1
|
Liu T, Li P, Ou Z, Feng Y, Wang B, Yu T, Zhu Y, Yu L. Insights into the special physiology of Mortierella alpina cultured by agar supported solid state fermentation in enhancing arachidonic acid enriched lipid production. Sci Rep 2025; 15:15967. [PMID: 40335580 PMCID: PMC12058991 DOI: 10.1038/s41598-025-00965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 05/02/2025] [Indexed: 05/09/2025] Open
Abstract
Solid-state fermentation (SSF), an eco-friendly technology, has shown the high-yield ability to produce products such as biodiesel, pharmaceuticals, and enzymes. However, it has not yet demonstrated an advantage in ARA-containing lipids production. This study demonstrated that agar-supported SSF (AgSF) could induce Mortierella alpina M0223 to yield higher ARA-rich lipids than submerged fermentation (SmF), and elucidated the underlying mechanisms by the comparative transcriptome. AgSF-M0223 formed a mycelial network consisting mainly of surface (SH) and aerial hyphae (AH). The attenuated citrate cycle of SH compared to SmF was coupled with enhanced triglyceride biosynthesis, glycerophospholipid metabolism, and underlying increases in NADPH supply, prompting more glucose flux towards ARA-rich lipid synthesis. Besides, AH has high initial lipid and ARA amounts, while its primary metabolism was weakened due to nutrient scarcity, demonstrating attenuated lipid synthesis. The unique ARA and lipid synthesis characteristics of SH and AH enabled AgSF-M0223 to achieve high-yield ARA-rich lipids. By supplementing nutrients to AH through a spraying strategy and optimizing nutrients for SH, lipid yields reached 12.64 g/L comprising 70.41% ARA, 1.63 times higher than before optimization. These findings provided new insights into fungal physiology under SSF, and presented a promising eco-friendly paradigm for ARA production with advances in mechanical automation.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Food and Medicine Resources Engineering Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Pandeng Li
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ziqi Ou
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yumei Feng
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Food and Medicine Resources Engineering Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bohan Wang
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Food and Medicine Resources Engineering Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tianyi Yu
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuanmin Zhu
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Molecular Biophysics, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Hubei Food and Medicine Resources Engineering Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Longjiang Yu
- Department of Biotechnology, College of Life Science and Technology, Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Molecular Biophysics, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Hubei Food and Medicine Resources Engineering Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
2
|
Bianco E, Bonassera M, Uliana F, Tilma J, Winkler M, Zencir S, Gossert A, Oborská-Oplová M, Dechant R, Hugener J, Panse VG, Pilhofer M, Albert B, Kimmig P, Peter M. Stm1 regulates Ifh1 activity revealing crosstalk between ribosome biogenesis and ribosome dormancy. Mol Cell 2025; 85:1806-1823.e17. [PMID: 40315826 DOI: 10.1016/j.molcel.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 01/26/2025] [Accepted: 04/04/2025] [Indexed: 05/04/2025]
Abstract
Nutrient abundance boosts ribosome biogenesis, whereas ribosome dormancy factors limit ribosome degradation upon starvation. The equilibrium between the two pathways governs cell growth. In this study, we identified suppressor of Tom1 (Stm1) as a molecular link between ribosome protection and biogenesis in Saccharomyces cerevisiae. While Stm1 was previously described as a dormancy factor, we show that it activates Ifh1, a transcriptional activator of ribosomal protein genes. Stm1 transiently localizes to the nucleolus, where it interacts with pre-ribosomes and directly binds RNA and Ifh1 through its C-terminal intrinsically disordered region (IDR). Although the IDR is dispensable for ribosome protection, its loss compromises cell growth. The IDR is phosphorylated upon nutrient starvation, which disrupts its interaction with Ifh1. Our findings reveal a molecular pathway sensing and adjusting ribosome abundance in response to nutrient availability, reinforcing the relevance of regulated ribosome homeostasis in physiology and disease.
Collapse
Affiliation(s)
- Eliana Bianco
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland.
| | - Martina Bonassera
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland; Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Federico Uliana
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Janny Tilma
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Martin Winkler
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Sevil Zencir
- Department of Cell Biology Sciences III, Université de Genève, 1211 Geneva, Switzerland
| | - Alvar Gossert
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland; Biomolecular NMR Spectroscopy Platform (BNSP), Department of Biology, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | | | - Reinhard Dechant
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Jannik Hugener
- Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Vikram Govind Panse
- Institute of Medical Microbiology, University of Zürich, 8006 Zürich, Switzerland; Faculty of Science, University of Zürich, Zürich, Switzerland
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Benjamin Albert
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Philipp Kimmig
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Matthias Peter
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland.
| |
Collapse
|
3
|
Segura-Roman A, Citron YR, Shin M, Sindoni N, Maya-Romero A, Rapp S, Goul C, Mancias JD, Zoncu R. Autophagosomes anchor an AKAP11-dependent regulatory checkpoint that shapes neuronal PKA signaling. EMBO J 2025:10.1038/s44318-025-00436-x. [PMID: 40263600 DOI: 10.1038/s44318-025-00436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Protein Kinase A (PKA) is regulated spatially and temporally via scaffolding of its catalytic (Cα) and regulatory (RI/RII) subunits by the A-kinase-anchoring proteins (AKAP). By binding to an AKAP11 scaffold, PKA engages in poorly understood interactions with autophagy, a key degradation pathway for neuronal cell homeostasis. Mutations in AKAP11 promote schizophrenia and bipolar disorders (SZ-BP) through unknown mechanisms. Here, through proteomic-based analyses of immunopurified lysosomes, we identify the Cα-RIα-AKAP11 holocomplex as a prominent autophagy-associated protein-kinase complex. AKAP11 scaffolds Cα-RIα interaction with the autophagic machinery via its LC3-interacting region (LIR), enabling both PKA regulation by upstream signals, and its autophagy-dependent degradation. We identify Ser83 on the RIα linker-hinge region as an AKAP11-dependent phospho-residue that modulates RIα-Cα binding to the autophagosome and cAMP-induced PKA activation. Decoupling AKAP11-PKA from autophagy alters downstream phosphorylation events, supporting an autophagy-dependent checkpoint for PKA signaling. Ablating AKAP11 in induced pluripotent stem cell-derived neurons reveals dysregulation of multiple pathways for neuronal homeostasis. Thus, the autophagosome is a platform that modulates PKA signaling, providing a possible mechanistic link to SZ/BP pathophysiology.
Collapse
Affiliation(s)
- Ashley Segura-Roman
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Y Rose Citron
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Myungsun Shin
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Nicole Sindoni
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Alex Maya-Romero
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Simon Rapp
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Claire Goul
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Joseph D Mancias
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
4
|
Xu B, Ye X, Sun K, Chen L, Wen Z, Lan Q, Chen J, Chen M, Shen M, Wang S, Xu Y, Zhang X, Zhao J, Wang J, Chen S. IRAP Drives Ribosomal Degradation to Refuel Energy for Platelet Activation during Septic Thrombosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411914. [PMID: 39853919 PMCID: PMC11967848 DOI: 10.1002/advs.202411914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/09/2025] [Indexed: 01/26/2025]
Abstract
Platelets play crucial roles in multiple pathophysiological processes after energy-dependent activation. It is puzzling how such a small cellular debris has abundant energy supply. In this study, it is shown that insulin-regulated aminopeptidase (IRAP), a type II transmembrane protein, is a key regulator for platelet activation by promoting energy regeneration during septic thrombosis. Through interaction with certain endosome membrane proteins, IRAP can not only promote granule release, but also facilitate lysosomal degradation of theoretically discarded ribosomes in an mTORC1- and S-acylation-dependent manner in activated platelets. Plentiful amino acids obtained from IRAP-mediated ribophagy are recruited to aerobic glycolysis and then promote energy metabolism reprogramming, thereby producing abundant energy for platelet life extension and prolonged activation. Consequently, targeted blocking IRAP can dramatically alleviate platelet hyperactivation and septic thrombosis.
Collapse
Affiliation(s)
- Baichuan Xu
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Xianpeng Ye
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Kangfu Sun
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Liang Chen
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Zhaoyang Wen
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Qigang Lan
- Department of NephrologyChongqing Key Laboratory of Prevention and Treatment of Kidney DiseaseChongqing Clinical Research Center of Kidney and Urology DiseasesXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Jun Chen
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Mo Chen
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Mingqiang Shen
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Song Wang
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Yang Xu
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Xi Zhang
- Medical Center of HematologyXinqiao HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Jinghong Zhao
- Department of NephrologyChongqing Key Laboratory of Prevention and Treatment of Kidney DiseaseChongqing Clinical Research Center of Kidney and Urology DiseasesXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Shilei Chen
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| |
Collapse
|
5
|
Ford PW, Garshott DM, Narasimhan M, Ge X, Jordahl EM, Subramanya S, Bennett EJ. RNF10 and RIOK3 facilitate 40S ribosomal subunit degradation upon 60S biogenesis disruption or amino acid starvation. Cell Rep 2025; 44:115371. [PMID: 40022732 PMCID: PMC12008924 DOI: 10.1016/j.celrep.2025.115371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 03/04/2025] Open
Abstract
The initiation-specific ribosome-associated quality control pathway (iRQC) is activated when translation initiation complexes fail to transition to elongation-competent 80S ribosomes. Upon iRQC activation, RNF10 ubiquitylates the 40S proteins uS3 and uS5, which leads to 40S decay. How iRQC is activated in the absence of pharmacological translation inhibitors and what mechanisms govern iRQC capacity and activity remain unanswered questions. Here, we demonstrate that altering 60S:40S stoichiometry by disrupting 60S biogenesis triggers iRQC activation and 40S decay. Depleting the critical scanning helicase eIF4A1 impairs 40S ubiquitylation and degradation, indicating mRNA engagement is required for iRQC. We show that amino acid starvation conditions also stimulate iRQC-dependent 40S decay. We identify RIOK3 as a crucial iRQC factor that interacts with ubiquitylated 40S subunits to mediate degradation. Both RNF10 and RIOK3 protein levels increase upon iRQC pathway activation, establishing a feedforward mechanism that regulates iRQC capacity and subsequent 40S decay.
Collapse
Affiliation(s)
- Pierce W Ford
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Danielle M Garshott
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mythreyi Narasimhan
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xuezhen Ge
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric M Jordahl
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shubha Subramanya
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric J Bennett
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
6
|
Zhang J, Wu J, Dou Y. Insight into the microbial degradation characteristics of polylactic acid by Bacillus sp. JA-4. Arch Microbiol 2025; 207:91. [PMID: 40097818 DOI: 10.1007/s00203-025-04293-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/19/2025]
Abstract
Polylactic acid (PLA) is a biodegradable alternative to petroleum-based plastics, but its slow natural degradation rate and underlying mechanisms remained poorly understood. In this study, the properties of PLA degradation by Bacillus sp. JA-4 were investigated, and the molecular mechanisms involed in PLA degradation were elucidated through RNA sequencing (RNA-seq) analysis. Scanning electron microscopy (SEM) revealed biofilm-induced surface erosion, leading to the formation of cracks and holes in the PLA film. The analysis of Fourier-transform infrared spectroscopy (FTIR) and liquid chromatography-mass spectrometry (LC-MS) confirmed ester bond cleavage (1260 cm⁻1, 1127 cm⁻1, and 1080 cm⁻1) during PLA degradation, and the degradation intermediates including lactic acid monomers and five lactic acid oligomers were identified. RNA-seq analysis indicated that there were 360 upregulated genes associated with environmental adaptation and energy metabolism, likely involved in the degradation process. The addition of gelatin, sodium dodecyl sulfate (SDS), yeast powder, peptone, and casein significantly enhanced PLA degradation, with gelatin being the most effective inducer. By the 10th day, weight loss of 23.1% of PLA and protease activity of 31.6 U/mL were achieved at a gelatin concentration of 3%, which were higher than the control group. This study provides a novel microbial resource and theoretical foundation for the degradation of residual PLA in the environment.
