1
|
Cui M, Zhu HC, Wang X, Cao Y, Liu D, Carr MJ, Guan Y, Zhou H, Shi W. Tamdy virus pathogenesis in immunocompetent and immunocompromised mouse models. Virulence 2025; 16:2503457. [PMID: 40354169 PMCID: PMC12077439 DOI: 10.1080/21505594.2025.2503457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/14/2025] [Accepted: 04/27/2025] [Indexed: 05/14/2025] Open
Abstract
Tamdy virus (TAMV) is one of the zoonotic tick-borne bunyaviruses that have emerged as global public health threats in recent decades. To date, however, TAMV pathogenesis remains poorly understood. In the present study, we have established different mouse infection models to enable investigation of TAMV pathogenesis. Adult BALB/c mice did not exhibit obvious clinical symptoms or signs post-TAMV infection. In contrast, adult type I interferon receptor knockout (IFNAR-/-) A129 mice were found to be susceptible to high-doses of TAMV (6 × 102 and 6 × 104 FFU) and all developed severe clinical symptoms and signs, including weight loss and immobility, and reached the euthanasia criteria at 4/5-day post-infection (dpi). Viral RNA was detected in peripheral blood and different tissues (heart, liver, spleen, lung, kidney, intestine, and brain) of the high-dose infected adult A129 mice, with the highest viral loads in the liver (approximately 108.3 copies/μL). Pathological examination also revealed severe liver damage in the high-dose infected A129 mice. In addition, the titres of TAMV-specific IgM and IgG antibodies increased rapidly 4-5 dpi. Analysis of cytokine and chemokine expression changes demonstrated that type I IFN may play an important role in the host defence against viral infection by enhancing IL-10 production. Gene ontology and KEGG analyses showed that liver injury may be associated with virus-induced expression of inflammatory cytokines and chemokines. Together, we have investigated TAMV pathogenesis using immunocompetent and immunocompromised mouse models, which will facilitate the development of TAMV-specific antivirals and vaccines.
Collapse
Affiliation(s)
- Mingxue Cui
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Hua-Chen Zhu
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiurong Wang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Ying Cao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Infection Management Department, People’s Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Michael J. Carr
- National Virus Reference Laboratory, University College Dublin, Dublin, Ireland
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yi Guan
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Zhou
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Weifeng Shi
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Khalilian MH, DiLabio GA. Quantum Coulombic Interactions Mediate Free Radical Control in Radical SAM Viperin/RSAD2. J Am Chem Soc 2025; 147:17739-17749. [PMID: 40138474 DOI: 10.1021/jacs.5c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
There are thousands of radical S-adenosylmethionine (rSAM) enzymes capable of catalyzing over 80 distinct reactions, yet their use in biotechnological applications is limited, primarily due to a lack of understanding of how these enzymes control highly reactive radical intermediates. Here, we show that little-known quantum Coulombic interactions are, in part, responsible for free radical control in rSAM enzyme Viperin/RSAD2, one of the few radical SAM enzymes expressed in humans. Using molecular dynamics and high-level extensive multistate broken-symmetry quantum mechanical/molecular mechanics calculations (QM/MM), we elucidated both the mechanism and radical control in catalysis, identifying a key step characterized by the formation of an unusual metastable deprotonated ribose radical intermediate. This intermediate is thermodynamically stabilized by spin-charge exchange-correlation interactions─a quantum Coulombic effect. The magnitude of this stabilization is such that the radical displays acidity two to six pKa units lower than that of closed-shell ribose. Given the omnipresence of charges in biological systems, these interactions potentially represent a universal mechanism for stabilizing and controlling highly reactive radical intermediates across radical enzymes, opening new avenues for enzymatic engineering and biotechnological applications.
Collapse
Affiliation(s)
- M Hossein Khalilian
- Department of Chemistry, The University of British Columbia, 3247 University Way, Kelowna, British Columbia V6T 1Z4, Canada
| | - Gino A DiLabio
- Department of Chemistry, The University of British Columbia, 3247 University Way, Kelowna, British Columbia V6T 1Z4, Canada
| |
Collapse
|
3
|
Cui Q, Miao Y, Li M, Zheng H, Yuan Y. Viperin: A Multifunctional Protein in Antiviral Immunity and Disease Pathogenesis. Pathogens 2025; 14:510. [PMID: 40430829 PMCID: PMC12114427 DOI: 10.3390/pathogens14050510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2025] [Revised: 05/15/2025] [Accepted: 05/20/2025] [Indexed: 05/29/2025] Open
Abstract
Innate immunity is an important component of the immune system and serves as the first line of defense for the host against the invasion of foreign pathogens. Viperin (RSAD2), a core member of the interferon-stimulated gene (ISG) family, plays a key role in innate immunity through direct inhibition of viral replication and modulation of the host immune-metabolic network. The intracellular expression of Viperin rises markedly after viral infection or interferon-induced induction, showing a wide range of antiviral activities. In recent years, the versatility of Viperin in viral infections, autoimmune diseases, and tumor immune metabolism has been gradually revealed. Here, we summarize and discuss the gene regulatory network, molecular functions, and multi-dimensional roles of Viperin in diseases to provide a theoretical basis for the development of broad-spectrum antiviral strategies and immunometabolic therapies based on Viperin.
Collapse
Affiliation(s)
- Qun Cui
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China (M.L.)
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China
| | - Ying Miao
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Min Li
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China (M.L.)
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China
| | - Hui Zheng
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China (M.L.)
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yukang Yuan
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China (M.L.)
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
4
|
Lachowicz JC, Grudman S, Bonanno JB, Fiser A, Grove TL. Structural insights from active site variants and β-8 loop interactions in viperin-like enzymes. Structure 2025:S0969-2126(25)00143-1. [PMID: 40373765 DOI: 10.1016/j.str.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/12/2025] [Accepted: 04/11/2025] [Indexed: 05/17/2025]
Abstract
Viperin and viperin-like enzymes (VLEs) are members of the radical SAM superfamily that perform radical-mediated dehydrations on nucleoside triphosphates to yield 3'-deoxy-3',4'-didehydronucleoside triphosphates (ddhNTPs). Interestingly, viperin and VLEs demonstrate species-dependent substrate selectivity. Some fungal species have a second VLE and, while most viperin and VLEs contain an NΦHX4CX3CX2CF motif, these secondary VLEs are catalytically hindered by a histidine to phenylalanine substitution, an NΦFX4CX3CX2CF motif (NΦF). Herein, we utilize a combination of bioinformatics, enzymology, and X-ray crystallography to demonstrate that NΦF VLEs likely utilize CTP as a substrate. Based on these observations, we demonstrate that the β-8 loop in TvVip1 can be engineered with the β-8 loop from a CTP-selective viperin (Mus musculus) to "swap" substrate selectivity from UTP to CTP. These results provide insight into the determinants of substrate selectivity exhibited by VLEs and introduce a potential route for engineering viperin and VLEs to form alternative ddhNTPs.
Collapse
Affiliation(s)
- Jake C Lachowicz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven Grudman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jeffrey B Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tyler L Grove
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
5
|
Yuan Y, Qian L, Miao Y, Cui Q, Cao T, Yu Y, Zhang T, Zhao Q, Zhang R, Ren T, Zuo Y, Du Q, Qiao C, Wu Q, Zheng Z, Li M, Chinn YE, Xu W, Peng T, Chen R, Xiong S, Zheng H. Targeting Viperin prevents coxsackievirus B3-induced acute heart failure. Cell Discov 2025; 11:34. [PMID: 40195316 PMCID: PMC11977219 DOI: 10.1038/s41421-025-00778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/21/2025] [Indexed: 04/09/2025] Open
Abstract
Coxsackievirus B3 (CVB3)-induced acute heart failure (AHF) is a common cause of cardiogenic death in young- and middle-aged people. However, the key molecular events linking CVB3 to AHF remain largely unknown, resulting in a lack of targeted therapy strategies thus far. Here, we unexpectedly found that Viperin deficiency does not promote CVB3 infection but protects mice from CVB3-induced AHF. Importantly, cardiac-specific expression of Viperin can induce cardiac dysfunction. Mechanistically, CVB3-encoded 3C protease rescues Viperin protein expression in cardiomyocytes by lowering UBE4A. Viperin in turn interacts with and reduces STAT1 to activate SGK1-KCNQ1 signaling, and eventually leads to cardiac electrical dysfunction and subsequent AHF. Furthermore, we designed an interfering peptide VS-IP1, which blocked Viperin-mediated STAT1 degradation and therefore prevented CVB3-induced AHF. This study established the first signaling link between CVB3 and cardiac electrical dysfunction, and revealed the potential of interfering peptides targeting Viperin for the treatment of CVB3-induced AHF.
Collapse
Affiliation(s)
- Yukang Yuan
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Liping Qian
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ying Miao
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Qun Cui
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ting Cao
- Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China
| | - Yong Yu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tingting Zhang
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Qian Zhao
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Renxia Zhang
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Tengfei Ren
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Yibo Zuo
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Qian Du
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Caixia Qiao
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Qiuyu Wu
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Zhijin Zheng
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Minqi Li
- Medical College of Nantong University, Nantong, Jiangsu, China
| | - Y Eugene Chinn
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Wei Xu
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Tianqing Peng
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
- Department of Medicine, Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Ruizhen Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Sidong Xiong
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China.
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China.
| | - Hui Zheng
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China.
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Chen S, Ye J, Lin Y, Chen W, Huang S, Yang Q, Qian H, Gao S, Hua C. Crucial Roles of RSAD2/viperin in Immunomodulation, Mitochondrial Metabolism and Autoimmune Diseases. Inflammation 2025; 48:520-540. [PMID: 38909344 DOI: 10.1007/s10753-024-02076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/24/2024]
Abstract
Autoimmune diseases are typically characterized by aberrant activation of immune system that leads to excessive inflammatory reactions and tissue damage. Nevertheless, precise targeted and efficient therapies are limited. Thus, studies into novel therapeutic targets for the management of autoimmune diseases are urgently needed. Radical S-adenosyl methionine domain-containing 2 (RSAD2) is an interferon-stimulated gene (ISG) renowned for the antiviral properties of the protein it encodes, named viperin. An increasing number of studies have underscored the new roles of RSAD2/viperin in immunomodulation and mitochondrial metabolism. Previous studies have shown that there is a complex interplay between RSAD2/vipeirn and mitochondria and that binding of the iron-sulfur (Fe-S) cluster is necessary for the involvement of viperin in mitochondrial metabolism. Viperin influences the proliferation and development of immune cells as well as inflammation via different signaling pathways. However, the function of RSAD2/viperin varies in different studies and a comprehensive overview of this emerging theme is lacking. This review will describe the characteristics of RSAD2/viperin, decipher its function in immunometabolic processes, and clarify the crosstalk between RSAD2/viperin and mitochondria. Furthermore, we emphasize the crucial roles of RSAD2 in autoimmune diseases and its potential application value.
Collapse
Affiliation(s)
- Siyan Chen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Jiani Ye
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Yinfang Lin
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Wenxiu Chen
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Shenghao Huang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Qianru Yang
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Hengrong Qian
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| |
Collapse
|
7
|
Majhi S, Roy P, Jo M, Liu J, Hurto R, Freddolino L, Marsh ENG. Viperin expression leads to downregulation of mitochondrial genes through misincorporation of ddhCTP by mitochondrial RNA polymerase. J Biol Chem 2025; 301:108359. [PMID: 40015636 PMCID: PMC11982959 DOI: 10.1016/j.jbc.2025.108359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025] Open
Abstract
Increasing lines of evidence link the expression of the interferon-stimulated gene RSAD2, encoding the antiviral enzyme, viperin, to autoimmune disease. Autoimmune diseases are characterized by chronic overproduction of cytokines such as interferons that upregulate the inflammatory response. Immune cells exposed to interferon selectively downregulate transcription of the mitochondrially encoded components of the oxidative phosphorylation system, which leads to mitochondria becoming dysfunctional and impairing their ability to produce ATP. But the mechanism by which downregulation occurs has remained unknown. Here we show that 3'-deoxy-3',4'-didehydrocytidine triphosphate (ddhCTP) which is synthesized by viperin suppresses mitochondrial transcription by causing premature chain termination when misincorporated by the mitochondrial RNA polymerase (POLRMT). We show that viperin expression in human cell lines downregulates mitochondrially encoded gene expression. A similar effect is observed across multiple cell lines when cells are exposed to ddhC, the precursor to ddhCTP. The pattern of gene downregulation fits well with a simple, quantitative model describing chain-termination. In vitro measurements with purified POLRMT demonstrate that ddhCTP competes effectively with CTP, leading to its misincorporation into RNA. These findings reveal a new molecular mechanism for mitochondrial transcriptional regulation that explains the reduction in mitochondrially-encoded transcript levels in response to chronic interferon stimulation, characteristic of inflammatory diseases.
