1
|
Lu W, Mu T, Ma Y, Gong L, Zhao L, Wang P, Bian Y. Chiral Molecular Rotors Based on Mixed (Phthalocyaninato)(Porphyrinato) Rare-Earth Triple-Decker Complexes. Inorg Chem 2025; 64:9322-9329. [PMID: 40293318 DOI: 10.1021/acs.inorgchem.5c01188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The effective control over the rotary motions of molecular rotors still remains an enormous challenge. Herein, mixed (phthalocyaninato)(porphyrinato) rare-earth triple-decker complexes (R)-/(S)-Eu and (R)-/(S)-Y have been designed and investigated as a new type of molecular rotors with a phthalocyanine ligand as the rotator and a strapped bisporphyrin ligand as the stator. The rotational rates and thermodynamic parameters of the rotors were determined through variable-temperature 1H NMR experiments, revealing a higher rotational rate and a reduced rotational barrier for (R)-Y, in comparison to those of (R)-Eu. Variable-temperature CD experiments demonstrated that these chiral molecular rotors exhibited temperature-dependent chiroptical properties. Upon elevating the temperature, the reduction of CD intensity is closely related to the conformational perturbation involving the increased rotational rate. The DFT calculation results further elucidate that the increased rotational rate of the phthalocyanine rotator in (R)-Y can be attributed to the reduced steric interaction between the phthalocyanine rotator and the binaphthol linkage of the bisporphyrin stator owing to the diminished radius from Eu(III) to Y(III). Thus, effective control over the rotary motions can be realized by tuning the steric interactions involving adjustment of center metal ions in this new type of molecular rotors.
Collapse
Affiliation(s)
- Wenxin Lu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tiantian Mu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yunjin Ma
- College of Environmental Science and Engineering, North China Electric Power University (Baoding), Baoding 071000, China
| | - Lei Gong
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Peng Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yongzhong Bian
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
2
|
Liang K, Nicoli F, Shehimy SA, Penocchio E, Di Noja S, Li Y, Bonfio C, Borsley S, Ragazzon G. Catalysis-driven Active Transport Across a Liquid Membrane. Angew Chem Int Ed Engl 2025; 64:e202421234. [PMID: 39918059 PMCID: PMC11976200 DOI: 10.1002/anie.202421234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/31/2025] [Indexed: 03/05/2025]
Abstract
Biology has mastered energy transduction, converting energy between various forms, and employing it to drive its vital processes. Central to this is the ability to use chemical energy for the active transport of substances, pumping ions and molecules across hydrophobic lipid membranes between aqueous (sub)cellular compartments. Biology employs information ratchet mechanisms, where kinetic asymmetry in the fuel-to-waste (i. e., substrate-to-product) conversion results in catalysis-driven active transport. Here, we report an artificial system for catalysis-driven active transport across a hydrophobic phase, pumping a maleic acid cargo between aqueous compartments. We employ two strategies to differentiate the conditions in either compartment, showing that active transport can be driven either by adding fuel to a single compartment, or by differentiating the rates of activation and/or hydrolysis when fuel is present in both compartments. We characterize the nonequilibrium system through complete kinetic analysis. Finally, we quantify the energy transduction achieved by the catalysis-driven active transport and establish the emergence of positive and negative feedback mechanisms within the system.
Collapse
Affiliation(s)
- Kaiyuan Liang
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)University of Strasbourg & CNRS, UMR 70068 Allée Gaspard Monge67000StrasbourgFR
| | - Federico Nicoli
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)University of Strasbourg & CNRS, UMR 70068 Allée Gaspard Monge67000StrasbourgFR
| | - Shaymaa Al Shehimy
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)University of Strasbourg & CNRS, UMR 70068 Allée Gaspard Monge67000StrasbourgFR
| | | | - Simone Di Noja
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)University of Strasbourg & CNRS, UMR 70068 Allée Gaspard Monge67000StrasbourgFR
| | - Yuhan Li
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)University of Strasbourg & CNRS, UMR 70068 Allée Gaspard Monge67000StrasbourgFR
| | - Claudia Bonfio
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)University of Strasbourg & CNRS, UMR 70068 Allée Gaspard Monge67000StrasbourgFR
- Strasbourg Institute for Advanced Studies (USIAS)University of Strasbourg5 allée du Général Rouvillois67000StrasbourgFR
- Department of BiochemistryUniversity of CambridgeCambridge CB21GAUK
| | - Stefan Borsley
- Department of ChemistryDurham University Lower MountjoyStockton RoadDurham DH1 3LEUK
| | - Giulio Ragazzon
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)University of Strasbourg & CNRS, UMR 70068 Allée Gaspard Monge67000StrasbourgFR
- Strasbourg Institute for Advanced Studies (USIAS)University of Strasbourg5 allée du Général Rouvillois67000StrasbourgFR
| |
Collapse
|
3
|
Wang PL, Olivieri E, Borsley S, Whitehead GFS, Hasija A, Leigh DA. A Catalysis-Driven Dual Molecular Motor. J Am Chem Soc 2025; 147:10690-10697. [PMID: 40094334 PMCID: PMC11951142 DOI: 10.1021/jacs.5c01275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/20/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Abstract
We report on a head-to-tail dual molecular motor consisting of two (identical) motor units whose pyrrole-2-carboxylic rings are turned in contra-rotary (i.e., disrotatory) fashion about a common phenyl-2,5-dicarboxylic acid stator. The motors directionally rotate via information ratchet mechanisms, in which the hydration of a carbodiimide (fuel) to form urea (waste) is catalyzed through the chemomechanical cycle of a motor unit, resulting in directional rotation about a biaryl C-N bond. The head-to-tail arrangement of the motor units produces coaxial contra-rotation of the end groups while the central phenyl ring of the axis remains dynamically unbiased. The electron-rich nature of the phenyl stator contributes to rotary catalysis by the dual-motor (and therefore motor rotation itself) being ∼7× faster than the parent 1-phenylpyrrole-2,2-dicarboxylic acid single-motor when operated under identical conditions, and 90× faster than the single-motor operated using the originally reported reaction conditions. Under batch-fueled operation (i.e., all of the fuel present at the start of motor operation), the dual-motor rotates at an initial rate of 0.43 rotations per minute (rpm). Chemostating the fuel concentration by syringe pump addition produced sustained repetitive contra-rotation at a rate of 0.24 rpm for a period of 100 min. The demonstration of chemically fueled continuous contra-rotation on a time scale of 2-4 min per rotation significantly advances the chemistry and mechanics of artificial catalysis-driven molecular machinery.
Collapse
Affiliation(s)
- Peng-Lai Wang
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Enzo Olivieri
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Stefan Borsley
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | | | - Avantika Hasija
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - David A. Leigh
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
4
|
Liu HK, Mrad TW, Troncossi A, Borsley S, Roberts BMW, Betts A, Leigh DA. Structural Influence of the Chemical Fueling System on a Catalysis-Driven Rotary Molecular Motor. J Am Chem Soc 2025; 147:8785-8795. [PMID: 40016865 PMCID: PMC11912321 DOI: 10.1021/jacs.5c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/16/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
Continuous directionally biased 360° rotation about a covalent single bond was recently realized in the form of a chemically fueled 1-phenylpyrrole 2,2'-dicarboxylic acid rotary molecular motor. However, the original fueling system and reaction conditions resulted in a motor directionality of only ∼3:1 (i.e., on average a backward rotation for every three forward rotations), along with a catalytic efficiency for the motor operation of 97% and a fuel efficiency of 14%. Here, we report on the efficacy of a series of chiral carbodiimide fuels and chiral hydrolysis promoters (pyridine and pyridine N-oxide derivatives) in driving improved directional rotation of this motor-molecule. We outline the complete reaction network for motor operation, composed of directional, futile, and slip cycles. Using derivatives of the motor where the final conformational step in the 360° rotation is either very slow or completely blocked, the phenylpyrrole diacid becomes enantiomerically enriched, allowing the kinetic gating of the individual steps in the catalytic cycle to be measured. The chiral carbodiimide fuel that produces the highest directionality gives 13% enantiomeric excess (e.e.) for the anhydride-forming kinetically gated step, while the most effective chiral hydrolysis promoter generates 90% e.e. for the kinetically gated hydrolysis step. Combining the best-performing fuel and hydrolysis promoter into a single fueling system results in a 92% e.e.. Under a dilute chemostated fueling regime (to avoid N-acyl urea formation at high carbodiimide concentrations with pyridine N-oxide hydrolysis promoters), the motor continuously rotates with a directionality of ∼24:1 (i.e., a backward rotation for every 24 forward rotations) with a catalytic efficiency of >99% and a fuel efficiency of 51%.
Collapse
Affiliation(s)
- Hua-Kui Liu
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Toufic W. Mrad
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Axel Troncossi
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Stefan Borsley
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | | | - Alexander Betts
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - David A. Leigh
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
- School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, China
| |
Collapse
|
5
|
Luan TR, Sun C, Tian YL, Jiang YK, Xi LL, Liu RR. Enantioselective construction of inherently chiral pillar[5]arenes via palladium-catalysed Suzuki-Miyaura cross-coupling. Nat Commun 2025; 16:2370. [PMID: 40064878 PMCID: PMC11893803 DOI: 10.1038/s41467-025-57461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Pillar[n]arenes have broad applications in biological medicine, materials science, and supramolecular gels. Notably, enantiopure pillar[5]arenes are valued for their roles in enantioselective host-guest recognition, chiral sensing, asymmetric catalysis, and related fields. Current methods for obtaining chiral pillar[n]arenes rely heavily on resolution agents or chiral HPLC resolution. However, the synthesis of these compounds via asymmetric catalysis remains challenging. In this study, we develop an asymmetric extended side-arm Suzuki-Miyaura cross-coupling strategy to construct inherently chiral pillar[5]arenes with excellent yields and high enantioselectivities using a palladium catalyst and a Sadphos ligand. The reaction scope extends beyond arylboronic acids to encompass 2-arylvinylboronic acids and other multi-OTf-substituted substrates, all efficiently producing the desired products. Further exploration of the synthetic applications, along with photophysical and chiroptical analyses, confirm the potential of these chiral pillar[5]arenes for diverse applications across multiple disciplines.