Collapse
Affiliation(s)
- Jing Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Juan Wu
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China.
| | - Yueqin Dou
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| |
Collapse
|
7
|
Tutak K, Karbstein K. Ribophagy relies on Rpl12. Nat Cell Biol 2025; 27:377-378. [PMID: 39934333 DOI: 10.1038/s41556-024-01594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Affiliation(s)
- Katarzyna Tutak
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Katrin Karbstein
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
8
|
Chen Y, Hu J, Zhao P, Fang J, Kuang Y, Liu Z, Dong S, Yao W, Ding Y, Wang X, Pan Y, Wu J, Zhao J, Yang J, Xu Z, Liu X, Zhang Y, Wu C, Zhang L, Fan M, Feng S, Hong Z, Yan Z, Xia H, Tang K, Yang B, Liu W, Sun Q, Mei K, Zou W, Huang Y, Feng D, Yi C. Rpl12 is a conserved ribophagy receptor. Nat Cell Biol 2025; 27:477-492. [PMID: 39934334 DOI: 10.1038/s41556-024-01598-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/12/2024] [Indexed: 02/13/2025]
Abstract
Ribophagy is a selective autophagic process that regulates ribosome turnover. Although NUFIP1 has been identified as a mammalian receptor for ribophagy, its homologues do not exist in yeast and nematodes. Here we demonstrate that Rpl12, a ribosomal large subunit protein, functions as a conserved ribophagy receptor in multiple organisms. Disruption of Rpl12-Atg8s binding leads to significant accumulation of ribosomal proteins and rRNA, while Atg1-mediated Rpl12 phosphorylation enhances its association with Atg11, thus triggering ribophagy during starvation. Ribophagy deficiency accelerates cell death induced by starvation and pathogen infection, leading to impaired growth and development and a shortened lifespan in both Caenorhabditis elegans and Drosophila melanogaster. Moreover, ribophagy deficiency results in motor impairments associated with ageing, while the overexpression of RPL12 significantly improves movement defects induced by starvation, ageing and Aβ accumulation in fly models. Our findings suggest that Rpl12 functions as a conserved ribophagy receptor vital for ribosome metabolism and cellular homeostasis.
Collapse
Affiliation(s)
- Yuting Chen
- Department of Biochemistry and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jiaxin Hu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Pengwei Zhao
- Department of Biochemistry and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Fang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingqi Kuang
- Department of Biochemistry and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaojie Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuling Dong
- Department of Biochemistry and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, China
| | - Weijing Yao
- Department of Biochemistry and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanyuan Ding
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xinhui Wang
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yibin Pan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianbin Wu
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingwei Zhao
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Yang
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenzhong Xu
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xiaodi Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yi Zhang
- Department of Biochemistry and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Choufei Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, China
| | - Liqin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, China
| | - Mingzhu Fan
- Mass Spectrometry and Metabolomics Core Facility, Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou, China
| | - Shan Feng
- Mass Spectrometry and Metabolomics Core Facility, Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou, China
| | - Zhi Hong
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Centre for Cellular Biology and Signaling, Zhejiang University-University of Edinburgh Institute, Haining, China
| | - Zhangming Yan
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Hongguang Xia
- Department of Biochemistry and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaiyue Tang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Wei Liu
- Department of Biochemistry and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiming Sun
- Department of Biochemistry and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kunrong Mei
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China.
| | - Yunpeng Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Du Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Cong Yi
- Department of Biochemistry and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
9
|
Huang Z, Diehl FF, Wang M, Li Y, Song A, Chen FX, Rosa-Mercado NA, Beckmann R, Green R, Cheng J. RIOK3 mediates the degradation of 40S ribosomes. Mol Cell 2025; 85:802-814.e12. [PMID: 39947183 DOI: 10.1016/j.molcel.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/27/2024] [Accepted: 01/15/2025] [Indexed: 02/23/2025]
Abstract
Cells tightly regulate ribosome homeostasis to adapt to changing environments. Ribosomes are degraded during stress, but the mechanisms responsible remain unclear. Here, we show that starvation induces the selective depletion of 40S ribosomes following their ubiquitylation by the E3 ligase RNF10. The atypical kinase RIOK3 specifically recognizes these ubiquitylated 40S ribosomes through a unique ubiquitin-interacting motif, visualized by cryoelectron microscopy (cryo-EM). RIOK3 binding and ubiquitin recognition are essential for 40S ribosome degradation during starvation. RIOK3 induces the degradation of ubiquitylated 40S ribosomes through progressive decay of their 18S rRNA beginning at the 3' end, as revealed by cryo-EM structures of degradation intermediates. Together, these data define a pathway and mechanism for stress-induced degradation of 40S ribosomes, directly connecting ubiquitylation to regulation of ribosome homeostasis.
Collapse
MESH Headings
- Ubiquitination
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- Cryoelectron Microscopy
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/chemistry
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/ultrastructure
- Ribosome Subunits, Small, Eukaryotic/genetics
- Proteolysis
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 18S/genetics
- Humans
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/ultrastructure
- Ubiquitin/metabolism
- Protein Binding
- RNA Stability
Collapse
Affiliation(s)
- Zixuan Huang
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University Shanghai, China
| | - Frances F Diehl
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mengjiao Wang
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University Shanghai, China
| | - Yi Li
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University Shanghai, China
| | - Aixia Song
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University Shanghai, China
| | - Fei Xavier Chen
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University Shanghai, China
| | - Nicolle A Rosa-Mercado
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Roland Beckmann
- Department of Biochemistry, Gene Center, University of Munich, Munich, Germany
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jingdong Cheng
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University Shanghai, China.
| |
Collapse
|
10
|
Tian L, Liu B, Ren Y, Cui J, Pang Z. Proteomics of stress-induced cardiomyopathy: insights from differential expression, protein interaction networks, and functional pathway enrichment in an isoproterenol-induced TTC mouse model. PeerJ 2025; 13:e18984. [PMID: 39959819 PMCID: PMC11830371 DOI: 10.7717/peerj.18984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/22/2025] [Indexed: 02/18/2025] Open
Abstract
Backgrounds Takotsubo cardiomyopathy (TTC), also known as stress-induced cardiomyopathy, is a condition characterized by transient left ventricular dysfunction without coronary artery obstruction. Methods We utilized label-free quantitative proteomics to analyze protein expression in a murine model of TTC, induced by a high dose of isoproterenol (ISO) injection. Results We found that a single high dose of ISO injection in mice could induce stress-related cardiac dysfunction.The proteomic analysis revealed 81 differentially expressed proteins (DEPs) between the ISO and control groups-39 were upregulated, and 42 were downregulated. Key pathways enriched by Gene Ontology (GO) analysis included collagen fibril organization, cholesterol biosynthesis, and elastic fiber assembly. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment indicated significant changes in unsaturated fatty acid biosynthesis, glutathione metabolism, steroid biosynthesis, and ferroptosis. Key hub proteins identified by the protein-protein interaction (PPI) network included Ntrk2, Fdft1, Serpine1, and Cyp1a1. Gene set enrichment analysis (GSEA) showed upregulation in terpenoid backbone biosynthesis, oxidative phosphorylation, and ferroptosis, with downregulation in pathways such as systemic lupus erythematosus and Rap1 signaling. Conclusions This study employed high-throughput liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify key proteins associated with energy metabolism, oxidative stress, inflammation, and cell death in TTC. These findings provide new insights into the molecular mechanisms of stress-induced myocardial injury and may offer potential therapeutic targets for mitigating cardiovascular damage under stress conditions.
Collapse
Affiliation(s)
- Liuyang Tian
- Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital, Beijing, China
| | - Botao Liu
- China Medical University, Shenyang, China
| | - Ying Ren
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
- Department of Cardiology, The First Affiliated Hospital of Nankai University, Tianjin, China
| | - Jian Cui
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
- Department of Cardiology, The First Affiliated Hospital of Nankai University, Tianjin, China
| | - Zhihua Pang
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
- Department of Cardiology, The First Affiliated Hospital of Nankai University, Tianjin, China
| |
Collapse
|
11
|
Dougherty SE, Barros GC, Foster MW, Teo G, Choi H, Silva GM. Context specific ubiquitin modification of ribosomes regulates translation under oxidative stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.02.592277. [PMID: 39975283 PMCID: PMC11838502 DOI: 10.1101/2024.05.02.592277] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Cellular exposure to stress is known to activate several translational control pathways through ribosome ubiquitination. However, how unique patterns of ribosome ubiquitination act at the site-specific level to drive distinct modes of translation regulation remains unclear. To further understand the complexity of these ubiquitin signals, we developed a new targeted proteomics approach to quantify site-specific ubiquitin modification across the ribosome. This method increased the sensitivity and throughput of current approaches and allowed us to systematically measure the ubiquitin status of 78 ribosome peptides and ubiquitin linkages in response to stress. Using this method, we were able to detect the ubiquitination of several ribosome sites even in steady-state conditions, and to show that their modification increases non-stoichiometrically in a dynamic range of >4 orders of magnitude in response to hydrogen peroxide. Besides demonstrating new patterns of global ribosome ubiquitination, our study also revealed an unexpected increase of ubiquitination of ribosomal protein uS10/Rps20 and uS3/Rps3 independent of the canonical E3 ubiquitin ligase Hel2. Furthermore, we show that unique and mixed patterns of ribosome ubiquitination occur in a stress specific manner, depending on the nature of stressor and the enzymes involved. Finally, we showed that while deletion of HEL2 further induces the integrated stress response in response to the nucleotide alkylating agent 4-NQO, deletion of the E2 conjugase RAD6 leads to sustained translation only in response to H2O2. Our findings contribute to deciphering the complexity of the stress response at the translational level, revealing the induction of dynamic and selective ubiquitin codes, which shed light on the integration of important quality control pathways during cellular response to stress.
Collapse
Affiliation(s)
| | | | - Matthew W. Foster
- Proteomics and Metabolomics Core Facility, Duke University, School of Medicine, Durham, North Carolina.NC 27701, USA
| | - Guoshou Teo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | | |
Collapse
|
12
|
Kim J, Lee Y, Jeon T, Ju S, Kim JS, Kim MS, Kang C. Autophagy-dependent splicing control directs translation toward inflammation during senescence. Dev Cell 2025; 60:364-378.e7. [PMID: 39510077 DOI: 10.1016/j.devcel.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/15/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024]
Abstract
The cellular proteome determines the functional state of cells and is often skewed to direct pathological conditions. Autophagy shapes cellular proteomes primarily through lysosomal degradation of either damaged or unnecessary proteins. Here, we show that autophagy directs the senescence-specific translatome to fuel inflammation by coupling selective protein degradation with alternative splicing. RNA splicing is significantly altered during senescence, some of which surprisingly depend on autophagy, including exon 5 skipping of the translation regulator EIF4H. Systematic translatome profiling indicates that this event is key to the translational bias toward inflammation in senescence. Autophagy promotes these changes by selectively degrading the splicing regulator splicing factor proline and glutamine rich (SFPQ) via the autophagy receptor NBR1. These autophagy-centric inflammatory controls appear to be conserved during human tissue aging and cancer. Our work highlights the role of autophagy in the on-demand functional remodeling of cellular proteomes as well as the crosstalk between autophagy, alternative splicing, and inflammatory translation.