Collapse
Affiliation(s)
- Srijoni Majhi
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Pronay Roy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Minshik Jo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Jiying Liu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Rebecca Hurto
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lydia Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - E Neil G Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
8
|
Hoang TN, Wu‐Lu M, Collauto A, Hagedoorn P, Alexandru M, Henschel M, Kordasti S, Mroginski MA, Roessler MM, Ebrahimi KH. The [2Fe-2S] cluster of mitochondrial outer membrane protein mitoNEET has an O 2-regulated nitric oxide access tunnel. FEBS Lett 2025; 599:952-970. [PMID: 39757450 PMCID: PMC11995679 DOI: 10.1002/1873-3468.15097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025]
Abstract
The mitochondrial outer membrane iron-sulphur ([Fe-S]) protein mitoNEET has been extensively studied as a target of the anti-inflammatory and type-2 diabetes drug pioglitazone and as a protein affecting mitochondrial respiratory rate. Despite these extensive past studies, its molecular function has yet to be discovered. Here, we applied an interdisciplinary approach and discovered an explicit nitric oxide (NO) access site to the mitoNEET [2Fe-2S] cluster. We found that O2 and pioglitazone block NO access to the cluster, suggesting a molecular function for the mitoNEET [2Fe-2S] cluster in mitochondrial signal transduction. Our discovery hints at a new pathway via which mitochondria can sense hypoxia through O2 protection of the mitoNEET [2Fe-2S] cluster, a new paradigm in understanding the importance of [Fe-S] clusters for gasotransmitter signal transduction in eukaryotes.
Collapse
Affiliation(s)
- Thao Nghi Hoang
- Institute of Pharmaceutical ScienceKing's College LondonUK
- Department of PharmacyDa Nang University of Medical Technology and PharmacyVietnam
| | - Meritxell Wu‐Lu
- Department of ChemistryTechnical University of BerlinGermany
| | - Alberto Collauto
- Department of Chemistry and Centre for Pulse EPR Spectroscopy (PEPR)Imperial College LondonUK
| | - Peter‐Leon Hagedoorn
- Department of BiotechnologyDelft University of TechnologyTU DelftThe Netherlands
| | - Madalina Alexandru
- Institute of Pharmaceutical ScienceKing's College LondonUK
- Comprehensive Cancer CenterKing's College LondonUK
| | - Maike Henschel
- Institute of Pharmaceutical ScienceKing's College LondonUK
- Comprehensive Cancer CenterKing's College LondonUK
| | | | | | - Maxie M. Roessler
- Department of Chemistry and Centre for Pulse EPR Spectroscopy (PEPR)Imperial College LondonUK
| | | |
Collapse
|
9
|
Tobin NH, Li F, Zhu W, Ferbas KG, Sleasman JW, Raftery D, Kuhn L, Aldrovandi GM. Altered milk tryptophan and tryptophan metabolites and health of children born to women with HIV. RESEARCH SQUARE 2025:rs.3.rs-6229815. [PMID: 40166030 PMCID: PMC11957222 DOI: 10.21203/rs.3.rs-6229815/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Children born to women with HIV (WWH) suffer increased morbidity and, in low-income settings, have two to three times the mortality of infants born to women without HIV. The basis for this increase remains elusive. In low-income settings, breastfeeding is recommended because health benefits outweigh the risk of transmission, especially when maternal antiretroviral therapy is provided. We profiled the milk metabolome of 326 women sampled longitudinally for 18 months postpartum using global metabolomics. We identify perturbations in several metabolites, including tryptophan, dimethylarginine, and a recently discovered antiviral ribonucleotide, that are robustly associated with maternal HIV infection. Quantitative tryptophan and kynurenine levels in both milk and plasma reveal that these perturbations reflect systemic depletion of tryptophan and alterations in tryptophan catabolism in WWH. Our findings provide intriguing evidence that decreases in tryptophan availability and perturbations in tryptophan catabolism in children born to WWH may contribute to their increased morbidity and mortality.
Collapse
Affiliation(s)
- Nicole H Tobin
- Division of InfecGous Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles
| | - Fan Li
- Division of InfecGous Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles
| | | | - Kathie G Ferbas
- Division of InfecGous Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles
| | - John W Sleasman
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | | | - Louise Kuhn
- Gertrude H. Sergievsky Center, Vagelos College of Physicians and Surgeons; and Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY
| | - Grace M Aldrovandi
- Division of InfecGous Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles
| |
Collapse
|
10
|
Ding X, Zhou Y, Qiu X, Xu X, Hu X, Qin J, Chen Y, Zhang M, Ke J, Liu Z, Zhou Y, Ding C, Shen N, Tian Z, Fu B, Wei H. RSAD2: A pathogenic interferon-stimulated gene at the maternal-fetal interface of patients with systemic lupus erythematosus. Cell Rep Med 2025; 6:101974. [PMID: 39983716 PMCID: PMC11970327 DOI: 10.1016/j.xcrm.2025.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/21/2024] [Accepted: 01/27/2025] [Indexed: 02/23/2025]
Abstract
Pregnancy disorders in patients with autoimmune diseases or viral infections are often associated with an excessive response of type I interferons. We identify radical S-adenosyl methionine domain containing 2 (RSAD2) as a pathogenic interferon-stimulated gene (ISG) associated with pregnancy complications in systemic lupus erythematosus (SLE). The increased expression of RSAD2 mainly occurs in macrophages and structural cell populations at the maternal-fetal interface of pregnant patients with SLE. The elevation of RSAD2 leads to the accumulation of diacylglycerol lipids in the placenta, impairing the necessary vascular development for the fetus. Depletion of Rsad2 in pregnant mice models exposed to type I interferon inducers significantly reduces lipid accumulation, vascular injury, and embryo development disorders. An RSAD2 inhibitor, L-chicoric acid (LCA), alleviates lipid accumulation and vascular damage, improving pregnancy outcomes in SLE-induced and spontaneous mouse models. This study proposes the potential of targeting RSAD2 to improve pregnancy outcomes in individuals with heightened type I interferon response.
Collapse
Affiliation(s)
- Xiaoyu Ding
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Yonggang Zhou
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Xiaofeng Qiu
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Xiuxiu Xu
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Xinyu Hu
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Jingkun Qin
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Yulan Chen
- Department of Rheumatology and Immunology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Min Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jieqi Ke
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhenbang Liu
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Chen Ding
- Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Zhigang Tian
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Binqing Fu
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Haiming Wei
- The National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
11
|
Arnold JJ, Martinez A, Jain A, Liu X, Moustafa IM, Cameron CE. Mechanism of forced-copy-choice RNA recombination by enteroviral RNA-dependent RNA polymerases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637143. [PMID: 39974949 PMCID: PMC11839138 DOI: 10.1101/2025.02.07.637143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Forced-copy-choice recombination occurs at the end of a template, differing from copy-choice recombination, which happens at internal positions. This mechanism may produce full-length genomes from fragments created by host antiviral responses. Previous studies from our laboratory demonstrated that poliovirus (PV) RNA-dependent RNA polymerase (RdRp) switches to an "acceptor" template in vitro when initiated on a heteropolymeric RNA-primed "donor" template. Surprisingly, recombinants showed template switching from the 3'-end of the donor template. We have developed a primed-template system to study PV RdRp-catalyzed forced-copy-choice RNA recombination. PV RdRp adds a single, non-templated nucleotide to the 3'-end of a blunt-ended, double-stranded RNA product, forming a "plus-one" intermediate essential for template switching. Non-templated addition of CMP was favored over AMP and GMP (80:20:1); UMP addition was negligible. A single basepair between the plus-one intermediate and the 3'-end of the acceptor template was necessary and sufficient for template switching, which could occur without RdRp dissociation. Formation of the plus-one intermediate was rate limiting for template switching. PV RdRp also utilized synthetic, preformed intermediates, including those with UMP 3'-overhangs. Reactions showed up to five consecutive template-switching events, consistent with a repair function for this form of recombination. PV RdRp may exclude UMP during forced-copy-choice RNA recombination to preclude creation of nonsense mutations during RNA fragment assembly. Several other picornaviral RdRps were evaluated, and all were capable of RNA fragment assembly to some extent. Lastly, we propose a structure-based hypothesis for the PV RdRp-plus-one intermediate complex based on an elongating PV RdRp structure.
Collapse
Affiliation(s)
- Jamie J. Arnold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Alexandre Martinez
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Abha Jain
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Xinran Liu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ibrahim M. Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Craig E. Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| |
Collapse
|
12
|
Shannon A, Canard B. Nucleotide analogues and mpox: Repurposing the repurposable. Antiviral Res 2025; 234:106057. [PMID: 39694420 DOI: 10.1016/j.antiviral.2024.106057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
While the COVID-19 crisis is still ongoing, a new public health threat has emerged with recent outbreaks of monkeypox (mpox) infections in Africa. Mass vaccination is not currently recommended by the World Health Organization (WHO), and antiviral treatments are yet to be specifically approved for mpox, although existing FDA-approved drugs (Tecovirimat, Brincidofovir, and Cidofovir) may be used in severe cases or for immunocompromised patients. A first-line of defense is thus drug repurposing, which was heavily attempted against SARS-CoV-2 - albeit with limited success. This review focuses on nucleoside analogues as promising antiviral candidates for targeting of the viral DNA-dependent DNA polymerase. In contrast to broad-spectrum screening approaches employed for SARS-CoV-2, we emphasize the importance of understanding the structural specificity of viral polymerases for rational selection of potential candidates. By comparing DNA-dependent DNA polymerases with other viral polymerases, we highlight the unique features that influence the efficacy and selectivity of nucleoside analogues. These structural insights provide a framework for the preselection, repurposing, optimization, and design of nucleoside analogues, aiming to accelerate the development of targeted antiviral therapies for mpox and other viral infections.
Collapse
Affiliation(s)
- Ashleigh Shannon
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR7257, Marseille, France
| | - Bruno Canard
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR7257, Marseille, France.
| |
Collapse
|
13
|
Huang CH, Laurent-Rolle M, Grove TL, Hsu JCC. Interferon-Stimulated Genes and Immune Metabolites as Broad-Spectrum Biomarkers for Viral Infections. Viruses 2025; 17:132. [PMID: 39861921 PMCID: PMC11768885 DOI: 10.3390/v17010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
The type I interferon (IFN-I) response is a critical component of the immune defense against various viral pathogens, triggering the expression of hundreds of interferon-stimulated genes (ISGs). These ISGs encode proteins with diverse antiviral functions, targeting various stages of viral replication and restricting infection spread. Beyond their antiviral functions, ISGs and associated immune metabolites have emerged as promising broad-spectrum biomarkers that can differentiate viral infections from other conditions. This review provides an overview of the diagnostic potential of ISGs at transcript and protein levels, as well as their immune metabolites. We focus on their clinical applications and the sensitivity and specificity of these biomarkers through receiver operating characteristic (ROC) analysis. We highlight the need for further research to facilitate the effective translation of these biomarkers into clinical practice.
