), serum cystatin C (CysC), serum uric acid (UA), 24-h urinary protein (24-h Upr), and urinary albumin:creatinine ratio (UACR). Conclusion: The degree of renal oxygenation reduction is correlated with the severity of renal injury in CKD. SSR can improve renal hypoxia to attenuate renal injury in 5/6 (A/I) rats of CKD.
Collapse
Affiliation(s)
- Yizeng Xu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fang Lu
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingchen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaoyang Ye
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuohui Yang
- Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
29
|
Ramírez-delaCruz M, Bravo-Sánchez A, Sánchez-Infante J, Abián P, Abián-Vicén J. Effects of Acute Hypoxic Exposure in Simulated Altitude in Healthy Adults on Cognitive Performance: A Systematic Review and Meta-Analysis. BIOLOGY 2024; 13:835. [PMID: 39452143 PMCID: PMC11504018 DOI: 10.3390/biology13100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
The neurocognitive response following hypoxia has received special interest. However, it is necessary to understand the impact of acute hypoxic exposure induced by simulated altitude on cognitive performance. This study aimed to determine the effects of acute hypoxic exposure in simulated altitude in healthy adults on reaction time, response accuracy, memory, and attention. Five electronic databases were searched. The inclusion criteria were: (1) Experimental studies involving a hypoxia intervention induced by a hypoxic air generator to determine the effects on cognitive performance; and (2) Conducted in adults (males and/or females; aged 18-50 years) without pathologies or health/mental problems. Four meta-analyses were performed: (1) reaction time, (2) response accuracy, (3) memory, and (4) attention. Finally, 37 studies were included in the meta-analysis. Hypoxia exposure induced detrimental effects on reaction time (standard mean difference (SMD) -0.23; 95% confidence interval (CI) -0.38--0.07; p = 0.004), response accuracy (SMD -0.20; 95% CI -0.38--0.03; p = 0.02), and memory (SMD -0.93; 95% CI: -1.68--0.17; p = 0.02). Nevertheless, attention was not affected during hypoxia exposure (SMD -0.06; 95% CI: -0.23-0.11; p = 0.47). Acute exposure to hypoxia in controlled lab conditions appears to be detrimental to cognitive performance, specifically in reaction time, response accuracy, and memory.
Collapse
Affiliation(s)
- María Ramírez-delaCruz
- Performance and Sport Rehabilitation Laboratory, Faculty of Sports Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain;
| | - Alfredo Bravo-Sánchez
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda km 1800, 28223 Pozuelo de Alarcón, Spain; (A.B.-S.); (J.S.-I.)
| | - Jorge Sánchez-Infante
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda km 1800, 28223 Pozuelo de Alarcón, Spain; (A.B.-S.); (J.S.-I.)
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing of Toledo, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| | - Pablo Abián
- Faculty of Humanities and Social Sciences, Comillas Pontifical University, 28049 Madrid, Spain;
| | - Javier Abián-Vicén
- Performance and Sport Rehabilitation Laboratory, Faculty of Sports Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain;
| |
Collapse
|
30
|
Wang YY, Yang WX, Du QJ, Liu ZH, Lu MH, You CG. Construction and evaluation of a liver cancer risk prediction model based on machine learning. World J Gastrointest Oncol 2024; 16:3839-3850. [PMID: 39350987 PMCID: PMC11438789 DOI: 10.4251/wjgo.v16.i9.3839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Liver cancer is one of the most prevalent malignant tumors worldwide, and its early detection and treatment are crucial for enhancing patient survival rates and quality of life. However, the early symptoms of liver cancer are often not obvious, resulting in a late-stage diagnosis in many patients, which significantly reduces the effectiveness of treatment. Developing a highly targeted, widely applicable, and practical risk prediction model for liver cancer is crucial for enhancing the early diagnosis and long-term survival rates among affected individuals. AIM To develop a liver cancer risk prediction model by employing machine learning techniques, and subsequently assess its performance. METHODS In this study, a total of 550 patients were enrolled, with 190 hepatocellular carcinoma (HCC) and 195 cirrhosis patients serving as the training cohort, and 83 HCC and 82 cirrhosis patients forming the validation cohort. Logistic regression (LR), support vector machine (SVM), random forest (RF), and least absolute shrinkage and selection operator (LASSO) regression models were developed in the training cohort. Model performance was assessed in the validation cohort. Additionally, this study conducted a comparative evaluation of the diagnostic efficacy between the ASAP model and the model developed in this study using receiver operating characteristic curve, calibration curve, and decision curve analysis (DCA) to determine the optimal predictive model for assessing liver cancer risk. RESULTS Six variables including age, white blood cell, red blood cell, platelet counts, alpha-fetoprotein and protein induced by vitamin K absence or antagonist II levels were used to develop LR, SVM, RF, and LASSO regression models. The RF model exhibited superior discrimination, and the area under curve of the training and validation sets was 0.969 and 0.858, respectively. These values significantly surpassed those of the LR (0.850 and 0.827), SVM (0.860 and 0.803), LASSO regression (0.845 and 0.831), and ASAP (0.866 and 0.813) models. Furthermore, calibration and DCA indicated that the RF model exhibited robust calibration and clinical validity. CONCLUSION The RF model demonstrated excellent prediction capabilities for HCC and can facilitate early diagnosis of HCC in clinical practice.