Collapse
Affiliation(s)
- Ting-Rui Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Che Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Yong-Le Tian
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Yu-Kun Jiang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Long-Long Xi
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China.
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China.
- College of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
6
|
Yang L, Wang F, Li Y, Zhou R, Li A, Wu T, Qiu M, Zhang L, Yang M, Zhou X, Jiang ZX, Chen S. Mechanical Interlocking of 144 Symmetrical 19F and Tetraphenylethylene for Magnetic Resonance-Fluorescence Dual Imaging. J Am Chem Soc 2025; 147:7137-7147. [PMID: 39949031 DOI: 10.1021/jacs.5c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Single-molecule dual 19F magnetic resonance imaging (19F MRI) and fluorescence imaging (FLI) agents are valuable tools in biomedical research. However, integrating millimolar-sensitivity 19F MRI and micromolar-sensitivity FLI into a single molecule remains challenging. Here, we report the use of mechanically interlocked [5]rotaxanes to efficiently incorporate 144 symmetrical fluorines (19F) for sensitive 19F MRI and to control the motion of tetraphenylethylene (TPE) for responsive FLI at the molecular level, yielding a dual imaging agent with micromolar sensitivity. The sensitivity gap between 19F MRI and FLI is bridged by generating an intense singlet 19F peak from 144 symmetrical 19F and modulating their motion through mechanical interlocking. Spectroscopic and imaging studies, in conjunction with molecular dynamics simulations, highlight the critical role of [5]rotaxane formation, wheel "stationing-shuttling", and the introduction of fluorous bulky perfluoro-tert-butoxymethyl (PFBM) groups as effective strategies to improve 19F MRI sensitivity and enable responsive FLI. This work not only advances the development of high-performance dual imaging agents but also provides valuable insights into the structure, dynamics, and potential applications of [5]rotaxanes in materials science.
Collapse
Affiliation(s)
- Lan Yang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fang Wang
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yu Li
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Rui Zhou
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Anfeng Li
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Tingjuan Wu
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Maosong Qiu
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lei Zhang
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Minghui Yang
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Xing Jiang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Xu H, Wang Q, Qi Z, Li X, Lei Y, An H, Tian H, Qu DH. Evolution of Supramolecular Coordination Assemblies Visually Monitored by Time-Dependent Multicolor Fluorescence. Angew Chem Int Ed Engl 2025; 64:e202420707. [PMID: 39617729 DOI: 10.1002/anie.202420707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024]
Abstract
Supramolecular coordination assemblies play an important role in both material science and biological systems. Despite significant efforts in their development, most existing examples are thermodynamically controlled, which lack the adaptability and autonomy essential for the creation of advanced materials. In this work, we have developed non-equilibrium coordination assembly systems that can evolve over time through a combination of thermodynamic and kinetic controls. The introduction of zinc ions resulted in the formation of metastable fiber assemblies in a kinetically trapped state, which autonomously converted to thermodynamically stable nanosheets over time. This evolution process can be regulated by external stimuli and visually monitored by the time-dependent multicolor fluorescence. The construction strategy was versatile across other various ions such as Ca2+, Mg2+, and Al3+, offering inspiring insights for the design of complex systems that operated both in and out of their thermodynamic equilibrium.
Collapse
Affiliation(s)
- Hanren Xu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qian Wang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhen Qi
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xianghao Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yifan Lei
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hongyu An
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
8
|
Wang R, Li Y, Yan S, Zhang Z, Lian C, Tian H, Li H. Reversible Isomerization of Stiff-Stilbene by an Oriented External Electric Field. J Am Chem Soc 2025; 147:2841-2848. [PMID: 39797786 DOI: 10.1021/jacs.4c16530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Understanding and effectively controlling molecular conformational changes are essential for developing responsive and dynamic molecular systems. Here, we report that an oriented external electric field (OEEF) is an effective catalyst for the cis-trans isomerization of stiff-stilbene, a key component of overcrowded alkene-based rotary motors. This reversible isomerization occurs under ambient conditions, is free from side reactions, and has been verified using ultraperformance liquid chromatography and UV-vis absorption spectroscopy. Low electric field promotes cis-to-trans conversion, and high electric field enables the reverse trans-to-cis process, demonstrating the precise reaction control through electric field manipulation. Density functional theory calculations reveal the mechanism of the electric-field-catalyzed cis-trans carbon-carbon double bond isomerization. Our findings provide a novel perspective on constructing OEEF-catalyzed, reversible molecular systems and pave the way for fully electrically driven artificial molecular machines.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yingjie Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Siyu Yan
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zekai Zhang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Cheng Lian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Hongxiang Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
9
|
Gisbert Y, Ovalle M, Stindt CN, Costil R, Feringa BL. Coupling Rotary Motion to Helicene Inversion within a Molecular Motor. Angew Chem Int Ed Engl 2025; 64:e202416097. [PMID: 39526696 PMCID: PMC11753609 DOI: 10.1002/anie.202416097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/21/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Towards complex coupled molecular motions, the remote handedness inversion of a helicene moiety was achieved by a rotary molecular motor. The use of a specifically engineered dynamic helicene stator in a novel overcrowded-alkene second-generation molecular motor based on a fluorinated dibenzofluorene fragment allows for an unprecedented control over helicity inversion. This is achieved by the mechanical coupling of the rotation of the rotor to the helicene inversion of the stator half via a remote chirality transmission process. Thus, the unidirectional rotary motion generated upon irradiation is used to invert the dynamic stereochemistry of a helicene, leading to a 6-step cycle with eight intermediates. In this cycle, both alternation between P and M configurations of the helicene stator and dynamic thermal interconversion (paddling motion) can be achieved. In-depth computational and spectroscopic studies were performed to support the associated mechanism. The control over coupled motion and dynamic helicity offers prospects for the development of complex responsive systems.
Collapse
Affiliation(s)
- Yohan Gisbert
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 39747 AGGroningen, TheNetherlands
| | - Marco Ovalle
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 39747 AGGroningen, TheNetherlands
| | - Charlotte N. Stindt
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 39747 AGGroningen, TheNetherlands
| | - Romain Costil
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 39747 AGGroningen, TheNetherlands
| | - Ben L. Feringa
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 39747 AGGroningen, TheNetherlands
| |
Collapse
|
10
|
Miyagishi HV, Masai H, Terao J. Bidirectional Molecular Motors by Controlling Threading and Dethreading Pathways of a Linked Rotaxane. Angew Chem Int Ed Engl 2025; 64:e202414307. [PMID: 39205329 PMCID: PMC11720386 DOI: 10.1002/anie.202414307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Artificial molecular motors have been presented as models for biological molecular motors. In contrast to the conventional artificial molecular motors that rely on covalent bond rotation, molecular motors with mechanically interlocked molecules (MIMs) have attracted considerable attention owing to their ability to generate significant rotational motion by dynamically shuttling macrocyclic components. The topology of MIM-type rotational molecular motors is currently limited to catenane structures, which require intricate synthetic procedures that typically produce a low synthetic yield. In this study, we develop a novel class of MIM-type molecular motors with a rotaxane-type topology. The switching of the threading/dethreading pathways of the linked rotaxane by protecting/deprotecting the bulky stopper group and changing the solvent polarity enables a net unidirectional rotation of the molecular motor. The threading/dethreading reaction rates were quantitatively evaluated through detailed spectroscopic investigations. Repeated net unidirectional rotation and switching of the direction of rotation were also achieved. Our findings demonstrate that linked rotaxanes can serve as MIM-type molecular motors with reversible rotational direction controlled by threading/dethreading reactions. These motors hold potential as components of molecular machinery.
Collapse
Affiliation(s)
- Hiromichi V. Miyagishi
- Department of Basic ScienceGraduate School of Arts and SciencesThe University of Tokyo3-8-1, KomabaMeguro-kuTokyo153-8902Japan
- Department of ChemistryFaculty of ScienceHokkaido UniversityKita-10 Nishi-8 Kita-kuSapporo060-0810Japan
| | - Hiroshi Masai
- Department of Basic ScienceGraduate School of Arts and SciencesThe University of Tokyo3-8-1, KomabaMeguro-kuTokyo153-8902Japan
- PRESTOJapan Science and Technology Agency4-1-8, HonchoKawaguchiSaitama332-0012Japan
| | - Jun Terao
- Department of Basic ScienceGraduate School of Arts and SciencesThe University of Tokyo3-8-1, KomabaMeguro-kuTokyo153-8902Japan
| |
Collapse
|
11
|
Fellert M, Hein R, Ryabchun A, Gisbert Y, Stindt CN, Feringa BL. A Multiresponsive Ferrocene-Based Chiral Overcrowded Alkene Twisting Liquid Crystals. Angew Chem Int Ed Engl 2025; 64:e202413047. [PMID: 39258397 DOI: 10.1002/anie.202413047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
The reversible modulation of chirality has gained significant attention not only for fundamental stereochemical studies but also for numerous applications ranging from liquid crystals (LCs) to molecular motors and machines. This requires the construction of switchable molecules with (multiple) chiral elements in a highly enantioselective manner, which is often a significant synthetic challenge. Here, we show that the dimerization of an easily accessible enantiopure planar chiral ferrocene-indanone building block affords a multi-stimuli-responsive dimer (FcD) with pre-determined double bond geometry, helical chirality, and relative orientation of the two ferrocene motifs in high yield. This intrinsically planar chiral switch can not only undergo thermal or photochemical E/Z isomerization but can also be reversibly and quantitatively oxidized to both a monocationic and a dicationic state which is associated with significant changes in its (chir)optical properties. Specifically, FcD acts as a chiral dopant for cholesteric LCs with a helical twisting power (HTP) of 13 μm-1 which, upon oxidation, drops to near zero, resulting in an unprecedently large redox-tuning of the LC reflection color by up to 84 nm. Due to the straightforward stereoselective synthesis, FcD, and related chiral switches, are envisioned to be powerful building blocks for multi-stimuli-responsive molecular machines and in LC-based materials.
