1
|
Asahina K, Zelikowsky M. Comparative Perspectives on Neuropeptide Function and Social Isolation. Biol Psychiatry 2025; 97:942-952. [PMID: 39892690 PMCID: PMC12048258 DOI: 10.1016/j.biopsych.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/07/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
Chronic social isolation alters behavior across animal species. Genetic model organisms such as mice and flies provide crucial insight into the molecular and physiological effects of social isolation on brain cells and circuits. Here, we comparatively review recent findings regarding the function of conserved neuropeptides in social isolation in mice and flies. Analogous functions of 3 classes of neuropeptides-tachykinins, cholecystokinins, and neuropeptide Y/F-in the two model organisms suggest that these molecules may be involved in modulating behavioral changes induced by social isolation across a wider range of species, including humans. Comparative approaches armed with tools to dissect neuropeptidergic function can lead to an integrated understanding of the impacts of social isolation on brain circuits and behavior.
Collapse
Affiliation(s)
- Kenta Asahina
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California.
| | - Moriel Zelikowsky
- Department of Neurobiology, School of Medicine, The University of Utah, Salt Lake City, Utah
| |
Collapse
|
2
|
Wolff T, Eddison M, Chen N, Nern A, Sundaramurthi P, Sitaraman D, Rubin GM. Cell type-specific driver lines targeting the Drosophila central complex and their use to investigate neuropeptide expression and sleep regulation. eLife 2025; 14:RP104764. [PMID: 40244684 PMCID: PMC12005719 DOI: 10.7554/elife.104764] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
The central complex (CX) plays a key role in many higher-order functions of the insect brain including navigation and activity regulation. Genetic tools for manipulating individual cell types, and knowledge of what neurotransmitters and neuromodulators they express, will be required to gain mechanistic understanding of how these functions are implemented. We generated and characterized split-GAL4 driver lines that express in individual or small subsets of about half of CX cell types. We surveyed neuropeptide and neuropeptide receptor expression in the central brain using fluorescent in situ hybridization. About half of the neuropeptides we examined were expressed in only a few cells, while the rest were expressed in dozens to hundreds of cells. Neuropeptide receptors were expressed more broadly and at lower levels. Using our GAL4 drivers to mark individual cell types, we found that 51 of the 85 CX cell types we examined expressed at least one neuropeptide and 21 expressed multiple neuropeptides. Surprisingly, all co-expressed a small molecule neurotransmitter. Finally, we used our driver lines to identify CX cell types whose activation affects sleep, and identified other central brain cell types that link the circadian clock to the CX. The well-characterized genetic tools and information on neuropeptide and neurotransmitter expression we provide should enhance studies of the CX.
Collapse
Affiliation(s)
- Tanya Wolff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Mark Eddison
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nan Chen
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Preeti Sundaramurthi
- Department of Psychology, College of Science, California State UniversityHaywardUnited States
| | - Divya Sitaraman
- Department of Psychology, College of Science, California State UniversityHaywardUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
3
|
Liu D, Rahman M, Johnson A, Amo R, Tsutsui-Kimura I, Sullivan ZA, Pena N, Talay M, Logeman BL, Finkbeiner S, Qian L, Choi S, Capo-Battaglia A, Abdus-Saboor I, Ginty DD, Uchida N, Watabe-Uchida M, Dulac C. A hypothalamic circuit underlying the dynamic control of social homeostasis. Nature 2025; 640:1000-1010. [PMID: 40011768 PMCID: PMC12018270 DOI: 10.1038/s41586-025-08617-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/09/2025] [Indexed: 02/28/2025]
Abstract
Social grouping increases survival in many species, including humans1,2. By contrast, social isolation generates an aversive state ('loneliness') that motivates social seeking and heightens social interaction upon reunion3-5. The observed rebound in social interaction triggered by isolation suggests a homeostatic process underlying the control of social need, similar to physiological drives such as hunger, thirst or sleep3,6. In this study, we assessed social responses in several mouse strains, among which FVB/NJ mice emerged as highly, and C57BL/6J mice as moderately, sensitive to social isolation. Using both strains, we uncovered two previously uncharacterized neuronal populations in the hypothalamic preoptic nucleus that are activated during either social isolation or social rebound and orchestrate the behaviour display of social need and social satiety, respectively. We identified direct connectivity between these two populations and with brain areas associated with social behaviour, emotional state, reward and physiological needs and showed that mice require touch to assess the presence of others and fulfil their social need. These data show a brain-wide neural system underlying social homeostasis and provide significant mechanistic insights into the nature and function of circuits controlling instinctive social need and for the understanding of healthy and diseased brain states associated with social context.