Collapse
Affiliation(s)
- Ying-Ying Wang
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Wan-Xia Yang
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Qia-Jun Du
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Zhen-Hua Liu
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Ming-Hua Lu
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Chong-Ge You
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu Province, China
| |
Collapse
|
31
|
Jeelani I, Moon JS, da Cunha FF, Nasamran CA, Jeon S, Zhang X, Bandyopadhyay GK, Dobaczewska K, Mikulski Z, Hosseini M, Liu X, Kisseleva T, Brenner D, Singh S, Loomba R, Kim M, Lee YS. HIF-2α drives hepatic Kupffer cell death and proinflammatory recruited macrophage activation in nonalcoholic steatohepatitis. Sci Transl Med 2024; 16:eadi0284. [PMID: 39259813 PMCID: PMC11665927 DOI: 10.1126/scitranslmed.adi0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/12/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024]
Abstract
Proinflammatory hepatic macrophage activation plays a key role in the development of nonalcoholic steatohepatitis (NASH). This involves increased embryonic hepatic Kupffer cell (KC) death, facilitating the replacement of KCs with bone marrow-derived recruited hepatic macrophages (RHMs) that highly express proinflammatory genes. Moreover, phago/efferocytic activity of KCs is diminished in NASH, enhancing liver inflammation. However, the molecular mechanisms underlying these changes in KCs are not known. Here, we show that hypoxia-inducible factor 2α (HIF-2α) mediates NASH-associated decreased KC growth and efferocytosis by enhancing lysosomal stress. At the molecular level, HIF-2α stimulated mammalian target of rapamycin (mTOR)- and extracellular signal-regulated kinase-dependent inhibitory transcription factor EB (TFEB) phosphorylation, leading to decreased lysosomal and phagocytic gene expression. With increased metabolic stress and phago/efferocytic burden in NASH, these changes were sufficient to increase lysosomal stress, causing decreased efferocytosis and lysosomal cell death. Of interest, HIF-2α-dependent TFEB regulation only occurred in KCs but not RHMs. Instead, in RHMs, HIF-2α promoted mitochondrial reactive oxygen species production and proinflammatory activation by increasing ANT2 expression and mitochondrial permeability transition. Consequently, myeloid lineage-specific or KC-specific HIF-2α depletion or the inhibition of mTOR-dependent TFEB inhibition using antisense oligonucleotide treatment protected against the development of NASH in mice. Moreover, treatment with an HIF-2α-specific inhibitor reduced inflammatory and fibrogenic gene expression in human liver spheroids cultured under a NASH-like condition. Together, our results suggest that macrophage subtype-specific effects of HIF-2α collectively contribute to the proinflammatory activation of liver macrophages, leading to the development of NASH.
Collapse
Affiliation(s)
- Ishtiaq Jeelani
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, 92093, USA
| | - Jae-Su Moon
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, 92093, USA
| | - Flavia Franco da Cunha
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, 92093, USA
| | - Chanond A. Nasamran
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, California, 92093, USA
| | - Seokhyun Jeon
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, 92093, USA
| | - Xinhang Zhang
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, 92093, USA
| | - Gautam K. Bandyopadhyay
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, 92093, USA
| | - Katarzyna Dobaczewska
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, California, 92037, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, California, 92037, USA
| | - Mojgan Hosseini
- Department of Pathology, University of California San Diego School of Medicine, La Jolla, California, 92093, USA
| | - Xiao Liu
- Department of Surgery, University of California San Diego, La Jolla, California, 92093, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, La Jolla, California, 92093, USA
| | - David Brenner
- Department of Medicine, University of California San Diego, La Jolla, California, 92093, USA
| | - Seema Singh
- Division of Gastroenterology, University of California San Diego, La Jolla, California, 92093, USA
| | - Rohit Loomba
- Division of Gastroenterology, University of California San Diego, La Jolla, California, 92093, USA
- Division of Epidemiology Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, California, 92093, USA
- NAFLD Research Center University of California, San Diego, La Jolla, California, 92093, USA
| | - Minkyu Kim
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, Texas, 78229, USA
| | - Yun Sok Lee
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, 92093, USA
| |
Collapse
|
32
|
Popp C, Miller W, Eide C, Tolar J, McGrath JA, Ebens CL. Beyond the Surface: A Narrative Review Examining the Systemic Impacts of Recessive Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2024; 144:1943-1953. [PMID: 38613531 DOI: 10.1016/j.jid.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/09/2024] [Accepted: 03/02/2024] [Indexed: 04/15/2024]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a rare genetic disease resulting from inadequate type VII collagen (C7). Although recurrent skin blisters and wounds are the most apparent disease features, the impact of C7 loss is not confined to the skin and mucous membranes. RDEB is a systemic disease marred by chronic inflammation, fibrotic changes, pain, itch, and anemia, significantly impacting QOL and survival. In this narrative review, we summarize these systemic features of RDEB and promising research avenues to address them.
Collapse
Affiliation(s)
- Courtney Popp
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - William Miller
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cindy Eide
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jakub Tolar
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA; MHealth Fairview Masonic Children's Hospital, Minneapolis, Minnesota, USA
| | - John A McGrath
- St. John's Institute of Dermatology, Guy's Hospital, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Christen L Ebens
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA; MHealth Fairview Masonic Children's Hospital, Minneapolis, Minnesota, USA.
| |
Collapse
|
33
|
Gómez-Virgilio L, Velazquez-Paniagua M, Cuazozon-Ferrer L, Silva-Lucero MDC, Gutierrez-Malacara AI, Padilla-Mendoza JR, Borbolla-Vázquez J, Díaz-Hernández JA, Jiménez-Orozco FA, Cardenas-Aguayo MDC. Genetics, Pathophysiology, and Current Challenges in Von Hippel-Lindau Disease Therapeutics. Diagnostics (Basel) 2024; 14:1909. [PMID: 39272694 PMCID: PMC11393980 DOI: 10.3390/diagnostics14171909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
This review article focuses on von Hippel-Lindau (VHL) disease, a rare genetic disorder characterized by the development of tumors and cysts throughout the body. It discusses the following aspects of the disease. GENETICS VHL disease is caused by mutations in the VHL tumor suppressor gene located on chromosome 3. These mutations can be inherited or occur spontaneously. This article details the different types of mutations and their associated clinical features. PATHOPHYSIOLOGY The underlying cause of VHL disease is the loss of function of the VHL protein (pVHL). This protein normally regulates hypoxia-inducible factors (HIFs), which are involved in cell growth and survival. When pVHL is dysfunctional, HIF levels become elevated, leading to uncontrolled cell growth and tumor formation. CLINICAL MANIFESTATIONS VHL disease can affect various organs, including the brain, spinal cord, retina, kidneys, pancreas, and adrenal glands. Symptoms depend on the location and size of the tumors. DIAGNOSIS Diagnosis of VHL disease involves a combination of clinical criteria, imaging studies, and genetic testing. TREATMENT Treatment options for VHL disease depend on the type and location of the tumors. Surgery is the mainstay of treatment, but other options like radiation therapy may also be used. CHALLENGES This article highlights the challenges in VHL disease management, including the lack of effective therapies for some tumor types and the need for better methods to monitor disease progression. In conclusion, we emphasize the importance of ongoing research to develop new and improved treatments for VHL disease.