Collapse
Affiliation(s)
- Maximilian Fellert
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
| | - Robert Hein
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
| | - Alexander Ryabchun
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
| | - Yohan Gisbert
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
| | - Charlotte N Stindt
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
12
|
Wang PL, Borsley S, Power MJ, Cavasso A, Giuseppone N, Leigh DA. Transducing chemical energy through catalysis by an artificial molecular motor. Nature 2025; 637:594-600. [PMID: 39815097 PMCID: PMC11735380 DOI: 10.1038/s41586-024-08288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/25/2024] [Indexed: 01/18/2025]
Abstract
Cells display a range of mechanical activities generated by motor proteins powered through catalysis1. This raises the fundamental question of how the acceleration of a chemical reaction can enable the energy released from that reaction to be transduced (and, consequently, work to be done) by a molecular catalyst2-7. Here we demonstrate the molecular-level transduction of chemical energy to mechanical force8 in the form of the powered contraction and powered re-expansion of a cross-linked polymer gel driven by the directional rotation of artificial catalysis-driven9 molecular motors. Continuous 360° rotation of the rotor about the stator of the catalysis-driven motor-molecules incorporated in the polymeric framework of the gel twists the polymer chains of the cross-linked network around one another. This progressively increases writhe and tightens entanglements, causing a macroscopic contraction of the gel to approximately 70% of its original volume. The subsequent addition of the opposite enantiomer fuelling system powers the rotation of the motor-molecules in the reverse direction, unwinding the entanglements and causing the gel to re-expand. Continued powered twisting of the strands in the new direction causes the gel to re-contract. In addition to actuation, motor-molecule rotation in the gel produces other chemical and physical outcomes, including changes in the Young modulus and storage modulus-the latter is proportional to the increase in strand crossings resulting from motor rotation. The experimental demonstration of work against a load by a synthetic organocatalyst, and its mechanism of energy transduction6, informs both the debate3,5,7 surrounding the mechanism of force generation by biological motors and the design principles6,10-14 for artificial molecular nanotechnology.
Collapse
Affiliation(s)
- Peng-Lai Wang
- Department of Chemistry, University of Manchester, Manchester, UK
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Stefan Borsley
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Martin J Power
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Alessandro Cavasso
- SAMS Research Group, Université de Strasbourg and Institut Charles Sadron, Strasbourg, France
| | - Nicolas Giuseppone
- SAMS Research Group, Université de Strasbourg and Institut Charles Sadron, Strasbourg, France.
- Institut Universitaire de France (IUF), Paris, France.
| | - David A Leigh
- Department of Chemistry, University of Manchester, Manchester, UK.
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| |
Collapse
|
13
|
Al Shehimy S, Le HD, Amano S, Di Noja S, Monari L, Ragazzon G. Progressive Endergonic Synthesis of Diels-Alder Adducts Driven by Chemical Energy. Angew Chem Int Ed Engl 2024; 63:e202411554. [PMID: 39017608 DOI: 10.1002/anie.202411554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/18/2024]
Abstract
The overwhelming majority of artificial chemical reaction networks respond to stimuli by relaxing towards an equilibrium state. The opposite response-moving away from equilibrium-can afford the endergonic synthesis of molecules, of which only rare examples have been reported. Here, we report six examples of Diels-Alder adducts formed in an endergonic process and use this strategy to realize their stepwise accumulation. Indeed, systems respond to repeated occurrences of the same stimulus by increasing the amount of adduct formed, with the final network distribution depending on the number of stimuli received. Our findings indicate how endergonic processes can contribute to the transition from responsive to adaptive systems.
Collapse
Affiliation(s)
- Shaymaa Al Shehimy
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Hai-Dang Le
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Shuntaro Amano
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Simone Di Noja
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Luca Monari
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Giulio Ragazzon
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
14
|
Neumann MS, Jensen SK, Frederiksen R, Andersen SS, Beck KM, Jeppesen JO. Pushing a bistable [2]rotaxane out of equilibrium and isolation of the metastable-state co-conformation. Org Biomol Chem 2024. [PMID: 39469918 DOI: 10.1039/d4ob01419g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Incorporating a steric barrier between the two stations in a bistable [2]rotaxane based on monopyrrolotetrathiafulvalene and cyclobis(paraquat-p-phenylene) allows the high-energy metastable-state co-conformation to be physically isolated following a single redox cycle, thus making it possible to store energy (4.4 J L-1) and to follow its interconversion back to the ground-state co-conformation.
Collapse
Affiliation(s)
- Mathias S Neumann
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Sofie K Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Rikke Frederiksen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Sissel S Andersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Kasper M Beck
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Jan O Jeppesen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
15
|
Jamagne R, Power MJ, Zhang ZH, Zango G, Gibber B, Leigh DA. Active template synthesis. Chem Soc Rev 2024; 53:10216-10252. [PMID: 39235620 PMCID: PMC11376342 DOI: 10.1039/d4cs00430b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Indexed: 09/06/2024]
Abstract
The active template synthesis of mechanically interlocked molecular architectures exploits the dual ability of various structural elements (metals or, in the case of metal-free active template synthesis, particular arrangements of functional groups) to serve as both a template for the organisation of building blocks and as a catalyst to facilitate the formation of covalent bonds between them. This enables the entwined or threaded intermediate structure to be covalently captured under kinetic control. Unlike classical passive template synthesis, the intercomponent interactions transiently used to promote the assembly typically do not 'live on' in the interlocked product, meaning that active template synthesis can be traceless and used for constructing mechanically interlocked molecules that do not feature strong binding interactions between the components. Since its introduction in 2006, active template synthesis has been used to prepare a variety of rotaxanes, catenanes and knots. Amongst the metal-ion-mediated versions of the strategy, the copper(I)-catalysed alkyne-azide cycloaddition (CuAAC) remains the most extensively used transformation, although a broad range of other catalytic reactions and transition metals also provide effective manifolds. In metal-free active template synthesis, the recent discovery of the acceleration of the reaction of primary amines with electrophiles through the cavity of crown ethers has proved effective for forming an array of rotaxanes without recognition elements, including compact rotaxane superbases, dissipatively assembled rotaxanes and molecular pumps. This Review details the active template concept, outlines its advantages and limitations for the synthesis of interlocked molecules, and charts the diverse set of reactions that have been used with this strategy to date. The application of active template synthesis in various domains is discussed, including molecular machinery, mechanical chirality, catalysis, molecular recognition and various aspects of materials science.
Collapse
Affiliation(s)
- Romain Jamagne
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Martin J Power
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Zhi-Hui Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Germán Zango
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Benjamin Gibber
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - David A Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
16
|
Barlow SR, Evans NH. Synthesis of a [2]catenane by ring closing metathesis of a [2]rotaxane prepared by crown ether active templation. Org Biomol Chem 2024; 22:7632-7636. [PMID: 39230441 DOI: 10.1039/d4ob01028k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The high yielding synthesis and spectral characterization of a [2]catenane prepared by Grubbs catalyzed ring closing metathesis of a [2]rotaxane prepared by crown ether active template synthesis is described.
Collapse
Affiliation(s)
- Sean R Barlow
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| | - Nicholas H Evans
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| |
Collapse
|
17
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
18
|
Reißenweber L, Uhl E, Hampel F, Mayer P, Dube H. Directionality Reversal and Shift of Rotational Axis in a Hemithioindigo Macrocyclic Molecular Motor. J Am Chem Soc 2024; 146:23387-23397. [PMID: 39109636 PMCID: PMC11345773 DOI: 10.1021/jacs.4c06377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024]
Abstract
Molecular motors are central driving units for nanomachinery, and control of their directional motions is of fundamental importance for their functions. Light-driven variants use easy to provide, easy to dose, and waste-free fuel with high energy content, making them particularly interesting for applications. Typically, light-driven molecular motors work via rotations around dedicated chemical bonds where the directionality of the rotation is dictated by the steric effects of asymmetry in close vicinity to the rotation axis. In this work, we show how unidirectional rotation around a virtual axis can be realized by reprogramming a molecular motor. To this end, a classical light-driven motor is restricted by macrocyclization, and its intrinsic directional rotation is transformed into a directional rotation of the macrocyclic chain in the opposite direction. Further, solvent polarity changes allow to toggle the function of this molecular machine between a directional motor and a nondirectional photoswitch. In this way, a new concept for the design of molecular motors is delivered together with elaborate control over their motions and functions by simple solvent changes. The possibility of sensing the environmental polarity and correspondingly adjusting the directionality of motions opens up a next level of control and responsiveness to light-driven nanoscopic motors.