Collapse
Affiliation(s)
- Chien-Hsin Huang
- Center for Virus-Host-Innate-Immunity, Institute for Infectious and Inflammatory Diseases, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA;
| | - Maudry Laurent-Rolle
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA;
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tyler L. Grove
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Jack Chun-Chieh Hsu
- Center for Virus-Host-Innate-Immunity, Institute for Infectious and Inflammatory Diseases, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA;
- Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
14
|
Schimmich C, Vabret A, Zientara S, Valle-Casuso JC. Equine Infectious Anemia Virus Cellular Partners Along the Viral Cycle. Viruses 2024; 17:5. [PMID: 39861793 PMCID: PMC11769393 DOI: 10.3390/v17010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/21/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025] Open
Abstract
Equine infectious anemia virus (EIAV) is the simplest described lentivirus within the Retroviridae family, related to the human immunodeficiency viruses (HIV-1 and HIV-2). There is an important interplay between host cells and viruses. Viruses need to hijack cellular proteins for their viral cycle completion and some cellular proteins are antiviral agents interfering with viral replication. HIV cellular partners have been extensively studied and described, with a special attention to host proteins able to inhibit specific steps of the viral cycle, called restriction factors. Viruses develop countermeasures against these restriction factors. Here, we aim to describe host cellular protein partners of EIAV viral replication, being proviral or antiviral. A comprehensive vision of the interactions between the virus and specific host's proteins can help with the discovery of new targets for the design of therapeutics. Studies performed on HIV-1 can provide insights into the functioning of EIAV, as well as differences, as both types of virus research can benefit from each other.
Collapse
Affiliation(s)
- Cécile Schimmich
- ANSES Animal Health Laboratory, PhEED Unit, 14430 Goustranville, France;
| | - Astrid Vabret
- Department of Virology, University of Caen Normandy, Dynamicure INSERM UMR 1311, Centre Hospitalo Universitaire (CHU) Caen, 14000 Caen, France;
| | - Stéphan Zientara
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France;
| | - José Carlos Valle-Casuso
- ANSES Animal Health Laboratory, PhEED Unit, 14430 Goustranville, France;
- Mixed Technological Unit “Equine Health and Welfare—Organisation and Traceability of the Equine Industry” (UMT SABOT), 14430 Goustranville, France
| |
Collapse
|
15
|
Ruszczycky MW, Liu HW. Initiation, Propagation, and Termination in the Chemistry of Radical SAM Enzymes. Biochemistry 2024; 63:3161-3183. [PMID: 39626071 PMCID: PMC11878213 DOI: 10.1021/acs.biochem.4c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Radical S-adenosyl-l-methionine (SAM) enzymes catalyze radical mediated chemical transformations notable for their diversity. The radical mediated reactions that take place in their catalytic cycles can be characterized with respect to one or more phases of initiation, propagation, and termination. Mechanistic models abound regarding these three phases of catalysis being regularly informed and updated by new discoveries that offer insights into their detailed workings. However, questions continue to be raised that touch on fundamental aspects of their mechanistic enzymology. Radical SAM enzymes are consequently far from fully understood, and this Perspective aims to outline some of the current models of radical SAM chemistry with an emphasis on lines of investigation that remain to be explored.
Collapse
Affiliation(s)
- Mark W Ruszczycky
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hung-Wen Liu
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
16
|
Feng S, Xie N, Liu Y, Qin C, Savas AC, Wang TY, Li S, Rao Y, Shambayate A, Chou TF, Brenner C, Huang C, Feng P. Cryptic phosphoribosylase activity of NAMPT restricts the virion incorporation of viral proteins. Nat Metab 2024; 6:2300-2318. [PMID: 39572750 DOI: 10.1038/s42255-024-01162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 10/04/2024] [Indexed: 12/21/2024]
Abstract
As obligate intracellular pathogens, viruses activate host metabolic enzymes to supply intermediates that support progeny production. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of salvage nicotinamide adenine dinucleotide (NAD+) synthesis, is an interferon-inducible protein that inhibits the replication of several RNA and DNA viruses through unknown mechanisms. Here, we show that NAMPT restricts herpes simplex virus type 1 (HSV-1) replication by impeding the virion incorporation of viral proteins owing to its phosphoribosyl-hydrolase (phosphoribosylase) activity, which is independent of the role of NAMPT in NAD+ synthesis. Proteomics analysis of HSV-1-infected cells identifies phosphoribosylated viral structural proteins, particularly glycoproteins and tegument proteins, which are de-phosphoribosylated by NAMPT in vitro and in cells. Chimeric and recombinant HSV-1 carrying phosphoribosylation-resistant mutations show that phosphoribosylation promotes the incorporation of structural proteins into HSV-1 virions and subsequent virus entry. Loss of NAMPT renders mice highly susceptible to HSV-1 infection. Our work describes an additional enzymatic activity of a metabolic enzyme in viral infection and host defence, offering a system to interrogate the roles of protein phosphoribosylation in metazoans.
Collapse
Affiliation(s)
- Shu Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Na Xie
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China, School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, PR China
| | - Yongzhen Liu
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Chao Qin
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Ali Can Savas
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Ting-Yu Wang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Shutong Li
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Youliang Rao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Alexandra Shambayate
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Tsui-Fen Chou
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Charles Brenner
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China, School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, PR China
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Qiang H, Wang F, Lu W, Xing X, Kim H, Merette SAM, Ayres LB, Oler E, AbuSalim JE, Roichman A, Neinast M, Cordova RA, Lee WD, Herbst E, Gupta V, Neff S, Hiebert-Giesbrecht M, Young A, Gautam V, Tian S, Wang B, Röst H, Greiner R, Chen L, Johnston CW, Foster LJ, Shapiro AM, Wishart DS, Rabinowitz JD, Skinnider MA. Language model-guided anticipation and discovery of unknown metabolites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623458. [PMID: 39605668 PMCID: PMC11601323 DOI: 10.1101/2024.11.13.623458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Despite decades of study, large parts of the mammalian metabolome remain unexplored. Mass spectrometry-based metabolomics routinely detects thousands of small molecule-associated peaks within human tissues and biofluids, but typically only a small fraction of these can be identified, and structure elucidation of novel metabolites remains a low-throughput endeavor. Biochemical large language models have transformed the interpretation of DNA, RNA, and protein sequences, but have not yet had a comparable impact on understanding small molecule metabolism. Here, we present an approach that leverages chemical language models to discover previously uncharacterized metabolites. We introduce DeepMet, a chemical language model that learns the latent biosynthetic logic embedded within the structures of known metabolites and exploits this understanding to anticipate the existence of as-of-yet undiscovered metabolites. Prospective chemical synthesis of metabolites predicted to exist by DeepMet directs their targeted discovery. Integrating DeepMet with tandem mass spectrometry (MS/MS) data enables automated metabolite discovery within complex tissues. We harness DeepMet to discover several dozen structurally diverse mammalian metabolites. Our work demonstrates the potential for language models to accelerate the mapping of the metabolome.
Collapse
|
18
|
Li Y, Yu H, Xiong L, Zeng K, Wei Y, Li H, Ji X. Diversity and function of viral AMGs associated with DNA biosynthesis in the Napahai plateau wetland. ENVIRONMENTAL TECHNOLOGY 2024; 45:5521-5535. [PMID: 38126212 DOI: 10.1080/09593330.2023.2296531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Viruses play an important role in microbial community structure and biodiversity by lysing host cells, and can also affect host metabolic pathways by expressing auxiliary metabolic genes (AMGs). As a unique low-latitude, high-altitude seasonal plateau wetland in China, Napahai has high research value. However, studies on the genetic diversity of AMGs and viruses associated with DNA biosynthesis have not been reported. Based on metagenomics, with the phylogenetic tree, PCoA, and α diversity analysis, we found that three DNA biosynthesis-related viral AMGs (cobS, mazG, and purM) in the Napahai plateau wetland were rich in genetic diversity, uniqueness, and differences compared with other habitats and host sources. Through the KEGG metabolic pathway and metabolic flow analysis of Pseudomonas mandelii (SW-3) and phage (VSW-3), the AMGs (cobS, mazG, and purM) genes of the three related viruses involved in DNA biosynthesis were upregulated and their expression increased significantly. In general, we systematically described the genetic diversity of AMGs associated with DNA biosynthesis in plateau wetland ecosystems and clarified the contribution of viral AMGs in the Napahai plateau wetland to DNA biosynthesis, as well as the changes of metabolites and genes. It further expands the understanding of phage-host interactions, which is of great significance for further revealing the role of viral AMGs in the biological evolution and biogeochemical cycle of wetland ecosystems.
Collapse
Affiliation(s)
- Yanmei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Hang Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Lingling Xiong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Kun Zeng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Haiyan Li
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Xiuling Ji
- Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| |
Collapse
|
19
|
Zankharia U, Yi Y, Lu F, Vladimirova O, Karisetty BC, Wikramasinghe J, Kossenkov A, Collman RG, Lieberman PM. HIV-induced RSAD2/Viperin supports sustained infection of monocyte-derived macrophages. J Virol 2024; 98:e0086324. [PMID: 39258908 PMCID: PMC11494996 DOI: 10.1128/jvi.00863-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/11/2024] [Indexed: 09/12/2024] Open
Abstract
HIV establishes long-term latent infection in memory CD4+ T cells and also establishes sustained long-term productive infection in macrophages, especially in the central nervous system (CNS). To better understand how HIV sustains infection in macrophages, we performed RNAseq analysis after infection of human monocyte-derived macrophages (MDMs) with the brain-derived HIV-1 strain YU2 and compared this with acute infection of CD4+ T cells. HIV infection in MDM and CD4+ T cells altered many gene transcripts, but with few overlaps between these different cell types. We found interferon pathways upregulated in both MDM and CD4+ T cells, but with different gene signatures. The interferon-stimulated gene RSAD2/Viperin was among the most upregulated genes following HIV infection in MDMs, but not in CD4+ T cells. RSAD2/Viperin was induced early after infection with various HIV strains, was sustained over time, and remained elevated in established MDM infection even if new rounds of infection were blocked by antiretroviral treatment. Immunofluorescence microscopy revealed that RSAD2/Viperin was induced in HIV-infected cells, as well as in some uninfected neighboring cells. Knockdown of RSAD2/Viperin following the establishment of infection in MDMs reduced the production of HIV transcripts and viral p24 antigen. This correlated with the reduction in the number of multinucleated giant cells, and changes in the HIV DNA and chromatin structure, including an increased DNA copy number and loss of nucleosomes and histone modifications at the long terminal repeat (LTR). RNAseq transcriptomic analysis of RSAD2/Viperin knockdown during HIV infection of MDMs revealed the activation of interferon alpha/beta and gamma pathways and the inactivation of Rho GTPase pathways. Taken together, these results suggest that RSAD2/Viperin supports the sustained infection in macrophages, potentially through mechanisms involving the alteration of the LTR chromatin structure and the interferon response. IMPORTANCE HIV infection of macrophages is a barrier to HIV cure and a source of neurocognitive pathology. We found that HIV induces RSAD2/Viperin during sustained infection of macrophages. While RSAD2/Viperin is an interferon-stimulated gene with known antiviral activity, we find RSAD2/Viperin promotes HIV infection in macrophages through multiple mechanisms, including interferon signaling. Therefore, RSAD2/Viperin may be a therapeutic target for the treatment of HIV-infected macrophages.
Collapse
Affiliation(s)
- Urvi Zankharia
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Yanjie Yi
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Fang Lu
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Olga Vladimirova
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Bhanu Chandra Karisetty
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Jayamanna Wikramasinghe
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Andrew Kossenkov
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Ronald G. Collman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Paul M. Lieberman
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Luo Y, Hua Y, Chen S, Qian X, Ruan H, Pan P, Chen H. Widely Untargeted Metabolomics Profiling Combined with Transcriptome Analysis Provides New Insight into Amino Acid Biosynthesis at Different Developmental Stages of Rubus Chingii Hu (Chinese Raspberry). J Med Food 2024; 27:993-1003. [PMID: 39254678 DOI: 10.1089/jmf.2024.k.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
The composition and profile of amino acids in Rubus chingii (R. chingii) Hu serve as critical indicators of its nutritional quality. A comprehensive understanding of the amino acid metabolism within R. chingii is instrumental in the formulation and innovation of functional foods derived from this species. Utilizing advanced techniques such as wide-ranging untargeted metabolomics, transcriptome analysis, interaction network mapping, heat map analysis, and quantitative real-time PCR, we conducted a comprehensive assessment of the quality attributes across four distinct developmental stages of R. chingii. Our meticulous analysis uncovered a rich tapestry of 76 distinct amino acids and their derivatives within the developmental stages of R. chingii. The spectrum of essential amino acids was not only broad but also displayed a high degree of variety. Notably, leucine, lysine, and phenylalanine stood out as the most abundant amino acids, underscoring their significant presence throughout the growth cycle of R. chingii. The proportion of essential amino acids relative to the total amino acid content in R. chingii exhibited a notable trajectory of change throughout its developmental stages. It began with 30.92% in the immature green phase, advanced to 31.04% during the transition from green to yellow, peaked at 33.62% in the yellow to red stage, and then moderated to 30.43% in the full red phase. This pattern suggests a strategic modulation of amino acid composition, aligning with the evolving nutritional requirements and metabolic shifts as the fruit matures. Concurrent analysis of interaction networks and heat maps, alongside comprehensive profiling of amino acid metabolism and transcriptomic examination, was conducted to elucidate the intricate dynamics of cellular processes. The results showed that seven differentially expressed genes (DEGs) played important roles in amino acid metabolism, including PFK, BCAT1, TSB, ASA, ACO, TOM2AH3, and BCAT2. The expression patterns of seven DEGs conformed closely to the findings revealed by the preceding RNA-seq analysis. In this investigation, we elucidated the regulatory mechanisms underlying amino acid metabolism across the four distinct developmental stages of R. chingii through comprehensive amino acid profiling and transcriptomic analysis. These insights lay the groundwork for the development of novel functional food applications utilizing R. chingii.