Collapse
Affiliation(s)
- Ding Liu
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Mostafizur Rahman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Autumn Johnson
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Ryunosuke Amo
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Iku Tsutsui-Kimura
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Zuri A Sullivan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Nicolai Pena
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Mustafa Talay
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Brandon L Logeman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Samantha Finkbeiner
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Lechen Qian
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Seungwon Choi
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Athena Capo-Battaglia
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Ishmail Abdus-Saboor
- Department of Biological Sciences, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Naoshige Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Mitsuko Watabe-Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
4
|
Bragina JV, Goncharova AA, Besedina NG, Danilenkova LV, Kamysheva EA, Kamyshev NG. Genetic Control of Social Experience-Dependent Changes in Locomotor Activity in Drosophila melanogaster Males. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70022. [PMID: 39966324 DOI: 10.1002/arch.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 02/20/2025]
Abstract
In animals, social experience plays an important role in the adaptive modification of behavior. Previous social experience changes locomotor activity in Drosophila melanogaster. In females, suppression of locomotion is observed only when flies are in aggregations, but males retain a reduced level of locomotor activity up to 5 days after being isolated from the group. The mechanisms underlying such behavioral plasticity still largely are unknown. In this study, we aimed to identify new candidate genes involved in the social experience-dependent modification of locomotor activity. We tested the effect of social experience on spontaneous locomotor activity in various mutant males, including those with impaired learning and memory, circadian rhythms, some biochemical pathways, and sensory systems. The results of the present study indicate that the biogenic amines and olfactory perception appear to play key roles in social experience-induced changes in locomotor activity. Also, we performed a screen of the collection of mutants carrying random autosomal insertions of PdL transposon. We isolated five candidate genes, of which two genes, Dek and Hel89B, encode proteins related to the formation of the epigenetic code, implying that epigenetic factors regulating gene expression may be involved in social experience-dependent modification of locomotor behavior.
Collapse
Affiliation(s)
- Julia V Bragina
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Anna A Goncharova
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Natalia G Besedina
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Larisa V Danilenkova
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Elena A Kamysheva
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Nikolai G Kamyshev
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
5
|
Cheng Q, Xu S, Wang J, Han Y, Ge Y, Liu L. Activation of glycolysis alleviates mitochondrial impairments caused by social isolation in Drosophila. Biochem Biophys Res Commun 2024; 741:151061. [PMID: 39612647 DOI: 10.1016/j.bbrc.2024.151061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/15/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
Social isolation (SI) in humans can lead to various psychological and physical abnormalities. However, the molecular mechanisms and potential drug treatments for this illness are not well understood. Drosophila, a social organism, exhibits distinct behavioral defects under SI conditions, such as reduced sleep and loss of sugar intake preference. By examining the transcriptional profiles of SI flies, we discovered significant impacts on metabolic pathways. Notably, serotonin (5-HT) levels were reduced in the brains of SI flies. Treatment with 5-HT reversed the behavioral defects in SI flies. 5-HT is known to regulate mitochondrial synthesis in mouse brain, and we found it also enhances mitochondrial biogenesis in flies. Further investigation revealed that the 5-HT7 receptor subtype was involved in SI behavior. To activate mitochondrial metabolism, we overexpressed phosphoglycerate kinase (Pgk), an enzyme in the glycolytic pathway, in neurons. This overexpression rescued the behavioral defects in SI flies. Additionally, terazosin, an alpha-1 adrenergic receptor antagonist known to activate Pgk, produced a similar rescue effect. Our study elucidates a key principle of SI-induced psychological damage and proposes a drug targeting strategy for future validation.
Collapse
Affiliation(s)
- Qi Cheng
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Santai Xu
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Jianji Wang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road 2#, Chaoyang District, Beijing, 10029, China
| | - Yanping Han
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Yipeng Ge
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road 2#, Chaoyang District, Beijing, 10029, China.
| | - Lei Liu
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China.
| |
Collapse
|
6
|
Jeong J, Kwon K, Geisseova TK, Lee J, Kwon T, Lim C. Drosulfakinin signaling encodes early-life memory for adaptive social plasticity. eLife 2024; 13:e103973. [PMID: 39692597 PMCID: PMC11706606 DOI: 10.7554/elife.103973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024] Open
Abstract
Drosophila establishes social clusters in groups, yet the underlying principles remain poorly understood. Here, we performed a systemic analysis of social network behavior (SNB) that quantifies individual social distance (SD) in a group over time. The SNB assessment in 175 inbred strains from the Drosophila Genetics Reference Panel showed a tight association of short SD with long developmental time, low food intake, and hypoactivity. The developmental inferiority in short-SD individuals was compensated by their group culturing. By contrast, developmental isolation silenced the beneficial effects of social interactions in adults and blunted the plasticity of SNB under physiological challenges. Transcriptome analyses revealed genetic diversity for SD traits, whereas social isolation reprogrammed select genetic pathways, regardless of SD phenotypes. In particular, social deprivation suppressed the expression of the neuropeptide Drosulfakinin (Dsk) in three pairs of adult brain neurons. Male-specific DSK signaling to cholecystokinin-like receptor 17D1 mediated the SNB plasticity. In fact, transgenic manipulations of the DSK neuron activity were sufficient to imitate the state of social experience. Given the functional conservation of mammalian Dsk homologs, we propose that animals may have evolved a dedicated neural mechanism to encode early-life experience and transform group properties adaptively.