Collapse
Affiliation(s)
- Jaejin Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea
| | - Yeonghyeon Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea
| | - Taerang Jeon
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea
| | - Seonmin Ju
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for RNA Research, Institute of Basic Science, Seoul 08826, South Korea
| | - Jong-Seo Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for RNA Research, Institute of Basic Science, Seoul 08826, South Korea
| | - Mi-Sung Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea
| | - Chanhee Kang
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
13
|
Pham BQ, Yi SA, Ordureau A, An H. mTORC1 regulates the pyrimidine salvage pathway by controlling UCK2 turnover via the CTLH-WDR26 E3 ligase. Cell Rep 2025; 44:115179. [PMID: 39808525 PMCID: PMC11840829 DOI: 10.1016/j.celrep.2024.115179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/20/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
One critical aspect of cell proliferation is increased nucleotide synthesis, including pyrimidines. Pyrimidines are synthesized through de novo and salvage pathways. Prior studies established that the mammalian target of rapamycin complex 1 (mTORC1) promotes pyrimidine synthesis by activating the de novo pathway for cell proliferation. However, the involvement of mTORC1 in regulating the salvage pathway remains unclear. Here, we report that mTORC1 controls the half-life of uridine cytidine kinase 2 (UCK2), the rate-limiting enzyme in the salvage pathway. Specifically, UCK2 is degraded via the CTLH-WDR26 E3 complex during mTORC1 inhibition, which is prevented when mTORC1 is active. We also find that UCK1, an isoform of UCK2, affects the turnover of UCK2 by influencing its cellular localization. Importantly, altered UCK2 levels through the mTORC1-CTLH E3 pathway affect pyrimidine salvage and the efficacy of pyrimidine analog prodrugs. Therefore, mTORC1-CTLH E3-mediated degradation of UCK2 adds another layer of complexity to mTORC1's role in regulating pyrimidine metabolism.
Collapse
Affiliation(s)
- Brittany Q Pham
- Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sang Ah Yi
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Heeseon An
- Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Tri-Institutional PhD Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
14
|
Hickey KL, Panov A, Whelan EM, Schäfer T, Mizrak A, Kopito RR, Baumeister W, Fernández-Busnadiego R, Harper JW. Temporal control of acute protein aggregate turnover by UBE3C and NRF1-dependent proteasomal pathways. Proc Natl Acad Sci U S A 2024; 121:e2417390121. [PMID: 39636856 DOI: 10.1073/pnas.2417390121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
A hallmark of neurodegenerative diseases (NDs) is the progressive loss of proteostasis, leading to the accumulation of misfolded proteins or protein aggregates, with subsequent cytotoxicity. To combat this toxicity, cells have evolved degradation pathways (ubiquitin-proteasome system and autophagy) that detect and degrade misfolded proteins. However, studying the underlying cellular pathways and mechanisms has remained a challenge, as formation of many types of protein aggregates is asynchronous, with individual cells displaying distinct kinetics, thereby hindering rigorous time-course studies. Here, we merge a kinetically tractable and synchronous agDD-GFP system for aggregate formation with targeted gene knockdowns, to uncover degradation mechanisms used in response to acute aggregate formation. We find that agDD-GFP forms amorphous aggregates by cryo-electron tomography at both early and late stages of aggregate formation. Aggregate turnover occurs in a proteasome-dependent mechanism in a manner that is dictated by cellular aggregate burden, with no evidence of the involvement of autophagy. Lower levels of misfolded agDD-GFP, enriched in oligomers, utilizes UBE3C-dependent proteasomal degradation in a pathway that is independent of RPN13 ubiquitylation by UBE3C. Higher aggregate burden activates the NRF1 transcription factor to increase proteasome subunit transcription and subsequent degradation capacity of cells. Loss or gain of NRF1 function alters the turnover of agDD-GFP under conditions of high aggregate burden. Together, these results define the role of UBE3C in degradation of this class of misfolded aggregation-prone proteins and reveals a role for NRF1 in proteostasis control in response to widespread protein aggregation.
Collapse
Affiliation(s)
- Kelsey L Hickey
- Department of Cell Biology, Harvard Medical School, Boston MA 02115
- Aligning Science Across Parkinson's, Collaborative Research Network, Chevy Chase, MD 20815
| | - Alexandra Panov
- Department of Cell Biology, Harvard Medical School, Boston MA 02115
- Aligning Science Across Parkinson's, Collaborative Research Network, Chevy Chase, MD 20815
| | - Enya Miguel Whelan
- Department of Cell Biology, Harvard Medical School, Boston MA 02115
- Aligning Science Across Parkinson's, Collaborative Research Network, Chevy Chase, MD 20815
| | - Tillman Schäfer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Arda Mizrak
- Department of Cell Biology, Harvard Medical School, Boston MA 02115
| | - Ron R Kopito
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Wolfgang Baumeister
- Aligning Science Across Parkinson's, Collaborative Research Network, Chevy Chase, MD 20815
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Rubén Fernández-Busnadiego
- Aligning Science Across Parkinson's, Collaborative Research Network, Chevy Chase, MD 20815
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen 37077, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells", University of Göttingen, Göttingen 37075, Germany
- Faculty of Physics, University of Göttingen, Göttingen 37077, Germany
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston MA 02115
- Aligning Science Across Parkinson's, Collaborative Research Network, Chevy Chase, MD 20815
| |
Collapse
|
15
|
Hickey KL, Panov A, Whelan EM, Schäfer T, Mizrak A, Kopito RR, Baumeister W, Fernández-Busnadiego R, Harper JW. Temporal control of acute protein aggregate turnover by UBE3C and NRF1-dependent proteasomal pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610524. [PMID: 39282280 PMCID: PMC11398357 DOI: 10.1101/2024.08.30.610524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
A hallmark of neurodegenerative diseases is the progressive loss of proteostasis, leading to the accumulation of misfolded proteins or protein aggregates, with subsequent cytotoxicity. To combat this toxicity, cells have evolved degradation pathways (ubiquitin-proteasome system and autophagy) that detect and degrade misfolded proteins. However, studying the underlying cellular pathways and mechanisms has remained a challenge, as formation of many types of protein aggregates is asynchronous, with individual cells displaying distinct kinetics, thereby hindering rigorous time-course studies. Here, we merge a kinetically tractable and synchronous agDD-GFP system for aggregate formation with targeted gene knockdowns, to uncover degradation mechanisms used in response to acute aggregate formation. We find that agDD-GFP forms amorphous aggregates by cryo-electron tomography at both early and late stages of aggregate formation. Aggregate turnover occurs in a proteasome-dependent mechanism in a manner that is dictated by cellular aggregate burden, with no evidence of the involvement of autophagy. Lower levels of misfolded agDD-GFP, enriched in oligomers, utilizes UBE3C-dependent proteasomal degradation in a pathway that is independent of RPN13 ubiquitylation by UBE3C. Higher aggregate burden activates the NRF1 transcription factor to increase proteasome subunit transcription, and subsequent degradation capacity of cells. Loss or gain of NRF1 function alters the turnover of agDD-GFP under conditions of high aggregate burden. Together, these results define the role of UBE3C in degradation of this class of misfolded aggregation-prone proteins and reveals a role for NRF1 in proteostasis control in response to widespread protein aggregation.
Collapse
Affiliation(s)
- Kelsey L. Hickey
- Department of Cell Biology, Harvard Medical School, Boston MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Alexandra Panov
- Department of Cell Biology, Harvard Medical School, Boston MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Enya Miguel Whelan
- Department of Cell Biology, Harvard Medical School, Boston MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Tillman Schäfer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Arda Mizrak
- Department of Cell Biology, Harvard Medical School, Boston MA, USA
| | - Ron R. Kopito
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Wolfgang Baumeister
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Rubén Fernández-Busnadiego
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- University Medical Center Göttingen, Institute for Neuropathology, Göttingen, 37077, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, 37075 Göttingen, Germany
- Faculty of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - J. Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
16
|
Young LN, Sherrard A, Zhou H, Shaikh F, Hutchings J, Riggi M, Rosen MK, Giraldez AJ, Villa E. ExoSloNano: Multi-Modal Nanogold Tags for identification of Macromolecules in Live Cells & Cryo-Electron Tomograms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.617288. [PMID: 39416124 PMCID: PMC11482945 DOI: 10.1101/2024.10.12.617288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In situ cryo-Electron Microscopy (cryo-EM) enables the direct interrogation of structure-function relationships by resolving macromolecular structures in their native cellular environment. Tremendous progress in sample preparation, imaging and data processing over the past decade has contributed to the identification and determination of large biomolecular complexes. However, the majority of proteins are of a size that still eludes identification in cellular cryo-EM data, and most proteins exist in low copy numbers. Therefore, novel tools are needed for cryo-EM to identify the vast majority of macromolecules across multiple size scales (from microns to nanometers). Here, we introduce and validate novel nanogold probes that enable the detection of specific proteins using cryo-ET (cryo-Electron Tomography) and resin-embedded correlated light and electron microscopy (CLEM). We demonstrate that these nanogold probes can be introduced into live cells, in a manner that preserves intact molecular networks and cell viability. We use this system to identify both cytoplasmic and nuclear proteins by room temperature EM, and resolve associated structures by cryo-ET. We further employ gold particles of different sizes to enable future multiplexed labeling and structural analysis. By providing high efficiency protein labeling in live cells and molecular specificity within cryo-ET tomograms, we establish a broadly enabling tool that significantly expands the proteome available to electron microscopy.
Collapse
Affiliation(s)
- Lindsey N Young
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Huabin Zhou
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Farhaz Shaikh
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Joshua Hutchings
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Margot Riggi
- Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Michael K Rosen
- University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, Dallas, TX, USA
| | | | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, La Jolla, CA, USA
| |
Collapse
|
17
|
Rudinskiy M, Morone D, Molinari M. Fluorescent Reporters, Imaging, and Artificial Intelligence Toolkits to Monitor and Quantify Autophagy, Heterophagy, and Lysosomal Trafficking Fluxes. Traffic 2024; 25:e12957. [PMID: 39450581 DOI: 10.1111/tra.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/21/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Lysosomal compartments control the clearance of cell-own material (autophagy) or of material that cells endocytose from the external environment (heterophagy) to warrant supply of nutrients, to eliminate macromolecules or parts of organelles present in excess, aged, or containing toxic material. Inherited or sporadic mutations in lysosomal proteins and enzymes may hamper their folding in the endoplasmic reticulum (ER) and their lysosomal transport via the Golgi compartment, resulting in lysosomal dysfunction and storage disorders. Defective cargo delivery to lysosomal compartments is harmful to cells and organs since it causes accumulation of toxic compounds and defective organellar homeostasis. Assessment of resident proteins and cargo fluxes to the lysosomal compartments is crucial for the mechanistic dissection of intracellular transport and catabolic events. It might be combined with high-throughput screenings to identify cellular, chemical, or pharmacological modulators of these events that may find therapeutic use for autophagy-related and lysosomal storage disorders. Here, discuss qualitative, quantitative and chronologic monitoring of autophagic, heterophagic and lysosomal protein trafficking in fixed and live cells, which relies on fluorescent single and tandem reporters used in combination with biochemical, flow cytometry, light and electron microscopy approaches implemented by artificial intelligence-based technology.
Collapse
Affiliation(s)
- Mikhail Rudinskiy
- Università della Svizzera italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- Department of Biology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Diego Morone
- Università della Svizzera italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Maurizio Molinari
- Università della Svizzera italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Abstract
Ribosomes synthesize protein in all cells. Maintaining both the correct number and composition of ribosomes is critical for protein homeostasis. To address this challenge, cells have evolved intricate quality control mechanisms during assembly to ensure that only correctly matured ribosomes are released into the translating pool. However, these assembly-associated quality control mechanisms do not deal with damage that arises during the ribosomes' exceptionally long lifetimes and might equally compromise their function or lead to reduced ribosome numbers. Recent research has revealed that ribosomes with damaged ribosomal proteins can be repaired by the release of the damaged protein, thereby ensuring ribosome integrity at a fraction of the energetic cost of producing new ribosomes, appropriate for stress conditions. In this article, we cover the types of ribosome damage known so far, and then we review the known repair mechanisms before surveying the literature for possible additional instances of repair.