Collapse
Affiliation(s)
- Lilli Reißenweber
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Edgar Uhl
- Department
of Chemistry and Munich Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Frank Hampel
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Peter Mayer
- Department
of Chemistry and Munich Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Henry Dube
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| |
Collapse
|
19
|
Amano S, Hermans TM. Repurposing a Catalytic Cycle for Transient Self-Assembly. J Am Chem Soc 2024; 146:23289-23296. [PMID: 39127918 PMCID: PMC11345760 DOI: 10.1021/jacs.4c05871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024]
Abstract
Life operates out of equilibrium to enable various sophisticated behaviors. Synthetic chemists have strived to mimic biological nonequilibrium systems in such fields as autonomous molecular machines and dissipative self-assembly. Central to these efforts has been the development of new chemical reaction cycles, which drive systems out of equilibrium by conversion of chemical fuel into waste species. However, the construction of reaction cycles has been challenging due to the difficulty of finding compatible reactions that constitute a cycle. Here, we realize an alternative approach by repurposing a known catalytic cycle as a chemical reaction cycle for driving dissipative self-assembly. This approach can overcome the compatibility problem because all steps involved in a catalytic cycle are already known to proceed concurrently under the same conditions. Our repurposing approach is applicable to diverse combinations of catalytic cycles and systems to drive out of equilibrium, which will substantially broaden the scope of out-of-equilibrium systems.
Collapse
Affiliation(s)
- Shuntaro Amano
- University
of Strasbourg, CNRS, Strasbourg 67083, France
| | | |
Collapse
|
20
|
Wang Q, Xu H, Qi Z, Mei J, Tian H, Qu DH. Dynamic Near-Infrared Circularly Polarized Luminescence Encoded by Transient Supramolecular Chiral Assemblies. Angew Chem Int Ed Engl 2024; 63:e202407385. [PMID: 38736176 DOI: 10.1002/anie.202407385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Circularly polarized luminescence (CPL) is promising for applications in many fields. However, most systems involving CPL are within the visible range; near-infrared (NIR) CPL-active materials, especially those that exhibit high glum values and can be controlled spatially and temporally, are rare. Herein, dynamic NIR-CPL with a glum value of 2.5×10-2 was achieved through supramolecular coassembly and energy-transfer strategies. The chiral assemblies formed by the coassembly between adenosine triphosphate (ATP) and a pyrene derivative exhibited a red CPL signal (glum of 10-3). The further introduction of sulfo-cyanine5 resulted in a energy-transfer process, which not only led to the NIR CPL but also increased the glum value to 10-2. Temporal control of these chiral assemblies was realized by introducing alkaline phosphatase to fabricate a biomimetic enzyme-catalyzed network, allowing the dynamic NIR CPL signal to be turned on. Based on these enzyme-regulated temporally controllable dynamic CPL-active chiral assemblies, a multilevel information encryption system was further developed. This study provides a pioneering example for the construction of dynamic NIR CPL materials with the ability to perform temporal control via the supramolecular assembly strategy, which is expected to aid in the design of supramolecular complex systems that more closely resemble natural biological systems.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hanren Xu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhen Qi
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ju Mei
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
21
|
Shao B, Fu H, Aprahamian I. A molecular anion pump. Science 2024; 385:544-549. [PMID: 39088617 DOI: 10.1126/science.adp3506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/02/2024] [Indexed: 08/03/2024]
Abstract
Pumping ions against a concentration gradient through protein-based transporters is a cornerstone of numerous biological processes. Mimicking this function by using artificial receptors remains a daunting challenge, mainly because of the difficulties in balancing between the requirement for high binding affinities and precise and on-demand ion capture and release properties. We report a trimeric hydrazone photoswitch-based receptor that converts light energy into work by actively transporting chloride anion against a gradient through a dichloromethane liquid membrane, functioning as a molecular pump. The system manifests ease of synthesis, bistability, excellent photoswitching properties, and superb ON-OFF binding properties (difference of up to six orders of magnitude).
Collapse
Affiliation(s)
- Baihao Shao
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Heyifei Fu
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
22
|
Fielden SDP. Kinetically Controlled and Nonequilibrium Assembly of Block Copolymers in Solution. J Am Chem Soc 2024; 146:18781-18796. [PMID: 38967256 PMCID: PMC11258791 DOI: 10.1021/jacs.4c03314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Covalent polymers are versatile macromolecules that have found widespread use in society. Contemporary methods of polymerization have made it possible to construct sequence polymers, including block copolymers, with high precision. Such copolymers assemble in solution when the blocks have differing solubilities. This produces nano- and microparticles of various shapes and sizes. While it is straightforward to draw an analogy between such amphiphilic block copolymers and phospholipids, these two classes of molecules show quite different assembly characteristics. In particular, block copolymers often assemble under kinetic control, thus producing nonequilibrium structures. This leads to a rich variety of behaviors being observed in block copolymer assembly, such as pathway dependence (e.g., thermal history), nonergodicity and responsiveness. The dynamics of polymer assemblies can be readily controlled using changes in environmental conditions and/or integrating functional groups situated on polymers with external chemical reactions. This perspective highlights that kinetic control is both pervasive and a useful attribute in the mechanics of block copolymer assembly. Recent examples are highlighted in order to show that toggling between static and dynamic behavior can be used to generate, manipulate and dismantle nonequilibrium states. New methods to control the kinetics of block copolymer assembly will provide endless unanticipated applications in materials science, biomimicry and medicine.
Collapse
Affiliation(s)
- Stephen D. P. Fielden
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| |
Collapse
|
23
|
Zuo Y, Chen Z, Li Z, Fu E, Xin Y, Chen C, Li C, Zhang S. Unraveling the Dynamic Molecular Motions of a Twin-Cavity Cage with Slow Configurational but Rapid Conformational Interconversions. Angew Chem Int Ed Engl 2024; 63:e202405858. [PMID: 38604976 DOI: 10.1002/anie.202405858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Featuring diverse structural motions/changes, dynamic molecular systems hold promise for executing complex tasks. However, their structural complexity presents formidable challenge in elucidating their kinetics, especially when multiple structural motions are intercorrelated. We herein introduce a twin-cavity cage that features interconvertible C3- and C1-configurations, with each configuration exhibiting interchangeable P- and M-conformations. This molecule is therefore composed of four interconnected chiral species (P)-C3, (M)-C3, (P)-C1, (M)-C1. We showcase an effective approach to decouple these sophisticated structural changes into two kinetically distinct pathways. Utilizing time-dependent 1H NMR spectroscopy at various temperatures, which disregards the transition between mirror-image conformations, we first determine the rate constant (kc) for the C3- to C1-configuration interconversion, while time-dependent circular dichroism spectroscopy at different temperatures quantifies the observed rate constant (kobs) of the ensemble of all the structural changes. As kobs ≫ ${{\rm { \gg }}}$ kc, it allows us to decouple the overall molecular motions into a slow configurational transformation and rapid conformational interconversions, with the latter further dissected into two independent conformational interchanges, namely (P)-C3← → ${ \mathbin{{\stackrel{\textstyle\rightarrow} { {\smash{\leftarrow}\vphantom{_{\vbox to.5ex{\vss}}}} } }} }$ (M)-C3 and (P)-C1← → ${ \mathbin{{\stackrel{\textstyle\rightarrow} { {\smash{\leftarrow}\vphantom{_{\vbox to.5ex{\vss}}}} } }} }$ (M)-C1. This work, therefore, sheds light on the comprehensive kinetic study of complex molecular dynamics, offering valuable insights for the rational design of smart dynamic materials for applications of sensing, separation, catalysis, molecular machinery, etc.
Collapse
Affiliation(s)
- Yong Zuo
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Zhenghong Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Ziying Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Enguang Fu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Yonghang Xin
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Chenhao Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Chenfei Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| |
Collapse
|
24
|
Borsley S, Leigh DA, Roberts BMW. Molecular Ratchets and Kinetic Asymmetry: Giving Chemistry Direction. Angew Chem Int Ed Engl 2024; 63:e202400495. [PMID: 38568047 DOI: 10.1002/anie.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Indexed: 05/03/2024]
Abstract
Over the last two decades ratchet mechanisms have transformed the understanding and design of stochastic molecular systems-biological, chemical and physical-in a move away from the mechanical macroscopic analogies that dominated thinking regarding molecular dynamics in the 1990s and early 2000s (e.g. pistons, springs, etc), to the more scale-relevant concepts that underpin out-of-equilibrium research in the molecular sciences today. Ratcheting has established molecular nanotechnology as a research frontier for energy transduction and metabolism, and has enabled the reverse engineering of biomolecular machinery, delivering insights into how molecules 'walk' and track-based synthesisers operate, how the acceleration of chemical reactions enables energy to be transduced by catalysts (both motor proteins and synthetic catalysts), and how dynamic systems can be driven away from equilibrium through catalysis. The recognition of molecular ratchet mechanisms in biology, and their invention in synthetic systems, is proving significant in areas as diverse as supramolecular chemistry, systems chemistry, dynamic covalent chemistry, DNA nanotechnology, polymer and materials science, molecular biology, heterogeneous catalysis, endergonic synthesis, the origin of life, and many other branches of chemical science. Put simply, ratchet mechanisms give chemistry direction. Kinetic asymmetry, the key feature of ratcheting, is the dynamic counterpart of structural asymmetry (i.e. chirality). Given the ubiquity of ratchet mechanisms in endergonic chemical processes in biology, and their significance for behaviour and function from systems to synthesis, it is surely just as fundamentally important. This Review charts the recognition, invention and development of molecular ratchets, focussing particularly on the role for which they were originally envisaged in chemistry, as design elements for molecular machinery. Different kinetically asymmetric systems are compared, and the consequences of their dynamic behaviour discussed. These archetypal examples demonstrate how chemical systems can be driven inexorably away from equilibrium, rather than relax towards it.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - David A Leigh
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - Benjamin M W Roberts
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| |
Collapse
|
25
|
Gisbert Y, Fellert M, Stindt CN, Gerstner A, Feringa BL. Molecular Motors' Magic Methyl and Its Pivotal Influence on Rotation. J Am Chem Soc 2024; 146:12609-12619. [PMID: 38656891 PMCID: PMC11082891 DOI: 10.1021/jacs.4c01628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Molecular motors have found a wide range of applications, powering a transition from molecules to dynamic molecular systems for which their motion must be precisely tuned. To achieve this adjustment, strategies involving laborious changes in their design are often used. Herein, we show that control over a single methyl group allows a drastic change in rotational properties. In this regard, we present the straightforward asymmetric synthesis of β-methylated first-generation overcrowded-alkene-based molecular motors. Both enantiomers of the new motors were prepared in good yields and high enantiopurities, and these motors were thoroughly studied by variable-temperature nuclear magnetic resonance (VT-NMR), ultraviolet-visible (UV-vis), and circular dichroism (CD) spectroscopy, showing a crucial influence of the methylation pattern on the rotational behavior of the motors. Starting from a common chiral precursor, we demonstrate that subsequent methylation can drastically reduce the speed of the motor and reverse the direction of the rotation. We show for the first time that complete unidirectionality can be achieved even when the energy difference between the stable and metastable states is small, resulting in the coexistence of both states under ambient conditions without hampering the energy ratcheting process. This discovery opens the way for the design of more advanced first-generation motors.