Collapse
Affiliation(s)
- Laura Gómez-Virgilio
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Mireya Velazquez-Paniagua
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Lucero Cuazozon-Ferrer
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
- Ingenieria en Biotecnología, Universidad Politécnica de Quintana Roo, Av. Arco Bicentenario, MZ. 11, Lote 1119-33 SM 255, Cancún Quintana Roo 77500, Mexico
| | - Maria-Del-Carmen Silva-Lucero
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Andres-Ivan Gutierrez-Malacara
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Juan-Ramón Padilla-Mendoza
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Jessica Borbolla-Vázquez
- Ingenieria en Biotecnología, Universidad Politécnica de Quintana Roo, Av. Arco Bicentenario, MZ. 11, Lote 1119-33 SM 255, Cancún Quintana Roo 77500, Mexico
| | - Job-Alí Díaz-Hernández
- Ingenieria en Biotecnología, Universidad Politécnica de Quintana Roo, Av. Arco Bicentenario, MZ. 11, Lote 1119-33 SM 255, Cancún Quintana Roo 77500, Mexico
| | | | - Maria-Del-Carmen Cardenas-Aguayo
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| |
Collapse
|
34
|
Liang Z, Hu S, Dong Y, Miao L, Zhu W, Feng B, Fu J, Luo M, Wang L, Dong Z. Molecular characterization and function of hif1a and fih1 in response to acute thermal stress in American shad (Alosa sapidissima). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1563-1581. [PMID: 38789648 DOI: 10.1007/s10695-024-01356-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
In order to evaluate the function of hypoxia-inducible factor-1 alpha (hif1α) and factor inhibiting hif1α (fih1) in response to thermal stress, we first conducted a functional analysis of A. sapidissima hif1α and fih1, and determined hif1α and fih1 expressions in different tissues in response to thermal stress based on identified housekeeping genes (HKGs). The results showed that hif1α and fih1 were mainly located in the nucleus and cytoplasm. The full length cDNA sequence of hif1α and fih1 was 4073 bp and 2759 bp, respectively. The cDNA sequence of hif1α includes 15 exons encoding 750 amino acid residues, and the full length cDNA sequence of fih1 contains 9 exons encoding 354 amino acid residues. During the acute thermal stress transferring from 16 ± 0.5 °C (control) to 20 ± 0.5 °C, 25 ± 0.5 °C, and 30 ± 0.5 °C for 15 min, it was found that the expression trends of hif1α and fih1 showed an inhibitory regulation in the heart, while they consistently expressed in brain, intestine, muscle, gill, kidney and liver. In conclusion, this is the first study to identify the tissue-specific HKGs in A. sapidissima and found that ef1α and β-actin are the most suitable HKGs. Hif1α and Fih1 are mainly the nuclear and cytoplasmic proteins, respectively, having high levels in the heart and brain. Alosa sapidissima countered a temperature increase from 16 to 25 ℃ by regulating the expressions of hif1α and fih1, but their physiological regulatory functions were unable to cope with acute thermal stress when the temperature difference was 14 ℃ (from 16 to 30 ℃).
Collapse
Affiliation(s)
- Zhengyuan Liang
- Wuxi Fisheries College, Nanjing Agricultural University, No.9 East Shanshui Road, Wuxi Jiangsu, 214081, China
- Wuxi Raysun Fishery Science and Technology Company, Xingyuan North Road No. 401, P.O. Box D20-501, Wuxi Jiangsu, 214000, China
| | - Songqin Hu
- Wuxi Fisheries College, Nanjing Agricultural University, No.9 East Shanshui Road, Wuxi Jiangsu, 214081, China
| | - Yalun Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi Jiangsu, 214081, China
| | - Linghong Miao
- Wuxi Fisheries College, Nanjing Agricultural University, No.9 East Shanshui Road, Wuxi Jiangsu, 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi Jiangsu, 214081, China
| | - Wenbin Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, No.9 East Shanshui Road, Wuxi Jiangsu, 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi Jiangsu, 214081, China
| | - Bingbing Feng
- Fisheries Technology Extension Center of Jiangsu Province, Hanzhongmen Street No. 300, Nanjing Jiangsu, 210036, China
| | - Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi Jiangsu, 214081, China
| | - Mingkun Luo
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi Jiangsu, 214081, China
| | - Lanmei Wang
- Wuxi Fisheries College, Nanjing Agricultural University, No.9 East Shanshui Road, Wuxi Jiangsu, 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi Jiangsu, 214081, China
| | - Zaije Dong
- Wuxi Fisheries College, Nanjing Agricultural University, No.9 East Shanshui Road, Wuxi Jiangsu, 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi Jiangsu, 214081, China.
| |
Collapse
|
35
|
Ortmann BM, Taylor CT, Rocha S. Hypoxia research, where to now? Trends Biochem Sci 2024; 49:573-582. [PMID: 38599898 DOI: 10.1016/j.tibs.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Investigating how cells and organisms sense and respond to O2 levels is essential to our understanding of physiology and pathology. This field has advanced considerably since the discovery of the major transcription factor family, hypoxia-inducible factor (HIF), and the enzymes that control its levels: prolyl hydroxylases (PHDs). However, with its expansion, new complexities have emerged. Herein we highlight three main areas where, in our opinion, the research community could direct some of their attention. These include non-transcriptional roles of HIFs, specificity and O2 sensitivity of 2-oxoglutarate-dependent dioxygenases (2-OGDDs), and new tools and methods to detect O2 concentrations in cells and organs. A greater understanding of these areas would answer big questions and help drive our knowledge of cellular responses to hypoxia forward.
Collapse
Affiliation(s)
- Brian M Ortmann
- Wolfson Childhood Cancer Research Centre, Newcastle University, Newcastle upon Tyne, UK.
| | - Cormac T Taylor
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland.
| | - Sonia Rocha
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
36
|
Ishiyama Y, Yagisawa T, Ichioka M, Hagiwara A, Shimizu T, Omoto K, Nozaki T, Inui M, Ino J, Takeda K, Toma H, Iida S. Comparative Analysis of Real-World Efficacy and Safety of Hypoxia-Inducible Factor Prolyl-Hydroxylase Inhibitors in Kidney Transplant Recipients Versus Nontransplant Individuals: A Single-Center Study. Transplant Proc 2024; 56:1300-1307. [PMID: 38971701 DOI: 10.1016/j.transproceed.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/09/2024] [Accepted: 05/24/2024] [Indexed: 07/08/2024]
Abstract
OBJECTIVES To compare the efficacy and safety of hypoxia-inducible factor prolyl-hydroxylase inhibitors (HIF-PHis), a novel agent for management of anemia in chronic kidney disease (CKD), between transplant recipients and nontransplant individuals. METHODS A retrospective analysis was conducted on nondialysis-dependent CKD stage 3 to 5 patients treated with the HIF-PHi roxadustat or daprodustat at a single institution. Patients were categorized as kidney transplant recipients (KTRs) and non-KTRs. Efficacy outcomes (hemoglobin and creatinine levels) and safety profiles (rate of adverse events [AEs], descriptions, and discontinuations due to AEs) were assessed 3 months before and 6 months after HIF-PHi initiation within and then between the groups. RESULTS The study comprised 82 patients (KTR: 43, non-KTR: 39). Median ages significantly differed between the KTR (52.7 years) and non-KTR (82.9 years) groups (P < .001). Roxadustat was predominantly used in the KTR group (88.4%), while daprodustat was used in the non-KTR group (94.9%, P < .001). Both groups exhibited significant increases in Hb levels at 1, 3, and 6 months post-HIF-PHi initiation (P for trend, <.001), with a relative increase in Hb level at 6 months of 16% for KTRs and 13% for non-KTRs. Creatinine levels showed no significant changes over 6 months. Although no difference was observed in drug discontinuation due to AEs, the KTR group experienced a significantly higher rate of thrombotic events (18.6 vs 2.6%, P = .049). CONCLUSIONS HIF-PHis demonstrate comparable efficacy for managing anemia in CKD, regardless of transplant status. However, heightened vigilance for thrombosis events is necessary during follow-up for KTRs.