Collapse
Affiliation(s)
- Yoon-Mo Yang
- Current affiliation: Graduate School of Biomedical Science and Engineering and Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea;
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Katrin Karbstein
- Current affiliation: Department of Biochemistry, Vanderbilt School of Medicine, Vanderbilt University, Nashville, Tennessee, USA;
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| |
Collapse
|
19
|
Lizarrondo J, Wilfling F. Selective Autophagy of Macromolecular Complexes: What Does It Take to be Taken? J Mol Biol 2024; 436:168574. [PMID: 38636617 DOI: 10.1016/j.jmb.2024.168574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Proteins are known to perform an astonishing array of functions thanks to their ability to cooperate and modulate each other's properties. Inside cells, proteins can assemble into large multi-subunit complexes to carry out complex cellular functions. The correct assembly and maintenance of the functional state of macromolecular protein complexes is crucial for human health. Failure to do so leads to loss of function and potential accumulation of harmful materials, which is associated with a variety of human diseases such as neurodegeneration and cancer. Autophagy engulfs cytosolic material in autophagosomes, and therefore is best suited to eliminate intact macromolecular complexes without disassembling them, which could interfere with de novo assembly. In this review, we discuss the role of autophagy in the selective degradation of macromolecular complexes. We highlight the current state of knowledge for different macromolecular complexes and their selective autophagic degradation. We emphasize the gaps in our understanding of what it takes for these large macromolecular complexes to be degraded and point to future work that may shed light on the regulation of the selective degradation of macromolecular complexes by autophagy.
Collapse
Affiliation(s)
- Javier Lizarrondo
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt a.M. 60598, Germany; Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, Frankfurt a.M. 60438, Germany
| | - Florian Wilfling
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, Frankfurt a.M. 60438, Germany.
| |
Collapse
|
20
|
Shang A, Shao S, Zhao L, Liu B. Far-Red Fluorescent Proteins: Tools for Advancing In Vivo Imaging. BIOSENSORS 2024; 14:359. [PMID: 39194588 DOI: 10.3390/bios14080359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Far-red fluorescent proteins (FPs) have emerged as indispensable tools in in vivo imaging, playing a pivotal role in elucidating fundamental mechanisms and addressing application issues in biotechnology and biomedical fields. Their ability for deep penetration, coupled with reduced light scattering and absorption, robust resistance to autofluorescence, and diminished phototoxicity, has positioned far-red biosensors at the forefront of non-invasive visualization techniques for observing intracellular activities and intercellular behaviors. In this review, far-red FPs and their applications in living systems are mainly discussed. Firstly, various far-red FPs, characterized by emission peaks spanning from 600 nm to 650 nm, are introduced. This is followed by a detailed presentation of the fundamental principles enabling far-red biosensors to detect biomolecules and environmental changes. Furthermore, the review accentuates the superiority of far-red FPs in multi-color imaging. In addition, significant emphasis is placed on the value of far-red FPs in improving imaging resolution, highlighting their great contribution to the advancement of in vivo imaging.
Collapse
Affiliation(s)
- Angyang Shang
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Shuai Shao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Luming Zhao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
21
|
Sinha NK, McKenney C, Yeow ZY, Li JJ, Nam KH, Yaron-Barir TM, Johnson JL, Huntsman EM, Cantley LC, Ordureau A, Regot S, Green R. The ribotoxic stress response drives UV-mediated cell death. Cell 2024; 187:3652-3670.e40. [PMID: 38843833 PMCID: PMC11246228 DOI: 10.1016/j.cell.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/03/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024]
Abstract
While ultraviolet (UV) radiation damages DNA, eliciting the DNA damage response (DDR), it also damages RNA, triggering transcriptome-wide ribosomal collisions and eliciting a ribotoxic stress response (RSR). However, the relative contributions, timing, and regulation of these pathways in determining cell fate is unclear. Here we use time-resolved phosphoproteomic, chemical-genetic, single-cell imaging, and biochemical approaches to create a chronological atlas of signaling events activated in cells responding to UV damage. We discover that UV-induced apoptosis is mediated by the RSR kinase ZAK and not through the DDR. We identify two negative-feedback modules that regulate ZAK-mediated apoptosis: (1) GCN2 activation limits ribosomal collisions and attenuates ZAK-mediated RSR and (2) ZAK activity leads to phosphodegron autophosphorylation and its subsequent degradation. These events tune ZAK's activity to collision levels to establish regimes of homeostasis, tolerance, and death, revealing its key role as the cellular sentinel for nucleic acid damage.
Collapse
Affiliation(s)
- Niladri K Sinha
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Connor McKenney
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhong Y Yeow
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeffrey J Li
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ki Hong Nam
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tomer M Yaron-Barir
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Emily M Huntsman
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Sergi Regot
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
22
|
Wu Z, Bezwada D, Cai F, Harris RC, Ko B, Sondhi V, Pan C, Vu HS, Nguyen PT, Faubert B, Cai L, Chen H, Martin-Sandoval M, Do D, Gu W, Zhang Y, Zhang Y, Brooks B, Kelekar S, Zacharias LG, Oaxaca KC, Patricio JS, Mathews TP, Garcia-Bermudez J, Ni M, DeBerardinis RJ. Electron transport chain inhibition increases cellular dependence on purine transport and salvage. Cell Metab 2024; 36:1504-1520.e9. [PMID: 38876105 PMCID: PMC11240302 DOI: 10.1016/j.cmet.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 03/11/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
Mitochondria house many metabolic pathways required for homeostasis and growth. To explore how human cells respond to mitochondrial dysfunction, we performed metabolomics in fibroblasts from patients with various mitochondrial disorders and cancer cells with electron transport chain (ETC) blockade. These analyses revealed extensive perturbations in purine metabolism, and stable isotope tracing demonstrated that ETC defects suppress de novo purine synthesis while enhancing purine salvage. In human lung cancer, tumors with markers of low oxidative mitochondrial metabolism exhibit enhanced expression of the salvage enzyme hypoxanthine phosphoribosyl transferase 1 (HPRT1) and high levels of the HPRT1 product inosine monophosphate. Mechanistically, ETC blockade activates the pentose phosphate pathway, providing phosphoribosyl diphosphate to drive purine salvage supplied by uptake of extracellular bases. Blocking HPRT1 sensitizes cancer cells to ETC inhibition. These findings demonstrate how cells remodel purine metabolism upon ETC blockade and uncover a new metabolic vulnerability in tumors with low respiration.
Collapse
Affiliation(s)
- Zheng Wu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Divya Bezwada
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Feng Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert C Harris
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bookyung Ko
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Varun Sondhi
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunxiao Pan
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hieu S Vu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Phong T Nguyen
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brandon Faubert
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Ling Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongli Chen
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Misty Martin-Sandoval
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Duyen Do
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wen Gu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuanyuan Zhang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuannyu Zhang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bailey Brooks
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sherwin Kelekar
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lauren G Zacharias
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - K Celeste Oaxaca
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joao S Patricio
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas P Mathews
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Javier Garcia-Bermudez
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Ni
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
23
|
Li P, Chen P, Qi F, Shi J, Zhu W, Li J, Zhang P, Xie H, Li L, Lei M, Ren X, Wang W, Zhang L, Xiang X, Zhang Y, Gao Z, Feng X, Du W, Liu X, Xia L, Liu BF, Li Y. High-throughput and proteome-wide discovery of endogenous biomolecular condensates. Nat Chem 2024; 16:1101-1112. [PMID: 38499848 DOI: 10.1038/s41557-024-01485-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/23/2024] [Indexed: 03/20/2024]
Abstract
Phase separation inside mammalian cells regulates the formation of the biomolecular condensates that are related to gene expression, signalling, development and disease. However, a large population of endogenous condensates and their candidate phase-separating proteins have yet to be discovered in a quantitative and high-throughput manner. Here we demonstrate that endogenously expressed biomolecular condensates can be identified across a cell's proteome by sorting proteins across varying oligomeric states. We employ volumetric compression to modulate the concentrations of intracellular proteins and the degree of crowdedness, which are physical regulators of cellular biomolecular condensates. The changes in degree of the partition of proteins into condensates or phase separation led to varying oligomeric states of the proteins, which can be detected by coupling density gradient ultracentrifugation and quantitative mass spectrometry. In total, we identified 1,518 endogenous condensate proteins, of which 538 have not been reported before. Furthermore, we demonstrate that our strategy can identify condensate proteins that respond to specific biological processes.
Collapse
Affiliation(s)
- Pengjie Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fukang Qi
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jinyun Shi
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wenjie Zhu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiashuo Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Peng Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Han Xie
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lina Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Mengcheng Lei
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xueqing Ren
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wenhui Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Liang Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xufu Xiang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yiwei Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhaolong Gao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xin Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Limin Xia
- Department of Gastroenterology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
24
|
Li X, Wang M, Denk T, Buschauer R, Li Y, Beckmann R, Cheng J. Structural basis for differential inhibition of eukaryotic ribosomes by tigecycline. Nat Commun 2024; 15:5481. [PMID: 38942792 PMCID: PMC11213857 DOI: 10.1038/s41467-024-49797-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 06/18/2024] [Indexed: 06/30/2024] Open
Abstract
Tigecycline is widely used for treating complicated bacterial infections for which there are no effective drugs. It inhibits bacterial protein translation by blocking the ribosomal A-site. However, even though it is also cytotoxic for human cells, the molecular mechanism of its inhibition remains unclear. Here, we present cryo-EM structures of tigecycline-bound human mitochondrial 55S, 39S, cytoplasmic 80S and yeast cytoplasmic 80S ribosomes. We find that at clinically relevant concentrations, tigecycline effectively targets human 55S mitoribosomes, potentially, by hindering A-site tRNA accommodation and by blocking the peptidyl transfer center. In contrast, tigecycline does not bind to human 80S ribosomes under physiological concentrations. However, at high tigecycline concentrations, in addition to blocking the A-site, both human and yeast 80S ribosomes bind tigecycline at another conserved binding site restricting the movement of the L1 stalk. In conclusion, the observed distinct binding properties of tigecycline may guide new pathways for drug design and therapy.
Collapse
Affiliation(s)
- Xiang Li
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Mengjiao Wang
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Timo Denk
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Robert Buschauer
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Yi Li
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Roland Beckmann
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Jingdong Cheng
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Cai M, Shen H, Xing Y, Wang W, Guan F, Luo Y. Starvation-induced changes in the proteome and transcriptome of the salivary glands of leech (Hirudo nipponia). PLoS One 2024; 19:e0304453. [PMID: 38923974 PMCID: PMC11207150 DOI: 10.1371/journal.pone.0304453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Hirudo nipponia is an important medicinal animal in China. Its salivary gland secretions contain a variety of protein bioactive substances. Investigations of its salivary glands are of great significance in the study of the medicinal value and mechanism of leech secretions. Illumina RNA-Seq technology was used to perform transcriptome sequencing of salivary gland tissue of H. nipponia under starvation (D30) and fed (D0) states. A total of 2,650 differentially expressed genes (DEGs) were screened. Using the label-free protein quantification technique and bioinformatics analysis, the expression of differentially expressed proteins (DEPs) in the salivary gland tissue of H. nipponia was compared. A total of 2,021 proteins were identified, among which 181 proteins were differentially expressed between the starvation and fed states, with 72 significantly upregulated and 109 significantly downregulated. The salivary glands of H. nipponia synthesized protein-based active substances after 30 days of starvation and adapted to the starvation environment by weakening respiratory activity and reducing metabolic activity to reduce energy expenditure. Energy was produced by glycolysis and the tricarboxylic acid cycle for the synthesis of substances such as antibiotics. This study combined transcriptome and proteome sequencing data to provide a data reference for an in-depth study of the regulatory mechanism of salivary gland secretions of H. nipponia under starvation stress by analyzing DEGs and DEPs.