Collapse
Affiliation(s)
- Jiwon Jeong
- Department of Biological Sciences, Ulsan National Institute of Science and TechnologyUlsanRepublic of Korea
| | - Kujin Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and TechnologyUlsanRepublic of Korea
| | - Terezia Klaudia Geisseova
- Department of Biological Sciences, Ulsan National Institute of Science and TechnologyUlsanRepublic of Korea
| | - Jongbin Lee
- Research Center for Cellular Identity, Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and TechnologyUlsanRepublic of Korea
- Center for Genomic Integrity, Institute for Basic ScienceUlsanRepublic of Korea
- Graduate School of Health Science and Technology, Ulsan National Institute of Science and TechnologyUlsanRepublic of Korea
| | - Chunghun Lim
- Research Center for Cellular Identity, Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
- Graduate School of Stem Cell and Regenerative Biology, Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| |
Collapse
|
7
|
Harrison LM, Churchill ER, Fairweather M, Smithson CH, Chapman T, Bretman A. Ageing effects of social environments in 'non-social' insects. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220463. [PMID: 39463243 PMCID: PMC11513649 DOI: 10.1098/rstb.2022.0463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 10/29/2024] Open
Abstract
It is increasingly clear that social environments have profound impacts on the life histories of 'non-social' animals. However, it is not yet well known how species with varying degrees of sociality respond to different social contexts and whether such effects are sex-specific. To survey the extent to which social environments specifically affect lifespan and ageing in non-social species, we performed a systematic literature review, focusing on invertebrates but excluding eusocial insects. We found 80 studies in which lifespan or ageing parameters were measured in relation to changes in same-sex or opposite-sex exposure, group size or cues thereof. Most of the studies focused on manipulations of adults, often reporting sex differences in lifespan following exposure to the opposite sex. Some studies highlighted the impacts of developmental environments or social partner age on lifespan. Several studies explored potential underlying mechanisms, emphasizing that studies on insects could provide excellent opportunities to interrogate the basis of social effects on ageing. We discuss what these studies can tell us about the social environment as a stressor, or trade-offs in resources prompted by different social contexts. We suggest fruitful avenues for further research of social effects across a wider and more diverse range of taxa.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Lauren M. Harrison
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Emily R. Churchill
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Megan Fairweather
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Claire H. Smithson
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Amanda Bretman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
8
|
Yu Y, Chen CZ, Celardo I, Tan BWZ, Hurcomb JD, Leal NS, Popovic R, Loh SHY, Martins LM. Enhancing mitochondrial one-carbon metabolism is neuroprotective in Alzheimer's disease models. Cell Death Dis 2024; 15:856. [PMID: 39582067 PMCID: PMC11586400 DOI: 10.1038/s41419-024-07179-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024]
Abstract
Alzheimer's disease (AD) is the most common form of age-related dementia. In AD, the death of neurons in the central nervous system is associated with the accumulation of toxic amyloid β peptide (Aβ) and mitochondrial dysfunction. Mitochondria are signal transducers of metabolic and biochemical information, and their impairment can compromise cellular function. Mitochondria compartmentalise several pathways, including folate-dependent one-carbon (1C) metabolism and electron transport by respiratory complexes. Mitochondrial 1C metabolism is linked to electron transport through complex I of the respiratory chain. Here, we analysed the proteomic changes in a fly model of AD by overexpressing a toxic form of Aβ (Aβ-Arc). We found that expressing Aβ-Arc caused alterations in components of both complex I and mitochondrial 1C metabolism. Genetically enhancing mitochondrial 1C metabolism through Nmdmc improved mitochondrial function and was neuroprotective in fly models of AD. We also found that exogenous supplementation with the 1C donor folinic acid improved mitochondrial health in both mammalian cells and fly models of AD. We found that genetic variations in MTHFD2L, the human orthologue of Nmdmc, were linked to AD risk. Additionally, Mendelian randomisation showed that increased folate intake decreased the risk of developing AD. Overall, our data suggest enhancement of folate-dependent 1C metabolism as a viable strategy to delay the progression and attenuate the severity of AD.
Collapse
Affiliation(s)
- Yizhou Yu
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK.
- Healthspan Biotics Ltd, Milner Therapeutics Institute, Cambridge Biomedical Campus, Cambridge, UK.
| | - Civia Z Chen
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Ivana Celardo
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Bryan Wei Zhi Tan
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - James D Hurcomb
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Nuno Santos Leal
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Rebeka Popovic
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Samantha H Y Loh
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - L Miguel Martins
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK.
| |
Collapse
|
9
|
Wang Y, Zheng P, Cheng YC, Wang Z, Aravkin A. WENDY: Covariance dynamics based gene regulatory network inference. Math Biosci 2024; 377:109284. [PMID: 39168402 DOI: 10.1016/j.mbs.2024.109284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/25/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Determining gene regulatory network (GRN) structure is a central problem in biology, with a variety of inference methods available for different types of data. For a widely prevalent and challenging use case, namely single-cell gene expression data measured after intervention at multiple time points with unknown joint distributions, there is only one known specifically developed method, which does not fully utilize the rich information contained in this data type. We develop an inference method for the GRN in this case, netWork infErence by covariaNce DYnamics, dubbed WENDY. The core idea of WENDY is to model the dynamics of the covariance matrix, and solve this dynamics as an optimization problem to determine the regulatory relationships. To evaluate its effectiveness, we compare WENDY with other inference methods using synthetic data and experimental data. Our results demonstrate that WENDY performs well across different data sets.
Collapse
Affiliation(s)
- Yue Wang
- Irving Institute for Cancer Dynamics and Department of Statistics, Columbia University, New York, 10027, NY, USA.