Collapse
Affiliation(s)
- Yiyuan Luo
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, China
| | - Yujiao Hua
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Shaojun Chen
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, China
| | - Xvwu Qian
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, China
| | - Hongsheng Ruan
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, China
| | - Ping Pan
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, China
| | - Hongjiang Chen
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, China
| |
Collapse
|
21
|
Suganuma T, Hassan H, Gogol M, Workman JL. C G composition in transposon-derived genes is increased in FXD with perturbed immune system. NAR MOLECULAR MEDICINE 2024; 1:ugae015. [PMID: 39465205 PMCID: PMC11500580 DOI: 10.1093/narmme/ugae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Increasing incidence of Fragile X disorders (FXD) and of immune-mediated disorders in FXD suggests that additional factors besides FMR1 mutations contribute to the pathogenesis. Here, we discovered that the expression levels or splicing of specific transposon element (TE)-derived genes, regulating purine metabolism and immune responses against viral infections are altered in FXD. These genes include HLA genes clustered in chr6p21.3 and viral responsive genes in chr5q15. Remarkably, these TE-derived genes contain a low A T/C G suggesting base substitutions of A T to C G. The TE-derived genes with changed expression levels contained a higher content of 5'-CG-3' dinucleotides in FXD compared to healthy donors. This resembles the genomes of some RNA viruses, which maintain high contents of CG dinucleotides to sustain their latent infection exploiting antiviral responses. Thus, past viral infections may have persisted as TEs, provoking immune-mediated disorders in FXD.
Collapse
Affiliation(s)
- Tamaki Suganuma
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Huzaifa Hassan
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Madelaine Gogol
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| |
Collapse
|
22
|
Cury J, Haudiquet M, Hernandez Trejo V, Mordret E, Hanouna A, Rotival M, Tesson F, Bonhomme D, Ofir G, Quintana-Murci L, Benaroch P, Poirier EZ, Bernheim A. Conservation of antiviral systems across domains of life reveals immune genes in humans. Cell Host Microbe 2024; 32:1594-1607.e5. [PMID: 39208803 DOI: 10.1016/j.chom.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/27/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Deciphering the immune organization of eukaryotes is important for human health and for understanding ecosystems. The recent discovery of antiphage systems revealed that various eukaryotic immune proteins originate from prokaryotic antiphage systems. However, whether bacterial antiphage proteins can illuminate immune organization in eukaryotes remains unexplored. Here, we use a phylogeny-driven approach to uncover eukaryotic immune proteins by searching for homologs of bacterial antiphage systems. We demonstrate that proteins displaying sequence similarity with recently discovered antiphage systems are widespread in eukaryotes and maintain a role in human immunity. Two eukaryotic proteins of the anti-transposon piRNA pathway are evolutionarily linked to the antiphage system Mokosh. Additionally, human GTPases of immunity-associated proteins (GIMAPs) as well as two genes encoded in microsynteny, FHAD1 and CTRC, are respectively related to the Eleos and Lamassu prokaryotic systems and exhibit antiviral activity. Our work illustrates how comparative genomics of immune mechanisms can uncover defense genes in eukaryotes.
Collapse
Affiliation(s)
- Jean Cury
- Molecular Diversity of Microbes, Institut Pasteur, CNRS UMR3525, INSERM U1284, Université Paris-Cité, 75015 Paris, France
| | - Matthieu Haudiquet
- Molecular Diversity of Microbes, Institut Pasteur, CNRS UMR3525, INSERM U1284, Université Paris-Cité, 75015 Paris, France; Innate Immunity in Physiology and Cancer Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Veronica Hernandez Trejo
- Innate Immunity in Physiology and Cancer Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Ernest Mordret
- Molecular Diversity of Microbes, Institut Pasteur, CNRS UMR3525, INSERM U1284, Université Paris-Cité, 75015 Paris, France
| | - Anael Hanouna
- Myeloid Cells and Immunity Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Maxime Rotival
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, 75015 Paris, France
| | - Florian Tesson
- Molecular Diversity of Microbes, Institut Pasteur, CNRS UMR3525, INSERM U1284, Université Paris-Cité, 75015 Paris, France
| | - Delphine Bonhomme
- Innate Immunity in Physiology and Cancer Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Gal Ofir
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, 75015 Paris, France; Human Genomics and Evolution, Collège de France, 75005 Paris, France
| | - Philippe Benaroch
- Myeloid Cells and Immunity Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Enzo Z Poirier
- Innate Immunity in Physiology and Cancer Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France.
| | - Aude Bernheim
- Molecular Diversity of Microbes, Institut Pasteur, CNRS UMR3525, INSERM U1284, Université Paris-Cité, 75015 Paris, France.
| |
Collapse
|
23
|
Shomar H, Georjon H, Feng Y, Olympio B, Guillaume M, Tesson F, Cury J, Wu F, Bernheim A. Viperin immunity evolved across the tree of life through serial innovations on a conserved scaffold. Nat Ecol Evol 2024; 8:1667-1679. [PMID: 38965412 DOI: 10.1038/s41559-024-02463-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024]
Abstract
Evolutionary arms races between cells and viruses drive the rapid diversification of antiviral genes in diverse life forms. Recent discoveries have revealed the existence of immune genes that are shared between prokaryotes and eukaryotes and show molecular and mechanistic similarities in their response to viruses. However, the evolutionary dynamics underlying the conservation and adaptation of these antiviral genes remain mostly unexplored. Here, we show that viperins constitute a highly conserved family of immune genes across diverse prokaryotes and eukaryotes and identify mechanisms by which they diversified in eukaryotes. Our findings indicate that viperins are enriched in Asgard archaea and widely distributed in all major eukaryotic clades, suggesting their presence in the last eukaryotic common ancestor and their acquisition in eukaryotes from an archaeal lineage. We show that viperins maintain their immune function by producing antiviral nucleotide analogues and demonstrate that eukaryotic viperins diversified through serial innovations on the viperin gene, such as the emergence and selection of substrate specificity towards pyrimidine nucleotides, and through partnerships with genes maintained through genetic linkage, notably with nucleotide kinases. These findings unveil biochemical and genomic transitions underlying the adaptation of immune genes shared by prokaryotes and eukaryotes. Our study paves the way for further understanding of the conservation of immunity across domains of life.
Collapse
Affiliation(s)
- Helena Shomar
- Institut Pasteur, Université Paris Cité, INSERM U1284, Molecular Diversity of Microbes Lab, Paris, France
| | - Héloïse Georjon
- Institut Pasteur, Université Paris Cité, INSERM U1284, Molecular Diversity of Microbes Lab, Paris, France
- Generare Bioscience, Paris, France
| | - Yanlei Feng
- School of Life Sciences, College of Science, Eastern Institute of Technology, Ningbo, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Bismarck Olympio
- Institut Pasteur, Université Paris Cité, INSERM U1284, Molecular Diversity of Microbes Lab, Paris, France
| | - Marie Guillaume
- Institut Pasteur, Université Paris Cité, INSERM U1284, Molecular Diversity of Microbes Lab, Paris, France
| | - Florian Tesson
- Institut Pasteur, Université Paris Cité, INSERM U1284, Molecular Diversity of Microbes Lab, Paris, France
| | - Jean Cury
- Institut Pasteur, Université Paris Cité, INSERM U1284, Molecular Diversity of Microbes Lab, Paris, France
| | - Fabai Wu
- School of Life Sciences, College of Science, Eastern Institute of Technology, Ningbo, China.
| | - Aude Bernheim
- Institut Pasteur, Université Paris Cité, INSERM U1284, Molecular Diversity of Microbes Lab, Paris, France.
| |
Collapse
|
24
|
Huang WY, Hong KK, Luo J, He RQ, Huang ZG, Xu Y, Zhang CY, Bao CX, Zhang LM, Chen G, Kong JL. Construction of a panoramic mRNA map of adult noncystic fibrosis bronchiectasis and a preliminary study of the underlying molecular mechanisms. Eur J Med Res 2024; 29:413. [PMID: 39127654 DOI: 10.1186/s40001-024-01994-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND The pathogenesis of noncystic fibrosis bronchiectasis in adults is complex, and the relevant molecular mechanisms remain unclear. In this study, we constructed a panoramic map of bronchiectasis mRNA, explored the potential molecular mechanisms, and identified potential therapeutic targets, thus providing a new clinical perspective for the preventive management of bronchiectasis and its acute exacerbation. METHODS The mRNA profiles of peripheral blood and bronchiectasis tissues were obtained through transcriptome sequencing and public databases, and bioinformatics methods were used to screen for differentially expressed genes (DEGs). The DEGs were then subjected to biological function and pathway analyses. Some DEGs were validated using a real-time quantitative polymerase chain reaction (RT-qPCR) in peripheral blood. Spearman's correlation analysis was used to analyse the correlation between DEGs and clinical indicators. RESULTS Based on transcriptome sequencing and public databases, the mRNA profile of bronchiectasis was determined. DEGs were obtained from the peripheral blood sequencing dataset (985 DEGs), tissue sequencing dataset (2919 DEGs), and GSE97258 dataset (1083 DEGs). Bioinformatics analysis showed that upregulated DEGs had enriched neutrophil-related pathways, and downregulated DEGs had enriched ribosome-related pathways. RT-qPCR testing confirmed the upregulated expression of VCAN, SESTD1, SLC12A1, CD177, IFI44L, SIGLEC1, and RSAD2 in bronchiectasis. These genes were related to many clinical parameters, such as neutrophils, C-reactive protein, and procalcitonin (P < 0.05). CONCLUSIONS Transcriptomic methods were used to construct a panoramic map of bronchiectasis mRNA expression. The findings showed that neutrophil activation, chronic inflammation, immune regulation, impaired ribosomal function, oxidative phosphorylation, and energy metabolism disorders are important factors in the development of bronchiectasis. VCAN, SESTD1, SLC12A1, CD177, IFI44L, SIGLEC1, and RSAD2 may play important roles in the pathogenesis of bronchiectasis and are potential therapeutic targets.
Collapse
Affiliation(s)
- Wan-Ying Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Kang-Kang Hong
- Ward of Pulmonary and Critical Care Medicine, Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Luo
- Ward of Pulmonary and Critical Care Medicine, Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yang Xu
- Ward of Pulmonary and Critical Care Medicine, Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chu-Yue Zhang
- Ward of Pulmonary and Critical Care Medicine, Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chong-Xi Bao
- Ward of Pulmonary and Critical Care Medicine, Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Liang-Ming Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Jin-Liang Kong
- Ward of Pulmonary and Critical Care Medicine, Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
25
|
Wu Z, Chu L, Gong Z, Han GZ. The making of a nucleic acid sensor at the dawn of jawed vertebrate evolution. SCIENCE ADVANCES 2024; 10:eado7464. [PMID: 39110805 PMCID: PMC11305385 DOI: 10.1126/sciadv.ado7464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Self and nonself discrimination is fundamental to immunity. However, it remains largely enigmatic how the mechanisms of distinguishing nonself from self originated. As an intracellular nucleic acid sensor, protein kinase R (PKR) recognizes double-stranded RNA (dsRNA) and represents a crucial component of antiviral innate immunity. Here, we combine phylogenomic and functional analyses to show that PKR proteins probably originated from a preexisting kinase protein through acquiring dsRNA binding domains at least before the last common ancestor of jawed vertebrates during or before the Silurian period. The function of PKR appears to be conserved across jawed vertebrates. Moreover, we repurpose a protein closely related to PKR proteins into a putative dsRNA sensor, recapturing the making of PKR. Our study illustrates how a nucleic acid sensor might have originated via molecular tinkering with preexisting proteins and provides insights into the origins of innate immunity.