Collapse
Affiliation(s)
- Meixiang Cai
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Hongying Shen
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yueting Xing
- Women’s Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weimin Wang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Feng Guan
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Yuanyuan Luo
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Wang Y, Tu J, Wu W, Xu Y, Li Y, Pan X, Liu B, Lu T, Han Q, Zhang H, Jiao L, Zhang Y, Yu XY, Shen Z, Li Y. The orchestration of cell-cycle reentry and ribosome biogenesis network is critical for cardiac repair. Theranostics 2024; 14:3927-3944. [PMID: 38994017 PMCID: PMC11234283 DOI: 10.7150/thno.96460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
Rationale: Myocardial infarction (MI) is a severe global clinical condition with widespread prevalence. The adult mammalian heart's limited capacity to generate new cardiomyocytes (CMs) in response to injury remains a primary obstacle in developing effective therapies. Current approaches focus on inducing the proliferation of existing CMs through cell-cycle reentry. However, this method primarily elevates cyclin dependent kinase 6 (CDK6) and DNA content, lacking proper cytokinesis and resulting in the formation of dysfunctional binucleated CMs. Cytokinesis is dependent on ribosome biogenesis (Ribo-bio), a crucial process modulated by nucleolin (Ncl). Our objective was to identify a novel approach that promotes both DNA synthesis and cytokinesis. Methods: Various techniques, including RNA/protein-sequencing analysis, Ribo-Halo, Ribo-disome, flow cytometry, and cardiac-specific tumor-suppressor retinoblastoma-1 (Rb1) knockout mice, were employed to assess the series signaling of proliferation/cell-cycle reentry and Ribo-bio/cytokinesis. Echocardiography, confocal imaging, and histology were utilized to evaluate cardiac function. Results: Analysis revealed significantly elevated levels of Rb1, bur decreased levels of circASXL1 in the hearts of MI mice compared to control mice. Deletion of Rb1 induces solely cell-cycle reentry, while augmenting the Ribo-bio modulator Ncl leads to cytokinesis. Mechanically, bioinformatics and the loss/gain studies uncovered that circASXL1/CDK6/Rb1 regulates cell-cycle reentry. Moreover, Ribo-Halo, Ribo-disome and circRNA pull-down assays demonstrated that circASXL1 promotes cytokinesis through Ncl/Ribo-bio. Importantly, exosomes derived from umbilical cord mesenchymal stem cells (UMSC-Exo) had the ability to enhance cardiac function by facilitating the coordinated signaling of cell-cycle reentry and Ribo-bio/cytokinesis. These effects were attenuated by silencing circASXL1 in UMSC-Exo. Conclusion: The series signaling of circASXL1/CDK6/Rb1/cell-cycle reentry and circASXL1/Ncl/Ribo-bio/cytokinesis plays a crucial role in cardiac repair. UMSC-Exo effectively repairs infarcted myocardium by stimulating CM cell-cycle reentry and cytokinesis in a circASXL1-dependent manner. This study provides innovative therapeutic strategies targeting the circASXL1 signaling network for MI and offering potential avenues for enhanced cardiac repair.
Collapse
Affiliation(s)
- Yanli Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Junchu Tu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Weiliang Wu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yan Xu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P. R. China
| | - Yujie Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiangbin Pan
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Key Laboratory of Cardiovascular Apparatus Innovation, Beijing 100037, P. R. China
| | - Bin Liu
- Department of Cardiology, the Second Hospital of Jilin University, Changchun, Jilin 130041, P. R. China
| | - Tonggan Lu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Qingfang Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Huiling Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Lijuan Jiao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yu Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the NMPA State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yangxin Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
27
|
Yi SA, Sepic S, Schulman BA, Ordureau A, An H. mTORC1-CTLH E3 ligase regulates the degradation of HMG-CoA synthase 1 through the Pro/N-degron pathway. Mol Cell 2024; 84:2166-2184.e9. [PMID: 38788716 PMCID: PMC11186538 DOI: 10.1016/j.molcel.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/15/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Mammalian target of rapamycin (mTOR) senses changes in nutrient status and stimulates the autophagic process to recycle amino acids. However, the impact of nutrient stress on protein degradation beyond autophagic turnover is incompletely understood. We report that several metabolic enzymes are proteasomal targets regulated by mTOR activity based on comparative proteome degradation analysis. In particular, 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) synthase 1 (HMGCS1), the initial enzyme in the mevalonate pathway, exhibits the most significant half-life adaptation. Degradation of HMGCS1 is regulated by the C-terminal to LisH (CTLH) E3 ligase through the Pro/N-degron motif. HMGCS1 is ubiquitylated on two C-terminal lysines during mTORC1 inhibition, and efficient degradation of HMGCS1 in cells requires a muskelin adaptor. Importantly, modulating HMGCS1 abundance has a dose-dependent impact on cell proliferation, which is restored by adding a mevalonate intermediate. Overall, our unbiased degradomics study provides new insights into mTORC1 function in cellular metabolism: mTORC1 regulates the stability of limiting metabolic enzymes through the ubiquitin system.
Collapse
Affiliation(s)
- Sang Ah Yi
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sara Sepic
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany; Technical University of Munich, School of Natural Sciences, Munich, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany; Technical University of Munich, School of Natural Sciences, Munich, Germany; Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Heeseon An
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-Institutional PhD Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
28
|
Anastas V, Chavdoula E, La Ferlita A, Soysal B, Cosentini I, Nigita G, Kearse MG, Tsichlis PN. KDM2B is required for ribosome biogenesis and its depletion unequally affects mRNA translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595403. [PMID: 38826406 PMCID: PMC11142201 DOI: 10.1101/2024.05.22.595403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
KDM2B is a JmjC domain lysine demethylase, which promotes cell immortalization, stem cell self-renewal and tumorigenesis. Here we employed a multi-omics strategy to address its role in ribosome biogenesis and mRNA translation. These processes are required to sustain cell proliferation, an important cancer hallmark. Contrary to earlier observations, KDM2B promotes ribosome biogenesis by stimulating the transcription of genes encoding ribosome biogenesis factors and ribosomal proteins, particularly those involved in the biogenesis of the 40S ribosomal subunits. Knockdown of KDM2B impaired the assembly of the small and large subunit processomes, as evidenced by specific defects in pre-ribosomal RNA processing. The final outcome was a decrease in the rate of ribosome assembly and in the abundance of ribosomes, and inhibition of mRNA translation. The inhibition of translation was distributed unequally among mRNAs with different features, suggesting that mRNA-embedded properties influence how mRNAs interpret ribosome abundance. This study identified a novel mechanism contributing to the regulation of translation and provided evidence for a rich biology elicited by a pathway that depends on KDM2B, and perhaps other regulators of translation.
Collapse
Affiliation(s)
- Vollter Anastas
- Tufts Graduate School of Biomedical Sciences, Program in Genetics, Boston, MA, United States
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Evangelia Chavdoula
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Alessandro La Ferlita
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Burak Soysal
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Ilaria Cosentini
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Michael G. Kearse
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Philip N. Tsichlis
- Tufts Graduate School of Biomedical Sciences, Program in Genetics, Boston, MA, United States
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
29
|
Fangma Y, Chen Z, Zheng Y. Flexible Atg1/ULK complex composition activates selective autophagy for phosphate starvation. Cell Mol Biol Lett 2024; 29:85. [PMID: 38834954 PMCID: PMC11151501 DOI: 10.1186/s11658-024-00597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
The molecular basis for bulk autophagy activation due to a deficiency in essential nutrients such as carbohydrates, amino acids, and nitrogen is well understood. Given autophagy functions to reduce surplus to compensate for scarcity, it theoretically possesses the capability to selectively degrade specific substrates to meet distinct metabolic demands. However, direct evidence is still lacking that substantiates the idea that autophagy selectively targets specific substrates (known as selective autophagy) to address particular nutritional needs. Recently, Gross et al. found that during phosphate starvation (P-S), rather than nitrogen starvation (N-S), yeasts selectively eliminate peroxisomes by dynamically altering the composition of the Atg1/ULK kinase complex (AKC) to adapt to P-S. This study elucidates how the metabolite sensor Pho81 flexibly interacts with AKC and guides selective autophagic clearance of peroxisomes during P-S, providing novel insights into the metabolic contribution of autophagy to special nutritional needs.
Collapse
Affiliation(s)
- Yijia Fangma
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
30
|
Sirozh O, Saez-Mas A, Jung B, Sanchez-Burgos L, Zarzuela E, Rodrigo-Perez S, Ventoso I, Lafarga V, Fernandez-Capetillo O. Nucleolar stress caused by arginine-rich peptides triggers a ribosomopathy and accelerates aging in mice. Mol Cell 2024; 84:1527-1540.e7. [PMID: 38521064 DOI: 10.1016/j.molcel.2024.02.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
Nucleolar stress (NS) has been associated with age-related diseases such as cancer or neurodegeneration. To investigate how NS triggers toxicity, we used (PR)n arginine-rich peptides present in some neurodegenerative diseases as inducers of this perturbation. We here reveal that whereas (PR)n expression leads to a decrease in translation, this occurs concomitant with an accumulation of free ribosomal (r) proteins. Conversely, (PR)n-resistant cells have lower rates of r-protein synthesis, and targeting ribosome biogenesis by mTOR inhibition or MYC depletion alleviates (PR)n toxicity in vitro. In mice, systemic expression of (PR)97 drives widespread NS and accelerated aging, which is alleviated by rapamycin. Notably, the generalized accumulation of orphan r-proteins is a common outcome of chemical or genetic perturbations that induce NS. Together, our study presents a general model to explain how NS induces cellular toxicity and provides in vivo evidence supporting a role for NS as a driver of aging in mammals.
Collapse
Affiliation(s)
- Oleksandra Sirozh
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Anabel Saez-Mas
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Bomi Jung
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 21 Stockholm, Sweden
| | - Laura Sanchez-Burgos
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Eduardo Zarzuela
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Sara Rodrigo-Perez
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Ivan Ventoso
- Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Departamento de Biologia Molecular, Universidad Autonoma de Madrid (UAM), Madrid, Spain
| | - Vanesa Lafarga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain.
| | - Oscar Fernandez-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain; Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 21 Stockholm, Sweden.
| |
Collapse
|
31
|
Sklias A, Cruciani S, Marchand V, Spagnuolo M, Lavergne G, Bourguignon V, Brambilla A, Dreos R, Marygold S, Novoa E, Motorin Y, Roignant JY. Comprehensive map of ribosomal 2'-O-methylation and C/D box snoRNAs in Drosophila melanogaster. Nucleic Acids Res 2024; 52:2848-2864. [PMID: 38416577 PMCID: PMC11014333 DOI: 10.1093/nar/gkae139] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024] Open
Abstract
During their maturation, ribosomal RNAs (rRNAs) are decorated by hundreds of chemical modifications that participate in proper folding of rRNA secondary structures and therefore in ribosomal function. Along with pseudouridine, methylation of the 2'-hydroxyl ribose moiety (Nm) is the most abundant modification of rRNAs. The majority of Nm modifications in eukaryotes are placed by Fibrillarin, a conserved methyltransferase belonging to a ribonucleoprotein complex guided by C/D box small nucleolar RNAs (C/D box snoRNAs). These modifications impact interactions between rRNAs, tRNAs and mRNAs, and some are known to fine tune translation rates and efficiency. In this study, we built the first comprehensive map of Nm sites in Drosophila melanogaster rRNAs using two complementary approaches (RiboMethSeq and Nanopore direct RNA sequencing) and identified their corresponding C/D box snoRNAs by whole-transcriptome sequencing. We de novo identified 61 Nm sites, from which 55 are supported by both sequencing methods, we validated the expression of 106 C/D box snoRNAs and we predicted new or alternative rRNA Nm targets for 31 of them. Comparison of methylation level upon different stresses show only slight but specific variations, indicating that this modification is relatively stable in D. melanogaster. This study paves the way to investigate the impact of snoRNA-mediated 2'-O-methylation on translation and proteostasis in a whole organism.