| | - Peng Zheng
- Institute for Health Metrics and Evaluation, Seattle, 98195, WA, USA; Department of Health Metrics Sciences, University of Washington, Seattle, 98195, WA, USA
| | - Yu-Chen Cheng
- Department of Data Science, Dana-Farber Cancer Institute, Boston, 02215, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA; Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, 02215, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, 02138, MA, USA
| | - Zikun Wang
- Laboratory of Genetics, The Rockefeller University, New York, 10065, NY, USA
| | - Aleksandr Aravkin
- Department of Applied Mathematics, University of Washington, Seattle, 98195, WA, USA
| |
Collapse
|
10
|
Gil-Martí B, Isidro-Mézcua J, Poza-Rodriguez A, Asti Tello GS, Treves G, Turiégano E, Beckwith EJ, Martin FA. Socialization causes long-lasting behavioral changes. Sci Rep 2024; 14:22302. [PMID: 39333212 PMCID: PMC11436997 DOI: 10.1038/s41598-024-73218-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
In modern human societies, social isolation acts as a negative factor for health and life quality. On the other hand, social interaction also has profound effects on animal and human, impacting aggressiveness, feeding and sleep, among many other behaviors. Here, we observe that in the fly Drosophila melanogaster these behavioral changes long-last even after social interaction has ceased, suggesting that the socialization experience triggers behavioral plasticity. These modified behaviors maintain similar levels for 24 h and persist up to 72 h, although showing a progressive decay. We also find that impairing long-term memory mechanisms either genetically or by anesthesia abolishes the expected behavioral changes in response to social interaction. Furthermore, we show that socialization increases CREB-dependent neuronal activity and synaptic plasticity in the mushroom body, the main insect memory center analogous to mammalian hippocampus. We propose that social interaction triggers socialization awareness, understood as long-lasting changes in behavior caused by experience with mechanistic similarities to long-term memory formation.
Collapse
Affiliation(s)
- Beatriz Gil-Martí
- Cajal Institute, Spanish National Research Council (CSIC), Av Dr Arce 37, 28002, Madrid, Spain
- Department of Biology, Autonomous University of Madrid, Madrid, Spain
| | - Julia Isidro-Mézcua
- Cajal Institute, Spanish National Research Council (CSIC), Av Dr Arce 37, 28002, Madrid, Spain
| | - Adriana Poza-Rodriguez
- Cajal Institute, Spanish National Research Council (CSIC), Av Dr Arce 37, 28002, Madrid, Spain
| | - Gerson S Asti Tello
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), UBA-CONICET, Buenos Aires, Argentina
| | - Gaia Treves
- Cajal Institute, Spanish National Research Council (CSIC), Av Dr Arce 37, 28002, Madrid, Spain
| | - Enrique Turiégano
- Department of Biology, Autonomous University of Madrid, Madrid, Spain
| | - Esteban J Beckwith
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), UBA-CONICET, Buenos Aires, Argentina.
| | - Francisco A Martin
- Cajal Institute, Spanish National Research Council (CSIC), Av Dr Arce 37, 28002, Madrid, Spain.
| |
Collapse
|
11
|
Lopes PC, Chang M, Holloway F, Fatusin B, Patel S, Siemonsma C, Kindel M. The effect of acute social isolation on neural molecular responses in components of the social decision-making network. BMC Genomics 2024; 25:771. [PMID: 39118023 PMCID: PMC11308497 DOI: 10.1186/s12864-024-10653-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Prolonged or chronic social isolation has pronounced effects on animals, ranging from altered stress responses, increased anxiety and aggressive behaviour, and even increased mortality. The effects of shorter periods of isolation are much less well researched; however, short periods of isolation are used routinely for testing animal behaviour and physiology. Here, we studied how a 3 h period of isolation from a cagemate affected neural gene expression in three brain regions that contain important components of the social decision-making network, the hypothalamus, the nucleus taeniae of the amygdala, and the bed nucleus of the stria terminalis, using a gregarious bird as a model (zebra finches). We found evidence suggestive of altered neural activity, synaptic transmission, metabolism, and even potentially pain perception, all of which could create cofounding effects on experimental tests that involve isolating animals. We recommend that the effects of short-term social isolation need to be better understood and propose alternatives to isolating animals for testing.
Collapse
Affiliation(s)
- Patricia C Lopes
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA.
| | - Madeleine Chang
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Faith Holloway
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Biola Fatusin
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Sachin Patel
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Chandler Siemonsma
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Morgan Kindel
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Sun H, Shen Y, Ni P, Liu X, Li Y, Qiu Z, Su J, Wang Y, Wu M, Kong X, Cao JL, Xie W, An S. Autism-associated neuroligin 3 deficiency in medial septum causes social deficits and sleep loss in mice. J Clin Invest 2024; 134:e176770. [PMID: 39058792 PMCID: PMC11444198 DOI: 10.1172/jci176770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Patients with autism spectrum disorder (ASD) frequently experience sleep disturbance. Genetic mutations in the neuroligin 3 (NLG3) gene are highly correlative with ASD and sleep disturbance. However, the cellular and neural circuit bases of this correlation remain elusive. Here, we found that the conditional knockout of Nlg3 (Nlg3-CKO) in the medial septum (MS) impairs social memory and reduces sleep. Nlg3 CKO in the MS caused hyperactivity of MSGABA neurons during social avoidance and wakefulness. Activation of MSGABA neurons induced social memory deficits and sleep loss in C57BL/6J mice. In contrast, inactivation of these neurons ameliorated social memory deficits and sleep loss in Nlg3-CKO mice. Sleep deprivation led to social memory deficits, while social isolation caused sleep loss, both resulting in a reduction in NLG3 expression and an increase in activity of GABAergic neurons in the MS from C57BL/6J mice. Furthermore, MSGABA-innervated CA2 neurons specifically regulated social memory without impacting sleep, whereas MSGABA-innervating neurons in the preoptic area selectively controlled sleep without affecting social behavior. Together, these findings demonstrate that the hyperactive MSGABA neurons impair social memory and disrupt sleep resulting from Nlg3 CKO in the MS, and achieve the modality specificity through their divergent downstream targets.