Collapse
Affiliation(s)
- Zhiwei Wu
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Lingyu Chu
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Zhen Gong
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Guan-Zhu Han
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
26
|
Kennelly S, Sawyer JM, Payne AF, Ciota AT, Harki DA. Development of 3'-Deoxy-3',4'-didehydro-nucleoside Prodrug Inhibitors of West Nile and Zika Viruses. ACS Med Chem Lett 2024; 15:1334-1339. [PMID: 39140046 PMCID: PMC11318099 DOI: 10.1021/acsmedchemlett.4c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 08/15/2024] Open
Abstract
The antiviral enzyme viperin catalyzes the formation of 3'-deoxy-3',4'-didehydro-cytidine-5'-triphosphate (ddhCTP). ddhCTP is incorporated into viral genomes and terminates genomic replication to confer broad-spectrum antiviral effects. We have previously utilized phosphoramidate pronucleotide (ProTide) technology to enable metabolic production of ddhCTP in cells from an exogenously dosed 3'-deoxy-3',4'-didehydro-cytidine ProTide, which confers inhibitory activity against West Nile virus (WNV) and Zika virus (ZIKV). Herein, we synthesized 3'-deoxy-3',4'-didehydro-nucleosides containing all native nucleobases (thymine, uracil, adenine, guanine, and hypoxanthine), elaborated each to a ProTide, and measured their activity for controlling WNV and ZIKV infection. In comparison to the ddhC ProTide, we found that the ProTides of 3'-deoxy-3',4'-didehydro-guanosine and 3'-deoxy-3',4'-didehydro-adenosine possess 2- and 4-fold greater antiviral effects against ZIKV, respectively. Collectively, this work advances the development of 3'-deoxy-3',4'-didehydro nucleosides as promising compounds for further development into broad-spectrum antiviral agents.
Collapse
Affiliation(s)
- Samantha
A. Kennelly
- Department
of Medicinal Chemistry, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Jacob M. Sawyer
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Anne F. Payne
- Department
of Biomedical Sciences, State University
of New York at Albany School of Public Health, Albany, New York 12144, United States
- The
Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, New York 12201, United States
| | - Alexander T. Ciota
- Department
of Biomedical Sciences, State University
of New York at Albany School of Public Health, Albany, New York 12144, United States
- The
Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, New York 12201, United States
| | - Daniel A. Harki
- Department
of Medicinal Chemistry, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
27
|
Berglund G, Lennon CD, Badu P, Berglund JA, Pager CT. Transcriptomic Signatures of Zika Virus Infection in Patients and a Cell Culture Model. Microorganisms 2024; 12:1499. [PMID: 39065267 PMCID: PMC11278784 DOI: 10.3390/microorganisms12071499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Zika virus (ZIKV), a re-emerging flavivirus, is associated with devasting developmental and neurological disease outcomes particularly in infants infected in utero. Towards understanding the molecular underpinnings of the unique ZIKV disease pathologies, numerous transcriptome-wide studies have been undertaken. Notably, these studies have overlooked the assimilation of RNA-seq analysis from ZIKV-infected patients with cell culture model systems. In this study we find that ZIKV-infection of human lung adenocarcinoma A549 cells, mirrored both the transcriptional and alternative splicing profiles from previously published RNA-seq data of peripheral blood mononuclear cells collected from pediatric patients during early acute, late acute, and convalescent phases of ZIKV infection. Our analyses show that ZIKV infection in cultured cells correlates with transcriptional changes in patients, while the overlap in alternative splicing profiles was not as extensive. Overall, our data indicate that cell culture model systems support dissection of select molecular changes detected in patients and establishes the groundwork for future studies elucidating the biological implications of alternative splicing during ZIKV infection.
Collapse
Affiliation(s)
- Gillian Berglund
- The RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| | - Claudia D. Lennon
- The RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| | - Pheonah Badu
- The RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| | - John Andrew Berglund
- The RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| | - Cara T. Pager
- The RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| |
Collapse
|
28
|
Bernheim A, Cury J, Poirier EZ. The immune modules conserved across the tree of life: Towards a definition of ancestral immunity. PLoS Biol 2024; 22:e3002717. [PMID: 39008452 PMCID: PMC11249213 DOI: 10.1371/journal.pbio.3002717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
Immune defence mechanisms exist across the tree of life in such diversity that prokaryotic antiviral responses have historically been considered unrelated to eukaryotic immunity. Mechanisms of defence in divergent eukaryotes were similarly believed to be largely clade specific. However, recent data indicate that a subset of modules (domains and proteins) from prokaryote defence systems are conserved in eukaryotes and populate many stages of innate immune pathways. In this Essay, we propose the notion of ancestral immunity, which corresponds to the set of immune modules conserved between prokaryotes and eukaryotes. After offering a typology of ancestral immunity, we speculate on the selective pressures that could have led to the differential conservation of specific immune modules across domains of life. The exploration of ancestral immunity is in its infancy and appears full of promises to illuminate immune evolution, and also to identify and decipher immune mechanisms of economic, ecological, and therapeutic importance.
Collapse
Affiliation(s)
- Aude Bernheim
- Molecular Diversity of Microbes laboratory, Institut Pasteur, CNRS UMR3525, Paris, France
| | - Jean Cury
- Molecular Diversity of Microbes laboratory, Institut Pasteur, CNRS UMR3525, Paris, France
| | - Enzo Z. Poirier
- Innate Immunity in Physiology and Cancer laboratory, Institut Curie, PSL Research University, INSERM U932, Paris, France
| |
Collapse
|
29
|
Ledvina HE, Whiteley AT. Conservation and similarity of bacterial and eukaryotic innate immunity. Nat Rev Microbiol 2024; 22:420-434. [PMID: 38418927 PMCID: PMC11389603 DOI: 10.1038/s41579-024-01017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Pathogens are ubiquitous and a constant threat to their hosts, which has led to the evolution of sophisticated immune systems in bacteria, archaea and eukaryotes. Bacterial immune systems encode an astoundingly large array of antiviral (antiphage) systems, and recent investigations have identified unexpected similarities between the immune systems of bacteria and animals. In this Review, we discuss advances in our understanding of the bacterial innate immune system and highlight the components, strategies and pathogen restriction mechanisms conserved between bacteria and eukaryotes. We summarize evidence for the hypothesis that components of the human immune system originated in bacteria, where they first evolved to defend against phages. Further, we discuss shared mechanisms that pathogens use to overcome host immune pathways and unexpected similarities between bacterial immune systems and interbacterial antagonism. Understanding the shared evolutionary path of immune components across domains of life and the successful strategies that organisms have arrived at to restrict their pathogens will enable future development of therapeutics that activate the human immune system for the precise treatment of disease.
Collapse
Affiliation(s)
- Hannah E Ledvina
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Aaron T Whiteley
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
30
|
Chaumont L, Jouneau L, Huetz F, van Muilekom DR, Peruzzi M, Raffy C, Le Hir J, Minke J, Boudinot P, Collet B. Unexpected regulatory functions of cyprinid Viperin on inflammation and metabolism. BMC Genomics 2024; 25:650. [PMID: 38951796 PMCID: PMC11218377 DOI: 10.1186/s12864-024-10566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Viperin, also known as radical S-adenosyl-methionine domain containing protein 2 (RSAD2), is an interferon-inducible protein that is involved in the innate immune response against a wide array of viruses. In mammals, Viperin exerts its antiviral function through enzymatic conversion of cytidine triphosphate (CTP) into its antiviral analog ddhCTP as well as through interactions with host proteins involved in innate immune signaling and in metabolic pathways exploited by viruses during their life cycle. However, how Viperin modulates the antiviral response in fish remains largely unknown. RESULTS For this purpose, we developed a fathead minnow (Pimephales promelas) clonal cell line in which the unique viperin gene has been knocked out by CRISPR/Cas9 genome-editing. In order to decipher the contribution of fish Viperin to the antiviral response and its regulatory role beyond the scope of the innate immune response, we performed a comparative RNA-seq analysis of viperin-/- and wildtype cell lines upon stimulation with recombinant fathead minnow type I interferon. CONCLUSIONS Our results revealed that Viperin does not exert positive feedback on the canonical type I IFN but acts as a negative regulator of the inflammatory response by downregulating specific pro-inflammatory genes and upregulating repressors of the NF-κB pathway. It also appeared to play a role in regulating metabolic processes, including one carbon metabolism, bone formation, extracellular matrix organization and cell adhesion.
Collapse
Affiliation(s)
- Lise Chaumont
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - François Huetz
- Unit of Antibodies in Therapy and Pathology, UMR 1222 INSERM, Institut Pasteur, 75015, Paris, France
| | | | - Mathilde Peruzzi
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | | | | | | | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Bertrand Collet
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France.
| |
Collapse
|
31
|
Kamel R, Aman R, Mahfouz MM. Viperin-like proteins interfere with RNA viruses in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1385169. [PMID: 38895613 PMCID: PMC11185175 DOI: 10.3389/fpls.2024.1385169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Plant viruses cause substantial losses in crop yield and quality; therefore, devising new, robust strategies to counter viral infections has important implications for agriculture. Virus inhibitory protein endoplasmic reticulum-associated interferon-inducible (Viperin) proteins are conserved antiviral proteins. Here, we identified a set of Viperin and Viperin-like proteins from multiple species and tested whether they could interfere with RNA viruses in planta. Our data from transient and stable overexpression of these proteins in Nicotiana benthamiana reveal varying levels of interference against the RNA viruses tobacco mosaic virus (TMV), turnip mosaic virus (TuMV), and potato virus x (PVX). Harnessing the potential of these proteins represents a novel avenue in plant antiviral approaches, offering a broader and more effective spectrum for application in plant biotechnology and agriculture. Identifying these proteins opens new avenues for engineering a broad range of resistance to protect crop plants against viral pathogens.
Collapse
Affiliation(s)
| | | | - Magdy M. Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
32
|
Yi D, An N, Li Q, Liu Q, Shao H, Zhou R, Wang J, Zhang Y, Ma L, Guo F, Li X, Liu Z, Cen S. Interferon-induced MXB protein restricts vimentin-dependent viral infection. Acta Pharm Sin B 2024; 14:2520-2536. [PMID: 38828143 PMCID: PMC11143536 DOI: 10.1016/j.apsb.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/16/2024] [Accepted: 03/14/2024] [Indexed: 06/05/2024] Open
Abstract
Type I interferon (IFN) inhibits a wide spectrum of viruses through stimulating the expression of antiviral proteins. As an IFN-induced protein, myxovirus resistance B (MXB) protein was reported to inhibit multiple highly pathogenic human viruses. It remains to be determined whether MXB employs a common mechanism to restrict different viruses. Here, we find that IFN alters the subcellular localization of hundreds of host proteins, and this IFN effect is partially lost upon MXB depletion. The results of our mechanistic study reveal that MXB recognizes vimentin (VIM) and recruits protein kinase B (AKT) to phosphorylate VIM at amino acid S38, which leads to reorganization of the VIM network and impairment of intracellular trafficking of virus protein complexes, hence causing a restriction of virus infection. These results highlight a new function of MXB in modulating VIM-mediated trafficking, which may lead towards a novel broad-spectrum antiviral strategy to control a large group of viruses that depend on VIM for successful replication.
Collapse
Affiliation(s)
- Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Ni An
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Qian Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Huihan Shao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Rui Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Yongxin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Fei Guo
- Institute of Pathogen Biology, Chinese Academy of Medical Science, Beijing 100730, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Zhenlong Liu
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| |
Collapse
|
33
|
Kreimendahl S, Pernas L. Metabolic immunity against microbes. Trends Cell Biol 2024; 34:496-508. [PMID: 38030541 DOI: 10.1016/j.tcb.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Pathogens, including viruses, bacteria, fungi, and parasites, remodel the metabolism of their host to acquire the nutrients they need to proliferate. Thus, host cells are often perceived as mere exploitable nutrient pools during infection. Mounting reports challenge this perception and instead suggest that host cells can actively reprogram their metabolism to the detriment of the microbial invader. In this review, we present metabolic mechanisms that host cells use to defend against pathogens. We highlight the contribution of domesticated microbes to host defenses and discuss examples of host-pathogen arms races that are derived from metabolic conflict.