Collapse
Affiliation(s)
- Yudai Ishiyama
- Department of Urology and Transplant Surgery, Toda Chuo General Hospital, Toda-shi, Saitama, Japan.
| | - Takafumi Yagisawa
- Department of Urology and Transplant Surgery, Toda Chuo General Hospital, Toda-shi, Saitama, Japan
| | - Makiko Ichioka
- Department of Urology and Transplant Surgery, Toda Chuo General Hospital, Toda-shi, Saitama, Japan
| | - Ayumu Hagiwara
- Department of Urology and Transplant Surgery, Toda Chuo General Hospital, Toda-shi, Saitama, Japan
| | - Tomokazu Shimizu
- Department of Organ Transplant Medicine, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | | | - Taiji Nozaki
- Department of Urology, Juntendo University Urayasu Hospital, Urayasu-shi, Chiba, Japan
| | - Masashi Inui
- Department of Urology, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo-shi, Chiba, Japan
| | - Jun Ino
- Department of Nephrology, Toda Chuo General Hospital, Saitama, Japan
| | - Kazuhiro Takeda
- Department of Cardiology, Toda Chuo General Hospital, Saitama, Japan
| | - Hiroshi Toma
- Department of Urology and Transplant Surgery, Toda Chuo General Hospital, Toda-shi, Saitama, Japan
| | - Shoichi Iida
- Department of Urology and Transplant Surgery, Toda Chuo General Hospital, Toda-shi, Saitama, Japan
| |
Collapse
|
37
|
Zechner C, Rhee EP. Phosphate sensing in health and disease. Curr Opin Nephrol Hypertens 2024; 33:361-367. [PMID: 38572729 DOI: 10.1097/mnh.0000000000000984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW Disruptions of phosphate homeostasis are associated with a multitude of diseases with insufficient treatments. Our knowledge regarding the mechanisms underlying metazoan phosphate homeostasis and sensing is limited. Here, we highlight four major advancements in this field during the last 12-18 months. RECENT FINDINGS First, kidney glycolysis senses filtered phosphate, which results in the release of glycerol 3-phosphate (G-3-P). Circulating G-3-P then stimulates synthesis of the phosphaturic hormone fibroblast growth factor 23 in bone. Second, the liver serves as a postprandial phosphate reservoir to limit serum phosphate excursions. It senses phosphate ingestion and triggers renal excretion of excess phosphate through a nerve-dependent mechanism. Third, phosphate-starvation in cells massively induces the phosphate transporters SLC20A1/PiT1 and SLC20A2/PiT2, implying direct involvement of cellular phosphate sensing. Under basal phosphate-replete conditions, PiT1 is produced but immediately destroyed, which suggests a novel mechanism for the regulation of PiT1 abundance. Fourth, Drosophila melanogaster intestinal cells contain novel organelles called PXo bodies that limit intracellular phosphate excursions. Phosphate starvation leads to PXo body dissolution, which triggers midgut proliferation. SUMMARY These studies have opened novel avenues to dissect the mechanisms that govern metazoan phosphate sensing and homeostasis with the potential to identify urgently needed therapeutic targets.
Collapse
Affiliation(s)
- Christoph Zechner
- Division of Endocrinology, Department of Internal Medicine; Department of Pharmacology; Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Eugene P Rhee
- Nephrology Division and Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Wang L, Song Y, Zhang P, Chen W, Xiao F, Zhou P, Yang X, Dai H. Hypoxia-inducible factor prolyl hydroxylase inhibitor alleviates heatstroke-induced acute kidney injury by activating BNIP3-mediated mitophagy. FASEB J 2024; 38:e23723. [PMID: 38865198 DOI: 10.1096/fj.202400047r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 06/14/2024]
Abstract
Hypoxia-induced inflammation and apoptosis are important pathophysiological features of heat stroke-induced acute kidney injury (HS-AKI). Hypoxia-inducible factor (HIF) is a key protein that regulates cell adaptation to hypoxia. HIF-prolyl hydroxylase inhibitor (HIF-PHI) stabilizes HIF to increase cell adaptation to hypoxia. Herein, we reported that HIF-PHI pretreatment significantly improved renal function, enhanced thermotolerance, and increased the survival rate of mice in the context of HS. Moreover, HIF-PHI could alleviate HS-induced mitochondrial damage, inflammation, and apoptosis in renal tubular epithelial cells (RTECs) by enhancing mitophagy in vitro and in vivo. By contrast, mitophagy inhibitors Mdivi-1, 3-MA, and Baf-A1 reversed the renoprotective effects of HIF-PHI. Mechanistically, HIF-PHI protects RTECs from inflammation and apoptosis by enhancing Bcl-2 adenovirus E18 19-kDa-interacting protein 3 (BNIP3)-mediated mitophagy, while genetic ablation of BNIP3 attenuated HIF-PHI-induced mitophagy and abolished HIF-PHI-mediated renal protection. Thus, our results indicated that HIF-PHI protects renal function by upregulating BNIP3-mediated mitophagy to improve HS-induced inflammation and apoptosis of RTECs, suggesting HIF-PHI as a promising therapeutic agent to treat HS-AKI.