Collapse
Affiliation(s)
- Haiyan Sun
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yu Shen
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Pengtao Ni
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Xin Liu
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yan Li
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Zhentong Qiu
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Jiawen Su
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yihan Wang
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Miao Wu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Xiangxi Kong
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Shuming An
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
13
|
Dissinger A, Rimoldi S, Terova G, Kwasek K. Chronic social isolation affects feeding behavior of juvenile zebrafish (Danio rerio). PLoS One 2024; 19:e0307967. [PMID: 39058733 PMCID: PMC11280532 DOI: 10.1371/journal.pone.0307967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Many organisms exhibit social behaviors and are part of some scheme of social structure. Zebrafish are highly social, shoaling fish and therefore, social isolation may have notable impacts on their physiology and behavior. The objective of this study was to evaluate the effects of social isolation on feed intake, monoaminergic system related gene expression, and intestinal health of juvenile zebrafish fed a high-inclusion soybean meal based diet. At 20 days post-fertilization zebrafish were randomly assigned to chronic isolation (1 fish per 1.5 L tank) or social housing (6 fish per 9 L tank) with 18 tanks per treatment group (n = 18). Dividers were placed between all tanks to prevent visual cues between fish. Zebrafish were fed a commercial fishmeal based diet until 35 days post-fertilization and then fed the experimental high-inclusion soybean meal based diet until 50 days post-fertilization. At the end of the experiment (51 days post-fertilization), the mean total length, weight, and weight gain were not significantly different between treatment groups. Feed intake and feed conversion ratio were significantly higher in chronic isolation fish than in social housing fish. Expression of monoaminergic and appetite-related genes were not significantly different between groups. The chronic isolation group showed higher expression of the inflammatory gene il-1b, however, average intestinal villi width was significantly smaller and average length-to-width ratio was significantly higher in chronic isolation fish, suggesting morphological signs of inflammation were not present at the time of sampling. These results indicate that chronic isolation positively affects feed intake of juvenile zebrafish and suggest that isolation may be useful in promoting feed intake of less-palatable diets such as those based on soybean meal.
Collapse
Affiliation(s)
- Aubrey Dissinger
- Department of Zoology, Southern Illinois University – Carbondale, Carbondale, Illinois, United States of America
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Karolina Kwasek
- Department of Zoology, Southern Illinois University – Carbondale, Carbondale, Illinois, United States of America
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| |
Collapse
|
14
|
Milojevic S, Ghosh A, Makevic V, Stojkovic M, Capovilla M, Tosti T, Budimirovic D, Protic D. Circadian Rhythm and Sleep Analyses in a Fruit Fly Model of Fragile X Syndrome Using a Video-Based Automated Behavioral Research System. Int J Mol Sci 2024; 25:7949. [PMID: 39063191 PMCID: PMC11277495 DOI: 10.3390/ijms25147949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Fragile X syndrome (FXS) is caused by the full mutation in the FMR1 gene on the Xq27.3 chromosome region. It is the most common monogenic cause of autism spectrum disorder (ASD) and inherited intellectual disability (ID). Besides ASD and ID and other symptoms, individuals with FXS may exhibit sleep problems and impairment of circadian rhythm (CR). The Drosophila melanogaster models of FXS, such as dFMR1B55, represent excellent models for research in the FXS field. During this study, sleep patterns and CR in dFMR1B55 mutants were analyzed, using a new platform based on continuous high-resolution videography integrated with a highly-customized version of an open-source software. This methodology provides more sensitive results, which could be crucial for all further research in this model of fruit flies. The study revealed that dFMR1B55 male mutants sleep more and can be considered weak rhythmic flies rather than totally arrhythmic and present a good alternative animal model of genetic disorder, which includes impairment of CR and sleep behavior. The combination of affordable videography and software used in the current study is a significant improvement over previous methods and will enable broader adaptation of such high-resolution behavior monitoring methods.
Collapse
Affiliation(s)
- Sara Milojevic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.M.); (M.S.)
| | - Arijit Ghosh
- Chronobiology and Behavioral Neurogenetics Laboratory, Neuroscience Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064, India;
| | - Vedrana Makevic
- Department of Pathophysiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Maja Stojkovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.M.); (M.S.)
| | - Maria Capovilla
- UMR7275 CNRS-INSERM-UniCA, Institute of Cellular and Molecular Pharmacology Institute, Sophia Antipolis, 06560 Valbonne, France;
| | - Tomislav Tosti
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dejan Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.M.); (M.S.)
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, 11000 Belgrade, Serbia
| |
Collapse
|
15
|
Yost RT, Scott AM, Kurbaj JM, Walshe-Roussel B, Dukas R, Simon AF. Recovery from social isolation requires dopamine in males, but not the autism-related gene nlg3 in either sex. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240604. [PMID: 39086833 PMCID: PMC11288677 DOI: 10.1098/rsos.240604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 08/02/2024]
Abstract
Social isolation causes profound changes in social behaviour in a variety of species. However, the genetic and molecular mechanisms modulating behavioural responses to social isolation and social recovery remain to be elucidated. Here, we quantified the behavioural response of vinegar flies to social isolation using two distinct protocols (social space preference and sociability, the spontaneous tendencies to form groups). We found that social isolation increased social space and reduced sociability. These effects of social isolation were reversible and could be reduced after 3 days of group housing. Flies with a loss of function of neuroligin3 (orthologue of autism-related neuroligin genes) with known increased social space in a socially enriched environment were still able to recover from social isolation. We also show that dopamine (DA) is needed for a response to social isolation and recovery in males but not in females. Furthermore, only in males, DA levels are reduced after isolation and are not recovered after group housing. Finally, in socially enriched flies mutant for neuroligin3, DA levels are reduced in males, but not in females. We propose a model to explain how DA and neuroligin3 are involved in the behavioural response to social isolation and its recovery in a dynamic and sex-specific manner.