Collapse
Affiliation(s)
| | | | - Charlotte N. Stindt
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The
Netherlands
| | - Alexander Gerstner
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The
Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The
Netherlands
| |
Collapse
|
26
|
Ariga K, Song J, Kawakami K. Molecular machines working at interfaces: physics, chemistry, evolution and nanoarchitectonics. Phys Chem Chem Phys 2024; 26:13532-13560. [PMID: 38654597 DOI: 10.1039/d4cp00724g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
As a post-nanotechnology concept, nanoarchitectonics combines nanotechnology with advanced materials science. Molecular machines made by assembling molecular units and their organizational bodies are also products of nanoarchitectonics. They can be regarded as the smallest functional materials. Originally, studies on molecular machines analyzed the average properties of objects dispersed in solution by spectroscopic methods. Researchers' playgrounds partially shifted to solid interfaces, because high-resolution observation of molecular machines is usually done on solid interfaces under high vacuum and cryogenic conditions. Additionally, to ensure the practical applicability of molecular machines, operation under ambient conditions is necessary. The latter conditions are met in dynamic interfacial environments such as the surface of water at room temperature. According to these backgrounds, this review summarizes the trends of molecular machines that continue to evolve under the concept of nanoarchitectonics in interfacial environments. Some recent examples of molecular machines in solution are briefly introduced first, which is followed by an overview of studies of molecular machines and similar supramolecular structures in various interfacial environments. The interfacial environments are classified into (i) solid interfaces, (ii) liquid interfaces, and (iii) various material and biological interfaces. Molecular machines are expanding their activities from the static environment of a solid interface to the more dynamic environment of a liquid interface. Molecular machines change their field of activity while maintaining their basic functions and induce the accumulation of individual molecular machines into macroscopic physical properties molecular machines through macroscopic mechanical motions can be employed to control molecular machines. Moreover, research on molecular machines is not limited to solid and liquid interfaces; interfaces with living organisms are also crucial.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa 277-8561, Japan
| | - Jingwen Song
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| |
Collapse
|
27
|
Nolte RJM, Elemans JAAW. Artificial Processive Catalytic Systems. Chemistry 2024; 30:e202304230. [PMID: 38314967 DOI: 10.1002/chem.202304230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Processive catalysts remain attached to a substrate and perform multiple rounds of catalysis. They are abundant in nature. This review highlights artificial processive catalytic systems, which can be divided into (A) catalytic rings that move along a polymer chain, (B) catalytic pores that hold polymer chains and decompose them, (C) catalysts that remain attached to and move around a cyclic substrate via supramolecular interactions, and (D) anchored catalysts that remain in contact with a substrate via multiple catalytic interactions (see frontispiece).
Collapse
Affiliation(s)
- Roeland J M Nolte
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 125, 6525AJ, Nijmegen, The, Netherlands
| | - Johannes A A W Elemans
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 125, 6525AJ, Nijmegen, The, Netherlands
| |
Collapse
|
28
|
Lu H, Ye H, You L. Photoswitchable Cascades for Allosteric and Bidirectional Control over Covalent Bonds and Assemblies. J Am Chem Soc 2024. [PMID: 38620077 DOI: 10.1021/jacs.4c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Studies of complex systems and emerging properties to mimic biosystems are at the forefront of chemical research. Dynamic multistep cascades, especially those exhibiting allosteric regulation, are challenging. Herein, we demonstrate a versatile platform of photoswitchable covalent cascades toward remote and bidirectional control of reversible covalent bonds and ensuing assemblies. The relay of a photochromic switch, keto-enol equilibrium, and ring-chain equilibrium allows light-mediated reversible allosteric structural changes. The accompanying distinct reactivity further enables photoswitchable dynamic covalent bonding and release of substrates bidirectionally through alternating two wavelengths of light, essentially realizing light-mediated signaling cycles. The downfall of energy by covalent bond formation/scission upon photochemical reactions offers the driving force for the controlled direction of the cascade. To show the molecular diversity, photoswitchable on-demand assembly/disassembly of covalent polymers, including structurally reconfigurable polymers, was realized. This work achieves photoswitchable allosteric regulation of covalent architectures within dynamic multistep cascades, which has rarely been reported before. The results resemble allosteric control within biological signaling networks and should set the stage for many endeavors, such as dynamic assemblies, molecular motors, responsive polymers, and intelligent materials.
Collapse
Affiliation(s)
- Hanwei Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
29
|
Panahi F, Breit B. Rhodium-Catalyzed Asymmetric Macrocyclization towards Crown Ethers Using Hydroamination of Bis(allenes). Angew Chem Int Ed Engl 2024; 63:e202317981. [PMID: 38323896 DOI: 10.1002/anie.202317981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
Enantiomerically enriched crown ethers (CE) exhibit strong asymmetric induction in phase transfer catalysis, supramolecular catalysis and molecular recognition processes. Traditional methods have often been used to access these valuable compounds, which limit their diversity and consequently their applicability. Herein, a practical catalytic method is described for the gram scale synthesis of a class of chiral CEs (aza-crown ethers; ACEs) using Rh-catalyzed hydroamination of bis(allenes) with diamines. Using this approach, a wide range of chiral vinyl functionalized CEs with ring sizes ranging from 12 to 36 have been successfully prepared in high yields of up to 92 %, dr of up to >20 : 1 and er of up to >99 : 1. These vinyl substituted CEs allow for further diversification giving facile access to various CE derivatives as well as to their three-dimensional analogues using ring-closing metathesis. Some of these chiral CEs themselves display high potential for use in asymmetric catalysis.
Collapse
Affiliation(s)
- Farhad Panahi
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| |
Collapse
|
30
|
Saura-Sanmartin A. Synthesis of 'Impossible' Rotaxanes. Chemistry 2024; 30:e202304025. [PMID: 38168751 DOI: 10.1002/chem.202304025] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
'Impossible' rotaxanes, which are constituted by interlocked components without obvious binding motifs, have attracted the interest of the mechanically interlocked molecules (MIMs) community. Within the synthetic efforts reported in the last decades towards the preparation of MIMs, some innovative protocols for accessing 'impossible' rotaxanes have been developed. This short review highlights different selected synthetic examples of 'impossible' rotaxanes, as well as suggests some future directions of this research area.
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
31
|
McCarthy DR, Xu K, Schenkelberg ME, Balegamire NAN, Liang H, Bellino SA, Li J, Schneebeli ST. Kinetically controlled synthesis of rotaxane geometric isomers. Chem Sci 2024; 15:4860-4870. [PMID: 38550687 PMCID: PMC10967009 DOI: 10.1039/d3sc04412b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/24/2024] [Indexed: 04/30/2024] Open
Abstract
Geometric isomerism in mechanically interlocked systems-which arises when the axle of a mechanically interlocked molecule is oriented, and the macrocyclic component is facially dissymmetric-can provide enhanced functionality for directional transport and polymerization catalysis. We now introduce a kinetically controlled strategy to control geometric isomerism in [2]rotaxanes. Our synthesis provides the major geometric isomer with high selectivity, broadening synthetic access to such interlocked structures. Starting from a readily accessible [2]rotaxane with a symmetrical axle, one of the two stoppers is activated selectively for stopper exchange by the substituents on the ring component. High selectivities are achieved in these reactions, based on coupling the selective formation reactions leading to the major products with inversely selective depletion reactions for the minor products. Specifically, in our reaction system, the desired (major) product forms faster in the first step, while the undesired (minor) product subsequently reacts away faster in the second step. Quantitative 1H NMR data, fit to a detailed kinetic model, demonstrates that this effect (which is conceptually closely related to minor enantiomer recycling and related processes) can significantly improve the intrinsic selectivity of the reactions. Our results serve as proof of principle for how multiple selective reaction steps can work together to enhance the stereoselectivity of synthetic processes forming complex mechanically interlocked molecules.