Collapse
Affiliation(s)
| | - Lena Pernas
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
34
|
Berglund G, Lennon CD, Badu P, Berglund JA, Pager CT. Zika virus infection in a cell culture model reflects the transcriptomic signatures in patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.25.595842. [PMID: 38826459 PMCID: PMC11142252 DOI: 10.1101/2024.05.25.595842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Zika virus (ZIKV), a re-emerging flavivirus, is associated with devasting developmental and neurological disease outcomes particularly in infants infected in utero. Towards understanding the molecular underpinnings of the unique ZIKV disease pathologies, numerous transcriptome-wide studies have been undertaken. Notably, these studies have overlooked the assimilation of RNA-seq analysis from ZIKV-infected patients with cell culture model systems. In this study we find that ZIKV-infection of human lung adenocarcinoma A549 cells, mirrored both the transcriptional and alternative splicing profiles from previously published RNA-seq data of peripheral blood mononuclear cells collected from pediatric patients during early acute, late acute, and convalescent phases of ZIKV infection. Our analyses show that ZIKV infection in cultured cells correlates with transcriptional changes in patients, while the overlap in alternative splicing profiles was not as extensive. Overall, our data indicate that cell culture model systems support dissection of select molecular changes detected in patients and establishes the groundwork for future studies elucidating the biological implications of alternative splicing during ZIKV infection.
Collapse
Affiliation(s)
- Gillian Berglund
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| | - Claudia D. Lennon
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| | - Pheonah Badu
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| | - J. Andrew Berglund
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| | - Cara T. Pager
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| |
Collapse
|
35
|
Mantel N, Piras-Douce F, Chautard E, Marcos-Lopez E, Bodinham CL, Cosma A, Courtois V, Dhooge N, Gautheron S, Kaufmann SHE, Pizzoferro K, Lewis DJM, Martinon F, Pagnon A, Raynal F, Dereuddre-Bosquet N, Le Grand R. Cynomolgus macaques as a translational model of human immune responses to yellow fever 17D vaccination. J Virol 2024; 98:e0151623. [PMID: 38567951 PMCID: PMC11092345 DOI: 10.1128/jvi.01516-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/22/2023] [Indexed: 05/15/2024] Open
Abstract
The non-human primate (NHP) model (specifically rhesus and cynomolgus macaques) has facilitated our understanding of the pathogenic mechanisms of yellow fever (YF) disease and allowed the evaluation of the safety and efficacy of YF-17D vaccines. However, the accuracy of this model in mimicking vaccine-induced immunity in humans remains to be fully determined. We used a systems biology approach to compare hematological, biochemical, transcriptomic, and innate and antibody-mediated immune responses in cynomolgus macaques and human participants following YF-17D vaccination. Immune response progression in cynomolgus macaques followed a similar course as in adult humans but with a slightly earlier onset. Yellow fever virus neutralizing antibody responses occurred earlier in cynomolgus macaques [by Day 7[(D7)], but titers > 10 were reached in both species by D14 post-vaccination and were not significantly different by D28 [plaque reduction neutralization assay (PRNT)50 titers 3.6 Log vs 3.5 Log in cynomolgus macaques and human participants, respectively; P = 0.821]. Changes in neutrophils, NK cells, monocytes, and T- and B-cell frequencies were higher in cynomolgus macaques and persisted for 4 weeks versus less than 2 weeks in humans. Low levels of systemic inflammatory cytokines (IL-1RA, IL-8, MIP-1α, IP-10, MCP-1, or VEGF) were detected in either or both species but with no or only slight changes versus baseline. Similar changes in gene expression profiles were elicited in both species. These included enriched and up-regulated type I IFN-associated viral sensing, antiviral innate response, and dendritic cell activation pathways D3-D7 post-vaccination in both species. Hematological and blood biochemical parameters remained relatively unchanged versus baseline in both species. Low-level YF-17D viremia (RNAemia) was transiently detected in some cynomolgus macaques [28% (5/18)] but generally absent in humans [except one participant (5%; 1/20)].IMPORTANCECynomolgus macaques were confirmed as a valid surrogate model for replicating YF-17D vaccine-induced responses in humans and suggest a key role for type I IFN.
Collapse
Affiliation(s)
| | | | | | - Ernesto Marcos-Lopez
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay aux Roses, France
| | - Caroline L. Bodinham
- Surrey Clinical Research Centre, University of Surrey, Guildford, Surrey, United Kingdom
| | - Antonio Cosma
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay aux Roses, France
| | | | - Nina Dhooge
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay aux Roses, France
| | | | - Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany; Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, Texas, USA
| | - Kathleen Pizzoferro
- Surrey Clinical Research Centre, University of Surrey, Guildford, Surrey, United Kingdom
| | - David J. M. Lewis
- Surrey Clinical Research Centre, University of Surrey, Guildford, Surrey, United Kingdom
| | - Frédéric Martinon
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay aux Roses, France
| | - Anke Pagnon
- Research and Development, Sanofi, Marcy L'Etoile, France
| | - Franck Raynal
- Research and Development, Sanofi, Marcy L'Etoile, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay aux Roses, France
| | - Roger Le Grand
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay aux Roses, France
| |
Collapse
|
36
|
Wang XW, Zhang R, Liu LL, Li HJ, Zhu H. Expression analysis and antiviral activity of koi carp (Cyprinus carpio) viperin against carp edema virus (CEV). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109519. [PMID: 38508540 DOI: 10.1016/j.fsi.2024.109519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/25/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
Viperin, also known as radical S-Adenosyl methionine domain containing 2 (RSAD2), is an IFN stimulated protein that plays crucial roles in innate immunity. Here, we identified a viperin gene from the koi carp (Cyprinus carpio) (kVip). The ORF of kVip is 1047 bp in length, encoding a polypeptide of 348 amino acids with neither signal peptide nor transmembrane protein. The predicted molecular weight is 40.37 kDa and the isoelectric point is 7.7. Multiple sequence alignment indicated that putative kVip contains a radical SAM superfamily domain and a conserved C-terminal region. kVip was highly expressed in the skin and spleen of healthy koi carps, and significantly stimulated in both natural and artificial CEV-infected koi carps. In vitro immune stimulation analysis showed that both extracellular and intracellular poly (I: C) or poly (dA: dT) caused a significant increase in kVip expression of spleen cells. Furthermore, intraperitoneal injection of recombinant kVip (rkVip) not only reduced the CEV load in the gills, but also improved the survival of koi carps following CEV challenge. Additionally, rkVip administration effectively regulated inflammatory and anti-inflammatory cytokines (IL-6, IL-1β, TNF-α, IL-10) and interferon-related molecules (cGAS, STING, MyD88, IFN-γ, IFN-α, IRF3 and IRF9). Collectively, kVip effectively responded to CEV infection and exerted antiviral function against CEV partially by regulation of inflammatory and interferon responses.
Collapse
Affiliation(s)
- Xiao-Wen Wang
- Beijing Key Laboratory of Fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, China
| | - Rong Zhang
- Beijing Key Laboratory of Fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, China
| | - Li-Li Liu
- Beijing Key Laboratory of Fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, China
| | - Hui-Juan Li
- Beijing Key Laboratory of Fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, China
| | - Hua Zhu
- Beijing Key Laboratory of Fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, China.
| |
Collapse
|
37
|
Li M. Innate immune response against vector-borne bunyavirus infection and viral countermeasures. Front Cell Infect Microbiol 2024; 14:1365221. [PMID: 38711929 PMCID: PMC11070517 DOI: 10.3389/fcimb.2024.1365221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/29/2024] [Indexed: 05/08/2024] Open
Abstract
Bunyaviruses are a large group of important viral pathogens that cause significant diseases in humans and animals worldwide. Bunyaviruses are enveloped, single-stranded, negative-sense RNA viruses that infect a wide range of hosts. Upon entry into host cells, the components of viruses are recognized by host innate immune system, leading to the activation of downstream signaling cascades to induce interferons (IFNs) and other proinflammatory cytokines. IFNs bind to their receptors and upregulate the expression of hundreds of interferon-stimulated genes (ISGs). Many ISGs have antiviral activities and confer an antiviral state to host cells. For efficient replication and spread, viruses have evolved different strategies to antagonize IFN-mediated restriction. Here, we discuss recent advances in our understanding of the interactions between bunyaviruses and host innate immune response.
Collapse
Affiliation(s)
- Minghua Li
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
38
|
Casanova JL, MacMicking JD, Nathan CF. Interferon- γ and infectious diseases: Lessons and prospects. Science 2024; 384:eadl2016. [PMID: 38635718 DOI: 10.1126/science.adl2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/13/2024] [Indexed: 04/20/2024]
Abstract
Infectious diseases continue to claim many lives. Prevention of morbidity and mortality from these diseases would benefit not just from new medicines and vaccines but also from a better understanding of what constitutes protective immunity. Among the major immune signals that mobilize host defense against infection is interferon-γ (IFN-γ), a protein secreted by lymphocytes. Forty years ago, IFN-γ was identified as a macrophage-activating factor, and, in recent years, there has been a resurgent interest in IFN-γ biology and its role in human defense. Here we assess the current understanding of IFN-γ, revisit its designation as an "interferon," and weigh its prospects as a therapeutic against globally pervasive microbial pathogens.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, 75015 Paris, France
| | - John D MacMicking
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, Yale University, West Haven, CT 06477, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carl F Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
39
|
Harioudh MK, Perez J, Chong Z, Nair S, So L, McCormick KD, Ghosh A, Shao L, Srivastava R, Soveg F, Ebert TS, Atianand MK, Hornung V, Savan R, Diamond MS, Sarkar SN. Oligoadenylate synthetase 1 displays dual antiviral mechanisms in driving translational shutdown and protecting interferon production. Immunity 2024; 57:446-461.e7. [PMID: 38423012 PMCID: PMC10939734 DOI: 10.1016/j.immuni.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/15/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
In response to viral infection, how cells balance translational shutdown to limit viral replication and the induction of antiviral components like interferons (IFNs) is not well understood. Moreover, how distinct isoforms of IFN-induced oligoadenylate synthetase 1 (OAS1) contribute to this antiviral response also requires further elucidation. Here, we show that human, but not mouse, OAS1 inhibits SARS-CoV-2 replication through its canonical enzyme activity via RNase L. In contrast, both mouse and human OAS1 protect against West Nile virus infection by a mechanism distinct from canonical RNase L activation. OAS1 binds AU-rich elements (AREs) of specific mRNAs, including IFNβ. This binding leads to the sequestration of IFNβ mRNA to the endomembrane regions, resulting in prolonged half-life and continued translation. Thus, OAS1 is an ARE-binding protein with two mechanisms of antiviral activity: driving inhibition of translation but also a broader, non-canonical function of protecting IFN expression from translational shutdown.
Collapse
Affiliation(s)
- Munesh K Harioudh
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA
| | - Joseph Perez
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA
| | - Zhenlu Chong
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sharmila Nair
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lomon So
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA; Division of Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Kevin D McCormick
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA
| | - Arundhati Ghosh
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA
| | - Lulu Shao
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA
| | - Rashmi Srivastava
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA
| | - Frank Soveg
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas S Ebert
- Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Maninjay K Atianand
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Veit Hornung
- Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Ram Savan
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Saumendra N Sarkar
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
40
|
Ciardullo G, Parise A, Prejanò M, Marino T. Viral RNA Replication Suppression of SARS-CoV-2: Atomistic Insights into Inhibition Mechanisms of RdRp Machinery by ddhCTP. J Chem Inf Model 2024; 64:1593-1604. [PMID: 38412057 DOI: 10.1021/acs.jcim.3c01919] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The nonstructural protein 12, known as RNA-dependent RNA polymerase (RdRp), is essential for both replication and repair of the viral genome. The RdRp of SARS-CoV-2 has been used as a promising candidate for drug development since the inception of the COVID-19 spread. In this work, we performed an in silico investigation on the insertion of the naturally modified pyrimidine nucleobase ddhCTP into the SARS-CoV-2 RdRp active site, in a comparative analysis with the natural one (CTP). The modification in ddhCTP involves the removal of the 3'-hydroxyl group that prevents the addition of subsequent nucleotides into the nascent strand, acting as an RNA chain terminator inhibitor. Quantum mechanical investigations helped to shed light on the mechanistic source of RdRp activity on the selected nucleobases, and comprehensive all-atom simulations provided insights about the structural rearrangements occurring in the active-site region when inorganic pyrophosphate (PPi) is formed. Subsequently, the intricate pathways for the release of PPi, the catalytic product of RdRp, were investigated using Umbrella Sampling simulations. The results are in line with the available experimental data and contribute to a more comprehensive point of view on such an important viral enzyme.