Collapse
Affiliation(s)
- Ryley T. Yost
- Department of Biology, Western University, London, Ontario, Canada
| | | | - Judy M. Kurbaj
- Department of Biology, Western University, London, Ontario, Canada
| | | | - Reuven Dukas
- Department of Psychology, Neuroscience and Behaviour, Animal Behaviour Group, McMaster University, Hamilton, Ontario, Canada
| | - Anne F. Simon
- Department of Biology, Western University, London, Ontario, Canada
| |
Collapse
|
16
|
Beard B, Bohn A, Opoola M, Hwangbo DS. Con-DAM: Simultaneous measurement of food intake and sleep in Drosophila at the single fly resolution. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001200. [PMID: 39005561 PMCID: PMC11246551 DOI: 10.17912/micropub.biology.001200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Sleep and feeding are conserved behaviors across many taxa of the animal kingdom and are essential for an organism's survival and fitness. Although Drosophila has been used to study these behaviors for decades, concurrent measurement of these two behaviors in the same flies on solid media has been a challenge. Here, we report Con-DAM, which enables simultaneous quantification of food intake and sleep/activity at the single fly resolution. Since Con-DAM integrates the Con-Ex (Consumption-Excretion) assay and the DAM (Drosophila Activity Monitor), two widely used tools to quantify food consumption and sleep/activity in flies into a single unit, we expect Con-DAM to serve as an easy method for various purposes that require quantifying food consumption and sleep/activity in the same individual flies.
Collapse
Affiliation(s)
- Breanna Beard
- Department of Biology, University of Louisville, Louisville, Kentucky, United States
| | - Abigail Bohn
- Department of Biology, University of Louisville, Louisville, Kentucky, United States
| | - Mubaraq Opoola
- Department of Biology, University of Louisville, Louisville, Kentucky, United States
| | - Dae-Sung Hwangbo
- Department of Biology, University of Louisville, Louisville, Kentucky, United States
| |
Collapse
|
17
|
Lloyd E, Rastogi A, Holtz N, Aaronson B, Craig Albertson R, Keene AC. Ontogeny and social context regulate the circadian activity patterns of Lake Malawi cichlids. J Comp Physiol B 2024; 194:299-313. [PMID: 37910192 PMCID: PMC11233325 DOI: 10.1007/s00360-023-01523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/01/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
Activity patterns tend to be highly stereotyped and critical for executing many different behaviors including foraging, social interactions, and predator avoidance. Differences in the circadian timing of locomotor activity and rest periods can facilitate habitat partitioning and the exploitation of novel niches. As a consequence, closely related species often display highly divergent activity patterns, suggesting that shifts from diurnal to nocturnal behavior, or vice versa, are critical for survival. In Africa's Lake Malawi alone, there are over 500 species of cichlids, which inhabit diverse environments and exhibit extensive phenotypic variation. We have previously identified a substantial range in activity patterns across adult Lake Malawi cichlid species, from strongly diurnal to strongly nocturnal. In many species, including fishes, ecological pressures differ dramatically across life-history stages, raising the possibility that activity patterns may change over ontogeny. To determine if rest-activity patterns change across life stages, we compared the locomotor patterns of six Lake Malawi cichlid species. While total rest and activity did not change between early juvenile and adult stages, rest-activity patterns did, with juveniles displaying distinct activity rhythms that are more robust than adults. One distinct difference between juveniles and adults is the emergence of complex social behavior. To determine whether social context is required for activity rhythms, we next measured locomotor behavior in group-housed adult fish. We found that when normal social interactions were allowed, locomotor activity patterns were restored, supporting the notion that social interactions promote circadian regulation of activity in adult fish. These findings reveal a previously unidentified link between developmental stage and social interactions in the circadian timing of cichlid activity.
Collapse
Affiliation(s)
- Evan Lloyd
- Department of Biology, Texas A&M University, College Station, TX, 77840, USA
| | - Aakriti Rastogi
- Department of Biology, Texas A&M University, College Station, TX, 77840, USA
| | - Niah Holtz
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA
| | - Ben Aaronson
- Department of Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - R Craig Albertson
- Department of Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Alex C Keene
- Department of Biology, Texas A&M University, College Station, TX, 77840, USA.
| |
Collapse
|
18
|
Peng D, Zheng L, Liu D, Han C, Wang X, Yang Y, Song L, Zhao M, Wei Y, Li J, Ye X, Wei Y, Feng Z, Huang X, Chen M, Gou Y, Xue Y, Zhang L. Large-language models facilitate discovery of the molecular signatures regulating sleep and activity. Nat Commun 2024; 15:3685. [PMID: 38693116 PMCID: PMC11063160 DOI: 10.1038/s41467-024-48005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Sleep, locomotor and social activities are essential animal behaviors, but their reciprocal relationships and underlying mechanisms remain poorly understood. Here, we elicit information from a cutting-edge large-language model (LLM), generative pre-trained transformer (GPT) 3.5, which interprets 10.2-13.8% of Drosophila genes known to regulate the 3 behaviors. We develop an instrument for simultaneous video tracking of multiple moving objects, and conduct a genome-wide screen. We have identified 758 fly genes that regulate sleep and activities, including mre11 which regulates sleep only in the presence of conspecifics, and NELF-B which regulates sleep regardless of whether conspecifics are present. Based on LLM-reasoning, an educated signal web is modeled for understanding of potential relationships between its components, presenting comprehensive molecular signatures that control sleep, locomotor and social activities. This LLM-aided strategy may also be helpful for addressing other complex scientific questions.