Collapse
Affiliation(s)
- Dillon R McCarthy
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
| | - Ke Xu
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Mica E Schenkelberg
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Nils A N Balegamire
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Huiming Liang
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
| | - Shea A Bellino
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
| | - Jianing Li
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Severin T Schneebeli
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
32
|
Shan T, Chen L, Xiao D, Xiao X, Wang J, Chen X, Guo QH, Li G, Stoddart JF, Huang F. Adaptisorption of Nonporous Polymer Crystals. Angew Chem Int Ed Engl 2024; 63:e202317947. [PMID: 38298087 DOI: 10.1002/anie.202317947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/13/2024] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
Although our knowledge and understanding of adsorptions in natural and artificial systems has increased dramatically during the past century, adsorption associated with nonporous polymers remains something of a mystery, hampering applications. Here we demonstrate a model system for adaptisorption of nonporous polymers, wherein dative B-N bonds and host-guest binding units act as the kinetic and thermodynamic components, respectively. The coupling of these two components enables nonporous polymer crystals to adsorb molecules from solution and undergo recrystallization as thermodynamically favored crystals. Adaptisorption of nonporous polymer crystals not only extends the types of adsorption in which the sorbate molecules are integrated in a precise and orderly manner in the sorbent systems, but also provides a facile and accurate approach to the construction of polymeric materials with precise architectures and integrated functions.
Collapse
Affiliation(s)
- Tianyu Shan
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Liya Chen
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Ding Xiao
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Xuedong Xiao
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Jiao Wang
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Xuan Chen
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Qing-Hui Guo
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Guangfeng Li
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - J Fraser Stoddart
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
- Chong Yuet Ming Chemistry Building, The University of Hong Kong, Hong Kong SAR, P. R. China
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East superior Street, Chicago, IL 60208, USA
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Feihe Huang
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
33
|
Liu K, Zhang X, Zhao D, Bai R, Wang Y, Yang X, Zhao J, Zhang H, Yu W, Yan X. Stretchable poly[2]rotaxane elastomers. FUNDAMENTAL RESEARCH 2024; 4:300-306. [PMID: 38933516 PMCID: PMC11197719 DOI: 10.1016/j.fmre.2022.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
Mechanically interlocked polymers (MIPs) are promising candidates for the construction of elastomeric materials with desirable mechanical performance on account of their abilities to undergo inherent rotational and translational mechanical movements at the molecular level. However, the investigations on their mechanical properties are lagging far behind their structural fabrication, especially for linear polyrotaxanes in bulk. Herein, we report stretchable poly[2]rotaxane elastomers (PREs) which integrate numerous mechanical bonds in the polymeric backbone to boost macroscopic mechanical properties. Specifically, we have synthesized a hydroxy-functionalized [2]rotaxane that subsequently participates in the condensation polymerization with diisocyanate to form PREs. Benefitting from the peculiar structural and dynamic characteristics of the poly[2]rotaxane, the representative PRE exhibits favorable mechanical performance in terms of stretchability (∼1200%), Young's modulus (24.6 MPa), and toughness (49.5 MJ/m3). Moreover, we present our poly[2]rotaxanes as model systems to understand the relationship between mechanical bonds and macroscopic mechanical properties. It is concluded that the mechanical properties of our PREs are mainly determined by the unique topological architectures which possess a consecutive energy dissipation pathway including the dissociation of host-guest interaction and consequential sliding motion of the wheel along the axle in the [2]rotaxane motif.
Collapse
Affiliation(s)
- Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Chemistry and Chemical Engineering, National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, China
| | - Xinhai Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dong Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongming Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
34
|
Astumian RD. Kinetic Asymmetry and Directionality of Nonequilibrium Molecular Systems. Angew Chem Int Ed Engl 2024; 63:e202306569. [PMID: 38236163 DOI: 10.1002/anie.202306569] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Indexed: 01/19/2024]
Abstract
Scientists have long been fascinated by the biomolecular machines in living systems that process energy and information to sustain life. The first synthetic molecular rotor capable of performing repeated 360° rotations due to a combination of photo- and thermally activated processes was reported in 1999. The progress in designing different molecular machines in the intervening years has been remarkable, with several outstanding examples appearing in the last few years. Despite the synthetic accomplishments, there remains confusion regarding the fundamental design principles by which the motions of molecules can be controlled, with significant intellectual tension between mechanical and chemical ways of thinking about and describing molecular machines. A thermodynamically consistent analysis of the kinetics of several molecular rotors and pumps shows that while light driven rotors operate by a power-stroke mechanism, kinetic asymmetry-the relative heights of energy barriers-is the sole determinant of the directionality of catalysis driven machines. Power-strokes-the relative depths of energy wells-play no role whatsoever in determining the sign of the directionality. These results, elaborated using trajectory thermodynamics and the nonequilibrium pump equality, show that kinetic asymmetry governs the response of many non-equilibrium chemical phenomena.
Collapse
Affiliation(s)
- Raymond Dean Astumian
- Department of Physics and Astronomy, The University of Maine, 5709 Bennett Hall, Orono, ME-04469, USA
| |
Collapse
|
35
|
Zhou SW, Zhou D, Gu R, Ma CS, Yu C, Qu DH. Mechanically interlocked [c2]daisy chain backbone enabling advanced shape-memory polymeric materials. Nat Commun 2024; 15:1690. [PMID: 38402228 PMCID: PMC10894290 DOI: 10.1038/s41467-024-45980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/09/2024] [Indexed: 02/26/2024] Open
Abstract
The incorporation of mechanically interlocked structures into polymer backbones has been shown to confer remarkable functionalities to materials. In this work, a [c2]daisy chain unit based on dibenzo-24-crown-8 is covalently embedded into the backbone of a polymer network, resulting in a synthetic material possessing remarkable shape-memory properties under thermal control. By decoupling the molecular structure into three control groups, we demonstrate the essential role of the [c2]daisy chain crosslinks in driving the shape memory function. The mechanically interlocked topology is found to be an essential element for the increase of glass transition temperature and consequent gain of shape memory function. The supramolecular host-guest interactions within the [c2]daisy chain topology not only ensure robust mechanical strength and good network stability of the polymer, but also impart the shape memory polymer with remarkable shape recovery properties and fatigue resistance ability. The incorporation of the [c2]daisy chain unit as a building block has the potential to lay the groundwork for the development of a wide range of shape-memory polymer materials.
Collapse
Affiliation(s)
- Shang-Wu Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Danlei Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ruirui Gu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Chang-Shun Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chengyuan Yu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
36
|
Zwick P, Troncossi A, Borsley S, Vitorica-Yrezabal IJ, Leigh DA. Stepwise Operation of a Molecular Rotary Motor Driven by an Appel Reaction. J Am Chem Soc 2024; 146:4467-4472. [PMID: 38319727 PMCID: PMC10885133 DOI: 10.1021/jacs.3c10266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
To date, only a small number of chemistries and chemical fueling strategies have been successfully used to operate artificial molecular motors. Here, we report the 360° directionally biased rotation of phenyl groups about a C-C bond, driven by a stepwise Appel reaction sequence. The motor molecule consists of a biaryl-embedded phosphine oxide and phenol, in which full rotation around the biaryl bond is blocked by the P-O oxygen atom on the rotor being too bulky to pass the oxygen atom on the stator. Treatment with SOCl2 forms a cyclic oxyphosphonium salt (removing the oxygen atom of the phosphine oxide), temporarily linking the rotor with the stator. Conformational exchange via ring flipping then allows the rotor and stator to twist back and forth past the previous limit of rotation. Subsequently, the ring opening of the tethered intermediate with a chiral alcohol occurs preferentially through a nucleophilic attack on one face. Thus, the original phosphine oxide is reformed with net directional rotation about the biaryl bond over the course of the two-step reaction sequence. Each repetition of SOCl2-chiral alcohol additions generates another directionally biased rotation. Using the same reaction sequence on a derivative of the motor molecule that forms atropisomers rather than fully rotating 360° results in enantioenrichment, suggesting that, on average, the motor molecule rotates in the "wrong" direction once every three fueling cycles. The interconversion of phosphine oxides and cyclic oxyphosphonium groups to form temporary tethers that enable a rotational barrier to be overcome directionally adds to the strategies available for generating chemically fueled kinetic asymmetry in molecular systems.
Collapse
Affiliation(s)
- Patrick Zwick
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Axel Troncossi
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Stefan Borsley
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | | | - David A Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
37
|
Centola M, Poppleton E, Ray S, Centola M, Welty R, Valero J, Walter NG, Šulc P, Famulok M. A rhythmically pulsing leaf-spring DNA-origami nanoengine that drives a passive follower. NATURE NANOTECHNOLOGY 2024; 19:226-236. [PMID: 37857824 PMCID: PMC10873200 DOI: 10.1038/s41565-023-01516-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/31/2023] [Indexed: 10/21/2023]
Abstract
Molecular engineering seeks to create functional entities for modular use in the bottom-up design of nanoassemblies that can perform complex tasks. Such systems require fuel-consuming nanomotors that can actively drive downstream passive followers. Most artificial molecular motors are driven by Brownian motion, in which, with few exceptions, the generated forces are non-directed and insufficient for efficient transfer to passive second-level components. Consequently, efficient chemical-fuel-driven nanoscale driver-follower systems have not yet been realized. Here we present a DNA nanomachine (70 nm × 70 nm × 12 nm) driven by the chemical energy of DNA-templated RNA-transcription-consuming nucleoside triphosphates as fuel to generate a rhythmic pulsating motion of two rigid DNA-origami arms. Furthermore, we demonstrate actuation control and the simple coupling of the active nanomachine with a passive follower, to which it then transmits its motion, forming a true driver-follower pair.