Collapse
Affiliation(s)
- Athena Sklias
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Sonia Cruciani
- Center For Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, Epitranscriptomics and RNA sequencing (EpiRNA-Seq) Core Facility (UAR2008/US40 IBSLor) and UMR7365 IMoPA, Nancy, France
| | - Mariangela Spagnuolo
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Guillaume Lavergne
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Valérie Bourguignon
- Université de Lorraine, CNRS, INSERM, Epitranscriptomics and RNA sequencing (EpiRNA-Seq) Core Facility (UAR2008/US40 IBSLor) and UMR7365 IMoPA, Nancy, France
| | - Alessandro Brambilla
- Proteomics and Modomics Experimental Core (PROMEC), Norwegian University of Science and Technology and the Central Norway Regional Health Authority, Trondheim, Norway
| | - René Dreos
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Steven J Marygold
- FlyBase, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Eva Maria Novoa
- Center For Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
- University Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, Epitranscriptomics and RNA sequencing (EpiRNA-Seq) Core Facility (UAR2008/US40 IBSLor) and UMR7365 IMoPA, Nancy, France
| | - Jean-Yves Roignant
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| |
Collapse
|
32
|
Hoyer MJ, Capitanio C, Smith IR, Paoli JC, Bieber A, Jiang Y, Paulo JA, Gonzalez-Lozano MA, Baumeister W, Wilfling F, Schulman BA, Harper JW. Combinatorial selective ER-phagy remodels the ER during neurogenesis. Nat Cell Biol 2024; 26:378-392. [PMID: 38429475 PMCID: PMC10940164 DOI: 10.1038/s41556-024-01356-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/11/2024] [Indexed: 03/03/2024]
Abstract
The endoplasmic reticulum (ER) employs a diverse proteome landscape to orchestrate many cellular functions, ranging from protein and lipid synthesis to calcium ion flux and inter-organelle communication. A case in point concerns the process of neurogenesis, where a refined tubular ER network is assembled via ER shaping proteins into the newly formed neuronal projections to create highly polarized dendrites and axons. Previous studies have suggested a role for autophagy in ER remodelling, as autophagy-deficient neurons in vivo display axonal ER accumulation within synaptic boutons, and the membrane-embedded ER-phagy receptor FAM134B has been genetically linked with human sensory and autonomic neuropathy. However, our understanding of the mechanisms underlying selective removal of the ER and the role of individual ER-phagy receptors is limited. Here we combine a genetically tractable induced neuron (iNeuron) system for monitoring ER remodelling during in vitro differentiation with proteomic and computational tools to create a quantitative landscape of ER proteome remodelling via selective autophagy. Through analysis of single and combinatorial ER-phagy receptor mutants, we delineate the extent to which each receptor contributes to both the magnitude and selectivity of ER protein clearance. We define specific subsets of ER membrane or lumenal proteins as preferred clients for distinct receptors. Using spatial sensors and flux reporters, we demonstrate receptor-specific autophagic capture of ER in axons, and directly visualize tubular ER membranes within autophagosomes in neuronal projections by cryo-electron tomography. This molecular inventory of ER proteome remodelling and versatile genetic toolkit provide a quantitative framework for understanding the contributions of individual ER-phagy receptors for reshaping ER during cell state transitions.
Collapse
Affiliation(s)
- Melissa J Hoyer
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Cristina Capitanio
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ian R Smith
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Velia Therapeutics, San Diego, CA, USA
| | - Julia C Paoli
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Anna Bieber
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Yizhi Jiang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Miguel A Gonzalez-Lozano
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Wolfgang Baumeister
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Florian Wilfling
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Brenda A Schulman
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
33
|
DaRosa PA, Penchev I, Gumbin SC, Scavone F, Wąchalska M, Paulo JA, Ordureau A, Peter JJ, Kulathu Y, Harper JW, Becker T, Beckmann R, Kopito RR. UFM1 E3 ligase promotes recycling of 60S ribosomal subunits from the ER. Nature 2024; 627:445-452. [PMID: 38383785 PMCID: PMC11469336 DOI: 10.1038/s41586-024-07073-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024]
Abstract
Reversible modification of target proteins by ubiquitin and ubiquitin-like proteins (UBLs) is widely used by eukaryotic cells to control protein fate and cell behaviour1. UFM1 is a UBL that predominantly modifies a single lysine residue on a single ribosomal protein, uL24 (also called RPL26), on ribosomes at the cytoplasmic surface of the endoplasmic reticulum (ER)2,3. UFM1 conjugation (UFMylation) facilitates the rescue of 60S ribosomal subunits (60S) that are released after ribosome-associated quality-control-mediated splitting of ribosomes that stall during co-translational translocation of secretory proteins into the ER3,4. Neither the molecular mechanism by which the UFMylation machinery achieves such precise target selection nor how this ribosomal modification promotes 60S rescue is known. Here we show that ribosome UFMylation in vivo occurs on free 60S and we present sequential cryo-electron microscopy snapshots of the heterotrimeric UFM1 E3 ligase (E3(UFM1)) engaging its substrate uL24. E3(UFM1) binds the L1 stalk, empty transfer RNA-binding sites and the peptidyl transferase centre through carboxy-terminal domains of UFL1, which results in uL24 modification more than 150 Å away. After catalysing UFM1 transfer, E3(UFM1) remains stably bound to its product, UFMylated 60S, forming a C-shaped clamp that extends all the way around the 60S from the transfer RNA-binding sites to the polypeptide tunnel exit. Our structural and biochemical analyses suggest a role for E3(UFM1) in post-termination release and recycling of the large ribosomal subunit from the ER membrane.
Collapse
Affiliation(s)
- Paul A DaRosa
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Ivan Penchev
- Department of Biochemistry, Gene Center, University of Munich, Munich, Germany
| | | | | | - Magda Wąchalska
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joshua J Peter
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dundee, UK
| | - Yogesh Kulathu
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dundee, UK
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Thomas Becker
- Department of Biochemistry, Gene Center, University of Munich, Munich, Germany
| | - Roland Beckmann
- Department of Biochemistry, Gene Center, University of Munich, Munich, Germany.
| | - Ron R Kopito
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
34
|
Jia X, He X, Huang C, Li J, Dong Z, Liu K. Protein translation: biological processes and therapeutic strategies for human diseases. Signal Transduct Target Ther 2024; 9:44. [PMID: 38388452 PMCID: PMC10884018 DOI: 10.1038/s41392-024-01749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
Protein translation is a tightly regulated cellular process that is essential for gene expression and protein synthesis. The deregulation of this process is increasingly recognized as a critical factor in the pathogenesis of various human diseases. In this review, we discuss how deregulated translation can lead to aberrant protein synthesis, altered cellular functions, and disease progression. We explore the key mechanisms contributing to the deregulation of protein translation, including functional alterations in translation factors, tRNA, mRNA, and ribosome function. Deregulated translation leads to abnormal protein expression, disrupted cellular signaling, and perturbed cellular functions- all of which contribute to disease pathogenesis. The development of ribosome profiling techniques along with mass spectrometry-based proteomics, mRNA sequencing and single-cell approaches have opened new avenues for detecting diseases related to translation errors. Importantly, we highlight recent advances in therapies targeting translation-related disorders and their potential applications in neurodegenerative diseases, cancer, infectious diseases, and cardiovascular diseases. Moreover, the growing interest lies in targeted therapies aimed at restoring precise control over translation in diseased cells is discussed. In conclusion, this comprehensive review underscores the critical role of protein translation in disease and its potential as a therapeutic target. Advancements in understanding the molecular mechanisms of protein translation deregulation, coupled with the development of targeted therapies, offer promising avenues for improving disease outcomes in various human diseases. Additionally, it will unlock doors to the possibility of precision medicine by offering personalized therapies and a deeper understanding of the molecular underpinnings of diseases in the future.
Collapse
Affiliation(s)
- Xuechao Jia
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Xinyu He
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Chuntian Huang
- Department of Pathology and Pathophysiology, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Jian Li
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, Henan, 450052, China.
- Research Center for Basic Medicine Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, 450000, China.
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, Henan, 450052, China.
- Research Center for Basic Medicine Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, 450000, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, 450000, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450000, China.
| |
Collapse
|
35
|
Mao Y, Qian SB. Making sense of mRNA translational "noise". Semin Cell Dev Biol 2024; 154:114-122. [PMID: 36925447 PMCID: PMC10500040 DOI: 10.1016/j.semcdb.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023]
Abstract
The importance of translation fidelity has been apparent since the discovery of genetic code. It is commonly believed that translation deviating from the main coding region is to be avoided at all times inside cells. However, ribosome profiling and mass spectrometry have revealed pervasive noncanonical translation. Both the scope and origin of translational "noise" are just beginning to be appreciated. Although largely overlooked, those translational "noises" are associated with a wide range of cellular functions, such as producing unannotated protein products. Furthermore, the dynamic nature of translational "noise" is responsive to stress conditions, highlighting the beneficial effect of translational "noise" in stress adaptation. Mechanistic investigation of translational "noise" will provide better insight into the mechanisms of translational regulation. Ultimately, they are not "noise" at all but represent a signature of cellular activities under pathophysiological conditions. Deciphering translational "noise" holds the therapeutic and diagnostic potential in a wide spectrum of human diseases.
Collapse
Affiliation(s)
- Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
36
|
Diehl FF, Sapp KM, Vander Heiden MG. The bidirectional relationship between metabolism and cell cycle control. Trends Cell Biol 2024; 34:136-149. [PMID: 37385879 DOI: 10.1016/j.tcb.2023.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023]
Abstract
The relationship between metabolism and cell cycle progression is complex and bidirectional. Cells must rewire metabolism to meet changing biosynthetic demands across cell cycle phases. In turn, metabolism can influence cell cycle progression through direct regulation of cell cycle proteins, through nutrient-sensing signaling pathways, and through its impact on cell growth, which is linked to cell division. Furthermore, metabolism is a key player in mediating quiescence-proliferation transitions in physiologically important cell types, such as stem cells. How metabolism impacts cell cycle progression, exit, and re-entry, as well as how these processes impact metabolism, is not fully understood. Recent advances uncovering mechanistic links between cell cycle regulators and metabolic processes demonstrate a complex relationship between metabolism and cell cycle control, with many questions remaining.
Collapse
Affiliation(s)
- Frances F Diehl
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kiera M Sapp
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
37
|
Salazar Marcano DE, Savić ND, Declerck K, Abdelhameed SAM, Parac-Vogt TN. Reactivity of metal-oxo clusters towards biomolecules: from discrete polyoxometalates to metal-organic frameworks. Chem Soc Rev 2024; 53:84-136. [PMID: 38015569 DOI: 10.1039/d3cs00195d] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Metal-oxo clusters hold great potential in several fields such as catalysis, materials science, energy storage, medicine, and biotechnology. These nanoclusters of transition metals with oxygen-based ligands have also shown promising reactivity towards several classes of biomolecules, including proteins, nucleic acids, nucleotides, sugars, and lipids. This reactivity can be leveraged to address some of the most pressing challenges we face today, from fighting various diseases, such as cancer and viral infections, to the development of sustainable and environmentally friendly energy sources. For instance, metal-oxo clusters and related materials have been shown to be effective catalysts for biomass conversion into renewable fuels and platform chemicals. Furthermore, their reactivity towards biomolecules has also attracted interest in the development of inorganic drugs and bioanalytical tools. Additionally, the structural versatility of metal-oxo clusters allows for the efficiency and selectivity of the biomolecular reactions they promote to be readily tuned, thereby providing a pathway towards reaction optimization. The properties of the catalyst can also be improved through incorporation into solid supports or by linking metal-oxo clusters together to form Metal-Organic Frameworks (MOFs), which have been demonstrated to be powerful heterogeneous catalysts. Therefore, this review aims to provide a comprehensive and critical analysis of the state of the art on biomolecular transformations promoted by metal-oxo clusters and their applications, with a particular focus on structure-activity relationships.