Collapse
Affiliation(s)
- Di Peng
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Liubin Zheng
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Dan Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Cheng Han
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xin Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yan Yang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Li Song
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Miaoying Zhao
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yanfeng Wei
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jiayi Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiaoxue Ye
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yuxiang Wei
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zihao Feng
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xinhe Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Miaomiao Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yujie Gou
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yu Xue
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
- Nanjing University Institute of Artificial Intelligence Biomedicine, Nanjing, Jiangsu, 210031, China.
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, Hubei, 430022, China.
| |
Collapse
|
19
|
Suárez-Grimalt R, Grunwald Kadow IC, Scheunemann L. An integrative sensor of body states: how the mushroom body modulates behavior depending on physiological context. Learn Mem 2024; 31:a053918. [PMID: 38876486 PMCID: PMC11199956 DOI: 10.1101/lm.053918.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/08/2024] [Indexed: 06/16/2024]
Abstract
The brain constantly compares past and present experiences to predict the future, thereby enabling instantaneous and future behavioral adjustments. Integration of external information with the animal's current internal needs and behavioral state represents a key challenge of the nervous system. Recent advancements in dissecting the function of the Drosophila mushroom body (MB) at the single-cell level have uncovered its three-layered logic and parallel systems conveying positive and negative values during associative learning. This review explores a lesser-known role of the MB in detecting and integrating body states such as hunger, thirst, and sleep, ultimately modulating motivation and sensory-driven decisions based on the physiological state of the fly. State-dependent signals predominantly affect the activity of modulatory MB input neurons (dopaminergic, serotoninergic, and octopaminergic), but also induce plastic changes directly at the level of the MB intrinsic and output neurons. Thus, the MB emerges as a tightly regulated relay station in the insect brain, orchestrating neuroadaptations due to current internal and behavioral states leading to short- but also long-lasting changes in behavior. While these adaptations are crucial to ensure fitness and survival, recent findings also underscore how circuit motifs in the MB may reflect fundamental design principles that contribute to maladaptive behaviors such as addiction or depression-like symptoms.
Collapse
Affiliation(s)
- Raquel Suárez-Grimalt
- Institute for Biology/Genetics, Freie Universität Berlin, 14195 Berlin, Germany
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | - Lisa Scheunemann
- Institute for Biology/Genetics, Freie Universität Berlin, 14195 Berlin, Germany
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
20
|
Zhao H, Jiang X, Ma M, Xing L, Ji X, Pan Y. A neural pathway for social modulation of spontaneous locomotor activity (SoMo-SLA) in Drosophila. Proc Natl Acad Sci U S A 2024; 121:e2314393121. [PMID: 38394240 PMCID: PMC10907233 DOI: 10.1073/pnas.2314393121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
Social enrichment or social isolation affects a range of innate behaviors, such as sex, aggression, and sleep, but whether there is a shared mechanism is not clear. Here, we report a neural mechanism underlying social modulation of spontaneous locomotor activity (SoMo-SLA), an internal-driven behavior indicative of internal states. We find that social enrichment specifically reduces spontaneous locomotor activity in male flies. We identify neuropeptides Diuretic hormone 44 (DH44) and Tachykinin (TK) to be up- and down-regulated by social enrichment and necessary for SoMo-SLA. We further demonstrate a sexually dimorphic neural circuit, in which the male-specific P1 neurons encoding internal states form positive feedback with interneurons coexpressing doublesex (dsx) and Tk to promote locomotion, while P1 neurons also form negative feedback with interneurons coexpressing dsx and DH44 to inhibit locomotion. These two opposing neuromodulatory recurrent circuits represent a potentially common mechanism that underlies the social regulation of multiple innate behaviors.
Collapse
Affiliation(s)
- Huan Zhao
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Xinyu Jiang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Mingze Ma
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Limin Xing
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Xiaoxiao Ji
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong226019, China
| |
Collapse
|
21
|
Ryvkin J, Omesi L, Kim YK, Levi M, Pozeilov H, Barak-Buchris L, Agranovich B, Abramovich I, Gottlieb E, Jacob A, Nässel DR, Heberlein U, Shohat-Ophir G. Failure to mate enhances investment in behaviors that may promote mating reward and impairs the ability to cope with stressors via a subpopulation of Neuropeptide F receptor neurons. PLoS Genet 2024; 20:e1011054. [PMID: 38236837 PMCID: PMC10795991 DOI: 10.1371/journal.pgen.1011054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/06/2023] [Indexed: 01/22/2024] Open
Abstract
Living in dynamic environments such as the social domain, where interaction with others determines the reproductive success of individuals, requires the ability to recognize opportunities to obtain natural rewards and cope with challenges that are associated with achieving them. As such, actions that promote survival and reproduction are reinforced by the brain reward system, whereas coping with the challenges associated with obtaining these rewards is mediated by stress-response pathways, the activation of which can impair health and shorten lifespan. While much research has been devoted to understanding mechanisms underlying the way by which natural rewards are processed by the reward system, less attention has been given to the consequences of failure to obtain a desirable reward. As a model system to study the impact of failure to obtain a natural reward, we used the well-established courtship suppression paradigm in Drosophila melanogaster as means to induce repeated failures to obtain sexual reward in male flies. We discovered that beyond the known reduction in courtship actions caused by interaction with non-receptive females, repeated failures to mate induce a stress response characterized by persistent motivation to obtain the sexual reward, reduced male-male social interaction, and enhanced aggression. This frustrative-like state caused by the conflict between high motivation to obtain sexual reward and the inability to fulfill their mating drive impairs the capacity of rejected males to tolerate stressors such as starvation and oxidative stress. We further show that sensitivity to starvation and enhanced social arousal is mediated by the disinhibition of a small population of neurons that express receptors for the fly homologue of neuropeptide Y. Our findings demonstrate for the first time the existence of social stress in flies and offers a framework to study mechanisms underlying the crosstalk between reward, stress, and reproduction in a simple nervous system that is highly amenable to genetic manipulation.