Collapse
Affiliation(s)
- Mathias Centola
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany
- Max-Planck Institute for Neurobiology of Behaviour, Bonn, Germany
| | - Erik Poppleton
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | - Sujay Ray
- Single Molecule Analysis Group, Department of Chemistry, Ann Arbor, MI, USA
| | | | - Robb Welty
- Single Molecule Analysis Group, Department of Chemistry, Ann Arbor, MI, USA
| | - Julián Valero
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany
- Max-Planck Institute for Neurobiology of Behaviour, Bonn, Germany
- Interdisciplinary Nanoscience Center - INANO-MBG, iNANO-huset, Århus, Denmark
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, Ann Arbor, MI, USA.
| | - Petr Šulc
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany.
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| | - Michael Famulok
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany.
- Max-Planck Institute for Neurobiology of Behaviour, Bonn, Germany.
| |
Collapse
|
38
|
Zhang X, Mao L, He R, Shi Y, Li L, Li S, Zhu C, Zhang Y, Ma D. Tunable cyclic operation of dissipative molecular switches based on anion recognition. Chem Commun (Camb) 2024; 60:1180-1183. [PMID: 38193867 DOI: 10.1039/d3cc05912j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Artificial dissipative molecular switches based on anion recognition are of great importance to simulate biological functions and construct smart materials. Five activated carboxylic acids are used as chemical fuels for dissipative molecular switches, which consist of an imidazolium macrocyclic host and a carboxylate anionic guest. By choosing different types of chemical fuels and using varied fuel concentrations, the rates of cyclic operations are tunable. The operation is capable of undergoing at least three cycles.
Collapse
Affiliation(s)
- Xin Zhang
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Lijun Mao
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Rongjing He
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Yanting Shi
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Lingyi Li
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Shuo Li
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Chenghao Zhu
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Yanjing Zhang
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Da Ma
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
39
|
Albaugh A, Fu RS, Gu G, Gingrich TR. Limits on the Precision of Catenane Molecular Motors: Insights from Thermodynamics and Molecular Dynamics Simulations. J Chem Theory Comput 2024; 20:1-6. [PMID: 38127444 DOI: 10.1021/acs.jctc.3c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Thermodynamic uncertainty relations (TURs) relate precision to the dissipation rate, yet the inequalities can be far from saturation. Indeed, in catenane molecular motor simulations, we record precision far below the TUR limit. We further show that this inefficiency can be anticipated by four physical parameters: the thermodynamic driving force, fuel decomposition rate, coupling between fuel decomposition and motor motion, and rate of undriven motor motion. The physical insights might assist in designing molecular motors in the future.
Collapse
Affiliation(s)
- Alex Albaugh
- Department of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, United States
| | - Rueih-Sheng Fu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Geyao Gu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Todd R Gingrich
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
40
|
Abstract
Synthetic chemistry has traditionally relied on reactions between reactants of high chemical potential and transformations that proceed energetically downhill to either a global or local minimum (thermodynamic or kinetic control). Catalysts can be used to manipulate kinetic control, lowering activation energies to influence reaction outcomes. However, such chemistry is still constrained by the shape of one-dimensional reaction coordinates. Coupling synthesis to an orthogonal energy input can allow ratcheting of chemical reaction outcomes, reminiscent of the ways that molecular machines ratchet random thermal motion to bias conformational dynamics. This fundamentally distinct approach to synthesis allows multi-dimensional potential energy surfaces to be navigated, enabling reaction outcomes that cannot be achieved under conventional kinetic or thermodynamic control. In this Review, we discuss how ratcheted synthesis is ubiquitous throughout biology and consider how chemists might harness ratchet mechanisms to accelerate catalysis, drive chemical reactions uphill and programme complex reaction sequences.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, University of Manchester, Manchester, UK
| | | | - David A Leigh
- Department of Chemistry, University of Manchester, Manchester, UK.
| | | |
Collapse
|
41
|
Baluna A, Dommaschk M, Groh B, Kassem S, Leigh DA, Tetlow DJ, Thomas D, Varela López L. Switched "On" Transient Fluorescence Output from a Pulsed-Fuel Molecular Ratchet. J Am Chem Soc 2023; 145:27113-27119. [PMID: 38047919 PMCID: PMC10722508 DOI: 10.1021/jacs.3c11290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023]
Abstract
We report the synthesis and operation of a molecular energy ratchet that transports a crown ether from solution onto a thread, along the axle, over a fluorophore, and off the other end of the thread back into bulk solution, all in response to a single pulse of a chemical fuel (CCl3CO2H). The fluorophore is a pyrene residue whose fluorescence is normally prevented by photoinduced electron transfer (PET) to a nearby N-methyltriazolium group. However, crown ether binding to the N-methyltriazolium site inhibits the PET, switching on pyrene fluorescence under UV irradiation. Each pulse of fuel results in a single ratchet cycle of transient fluorescence (encompassing threading, transport to the N-methyltriazolium site, and then dethreading), with the onset of the fluorescent time period determined by the amount of fuel in each pulse and the end-point determined by the concentration of the reagents for the disulfide exchange reaction. The system provides a potential alternative signaling approach for artificial molecular machines that read symbols from sequence-encoded molecular tapes.
Collapse
Affiliation(s)
- Andrei
S. Baluna
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Marcel Dommaschk
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Burkhard Groh
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Salma Kassem
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - David A. Leigh
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Daniel J. Tetlow
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Dean Thomas
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Loli Varela López
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| |
Collapse
|
42
|
Li P, Hou S, Wu Q, Chen Y, Wang B, Ren H, Wang J, Zhai Z, Yu Z, Lambert CJ, Jia C, Guo X. The role of halogens in Au-S bond cleavage for energy-differentiated catalysis at the single-bond limit. Nat Commun 2023; 14:7695. [PMID: 38001141 PMCID: PMC10673828 DOI: 10.1038/s41467-023-43639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The transformation from one compound to another involves the breaking and formation of chemical bonds at the single-bond level, especially during catalytic reactions that are of great significance in broad fields such as energy conversion, environmental science, life science and chemical synthesis. The study of the reaction process at the single-bond limit is the key to understanding the catalytic reaction mechanism and further rationally designing catalysts. Here, we develop a method to monitor the catalytic process from the perspective of the single-bond energy using high-resolution scanning tunneling microscopy single-molecule junctions. Experimental and theoretical studies consistently reveal that the attack of a halogen atom on an Au atom can reduce the breaking energy of Au-S bonds, thereby accelerating the bond cleavage reaction and shortening the plateau length during the single-molecule junction breaking. Furthermore, the distinction in catalytic activity between different halogen atoms can be compared as well. This study establishes the intrinsic relationship among the reaction activation energy, the chemical bond breaking energy and the single-molecule junction breaking process, strengthening our mastery of catalytic reactions towards precise chemistry.
Collapse
Affiliation(s)
- Peihui Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, 300350, Tianjin, People's Republic of China
| | - Songjun Hou
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
| | - Qingqing Wu
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
| | - Yijian Chen
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, 300350, Tianjin, People's Republic of China
| | - Boyu Wang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, 300350, Tianjin, People's Republic of China
| | - Haiyang Ren
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, 300350, Tianjin, People's Republic of China
| | - Jinying Wang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, 300350, Tianjin, People's Republic of China
| | - Zhaoyi Zhai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 300350, Tianjin, People's Republic of China
| | - Zhongbo Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 300350, Tianjin, People's Republic of China.
| | - Colin J Lambert
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK.
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, 300350, Tianjin, People's Republic of China.
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, 300350, Tianjin, People's Republic of China.
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, 100871, Beijing, People's Republic of China.
| |
Collapse
|
43
|
Puigcerver J, Alajarin M, Martinez-Cuezva A, Berna J. Modulating the shuttling motion of [2]rotaxanes built of p-xylylenediamine units through permethylation at the benzylic positions of the ring. Org Biomol Chem 2023; 21:9070-9075. [PMID: 37938860 DOI: 10.1039/d3ob01611k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
In this study, we show the effect of the gem-dimethyl substitution at the four benzylic carbons of the ring on the internal dynamics of two-station [2]rotaxanes. Such structural modification of the polyamide macrocycles promotes a drastic change of the internal dynamics as shown by variable-temperature (VT) 1H NMR experiments. We determined that the shuttling rates of the octamethylated macrocycle along a series of symmetrical threads were significantly faster compared to the non-substituted ring. This effect was particularly pronounced in the fumaramide-based system, in which the rate was 27 times faster than that of the model system.
Collapse
Affiliation(s)
- Julio Puigcerver
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100 Murcia, Spain.
| | - Mateo Alajarin
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100 Murcia, Spain.
| | - Alberto Martinez-Cuezva
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100 Murcia, Spain.
| | - Jose Berna
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100 Murcia, Spain.
| |
Collapse
|
44
|
Singh H, Chenna A, Gangwar U, Dutta S, Kurur ND, Goel G, Haridas V. Bispidine as a promising scaffold for designing molecular machines. Org Biomol Chem 2023; 21:9054-9060. [PMID: 37937510 DOI: 10.1039/d3ob01406a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The development of artificial molecular machines is a challenging endeavor. Herein, we have synthesized a series of bispidine diamides D1-D6 that exhibit rotation reminiscent of a motor motion. Dynamic NMR, X-ray diffraction, quantum mechanical calculations, and molecular dynamics simulations provided insights into their rotational dynamics. All the diamides D1-D6 exhibited mutually independent rotation around the two bispidine arms. However, the rate of rotation and the presence or absence of directionality in amide bond rotation were found to depend on the solvent, temperature, and nature of substitution on the amide carbonyl. These engineered systems may aid in the development of biologically relevant synthetic molecular motors. Studies on homochiral and heterochiral bispidine-peptides revealed that the direction of rotation can be controlled by chirality and the nature of the amino acid.