Collapse
Affiliation(s)
- Ling Wang
- Department of Rheumatology and Clinical Immunology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yongwei Song
- Department of Rheumatology and Clinical Immunology, Daping Hospital, Army Medical University, Chongqing, China
| | - Pan Zhang
- Department of Tropical Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Wenting Chen
- Department of Rheumatology and Clinical Immunology, Daping Hospital, Army Medical University, Chongqing, China
| | - Fei Xiao
- Department of Rheumatology and Clinical Immunology, Daping Hospital, Army Medical University, Chongqing, China
| | - Ping Zhou
- Department of Rheumatology and Clinical Immunology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xuesen Yang
- Department of Tropical Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Huanzi Dai
- Department of Rheumatology and Clinical Immunology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
39
|
Fang Z, Bai J. Integrated bioinformatics analysis reveals the bidirectional effects of TSPAN6 for cisplatin resistance in lung cancer. Chem Biol Drug Des 2024; 103:e14570. [PMID: 38887156 DOI: 10.1111/cbdd.14570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 06/20/2024]
Abstract
Cisplatin-based chemotherapy is frequently employed as the primary therapeutic approach for advanced lung cancer. Nevertheless, a significant proportion of patients may develop resistance to cisplatin, leading to diminished efficacy of chemotherapy. Through analysis of Gene Expression Omnibus databases, TSPAN6 has been identified as a key factor in conferring resistance to cisplatin, attributed to its activation of the NF-κB signaling pathway. Knockdown of TSPAN6 using siRNA resulted in decreased expression levels of NF-κB in A549 cells. This indicates that TSPAN6 may have dual effects on lung cancer cisplatin resistance and could serve as a promising therapeutic target for individuals with cisplatin resistance.
Collapse
Affiliation(s)
- Zhihong Fang
- Department of General Surgery, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu, China
| | - Jinmei Bai
- Department of Respiratory, Affiliated Wuxi Fifth Hospital of Jiangnan University (The Fifth People's Hospital of Wuxi), Wuxi, Jiangsu, China
| |
Collapse
|
40
|
Fishbane S, Cimagala RJ, Haase VH. Hypoxia-Inducible Factor Stabilizers: an Evolving Role in Post-Transplant Anemia. Kidney Int Rep 2024; 9:1561-1564. [PMID: 38899193 PMCID: PMC11184392 DOI: 10.1016/j.ekir.2024.01.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Affiliation(s)
- Steven Fishbane
- Division of Nephrology, Department of Medicine, Zucker School of Medicine at Hofstra/Northwell Great Neck, New York, USA
| | - Ross Jude Cimagala
- Division of Nephrology, Department of Medicine, Zucker School of Medicine at Hofstra/Northwell Great Neck, New York, USA
| | - Volker H. Haase
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Medical and Research Services, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
41
|
Kang Y, Zhou M, Jin Q, Geng YL, Wang Y, Lv J. The efficacy and safety of molidustat for anemia in dialysis-dependent and non-dialysis-dependent chronic kidney disease patients: A systematic review and meta-analysis. Heliyon 2024; 10:e30621. [PMID: 38765138 PMCID: PMC11101811 DOI: 10.1016/j.heliyon.2024.e30621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024] Open
Abstract
Objective Molidustat is a novel agent investigated for the treatment of anemia in both dialysisdependent (DD) and non-dialysis-dependent (NDD) patients. Its efficacy and safety are still unclear. Methods We searched five databases to identify randomized controlled trials comparing molidustat to erythropoiesis-stimulating agents (ESAs) or placebo in patients with anemia. Results Six studies containing 2025 eligible participants were identified. For NDD patients, the change in Hb levels from baseline (ΔHb) was significantly higher for molidustat than for placebo [mean difference (MD) = 1.47 (95 % CI: 1.18 to 1.75), P < 0.00001] and ΔHb was also significantly higher for molidustat than for ESAs [MD = 0.25 (95 % CI 0.09 to 0.40), P = 0.002]. For NDD patients, Δhepcidin was significantly lower for molidustat than for placebo [MD = -20.66 (95 % CI: -31.67 to -9.66), P = 0.0002] and Δhepcidin was also significantly lower for molidustat than for ESAs [MD = -24.51 (95 % CI: -29.12 to -19.90), P < 0.00001]. For NDD patients, Δiron was significantly lower for molidustat than for ESAs [MD = -11.85 (95 % CI: -15.52 to -8.18), P < 0.00001], and ΔTSAT was also significantly lower for molidustat than for ESAs [MD = -5.29 (95 % CI: -6.81 to -3.78), P < 0.00001]. For NDD patients, Δferritin was significantly lower for molidustat than for placebo [MD = -90.01 (95 % CI: -134.77 to -45.25), P < 0.00001]. However, for DD-CKD patients, molidustat showed an effect similar to that of ESAs on increasing the Hb level [MD = -0.18 (95 % CI: -0.47 to 0.11), P = 0.23], Δiron level [MD = 3.78 (95 % CI: -7.21 to 14.76), P = 0.5], Δferritin level [MD = 25.03 (95 % CI: -34.69 to 84.75), P = 0.41], and Δhepcidin level [MD = 1.20 (95 % CI: -4.36 to 6.76), P = 0.67]. For DD-CKD patients, compared with the placebo or ESA group, molidustat showed a significantly higher level on ΔTSAT[MD = 3.88 (95 % CI: 2.10 to 5.65), P < 0.0001] and a slightly increased level on ΔTIBC level [MD = 1.08 (95 % CI: -0.07 to 2.23), P = 0.07]. There was no significant difference in the incidence of severe adverse events (SAEs), death, and cardio-related adverse events between molidustat and the ESAs groups. Conclusions Moricizine can effectively improves Hb levels in NDD patients and corrects anemia in DD patients without increasing adverse event incidence.
Collapse
Affiliation(s)
- Yi Kang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Mengqi Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing Puren Hospital, Beijing, China
| | - Qian Jin
- Beijing University of Chinese Medicine, Beijing, China
| | - Yun Ling Geng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yaoxian Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Lv
- Department of Nephrology, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
42
|
Yu W, Liang Y, Gao J, Xiong J. Study on risk factors and treatment strategies of hypoxemia after acute type a aortic dissection surgery. J Cardiothorac Surg 2024; 19:273. [PMID: 38702812 PMCID: PMC11067146 DOI: 10.1186/s13019-024-02775-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024] Open
Abstract
Acute type A aortic dissection is a life-threatening cardiovascular disease characterized by rapid onset and high mortality. Emergency surgery is the preferred and reliable treatment option. However, postoperative complications significantly impact patient prognosis. Hypoxemia, a common complication, poses challenges in clinical treatment, negatively affecting patient outcomes and increasing the risk of mortality. Therefore, it is crucial to study and comprehend the risk factors and treatment strategies for hypoxemia following acute type A aortic dissection to facilitate early intervention.