Collapse
Affiliation(s)
| | - Nada D Savić
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Kilian Declerck
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | | |
Collapse
|
38
|
Dönig J, Mende H, Davila Gallesio J, Wagner K, Hotz P, Schunck K, Piller T, Hölper S, Uhan S, Kaulich M, Wirth M, Keller U, Tascher G, Bohnsack KE, Müller S. Characterization of nucleolar SUMO isopeptidases unveils a general p53-independent checkpoint of impaired ribosome biogenesis. Nat Commun 2023; 14:8121. [PMID: 38065954 PMCID: PMC10709353 DOI: 10.1038/s41467-023-43751-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Ribosome biogenesis is a multi-step process, in which a network of trans-acting factors ensures the coordinated assembly of pre-ribosomal particles in order to generate functional ribosomes. Ribosome biogenesis is tightly coordinated with cell proliferation and its perturbation activates a p53-dependent cell-cycle checkpoint. How p53-independent signalling networks connect impaired ribosome biogenesis to the cell-cycle machinery has remained largely enigmatic. We demonstrate that inactivation of the nucleolar SUMO isopeptidases SENP3 and SENP5 disturbs distinct steps of 40S and 60S ribosomal subunit assembly pathways, thereby triggering the canonical p53-dependent impaired ribosome biogenesis checkpoint. However, inactivation of SENP3 or SENP5 also induces a p53-independent checkpoint that converges on the specific downregulation of the key cell-cycle regulator CDK6. We further reveal that impaired ribosome biogenesis generally triggers the downregulation of CDK6, independent of the cellular p53 status. Altogether, these data define the role of SUMO signalling in ribosome biogenesis and unveil a p53-independent checkpoint of impaired ribosome biogenesis.
Collapse
Affiliation(s)
- Judith Dönig
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Hannah Mende
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Jimena Davila Gallesio
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Kristina Wagner
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Paul Hotz
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Kathrin Schunck
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- PharmBioTec gGmbH, Schiffweiler, Germany
| | - Tanja Piller
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Sanofi AG, Frankfurt, Germany
| | - Soraya Hölper
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Sanofi AG, Frankfurt, Germany
| | - Sara Uhan
- Department of Hematology, Oncology and Cancer Immunology (Campus Benjamin Franklin), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Max Delbrück Center, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Manuel Kaulich
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Matthias Wirth
- Department of Hematology, Oncology and Cancer Immunology (Campus Benjamin Franklin), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Max Delbrück Center, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology and Cancer Immunology (Campus Benjamin Franklin), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Max Delbrück Center, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Stefan Müller
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
39
|
Zhai H, Wang T, Liu D, Pan L, Sun Y, Qiu HJ. Autophagy as a dual-faced host response to viral infections. Front Cell Infect Microbiol 2023; 13:1289170. [PMID: 38125906 PMCID: PMC10731275 DOI: 10.3389/fcimb.2023.1289170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Autophagy selectively degrades viral particles or cellular components, either facilitating or inhibiting viral replication. Conversely, most viruses have evolved strategies to escape or exploit autophagy. Moreover, autophagy collaborates with the pattern recognition receptor signaling, influencing the expression of adaptor molecules involved in the innate immune response and regulating the expression of interferons (IFNs). The intricate relationship between autophagy and IFNs plays a critical role in the host cell defense against microbial invasion. Therefore, it is important to summarize the interactions between viral infections, autophagy, and the host defense mechanisms against viruses. This review specifically focuses on the interactions between autophagy and IFN pathways during viral infections, providing a comprehensive summary of the molecular mechanisms utilized or evaded by different viruses.
Collapse
Affiliation(s)
| | | | | | | | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
40
|
Cheruiyot A, Hollister-Lock J, Sullivan B, Pan H, Dreyfuss JM, Bonner-Weir S, Schaffer JE. Sustained hyperglycemia specifically targets translation of mRNAs for insulin secretion. J Clin Invest 2023; 134:e173280. [PMID: 38032734 PMCID: PMC10849759 DOI: 10.1172/jci173280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
Pancreatic β cells are specialized for coupling glucose metabolism to insulin peptide production and secretion. Acute glucose exposure robustly and coordinately increases translation of proinsulin and proteins required for secretion of mature insulin peptide. By contrast, chronically elevated glucose levels that occur during diabetes impair β cell insulin secretion and have been shown experimentally to suppress insulin translation. Whether translation of other genes critical for insulin secretion is similarly downregulated by chronic high glucose is unknown. Here, we used high-throughput ribosome profiling and nascent proteomics in MIN6 insulinoma cells to elucidate the genome-wide impact of sustained high glucose on β cell mRNA translation. Before induction of ER stress or suppression of global translation, sustained high glucose suppressed glucose-stimulated insulin secretion and downregulated translation of not only insulin, but also mRNAs related to insulin secretory granule formation, exocytosis, and metabolism-coupled insulin secretion. Translation of these mRNAs was also downregulated in primary rat and human islets following ex vivo incubation with sustained high glucose and in an in vivo model of chronic mild hyperglycemia. Furthermore, translational downregulation decreased cellular abundance of these proteins. Our study uncovered a translational regulatory circuit during β cell glucose toxicity that impairs expression of proteins with critical roles in β cell function.
Collapse
|
41
|
Hoyer MJ, Capitanio C, Smith IR, Paoli JC, Bieber A, Jiang Y, Paulo JA, Gonzalez-Lozano MA, Baumeister W, Wilfling F, Schulman BA, Harper JW. Combinatorial selective ER-phagy remodels the ER during neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546565. [PMID: 37425907 PMCID: PMC10326971 DOI: 10.1101/2023.06.26.546565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The endoplasmic reticulum (ER) employs a diverse proteome landscape to orchestrate many cellular functions ranging from protein and lipid synthesis to calcium ion flux and inter-organelle communication. A case in point concerns the process of neurogenesis: a refined tubular ER network is assembled via ER shaping proteins into the newly formed neuronal projections to create highly polarized dendrites and axons. Previous studies have suggested a role for autophagy in ER remodeling, as autophagy-deficient neurons in vivo display axonal ER accumulation within synaptic boutons, and the membrane-embedded ER-phagy receptor FAM134B has been genetically linked with human sensory and autonomic neuropathy. However, our understanding of the mechanisms underlying selective removal of ER and the role of individual ER-phagy receptors is limited. Here, we combine a genetically tractable induced neuron (iNeuron) system for monitoring ER remodeling during in vitro differentiation with proteomic and computational tools to create a quantitative landscape of ER proteome remodeling via selective autophagy. Through analysis of single and combinatorial ER-phagy receptor mutants, we delineate the extent to which each receptor contributes to both magnitude and selectivity of ER protein clearance. We define specific subsets of ER membrane or lumenal proteins as preferred clients for distinct receptors. Using spatial sensors and flux reporters, we demonstrate receptor-specific autophagic capture of ER in axons, and directly visualize tubular ER membranes within autophagosomes in neuronal projections by cryo-electron tomography. This molecular inventory of ER proteome remodeling and versatile genetic toolkit provides a quantitative framework for understanding contributions of individual ER-phagy receptors for reshaping ER during cell state transitions.
Collapse
|
42
|
Mao Y, Jia L, Dong L, Shu XE, Qian SB. Start codon-associated ribosomal frameshifting mediates nutrient stress adaptation. Nat Struct Mol Biol 2023; 30:1816-1825. [PMID: 37957305 DOI: 10.1038/s41594-023-01119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 09/07/2023] [Indexed: 11/15/2023]
Abstract
A translating ribosome is typically thought to follow the reading frame defined by the selected start codon. Using super-resolution ribosome profiling, here we report pervasive out-of-frame translation immediately from the start codon. Start codon-associated ribosomal frameshifting (SCARF) stems from the slippage of ribosomes during the transition from initiation to elongation. Using a massively paralleled reporter assay, we uncovered sequence elements acting as SCARF enhancers or repressors, implying that start codon recognition is coupled with reading frame fidelity. This finding explains thousands of mass spectrometry spectra that are unannotated in the human proteome. Mechanistically, we find that the eukaryotic initiation factor 5B (eIF5B) maintains the reading frame fidelity by stabilizing initiating ribosomes. Intriguingly, amino acid starvation induces SCARF by proteasomal degradation of eIF5B. The stress-induced SCARF protects cells from starvation by enabling amino acid recycling and selective mRNA translation. Our findings illustrate a beneficial effect of translational 'noise' in nutrient stress adaptation.
Collapse
Affiliation(s)
- Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Longfei Jia
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Leiming Dong
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Xin Erica Shu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
43
|
Hickey KL, Swarup S, Smith IR, Paoli JC, Miguel Whelan E, Paulo JA, Harper JW. Proteome census upon nutrient stress reveals Golgiphagy membrane receptors. Nature 2023; 623:167-174. [PMID: 37757899 PMCID: PMC10620096 DOI: 10.1038/s41586-023-06657-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
During nutrient stress, macroautophagy degrades cellular macromolecules, thereby providing biosynthetic building blocks while simultaneously remodelling the proteome1,2. Although the machinery responsible for initiation of macroautophagy has been well characterized3,4, our understanding of the extent to which individual proteins, protein complexes and organelles are selected for autophagic degradation, and the underlying targeting mechanisms, is limited. Here we use orthogonal proteomic strategies to provide a spatial proteome census of autophagic cargo during nutrient stress in mammalian cells. We find that macroautophagy has selectivity for recycling membrane-bound organelles (principally Golgi and endoplasmic reticulum). Through autophagic cargo prioritization, we identify a complex of membrane-embedded proteins, YIPF3 and YIPF4, as receptors for Golgiphagy. During nutrient stress, YIPF3 and YIPF4 interact with ATG8 proteins through LIR motifs and are mobilized into autophagosomes that traffic to lysosomes in a process that requires the canonical autophagic machinery. Cells lacking YIPF3 or YIPF4 are selectively defective in elimination of a specific cohort of Golgi membrane proteins during nutrient stress. Moreover, YIPF3 and YIPF4 play an analogous role in Golgi remodelling during programmed conversion of stem cells to the neuronal lineage in vitro. Collectively, the findings of this study reveal prioritization of membrane protein cargo during nutrient-stress-dependent proteome remodelling and identify a Golgi remodelling pathway that requires membrane-embedded receptors.
Collapse
Affiliation(s)
- Kelsey L Hickey
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Sharan Swarup
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Casma Therapeutics, Cambridge, MA, USA
| | - Ian R Smith
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Velia Therapeutics, San Diego, CA, USA
| | - Julia C Paoli
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | | | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
44
|
Ali A, Garde R, Schaffer OC, Bard JAM, Husain K, Kik SK, Davis KA, Luengo-Woods S, Igarashi MG, Drummond DA, Squires AH, Pincus D. Adaptive preservation of orphan ribosomal proteins in chaperone-dispersed condensates. Nat Cell Biol 2023; 25:1691-1703. [PMID: 37845327 PMCID: PMC10868727 DOI: 10.1038/s41556-023-01253-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Ribosome biogenesis is among the most resource-intensive cellular processes, with ribosomal proteins accounting for up to half of all newly synthesized proteins in eukaryotic cells. During stress, cells shut down ribosome biogenesis in part by halting rRNA synthesis, potentially leading to massive accumulation of aggregation-prone 'orphan' ribosomal proteins (oRPs). Here we show that, during heat shock in yeast and human cells, oRPs accumulate as reversible peri-nucleolar condensates recognized by the Hsp70 co-chaperone Sis1/DnaJB6. oRP condensates are liquid-like in cell-free lysate but solidify upon depletion of Sis1 or inhibition of Hsp70. When cells recover from heat shock, oRP condensates disperse in a Sis1- and Hsp70-dependent manner, and the oRP constituents are incorporated into functional ribosomes in the cytosol, enabling cells to efficiently resume growth. Preserving biomolecules in reversible condensates-like mRNAs in cytosolic stress granules and oRPs at the nucleolar periphery-may be a primary function of the Hsp70 chaperone system.