Collapse
Affiliation(s)
- Hanuman Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Akshay Chenna
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
| | - Upanshu Gangwar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Souvik Dutta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Narayanan D Kurur
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Gaurav Goel
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
| | - V Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| |
Collapse
|
45
|
Sangchai T, Al Shehimy S, Penocchio E, Ragazzon G. Artificial Molecular Ratchets: Tools Enabling Endergonic Processes. Angew Chem Int Ed Engl 2023; 62:e202309501. [PMID: 37545196 DOI: 10.1002/anie.202309501] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
Non-equilibrium chemical systems underpin multiple domains of contemporary interest, including supramolecular chemistry, molecular machines, systems chemistry, prebiotic chemistry, and energy transduction. Experimental chemists are now pioneering the realization of artificial systems that can harvest energy away from equilibrium. In this tutorial Review, we provide an overview of artificial molecular ratchets: the chemical mechanisms enabling energy absorption from the environment. By focusing on the mechanism type-rather than the application domain or energy source-we offer a unifying picture of seemingly disparate phenomena, which we hope will foster progress in this fascinating domain of science.
Collapse
Affiliation(s)
- Thitiporn Sangchai
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Shaymaa Al Shehimy
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Emanuele Penocchio
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Giulio Ragazzon
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
46
|
Ishibashi H, Rondelli M, Shudo H, Maekawa T, Ito H, Mizukami K, Kimizuka N, Yagi A, Itami K. Noncovalent Modification of Cycloparaphenylene by Catenane Formation Using an Active Metal Template Strategy. Angew Chem Int Ed Engl 2023; 62:e202310613. [PMID: 37608514 DOI: 10.1002/anie.202310613] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/24/2023]
Abstract
The active metal template (AMT) strategy is a powerful tool for the formation of mechanically interlocked molecules (MIMs) such as rotaxanes and catenanes, allowing the synthesis of a variety of MIMs, including π-conjugated and multicomponent macrocycles. Cycloparaphenylene (CPP) is an emerging molecule characterized by its cyclic π-conjugated structure and unique properties. Therefore, diverse modifications of CPPs are necessary for its wide application. However, most CPP modifications require early stage functionalization and the direct modification of CPPs is very limited. Herein, we report the synthesis of a catenane consisting of [9]CPP and a 2,2'-bipyridine macrocycle as a new CPP analogue that contains a reliable synthetic scaffold enabling diverse and concise post-modification. Following the AMT strategy, the [9]CPP-bipyridine catenane was successfully synthesized through Ni-mediated aryl-aryl coupling. Catalytic C-H borylation/cross-coupling and metal complexation of the bipyridine macrocycle moiety, an effective post-functionalization method, were also demonstrated with the [9]CPP-bipyridine catenane. Single-crystal X-ray structural analysis revealed that the [9]CPP-bipyridine catenane forms a tridentated complex with an Ag ion inside the CPP ring. This interaction significantly enhances the phosphorescence lifetime through improved intermolecular interactions.
Collapse
Affiliation(s)
- Hisayasu Ishibashi
- Department of Chemistry, Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Manuel Rondelli
- Department of Chemistry, Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Hiroki Shudo
- Department of Chemistry, Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Takehisa Maekawa
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Hideto Ito
- Department of Chemistry, Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Kiichi Mizukami
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| | - Akiko Yagi
- Department of Chemistry, Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Kenichiro Itami
- Department of Chemistry, Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
| |
Collapse
|
47
|
Duindam N, van Dongen M, Siegler MA, Wezenberg SJ. Monodirectional Photocycle Drives Proton Translocation. J Am Chem Soc 2023; 145:21020-21026. [PMID: 37712835 PMCID: PMC10540201 DOI: 10.1021/jacs.3c06587] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 09/16/2023]
Abstract
Photoisomerization of retinal is pivotal to ion translocation across the bacterial membrane and has served as an inspiration for the development of artificial molecular switches and machines. Light-driven synthetic systems in which a macrocyclic component transits along a nonsymmetric axle in a specific direction have been reported; however, unidirectional and repetitive translocation of protons has not been achieved. Herein, we describe a unique protonation-controlled isomerization behavior for hemi-indigo dyes bearing N-heterocycles, featuring intramolecular hydrogen bonds. Light-induced isomerization from the Z to E isomer is unlocked when protonated, while reverse E → Z photoisomerization occurs in the neutral state. As a consequence, associated protons are displaced in a preferred direction with respect to the photoswitchable scaffold. These results will prove to be critical in developing artificial systems in which concentration gradients can be effectively generated using (solar) light energy.
Collapse
Affiliation(s)
- Nol Duindam
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Michelle van Dongen
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Maxime A. Siegler
- Department
of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Sander J. Wezenberg
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
48
|
Luo Z, Zhang X, Zhao J, Bai R, Wang C, Wang Y, Zhao D, Yan X. Mechanically Interlocked [2]Rotaxane Aerogels with Tunable Morphologies and Mechanical Properties. Angew Chem Int Ed Engl 2023; 62:e202306489. [PMID: 37506278 DOI: 10.1002/anie.202306489] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 07/30/2023]
Abstract
Mechanical bonds have been utilized as promising motifs to construct mechanically interlocked aerogels (MIAs) with mechanical adaptivity and multifunctionality. However, fabricating such aerogels with not only precise chemical structures but also dynamic features remains challenging. Herein, we present MIAs carrying dense [2]rotaxane units, which bestow both the stability and flexibility of the aerogel network. Owing to the stable chemical structure of a [2]rotaxane, MIAs possessing a precise and full-scale mechanically interlocked network could be fabricated with the aid of diverse solvents. In addition, the dynamic nature of the [2]rotaxane resulted in morphologies and mechanical performances of the MIAs that can be dramatically modulated under chemical stimuli. We hope that the structure-property relationship in MIAs will facilitate the development of mechanically interlocked materials and provide novel opportunities toward constructing smart materials with multifunctionalities.
Collapse
Affiliation(s)
- Zhen Luo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xinhai Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chunyu Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuanhao Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Dong Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
49
|
Ter Harmsel M, Maguire OR, Runikhina SA, Wong ASY, Huck WTS, Harutyunyan SR. A catalytically active oscillator made from small organic molecules. Nature 2023; 621:87-93. [PMID: 37673989 PMCID: PMC10482680 DOI: 10.1038/s41586-023-06310-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 06/12/2023] [Indexed: 09/08/2023]
Abstract
Oscillatory systems regulate many biological processes, including key cellular functions such as metabolism and cell division, as well as larger-scale processes such as circadian rhythm and heartbeat1-4. Abiotic chemical oscillations, discovered originally in inorganic systems5,6, inspired the development of various synthetic oscillators for application as autonomous time-keeping systems in analytical chemistry, materials chemistry and the biomedical field7-17. Expanding their role beyond that of a pacemaker by having synthetic chemical oscillators periodically drive a secondary function would turn them into significantly more powerful tools. However, this is not trivial because the participation of components of the oscillator in the secondary function might jeopardize its time-keeping ability. We now report a small molecule oscillator that can catalyse an independent chemical reaction in situ without impairing its oscillating properties. In a flow system, the concentration of the catalytically active product of the oscillator shows sustained oscillations and the catalysed reaction is accelerated only during concentration peaks. Augmentation of synthetic oscillators with periodic catalytic action allows the construction of complex systems that, in the future, may benefit applications in automated synthesis, systems and polymerization chemistry and periodic drug delivery.
Collapse
Affiliation(s)
- Matthijs Ter Harmsel
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
| | - Oliver R Maguire
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Sofiya A Runikhina
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
| | - Albert S Y Wong
- Department of Molecules and Materials, University of Twente, Enschede, the Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands.
| | | |
Collapse
|
50
|
Xue J, Li Y, Jiang M, Wu J, Zhou H, Zhang N, Yang S, Tao C, Zhang W, Fan X. Active Micelle Pumping Channel Triggers Nonequilibrium Surface Excess Aggregation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12260-12269. [PMID: 37582181 DOI: 10.1021/acs.langmuir.3c01716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Adsorbate transport during the electrochemical process mostly follows the electric-field direction or the high-to-low direction along the concentration gradient and thus often limits the reactant concentration at the adsorption site and requires specific mechanical or chemical bonds of adsorbates to trigger local excess aggregation for advanced framework structure assembly. Herein, we have discovered an active pumping channel during electrochemical adsorption of a manganese colloid, which follows a low-to-high direction inverse concentration gradient. It triggers surface excess micelle aggregation with even over 16-folds higher concentration than that in bulk owing to hydrogen-bonding difference of the micelle surface between in bulk and at the water surface. Micelles in the channel exhibit unique polymerization behaviors by directly polymerizing monomer micelles to form highly catalytic MnO2 of dendritic frameworks, which can serve as a scalable thin-layer aqueous-phase reactor. It increases the understanding of the interface-dependent dynamic nature of micelle or more adsorbates and inspires transformative synthesizing approaches for advanced oxide materials.
Collapse
Affiliation(s)
- Jie Xue
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yuzhou Li
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Min Jiang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Jiaye Wu
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Huang Zhou
- Department of Chemistry School of Pharmacy, North Sichuan Medical College, Nanchong 637100, China
| | - Nannan Zhang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Sheng Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Changyuan Tao
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xing Fan
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|