Collapse
Affiliation(s)
- Wenbo Yu
- The First Clinical Medical College of Gannan Medical University, Ganzhou, 341000, China
| | - Yuan Liang
- The First Clinical Medical College of Gannan Medical University, Ganzhou, 341000, China
| | - Jianfeng Gao
- The First Clinical Medical College of Gannan Medical University, Ganzhou, 341000, China
| | - Jianxian Xiong
- First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
43
|
Chong L, Zou L, Xiang L, Song X, Miao W, Yan X, Xu M, Ling G, El Agha E, Bellusci S, Lou Z, Zhang H, Zhang JS. WSB1, a Hypoxia-Inducible E3 Ligase, Promotes Myofibroblast Accumulation and Attenuates Alveolar Epithelial Regeneration in Mouse Lung Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:656-672. [PMID: 38325552 DOI: 10.1016/j.ajpath.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Idiopathic pulmonary fibrosis is a progressive interstitial lung disease for which there is no curative therapy available. Repetitive alveolar epithelial injury repair, myofibroblast accumulation, and excessive collagen deposition are key pathologic features of idiopathic pulmonary fibrosis, eventually leading to cellular hypoxia and respiratory failure. The precise mechanism driving this complex maladaptive process remains inadequately understood. WD repeat and suppressor of cytokine signaling box containing 1 (WSB1) is an E3 ubiquitin ligase, the expression of which is associated strongly with hypoxia, and forms a positive feedback loop with hypoxia-inducible factor 1α (HIF-1α) under anoxic condition. This study explored the expression, cellular distribution, and function of WSB1 in bleomycin (BLM)-induced mouse lung injury and fibrosis. WSB1 expression was highly induced by BLM injury and correlated with the progression of lung fibrosis. Significantly, conditional deletion of Wsb1 in adult mice ameliorated BLM-induced pulmonary fibrosis. Phenotypically, Wsb1-deficient mice showed reduced lipofibroblast to myofibroblast transition, but enhanced alveolar type 2 proliferation and differentiation into alveolar type 1 after BLM injury. Proteomic analysis of mouse lung tissues identified caveolin 2 as a potential downstream target of WSB1, contributing to BLM-induced epithelial injury repair and fibrosis. These findings unravel a vital role for WSB1 induction in lung injury repair, thus highlighting it as a potential therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Lei Chong
- Department of Pediatric Respiratory Medicine, National Key Clinical Specialty of Pediatric Respiratory Medicine, Institute of Pediatrics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lihui Zou
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liyan Xiang
- Department of Pediatric Respiratory Medicine, National Key Clinical Specialty of Pediatric Respiratory Medicine, Institute of Pediatrics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinyue Song
- Department of Pediatric Respiratory Medicine, National Key Clinical Specialty of Pediatric Respiratory Medicine, Institute of Pediatrics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wanqi Miao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, and Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Wenzhou, China
| | - Xihua Yan
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming Xu
- Department of Pediatric Respiratory Medicine, National Key Clinical Specialty of Pediatric Respiratory Medicine, Institute of Pediatrics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gongxia Ling
- Department of Pediatric Respiratory Medicine, National Key Clinical Specialty of Pediatric Respiratory Medicine, Institute of Pediatrics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Elie El Agha
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus-Liebig University Giessen, Giessen, Germany
| | - Saverio Bellusci
- Cardio-Pulmonary Institute, Institute for Lung Health, German Center for Lung Research, Justus-Liebig University Giessen, Giessen, Germany
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Hailin Zhang
- Department of Pediatric Respiratory Medicine, National Key Clinical Specialty of Pediatric Respiratory Medicine, Institute of Pediatrics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Jin-San Zhang
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, and Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Wenzhou, China.
| |
Collapse
|
44
|
Wei L, He P, Tan Z, Zhao L, Lin C, Wei Z. Unveiling the role of the KLF4/Lnc18q22.2/ULBP3 axis in the tumorigenesis and immune escape of hepatocellular carcinoma under hypoxic condition. J Cell Mol Med 2024; 28:e18411. [PMID: 38780505 PMCID: PMC11114216 DOI: 10.1111/jcmm.18411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents a significant global health burden, necessitating an in-depth exploration of its molecular underpinnings to facilitate the development of effective therapeutic strategies. This investigation delves into the complex role of long non-coding RNAs (lncRNAs) in the modulation of hypoxia-induced HCC progression, with a specific emphasis on delineating and functionally characterizing the novel KLF4/Lnc18q22.2/ULBP3 axis. To elucidate the effects of hypoxic conditions on HCC cells, we established in vitro models under both normoxic and hypoxic environments, followed by lncRNA microarray analyses. Among the lncRNAs identified, Lnc18q22.2 was found to be significantly upregulated in HCC cells subjected to hypoxia. Subsequent investigations affirmed the oncogenic role of Lnc18q22.2, highlighting its critical function in augmenting HCC cell proliferation and migration. Further examination disclosed that Kruppel-like factor 4 (KLF4) transcriptionally governs Lnc18q22.2 expression in HCC cells, particularly under hypoxic stress. KLF4 subsequently enhances the tumorigenic capabilities of HCC cells through the modulation of Lnc18q22.2 expression. Advancing downstream in the molecular cascade, our study elucidates a novel interaction between Lnc18q22.2 and UL16-binding protein 3 (ULBP3), culminating in the stabilization of ULBP3 protein expression. Notably, ULBP3 was identified as a pivotal element, exerting dual functions by facilitating HCC tumorigenesis and mitigating immune evasion in hypoxia-exposed HCC cells. The comprehensive insights gained from our research delineate a hitherto unidentified KLF4/Lnc18q22.2/ULBP3 axis integral to the understanding of HCC tumorigenesis and immune escape under hypoxic conditions. This newly unveiled molecular pathway not only enriches our understanding of hypoxia-induced HCC progression but also presents novel avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Lifang Wei
- Health Management CenterThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - Ping He
- School of Laboratory MedicineYoujiang Medical University for NationalitiesBaiseGuangxiChina
| | - Zhongqiu Tan
- Department of OncologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - Lifeng Zhao
- Department of OncologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - Cheng Lin
- Department of OncologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - Zhongheng Wei
- Department of OncologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
- Guangxi Clinical Medical Research Center for Hepatobiliary DiseasesThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseChina
| |
Collapse
|
45
|
Ubaid S, Kashif M, Laiq Y, Nayak AK, Kumar V, Singh V. Targeting HIF-1α in sickle cell disease and cancer: unraveling therapeutic opportunities and risks. Expert Opin Ther Targets 2024; 28:357-373. [PMID: 38861226 DOI: 10.1080/14728222.2024.2367640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION HIF-1α, a key player in medical science, holds immense significance in therapeutic approaches. This review delves into its complex dynamics, emphasizing the delicate balance required for its modulation. HIF-1α stands as a cornerstone in medical research, its role extending to therapeutic strategies. This review explores the intricate interplay surrounding HIF-1α, highlighting its critical involvement and the necessity for cautious modulation. AREAS COVERED In sickle cell disease (SCD), HIF-1α's potential to augment fetal hemoglobin (HbF) production and mitigate symptoms is underscored. Furthermore, its role in cancer is examined, particularly its influence on survival in hypoxic tumor microenvironments, angiogenesis, and metastasis. The discussion extends to the intricate relationship between HIF-1α modulation and cancer risks in SCD patients, emphasizing the importance of balancing therapeutic benefits and potential hazards. EXPERT OPINION Managing HIF-1α modulation in SCD patients requires a nuanced approach, considering therapeutic potential alongside associated risks, especially in exacerbating cancer risks. An evolutionary perspective adds depth, highlighting adaptations in populations adapted to low-oxygen environments and aligning cancer cell metabolism with primitive cells. The role of HIF-1α as a therapeutic target is discussed within the context of complex cancer biology and metabolism, acknowledging varied responses across diverse cancers influenced by intricate evolutionary adaptations.