Collapse
Affiliation(s)
- Giada Ciardullo
- Dipartimento di Chimica E Tecnologie Chimiche, Laboratorio PROMOCS Cubo 14C, Università della Calabria, RENDE (CS) I-87036, Italy
| | - Angela Parise
- Consiglio Nazionale Delle Ricerche (CNR)-IOM C/O International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, Trieste 34136, Italy
| | - Mario Prejanò
- Dipartimento di Chimica E Tecnologie Chimiche, Laboratorio PROMOCS Cubo 14C, Università della Calabria, RENDE (CS) I-87036, Italy
| | - Tiziana Marino
- Dipartimento di Chimica E Tecnologie Chimiche, Laboratorio PROMOCS Cubo 14C, Università della Calabria, RENDE (CS) I-87036, Italy
| |
Collapse
|
41
|
Gao Q, Feng Y, Gong T, Wu D, Zheng X, Luo Y, Yang Y, Song Z, Gong L, Zhang G. Porcine enteric alphacoronavirus infection increases lipid droplet accumulation to facilitate the virus replication. JOURNAL OF INTEGRATIVE AGRICULTURE 2024; 23:988-1005. [DOI: 10.1016/j.jia.2023.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
42
|
Sala S, Nitschke P, Masuda R, Gray N, Lawler NG, Wood JM, Buckler JN, Berezhnoy G, Bolaños J, Boughton BA, Lonati C, Rössler T, Singh Y, Wilson ID, Lodge S, Morillon AC, Loo RL, Hall D, Whiley L, Evans GB, Grove TL, Almo SC, Harris LD, Holmes E, Merle U, Trautwein C, Nicholson JK, Wist J. Integrative Molecular Structure Elucidation and Construction of an Extended Metabolic Pathway Associated with an Ancient Innate Immune Response in COVID-19 Patients. J Proteome Res 2024; 23:956-970. [PMID: 38310443 PMCID: PMC10913068 DOI: 10.1021/acs.jproteome.3c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 12/29/2023] [Indexed: 02/05/2024]
Abstract
We present compelling evidence for the existence of an extended innate viperin-dependent pathway, which provides crucial evidence for an adaptive response to viral agents, such as SARS-CoV-2. We show the in vivo biosynthesis of a family of novel endogenous cytosine metabolites with potential antiviral activities. Two-dimensional nuclear magnetic resonance (NMR) spectroscopy revealed a characteristic spin-system motif, indicating the presence of an extended panel of urinary metabolites during the acute viral replication phase. Mass spectrometry additionally enabled the characterization and quantification of the most abundant serum metabolites, showing the potential diagnostic value of the compounds for viral infections. In total, we unveiled ten nucleoside (cytosine- and uracil-based) analogue structures, eight of which were previously unknown in humans allowing us to propose a new extended viperin pathway for the innate production of antiviral compounds. The molecular structures of the nucleoside analogues and their correlation with an array of serum cytokines, including IFN-α2, IFN-γ, and IL-10, suggest an association with the viperin enzyme contributing to an ancient endogenous innate immune defense mechanism against viral infection.
Collapse
Affiliation(s)
- Samuele Sala
- The
Australian National Phenome Centre and Computational and Systems Medicine,
Health Futures Institute, Murdoch University, Harry Perkins Building, Perth WA6150, Australia
| | - Philipp Nitschke
- The
Australian National Phenome Centre and Computational and Systems Medicine,
Health Futures Institute, Murdoch University, Harry Perkins Building, Perth WA6150, Australia
| | - Reika Masuda
- The
Australian National Phenome Centre and Computational and Systems Medicine,
Health Futures Institute, Murdoch University, Harry Perkins Building, Perth WA6150, Australia
| | - Nicola Gray
- The
Australian National Phenome Centre and Computational and Systems Medicine,
Health Futures Institute, Murdoch University, Harry Perkins Building, Perth WA6150, Australia
| | - Nathan G. Lawler
- The
Australian National Phenome Centre and Computational and Systems Medicine,
Health Futures Institute, Murdoch University, Harry Perkins Building, Perth WA6150, Australia
| | - James M. Wood
- Ferrier
Research Institute, Victoria University
of Wellington, Wellington 6012, New Zealand
- The
Maurice Wilkins Centre for Molecular Biodiscovef Wellington, Welry, The University of Auckland, Auckland 1010, New Zealand
| | - Joshua N. Buckler
- Ferrier
Research Institute, Victoria University
of Wellington, Wellington 6012, New Zealand
| | - Georgy Berezhnoy
- Department
of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University Hospital Tübingen, 72074 Tübingen, Germany
| | - Jose Bolaños
- Chemistry
Department, Universidad del Valle, Cali 76001, Colombia
| | - Berin A. Boughton
- The
Australian National Phenome Centre and Computational and Systems Medicine,
Health Futures Institute, Murdoch University, Harry Perkins Building, Perth WA6150, Australia
| | - Caterina Lonati
- Center
for Preclinical Research, Fondazione IRCCS
Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Titus Rössler
- Department
of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University Hospital Tübingen, 72074 Tübingen, Germany
| | - Yogesh Singh
- Institute
of Medical Genetics and Applied Genomics, University Hospital Tübingen, 72074 Tübingen, Germany
| | - Ian D. Wilson
- Division
of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, Burlington Danes Building, Du Cane Road, London W12 0NN, U.K.
| | - Samantha Lodge
- The
Australian National Phenome Centre and Computational and Systems Medicine,
Health Futures Institute, Murdoch University, Harry Perkins Building, Perth WA6150, Australia
| | - Aude-Claire Morillon
- The
Australian National Phenome Centre and Computational and Systems Medicine,
Health Futures Institute, Murdoch University, Harry Perkins Building, Perth WA6150, Australia
| | - Ruey Leng Loo
- The
Australian National Phenome Centre and Computational and Systems Medicine,
Health Futures Institute, Murdoch University, Harry Perkins Building, Perth WA6150, Australia
| | - Drew Hall
- The
Australian National Phenome Centre and Computational and Systems Medicine,
Health Futures Institute, Murdoch University, Harry Perkins Building, Perth WA6150, Australia
| | - Luke Whiley
- The
Australian National Phenome Centre and Computational and Systems Medicine,
Health Futures Institute, Murdoch University, Harry Perkins Building, Perth WA6150, Australia
| | - Gary B. Evans
- Ferrier
Research Institute, Victoria University
of Wellington, Wellington 6012, New Zealand
- The
Maurice Wilkins Centre for Molecular Biodiscovef Wellington, Welry, The University of Auckland, Auckland 1010, New Zealand
| | - Tyler L. Grove
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Steven C. Almo
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Lawrence D. Harris
- Ferrier
Research Institute, Victoria University
of Wellington, Wellington 6012, New Zealand
- The
Maurice Wilkins Centre for Molecular Biodiscovef Wellington, Welry, The University of Auckland, Auckland 1010, New Zealand
| | - Elaine Holmes
- The
Australian National Phenome Centre and Computational and Systems Medicine,
Health Futures Institute, Murdoch University, Harry Perkins Building, Perth WA6150, Australia
- Division
of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, Burlington Danes Building, Du Cane Road, London W12 0NN, U.K.
| | - Uta Merle
- Department
of Internal Medicine IV, University Hospital
Heidelberg, 69120 Heidelberg, Germany
| | - Christoph Trautwein
- Department
of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University Hospital Tübingen, 72074 Tübingen, Germany
| | - Jeremy K. Nicholson
- The
Australian National Phenome Centre and Computational and Systems Medicine,
Health Futures Institute, Murdoch University, Harry Perkins Building, Perth WA6150, Australia
- Institute
of Global Health Innovation, Faculty of
Medicine, Imperial College London, Level 1, Faculty Building, South Kensington Campus, London SW7 2NA, U.K.
| | - Julien Wist
- The
Australian National Phenome Centre and Computational and Systems Medicine,
Health Futures Institute, Murdoch University, Harry Perkins Building, Perth WA6150, Australia
- Chemistry
Department, Universidad del Valle, Cali 76001, Colombia
- Faculty of Medicine, Department of Metabolism,
Digestion and Reproduction,
Division of Digestive Diseases at Imperial College, London SW7 2AZ, U.K.
| |
Collapse
|
43
|
Hédelin L, Thiébaut A, Huang J, Li X, Lemoine A, Haas G, Meignin C, Cai H, Waterhouse RM, Martins N, Imler JL. Investigating the Evolution of Drosophila STING-Dependent Antiviral Innate Immunity by Multispecies Comparison of 2'3'-cGAMP Responses. Mol Biol Evol 2024; 41:msae032. [PMID: 38377349 PMCID: PMC10917227 DOI: 10.1093/molbev/msae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Viruses represent a major threat to all animals, which defend themselves through induction of a large set of virus-stimulated genes that collectively control the infection. In vertebrates, these genes include interferons that play a critical role in the amplification of the response to infection. Virus- and interferon-stimulated genes include restriction factors targeting the different steps of the viral replication cycle, in addition to molecules associated with inflammation and adaptive immunity. Predictably, antiviral genes evolve dynamically in response to viral pressure. As a result, each animal has a unique arsenal of antiviral genes. Here, we exploit the capacity to experimentally activate the evolutionarily conserved stimulator of IFN genes (STING) signaling pathway by injection of the cyclic dinucleotide 2'3'-cyclic guanosine monophosphate-adenosine monophosphate into flies to define the repertoire of STING-regulated genes in 10 Drosophila species, spanning 40 million years of evolution. Our data reveal a set of conserved STING-regulated factors, including STING itself, a cGAS-like-receptor, the restriction factor pastel, and the antiviral protein Vago, but also 2 key components of the antiviral RNA interference pathway, Dicer-2, and Argonaute2. In addition, we identify unknown species- or lineage-specific genes that have not been previously associated with resistance to viruses. Our data provide insight into the core antiviral response in Drosophila flies and pave the way for the characterization of previously unknown antiviral effectors.
Collapse
Affiliation(s)
- Léna Hédelin
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Antonin Thiébaut
- Department of Ecology and Evolution, SIB Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Jingxian Huang
- School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Xiaoyan Li
- School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Aurélie Lemoine
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Gabrielle Haas
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Carine Meignin
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Hua Cai
- School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Robert M Waterhouse
- Department of Ecology and Evolution, SIB Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Nelson Martins
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Jean-Luc Imler
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
- School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
44
|
Kirby EN, Montin XB, Allen TP, Densumite J, Trowbridge BN, Beard MR. CRISPR activation as a platform to identify interferon stimulated genes with anti-viral function. Innate Immun 2024; 30:40-54. [PMID: 38258394 PMCID: PMC11165661 DOI: 10.1177/17534259231225611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Interferon Stimulated Gene (ISG) expression plays a key role in the control of viral replication and development of a robust adaptive response. Understanding this dynamic relationship between the pathogen and host is critical to our understanding of viral life-cycles and development of potential novel anti-viral strategies. Traditionally, plasmid based exogenous prompter driven expression of ISGs has been used to investigate anti-viral ISG function, however there are deficiencies in this approach. To overcome this, we investigated the utility of CRISPR activation (CRISPRa), which allows for targeted transcriptional activation of a gene from its endogenous promoter. Using the CRISPRa-SAM system to induce targeted expression of a panel of anti-viral ISGs we showed robust induction of mRNA and protein expression. We then employed our CRISPRa-SAM ISG panel in several antiviral screen formats to test for the ability of ISGs to prevent viral induced cytopathic cell death (CPE) and replication of Dengue Virus (DENV), Zika Virus (ZIKV), West Nile Virus Kunjin (WNVKUN), Hepatitis A Virus (HAV) and Human Coronavirus 229E (HCoV-229E). Our CRISPRa approach confirmed the anti-viral activity of ISGs like IFI6, IFNβ and IFNλ2 that prevented viral induced CPE, which was supported by high-content immunofluorescence imaging analysis. This work highlights CRISPRa as a rapid, agile, and powerful methodology to identify and characterise ISGs and viral restriction factors.