Collapse
Affiliation(s)
- Asif Ali
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA.
| | - Rania Garde
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Olivia C Schaffer
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Jared A M Bard
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Kabir Husain
- Department of Physics, University of Chicago, Chicago, IL, USA
| | - Samantha Keyport Kik
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Kathleen A Davis
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Sofia Luengo-Woods
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Maya G Igarashi
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, USA
| | - D Allan Drummond
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Center for Physics of Evolving Systems, University of Chicago, Chicago, IL, USA
| | - Allison H Squires
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Center for Physics of Evolving Systems, University of Chicago, Chicago, IL, USA
| | - David Pincus
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
- Center for Physics of Evolving Systems, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
45
|
Cheruiyot A, Hollister-Lock J, Sullivan B, Pan H, Dreyfuss JM, Bonner-Weir S, Schaffer JE. Sustained hyperglycemia specifically targets translation of mRNAs for insulin secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560203. [PMID: 37808767 PMCID: PMC10557781 DOI: 10.1101/2023.09.29.560203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Pancreatic β-cells are specialized for coupling glucose metabolism to insulin peptide production and secretion. Acute glucose exposure robustly and coordinately increases translation of proinsulin and proteins required for secretion of mature insulin peptide. By contrast, chronically elevated glucose levels that occur during diabetes impair β-cell insulin secretion and have been shown experimentally to suppress insulin translation. Whether translation of other genes critical for insulin secretion are similarly downregulated by chronic high glucose is unknown. Here, we used high-throughput ribosome profiling and nascent proteomics in MIN6 insulinoma cells to elucidate the genome-wide impact of sustained high glucose on β-cell mRNA translation. Prior to induction of ER stress or suppression of global translation, sustained high glucose suppressed glucose-stimulated insulin secretion and downregulated translation of not only insulin, but also of mRNAs related to insulin secretory granule formation, exocytosis, and metabolism-coupled insulin secretion. Translation of these mRNAs was also downregulated in primary rat and human islets following ex-vivo incubation with sustained high glucose and in an in vivo model of chronic mild hyperglycemia. Furthermore, translational downregulation decreased cellular abundance of these proteins. Our findings uncover a translational regulatory circuit during β-cell glucose toxicity that impairs expression of proteins with critical roles in β-cell function.
Collapse
|
46
|
Jordan VN, Ordureau A, An H. Identifying E3 Ligase Substrates With Quantitative Degradation Proteomics. Chembiochem 2023; 24:e202300108. [PMID: 37166757 PMCID: PMC10548883 DOI: 10.1002/cbic.202300108] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/12/2023]
Abstract
Controlled protein degradation by the ubiquitin-proteasome pathway is critical for almost all cellular processes. E3 ubiquitin ligases are responsible for targeting proteins for ubiquitylation and subsequent proteasomal degradation with spatial and temporal precision. While studies have revealed various E3-substrate pairs involved in distinct biological processes, the complete substrate profiles of individual E3 ligases are largely unknown. Here we report a new approach to identify substrates of an E3 ligase for proteasomal degradation using unnatural amino acid incorporation pulse-chase proteomics (degradomics). Applying this approach, we determine the steady-state substrates of the C-terminal to LisH (CTLH) E3 ligase, a multi-component complex with poorly defined substrates. By comparing the proteome degradation profiles of active and inactive CTLH-expressing cells, we successfully identify previously known and new potential substrates of CTLH ligase. Altogether, degradomics can comprehensively identify degradation substrates of an E3 ligase, which can be adapted for other E3 ligases in various cellular contexts.
Collapse
Affiliation(s)
- Victoria N Jordan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Tri-Institutional PhD Program of Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Alban Ordureau
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Heeseon An
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Tri-Institutional PhD Program of Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10065, USA
| |
Collapse
|
47
|
Kraus F, Goodall EA, Smith IR, Jiang Y, Paoli JC, Adolf F, Zhang J, Paulo JA, Schulman BA, Harper JW. PARK15/FBXO7 is dispensable for PINK1/Parkin mitophagy in iNeurons and HeLa cell systems. EMBO Rep 2023; 24:e56399. [PMID: 37334901 PMCID: PMC10398645 DOI: 10.15252/embr.202256399] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/16/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023] Open
Abstract
The protein kinase PINK1 and ubiquitin ligase Parkin promote removal of damaged mitochondria via a feed-forward mechanism involving ubiquitin (Ub) phosphorylation (pUb), Parkin activation, and ubiquitylation of mitochondrial outer membrane proteins to support the recruitment of mitophagy receptors. The ubiquitin ligase substrate receptor FBXO7/PARK15 is mutated in an early-onset parkinsonian-pyramidal syndrome. Previous studies have proposed a role for FBXO7 in promoting Parkin-dependent mitophagy. Here, we systematically examine the involvement of FBXO7 in depolarization and mt UPR-dependent mitophagy in the well-established HeLa and induced-neurons cell systems. We find that FBXO7-/- cells have no demonstrable defect in: (i) kinetics of pUb accumulation, (ii) pUb puncta on mitochondria by super-resolution imaging, (iii) recruitment of Parkin and autophagy machinery to damaged mitochondria, (iv) mitophagic flux, and (v) mitochondrial clearance as quantified by global proteomics. Moreover, global proteomics of neurogenesis in the absence of FBXO7 reveals no obvious alterations in mitochondria or other organelles. These results argue against a general role for FBXO7 in Parkin-dependent mitophagy and point to the need for additional studies to define how FBXO7 mutations promote parkinsonian-pyramidal syndrome.
Collapse
Affiliation(s)
- Felix Kraus
- Department of Cell Biology, Blavatnik InstituteHarvard Medical SchoolBostonMAUSA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
| | - Ellen A Goodall
- Department of Cell Biology, Blavatnik InstituteHarvard Medical SchoolBostonMAUSA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
| | - Ian R Smith
- Department of Cell Biology, Blavatnik InstituteHarvard Medical SchoolBostonMAUSA
| | - Yizhi Jiang
- Department of Cell Biology, Blavatnik InstituteHarvard Medical SchoolBostonMAUSA
| | - Julia C Paoli
- Department of Cell Biology, Blavatnik InstituteHarvard Medical SchoolBostonMAUSA
| | - Frank Adolf
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
- Department of Molecular Machines and SignalingMax Planck Institute of BiochemistryMartinsriedGermany
| | - Jiuchun Zhang
- Department of Cell Biology, Blavatnik InstituteHarvard Medical SchoolBostonMAUSA
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik InstituteHarvard Medical SchoolBostonMAUSA
| | - Brenda A Schulman
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
- Department of Molecular Machines and SignalingMax Planck Institute of BiochemistryMartinsriedGermany
| | - J Wade Harper
- Department of Cell Biology, Blavatnik InstituteHarvard Medical SchoolBostonMAUSA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
| |
Collapse
|
48
|
Jonsson WO, Borowik AK, Pranay A, Kinter MT, Mirek ET, Levy JL, Snyder EM, Miller BF, Anthony TG. Kinetic proteomics identifies targeted changes in liver metabolism and the ribo-interactome by dietary sulfur amino acid restriction. GeroScience 2023; 45:2425-2441. [PMID: 36976488 PMCID: PMC10651627 DOI: 10.1007/s11357-023-00758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/19/2023] [Indexed: 03/29/2023] Open
Abstract
Dietary sulfur amino acid restriction (SAAR) protects against diet-induced obesity, extends healthspan, and coincides with an overall reduction in hepatic protein synthesis. To explore the underpinnings of SAAR-induced slowed growth and its impact on liver metabolism and proteostasis, we resolved changes in hepatic mRNA and protein abundances and compared synthesis rates of individual liver proteins. To achieve this, adult male mice were provided deuterium-labeled drinking water while freely consuming either a regular-fat or high-fat diet that was SAA restricted. Livers from these mice and their respective dietary controls were used to conduct transcriptomic, proteomic, and kinetic proteomic analyses. We found that remodeling of the transcriptome by SAAR was largely agnostic to dietary fat content. Shared signatures included activation of the integrated stress response alongside alterations in metabolic processes impacting lipids, fatty acids, and amino acids. Changes to the proteome correlated poorly with the transcriptome, and yet, functional clustering of kinetic proteomic changes in the liver during SAAR revealed that the management of fatty acids and amino acids were altered to support central metabolism and redox balance. Dietary SAAR also strongly influenced the synthesis rates of ribosomal proteins and ribosome-interacting proteins regardless of dietary fat. Taken together, dietary SAAR alters the transcriptome and proteome in the liver to safely manage increased fatty acid flux and energy use and couples this with targeted changes in the ribo-interactome to support proteostasis and slowed growth.
Collapse
Affiliation(s)
- William O Jonsson
- Department of Nutritional Sciences and the New Jersey Institute for Food, Nutrition and Health, Rutgers University, 59 Dudley Road - Foran Hall, Room 166, New Brunswick, NJ, 08901, USA
| | - Agnieszka K Borowik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Atul Pranay
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael T Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Emily T Mirek
- Department of Nutritional Sciences and the New Jersey Institute for Food, Nutrition and Health, Rutgers University, 59 Dudley Road - Foran Hall, Room 166, New Brunswick, NJ, 08901, USA
| | - Jordan L Levy
- Department of Nutritional Sciences and the New Jersey Institute for Food, Nutrition and Health, Rutgers University, 59 Dudley Road - Foran Hall, Room 166, New Brunswick, NJ, 08901, USA
| | - Elizabeth M Snyder
- Department of Animal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City VA, Oklahoma City, OK, USA
| | - Tracy G Anthony
- Department of Nutritional Sciences and the New Jersey Institute for Food, Nutrition and Health, Rutgers University, 59 Dudley Road - Foran Hall, Room 166, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
49
|
Ju D, Li L, Xie Y. Homeostatic regulation of ribosomal proteins by ubiquitin-independent cotranslational degradation. Proc Natl Acad Sci U S A 2023; 120:e2306152120. [PMID: 37459537 PMCID: PMC10372694 DOI: 10.1073/pnas.2306152120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Ribosomes are the workplace for protein biosynthesis. Protein production required for normal cell function is tightly linked to ribosome abundance. It is well known that ribosomal genes are actively transcribed and ribosomal messenger RNAs (mRNAs) are rapidly translated, and yet ribosomal proteins have relatively long half-lives. These observations raise questions as to how homeostasis of ribosomal proteins is controlled. Here, we show that ribosomal proteins, while posttranslationally stable, are subject to high-level cotranslational protein degradation (CTPD) except for those synthesized as ubiquitin (Ub) fusion precursors. The N-terminal Ub moiety protects fused ribosomal proteins from CTPD. We further demonstrate that cotranslational folding efficiency and expression level are two critical factors determining CTPD of ribosomal proteins. Different from canonical posttranslational degradation, we found that CTPD of all the ribosomal proteins tested in this study does not require prior ubiquitylation. This work provides insights into the regulation of ribosomal protein homeostasis and furthers our understanding of the mechanism and biological significance of CTPD.
Collapse
Affiliation(s)
- Donghong Ju
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI48201
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI48201
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI48201
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI48201
| | - Li Li
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI48201
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI48201
| | - Youming Xie
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI48201
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI48201
| |
Collapse
|
50
|
Liu S, Chen M, Wang Y, Lei Y, Huang T, Zhang Y, Lam SM, Li H, Qi S, Geng J, Lu K. The ER calcium channel Csg2 integrates sphingolipid metabolism with autophagy. Nat Commun 2023; 14:3725. [PMID: 37349354 PMCID: PMC10287731 DOI: 10.1038/s41467-023-39482-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Sphingolipids are ubiquitous components of membranes and function as bioactive lipid signaling molecules. Here, through genetic screening and lipidomics analyses, we find that the endoplasmic reticulum (ER) calcium channel Csg2 integrates sphingolipid metabolism with autophagy by regulating ER calcium homeostasis in the yeast Saccharomyces cerevisiae. Csg2 functions as a calcium release channel and maintains calcium homeostasis in the ER, which enables normal functioning of the essential sphingolipid synthase Aur1. Under starvation conditions, deletion of Csg2 causes increases in calcium levels in the ER and then disturbs Aur1 stability, leading to accumulation of the bioactive sphingolipid phytosphingosine, which specifically and completely blocks autophagy and induces loss of starvation resistance in cells. Our findings indicate that calcium homeostasis in the ER mediated by the channel Csg2 translates sphingolipid metabolism into autophagy regulation, further supporting the role of the ER as a signaling hub for calcium homeostasis, sphingolipid metabolism and autophagy.
Collapse
Affiliation(s)
- Shiyan Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mutian Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China
| | - Yichang Wang
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuqing Lei
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Huang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yabin Zhang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- LipidALL Technologies Company Limited, Changzhou, 213022, China
| | - Huihui Li
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China.
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|