Collapse
Affiliation(s)
- Saba Ubaid
- Department of Biochemistry, King George's Medical University, Lucknow, India
| | - Mohammad Kashif
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Yusra Laiq
- Department of Biotechnology, Era University, Lucknow, India
| | | | - Vipin Kumar
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Vivek Singh
- Department of Biochemistry, King George's Medical University, Lucknow, India
| |
Collapse
|
46
|
Bargiela D, Cunha PP, Veliça P, Krause LCM, Brice M, Barbieri L, Gojkovic M, Foskolou IP, Rundqvist H, Johnson RS. The factor inhibiting HIF regulates T cell differentiation and anti-tumour efficacy. Front Immunol 2024; 15:1293723. [PMID: 38690263 PMCID: PMC11058823 DOI: 10.3389/fimmu.2024.1293723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/12/2024] [Indexed: 05/02/2024] Open
Abstract
T cells must adapt to variations in tissue microenvironments; these adaptations include the degree of oxygen availability. The hypoxia-inducible factor (HIF) transcription factors control much of this adaptation, and thus regulate many aspects of T cell activation and function. The HIFs are in turn regulated by oxygen-dependent hydroxylases: both the prolyl hydroxylases (PHDs) which interact with the VHL tumour suppressor and control HIF turnover, and the asparaginyl hydroxylase known as the Factor inhibiting HIF (FIH), which modulates HIF transcriptional activity. To determine the role of this latter factor in T cell function, we generated T cell-specific FIH knockout mice. We found that FIH regulates T cell fate and function in a HIF-dependent manner and show that the effects of FIH activity occur predominantly at physiological oxygen concentrations. T cell-specific loss of FIH boosts T cell cytotoxicity, augments T cell expansion in vivo, and improves anti-tumour immunotherapy in mice. Specifically inhibiting FIH in T cells may therefore represent a promising strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- David Bargiela
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Pedro P. Cunha
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Pedro Veliça
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lena C. M. Krause
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Madara Brice
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Barbieri
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Milos Gojkovic
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Iosifina P. Foskolou
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Helene Rundqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Randall S. Johnson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
47
|
Zhou X, Wang J, Zhou S. Poria cocos polysaccharides improve alcoholic liver disease by interfering with ferroptosis through NRF2 regulation. Aging (Albany NY) 2024; 16:6147-6162. [PMID: 38507458 PMCID: PMC11042950 DOI: 10.18632/aging.205693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
The active ingredient in Poria cocos, a parasitic plant belonging to the family Polyporaceae, is Poria cocos polysaccharide (PCP). PCP exhibits liver protection and anti-inflammatory effects, although its effect on alcoholic liver disease (ALD) remains unstudied. This study investigated the mechanism of PCP in improving ALD by regulating the Nrf2 signaling pathway. After daily intragastric administration of high-grade liquor for 4 hours, each drug group received PCPs or the ferroptosis inhibitor ferrostatin-1. The Nrf2 inhibitor ML385 (100 mg/kg/day) group was intraperitoneally injected, after which PCP (100 mg/kg/day) was administered by gavage. Samples were collected after 6 weeks for liver function and blood lipid analysis using an automatic biochemical analyzer. In the alcoholic liver injury cell model established with 150 mM alcohol, the drug group was pretreated with PCP, Fer-1, and ML385, and subsequent results were analyzed. The results revealed that PCP intervention significantly reduced liver function and blood lipid levels in alcohol-fed rats, along with decreased lipid deposition. PCP notably enhanced Nrf2 signaling expression, regulated oxidative stress levels, inhibited NF-κβ, and its downstream inflammatory signaling pathways. Furthermore, PCP upregulated FTH1 protein expression and reduced intracellular Fe2+, suggesting an improvement in ferroptosis. In vitro studies yielded similar results, indicating that PCP can reduce intracellular ferroptosis by regulating oxidative stress and improve alcoholic liver injury by inhibiting the production of inflammatory factors.
Collapse
Affiliation(s)
- Xiangyu Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Jincheng Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Sufang Zhou
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| |
Collapse
|
48
|
Garone C, De Giorgio F, Carli S. Mitochondrial metabolism in neural stem cells and implications for neurodevelopmental and neurodegenerative diseases. J Transl Med 2024; 22:238. [PMID: 38438847 PMCID: PMC10910780 DOI: 10.1186/s12967-024-05041-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/25/2024] [Indexed: 03/06/2024] Open
Abstract
Mitochondria are cytoplasmic organelles having a fundamental role in the regulation of neural stem cell (NSC) fate during neural development and maintenance.During embryonic and adult neurogenesis, NSCs undergo a metabolic switch from glycolytic to oxidative phosphorylation with a rise in mitochondrial DNA (mtDNA) content, changes in mitochondria shape and size, and a physiological augmentation of mitochondrial reactive oxygen species which together drive NSCs to proliferate and differentiate. Genetic and epigenetic modifications of proteins involved in cellular differentiation (Mechanistic Target of Rapamycin), proliferation (Wingless-type), and hypoxia (Mitogen-activated protein kinase)-and all connected by the common key regulatory factor Hypoxia Inducible Factor-1A-are deemed to be responsible for the metabolic shift and, consequently, NSC fate in physiological and pathological conditions.Both primary mitochondrial dysfunction due to mutations in nuclear DNA or mtDNA or secondary mitochondrial dysfunction in oxidative phosphorylation (OXPHOS) metabolism, mitochondrial dynamics, and organelle interplay pathways can contribute to the development of neurodevelopmental or progressive neurodegenerative disorders.This review analyses the physiology and pathology of neural development starting from the available in vitro and in vivo models and highlights the current knowledge concerning key mitochondrial pathways involved in this process.