Collapse
Affiliation(s)
- Emily N. Kirby
- Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, South Australia, Australia
- Discipline of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Xavier B. Montin
- Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, South Australia, Australia
- Discipline of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Timothy P. Allen
- Discipline of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Jaslan Densumite
- Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Brooke N. Trowbridge
- Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, South Australia, Australia
- Discipline of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Michael R. Beard
- Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, South Australia, Australia
- Discipline of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
45
|
Yuan Z, Cai K, Li J, Chen R, Zhang F, Tan X, Jiu Y, Chang H, Hu B, Zhang W, Ding B. ATG14 targets lipid droplets and acts as an autophagic receptor for syntaxin18-regulated lipid droplet turnover. Nat Commun 2024; 15:631. [PMID: 38245527 PMCID: PMC10799895 DOI: 10.1038/s41467-024-44978-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
Lipid droplets (LDs) are dynamic lipid storage organelles that can be degraded by autophagy machinery to release neutral lipids, a process called lipophagy. However, specific receptors and regulation mechanisms for lipophagy remain largely unknown. Here, we identify that ATG14, the core unit of the PI3KC3-C1 complex, also targets LD and acts as an autophagic receptor that facilitates LD degradation. A negative regulator, Syntaxin18 (STX18) binds ATG14, disrupting the ATG14-ATG8 family members interactions and subverting the PI3KC3-C1 complex formation. Knockdown of STX18 activates lipophagy dependent on ATG14 not only as the core unit of PI3KC3-C1 complex but also as the autophagic receptor, resulting in the degradation of LD-associated anti-viral protein Viperin. Furthermore, coronavirus M protein binds STX18 and subverts the STX18-ATG14 interaction to induce lipophagy and degrade Viperin, facilitating virus production. Altogether, our data provide a previously undescribed mechanism for additional roles of ATG14 in lipid metabolism and virus production.
Collapse
Affiliation(s)
- Zhen Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Kun Cai
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China
| | - Jiajia Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ruifeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Fuhai Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xuan Tan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yaming Jiu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Haishuang Chang
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bing Hu
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China
| | - Weiyi Zhang
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan, 49315, Republic of Korea
| | - Binbin Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Guangzhou National Laboratory; State Key Laboratory of Respiratory Disease, Guangzhou, Guangzhou, Guangdong, 510000, China.
| |
Collapse
|
46
|
Lu X, Yi M, Hu Z, Yang T, Zhang W, Marsh ENG, Jia K. Feedback loop regulation between viperin and viral hemorrhagic septicemia virus through competing protein degradation pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574905. [PMID: 38260481 PMCID: PMC10802422 DOI: 10.1101/2024.01.09.574905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Viperin is an antiviral protein that exhibits a remarkably broad spectrum of antiviral activity. Viperin-like proteins are found all kingdoms of life, suggesting it is an ancient component of the innate immune system. However, viruses have developed strategies to counteract viperin's effects. Here, we describe a feedback loop between viperin and viral hemorrhagic septicemia virus (VHSV), a common fish pathogen. We show that Lateolabrax japonicus viperin (Ljviperin) is induced by both IFN-independent and IFN-dependent pathways, with the C-terminal domain of Ljviperin being important for its anti-VHSV activity. Ljviperin exerts an antiviral effect by binding both the nucleoprotein (N) and phosphoprotein (P) of VHSV and induces their degradation through the autophagy pathway, which is an evolutionarily conserved antiviral mechanism. However, counteracting viperin's activity, N protein targets and degrades transcription factors that up-regulate Ljviperin expression, interferon regulatory factor (IRF) 1 and IRF9, through ubiquitin-proteasome pathway. Together, our results reveal a previously unknown feedback loop between viperin and virus, providing potential therapeutic targets for VHSV prevention. Importance Viral hemorrhagic septicaemia (VHS) is a contagious disease caused by the viral hemorrhagic septicaemia virus (VHSV), which poses a threat to over 80 species of marine and freshwater fish. Currently, there are no effective treatments available for this disease. Understanding the mechanisms of VHSV-host interaction is crucial for preventing viral infections. Here, we found that, as an ancient antiviral protein, viperin degrades the N and P proteins of VHSV through the autophagy pathway. Additionally, the N protein also impacts the biological functions of IRF1 and IRF9 through the ubiquitin-proteasome pathway, leading to the suppression of viperin expression. Therefore, the N protein may serve as a potential virulence factor for the development of VHSV vaccines and screening of antiviral drugs. Our research will serve as a valuable reference for the development of strategies to prevent VHSV infections.
Collapse
Affiliation(s)
- Xiaobing Lu
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, 519082, China
| | - Meisheng Yi
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, 519082, China
| | - Zhe Hu
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, 519082, China
| | - Taoran Yang
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, 519082, China
| | - Wanwan Zhang
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, 519082, China
| | - E. Neil G. Marsh
- Departments of Chemistry and Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Kuntong Jia
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, 519082, China
| |
Collapse
|
47
|
Qin C, Xie T, Yeh WW, Savas AC, Feng P. Metabolic Enzymes in Viral Infection and Host Innate Immunity. Viruses 2023; 16:35. [PMID: 38257735 PMCID: PMC10820379 DOI: 10.3390/v16010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Metabolic enzymes are central players for cell metabolism and cell proliferation. These enzymes perform distinct functions in various cellular processes, such as cell metabolism and immune defense. Because viral infections inevitably trigger host immune activation, viruses have evolved diverse strategies to blunt or exploit the host immune response to enable viral replication. Meanwhile, viruses hijack key cellular metabolic enzymes to reprogram metabolism, which generates the necessary biomolecules for viral replication. An emerging theme arising from the metabolic studies of viral infection is that metabolic enzymes are key players of immune response and, conversely, immune components regulate cellular metabolism, revealing unexpected communication between these two fundamental processes that are otherwise disjointed. This review aims to summarize our present comprehension of the involvement of metabolic enzymes in viral infections and host immunity and to provide insights for potential antiviral therapy targeting metabolic enzymes.
Collapse
Affiliation(s)
- Chao Qin
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
48
|
Er-Lukowiak M, Hänzelmann S, Rothe M, Moamenpour DT, Hausmann F, Khatri R, Hansen C, Boldt J, Bärreiter VA, Honecker B, Bea A, Groneberg M, Fehling H, Marggraff C, Cadar D, Bonn S, Sellau J, Lotter H. Testosterone affects type I/type II interferon response of neutrophils during hepatic amebiasis. Front Immunol 2023; 14:1279245. [PMID: 38179044 PMCID: PMC10764495 DOI: 10.3389/fimmu.2023.1279245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/01/2023] [Indexed: 01/06/2024] Open
Abstract
Differences in immune response between men and women may influence the outcome of infectious diseases. Intestinal infection with Entamoeba histolytica leads to hepatic amebiasis, which is more common in males. Previously, we reported that innate immune cells contribute to liver damage in males in the murine model for hepatic amebiasis. Here, we focused on the influences of sex and androgens on neutrophils in particular. Infection associated with neutrophil accumulation in the liver was higher in male than in female mice and further increased after testosterone treatment in both sexes. Compared with female neutrophils, male neutrophils exhibit a more immature and less activated status, as evidenced by a lower proinflammatory N1-like phenotype and deconvolution, decreased gene expression of type I and type II interferon stimulated genes (ISGs) as well as downregulation of signaling pathways related to neutrophil activation. Neutrophils from females showed higher protein expression of the type I ISG viperin/RSAD2 during infection, which decreased by testosterone substitution. Moreover, ex vivo stimulation of human neutrophils revealed lower production of RSAD2 in neutrophils from men compared with women. These findings indicate that sex-specific effects on neutrophil physiology associated with maturation and type I IFN responsiveness might be important in the outcome of hepatic amebiasis.
Collapse
Affiliation(s)
- Marco Er-Lukowiak
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sonja Hänzelmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical Artificial Intelligenc, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz Rothe
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - David T. Moamenpour
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical Artificial Intelligenc, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robin Khatri
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical Artificial Intelligenc, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charlotte Hansen
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jennifer Boldt
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Valentin A. Bärreiter
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Barbara Honecker
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Annika Bea
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Marie Groneberg
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Helena Fehling
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Claudia Marggraff
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Dániel Cadar
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stefan Bonn
- Center for Biomedical Artificial Intelligenc, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julie Sellau
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hanna Lotter
- Molecular Parasitology and Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
49
|
Sravanthi M, Sebastian R, Krishnaswamy N, Mahadappa P, Dechamma HJ, Umapathi V, Sanyal A. Production of polyclonal viperin antisera using N-terminal deleted recombinant bovine viperin. Anim Biotechnol 2023; 34:2827-2834. [PMID: 36112063 DOI: 10.1080/10495398.2022.2120890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Viperin, also known as radical S-adenosyl methionine domain-containing protein (RSAD2) is a multifunctional interferon-stimulated gene (ISG) that is activated during the viral infections. Viperin belongs to S-adenosyl methionine (SAM) superfamily of enzymes known to catalyze radical-mediated reactions and viperin inhibits a wide range of DNA and RNA viruses through its broad range of activity. The present study reports cloning and expression of bovine viperin in a bacterial expression system. PCR-based site-directed mutagenesis was carried out for deletion of N-terminal 1-70 amino acid containing amphipathic helix of viperin that interferes in protein expression and purification. The resultant truncated viperin protein was expressed in Escherichia coli, BL-21(DE3) competent cells and purified using nickel charged affinity column. The truncated 54 kDa protein was confirmed by western blot using human RSAD2 as a probe. Further, in house, hyperimmune serum was raised against the truncated viperin in the rabbit and the reactivity was confirmed by western blot using mammalian expression vector construct of viperin transfected in Baby Hamster kidney (BHK) cells and in MDBK cells infected with Foot and Mouth disease Asia I virus.
Collapse
Affiliation(s)
- Mannem Sravanthi
- Foot and Mouth Disease Research Laboratory, Indian Veterinary Research Institute, Bengaluru, India
| | - Renjith Sebastian
- Foot and Mouth Disease Research Laboratory, Indian Veterinary Research Institute, Bengaluru, India
| | - Narayanan Krishnaswamy
- Foot and Mouth Disease Research Laboratory, Indian Veterinary Research Institute, Bengaluru, India
| | - Priyanka Mahadappa
- Foot and Mouth Disease Research Laboratory, Indian Veterinary Research Institute, Bengaluru, India
| | - H J Dechamma
- Foot and Mouth Disease Research Laboratory, Indian Veterinary Research Institute, Bengaluru, India
| | - V Umapathi
- Foot and Mouth Disease Research Laboratory, Indian Veterinary Research Institute, Bengaluru, India
| | - Aniket Sanyal
- Foot and Mouth Disease Research Laboratory, Indian Veterinary Research Institute, Bengaluru, India
| |
Collapse
|
50
|
Rousset F. Innate immunity: the bacterial connection. Trends Immunol 2023; 44:945-953. [PMID: 37919213 DOI: 10.1016/j.it.2023.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/07/2023] [Accepted: 10/07/2023] [Indexed: 11/04/2023]
Abstract
Pathogens have fueled the diversification of intracellular defense strategies that collectively define cell-autonomous innate immunity. In bacteria, innate immunity is manifested by a broad arsenal of defense systems that provide protection against bacterial viruses, called phages. The complexity of the bacterial immune repertoire has only been realized recently and is now suggesting that innate immunity has commonalities across the tree of life: many components of eukaryotic innate immunity are found in bacteria where they protect against phages, including the cGAS-STING pathway, gasdermins, and viperins. Here, I summarize recent findings on the conservation of innate immune pathways between prokaryotes and eukaryotes and hypothesize that bacterial defense mechanisms can catalyze the discovery of novel molecular players of eukaryotic innate immunity.
Collapse
Affiliation(s)
- François Rousset
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|