Collapse
Affiliation(s)
- C Garone
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UO Neuropsichiatria Dell'età Pediatrica, Bologna, Italy.
| | - F De Giorgio
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - S Carli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
49
|
Naito Y, Yasumura S, Okuno K, Asakura M, Tsujino T, Masuyama T, Ishihara M. Hypoxia-inducible factor-prolyl hydroxylase inhibitor Roxadustat (FG-4592) reduces renal fibrosis in Dahl salt-sensitive rats. J Hypertens 2024; 42:497-505. [PMID: 38014420 DOI: 10.1097/hjh.0000000000003623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
OBJECTIVE Although hypoxia-inducible factor-prolyl hydroxylase (HIF-PH) inhibitors have been developed for the treatment of renal anemia, their effects on cardiac and renal dysfunction remain unknown. We previously reported on Dahl salt-sensitive rats, in a rat model of salt-sensitive hypertension, that exhibited anemia and impaired expression of duodenal iron transporters after the development of hypertensive cardiac and renal dysfunction. Therefore, we investigated the effects of Roxadustat (FG-4592), an HIF-PH inhibitor, on anemia, iron regulation, and cardiac and renal dysfunction in Dahl salt-sensitive rats. METHODS Six-week-old male Dahl salt-sensitive rats were fed a normal or high-salt diet for 8 weeks. A further subset of Dahl salt-sensitive rats, that were fed a high-salt diet, was administered Roxadustat for 8 weeks. RESULTS Dahl salt-sensitive rats fed a high-salt diet developed hypertension, cardiac and renal dysfunction, and anemia after 8 weeks of feeding. Roxadustat increased hemoglobin and serum erythropoietin levels in Dahl salt-sensitive rats fed a high-salt diet. With regard to the iron-regulating system, Roxadustat lowered hepatic hepcidin gene expression and increased the gene expression of duodenal iron transporters, such as cytochrome b and divalent metal transporter 1 , in Dahl salt-sensitive rats fed a high-salt diet. Roxadustat did not affect the development of hypertension and cardiac hypertrophy in Dahl salt-sensitive rats with a high-salt diet; however, Roxadustat treatment attenuated renal fibrosis in these rats. CONCLUSIONS Roxadustat ameliorated anemia with affecting the gene expression of the iron-regulating system, and did not affect cardiac hypertrophy but attenuated renal fibrosis in Dahl salt-sensitive rats fed a high-salt diet.
Collapse
Affiliation(s)
- Yoshiro Naito
- Department of Cardiovascular and Renal Medicine, School of Medicine, Hyogo Medical University, Nishinomiya
| | - Seiki Yasumura
- Department of Cardiovascular and Renal Medicine, School of Medicine, Hyogo Medical University, Nishinomiya
| | - Keisuke Okuno
- Department of Cardiovascular and Renal Medicine, School of Medicine, Hyogo Medical University, Nishinomiya
| | - Masanori Asakura
- Department of Cardiovascular and Renal Medicine, School of Medicine, Hyogo Medical University, Nishinomiya
| | - Takeshi Tsujino
- Department of Cardiovascular and Renal Medicine, School of Medicine, Hyogo Medical University, Nishinomiya
- Division of Pharmaceutical Therapeutics, Department of Pharmacy, School of Pharmacy, Hyogo Medical University, Kobe
| | - Tohru Masuyama
- Department of Cardiovascular and Renal Medicine, School of Medicine, Hyogo Medical University, Nishinomiya
- Nishinomiya Watanabe Cardiovascular Center, Nishinomiya, Japan
| | - Masaharu Ishihara
- Department of Cardiovascular and Renal Medicine, School of Medicine, Hyogo Medical University, Nishinomiya
| |
Collapse
|
50
|
Nakanishi T, Kuragano T. Growing concerns about using hypoxia-inducible factor prolyl hydroxylase inhibitors for the treatment of renal anemia. Clin Kidney J 2024; 17:sfae051. [PMID: 38516524 PMCID: PMC10956400 DOI: 10.1093/ckj/sfae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) have emerged as a novel therapeutic class for treating anemia in patients with chronic kidney disease. Small molecule analogs of α-ketoglutarate (AKG), an essential substrate for 2-oxoglutarate-dependent dioxygenases (2-OGDDs), including prolyl hydroxylase domain proteins (PHDs), inhibit PHDs pharmacologically and thereby prevent HIF degradation. HIF stabilization alleviates anemia through several stimulatory effects on erythropoiesis, but it also affects the expression of many anemia-unrelated genes whose protein products exert important functions in vivo. Therefore, the pleiotropic effects of HIF stabilization under normoxic conditions deserve to be examined in more detail. Specifically, we believe that particular attention should be given to epigenetic modifications among the various AKG-based metabolic systems that may be altered by HIF-PHIs. It is noteworthy that AKG has been reported to exert health-protective actions. AKG-based metabolic systems include enzymes associated with the tricarboxylic acid cycle and amino acid metabolism, as well as 2-OGDD-mediated processes, which play important roles in many biological reactions. In this review, we examine the multifaceted effects of HIF-PHIs, encompassing not only their on-target effect of HIF stabilization but also their off-target inhibitory effects on various AKG-based metabolic systems. Furthermore, we examine its potential relevance to cardiovascular complications, based on clinical and animal studies suggesting its involvement in vascular calcification, thrombogenesis and heart failure. In conclusion, although HIF-PHIs offer a promising avenue for anemia treatment in CKD patients, their broader impact on multiple biological systems raises substantial concerns. The intricate interplay between HIF stabilization, AKG competition and cardiovascular complications warrants extensive, long-term investigations to ensure the safety and usefulness of HIF-PHIs in clinical practice.
Collapse
Affiliation(s)
- Takeshi Nakanishi
- Division of Kidney, Dialysis and Cardiology, Department of Internal Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
- Department of Nephrology, Gojinkai Sumiyoshigawa Hospital, Kobe, Hyogo, Japan
| | - Takahiro Kuragano
- Division of Kidney, Dialysis and Cardiology, Department of Internal Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| |
Collapse
|