Collapse
Affiliation(s)
- Julia Ryvkin
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center and the Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Liora Omesi
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center and the Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Yong-Kyu Kim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Mali Levi
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center and the Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Hadar Pozeilov
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center and the Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Lital Barak-Buchris
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center and the Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Bella Agranovich
- Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Ifat Abramovich
- Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Eyal Gottlieb
- Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Avi Jacob
- The Kanbar scientific equipment center. The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Ulrike Heberlein
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Galit Shohat-Ophir
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center and the Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
22
|
Yadav RSP, Ansari F, Bera N, Kent C, Agrawal P. Lessons from lonely flies: Molecular and neuronal mechanisms underlying social isolation. Neurosci Biobehav Rev 2024; 156:105504. [PMID: 38061597 DOI: 10.1016/j.neubiorev.2023.105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023]
Abstract
Animals respond to changes in the environment which affect their internal state by adapting their behaviors. Social isolation is a form of passive environmental stressor that alters behaviors across animal kingdom, including humans, rodents, and fruit flies. Social isolation is known to increase violence, disrupt sleep and increase depression leading to poor mental and physical health. Recent evidences from several model organisms suggest that social isolation leads to remodeling of the transcriptional and epigenetic landscape which alters behavioral outcomes. In this review, we explore how manipulating social experience of fruit fly Drosophila melanogaster can shed light on molecular and neuronal mechanisms underlying isolation driven behaviors. We discuss the recent advances made using the powerful genetic toolkit and behavioral assays in Drosophila to uncover role of neuromodulators, sensory modalities, pheromones, neuronal circuits and molecular mechanisms in mediating social isolation. The insights gained from these studies could be crucial for developing effective therapeutic interventions in future.
Collapse
Affiliation(s)
- R Sai Prathap Yadav
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Faizah Ansari
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Neha Bera
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Clement Kent
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Pavan Agrawal
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Karnataka 576104, India.
| |
Collapse
|
23
|
Koto A, Tamura M, Wong PS, Aburatani S, Privman E, Stoffel C, Crespi A, McKenzie SK, La Mendola C, Kay T, Keller L. Social isolation shortens lifespan through oxidative stress in ants. Nat Commun 2023; 14:5493. [PMID: 37758727 PMCID: PMC10533837 DOI: 10.1038/s41467-023-41140-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Social isolation negatively affects health, induces detrimental behaviors, and shortens lifespan in social species. Little is known about the mechanisms underpinning these effects because model species are typically short-lived and non-social. Using colonies of the carpenter ant Camponotus fellah, we show that social isolation induces hyperactivity, alters space-use, and reduces lifespan via changes in the expression of genes with key roles in oxidation-reduction and an associated accumulation of reactive oxygen species. These physiological effects are localized to the fat body and oenocytes, which perform liver-like functions in insects. We use pharmacological manipulations to demonstrate that the oxidation-reduction pathway causally underpins the detrimental effects of social isolation on behavior and lifespan. These findings have important implications for our understanding of how social isolation affects behavior and lifespan in general.
Collapse
Affiliation(s)
- Akiko Koto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Ibaraki, Japan.
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Ibaraki, Japan.
| | - Makoto Tamura
- NeuroDiscovery Lab, Mitsubishi Tanabe Pharma America, Cambridge, MA, 02139, USA
| | - Pui Shan Wong
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Ibaraki, Japan
| | - Sachiyo Aburatani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Ibaraki, Japan
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Ibaraki, Japan
| | - Eyal Privman
- University of Haifa, Institute of Evolution, Department of Evolutionary and Environmental Biology, Haifa, 3498838, Israel
| | - Céline Stoffel
- University of Lausanne, Department of Ecology and Evolution, Lausanne, CH-1015, Switzerland
| | - Alessandro Crespi
- Biorobotics Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Sean Keane McKenzie
- University of Lausanne, Department of Ecology and Evolution, Lausanne, CH-1015, Switzerland
| | - Christine La Mendola
- University of Lausanne, Department of Ecology and Evolution, Lausanne, CH-1015, Switzerland
| | - Tomas Kay
- University of Lausanne, Department of Ecology and Evolution, Lausanne, CH-1015, Switzerland
| | - Laurent Keller
- University of Lausanne, Department of Ecology and Evolution, Lausanne, CH-1015, Switzerland.
- Social Evolution Unit, Cornuit 8, BP 855, Chesières, CH-1885, Switzerland.
| |
Collapse
|
24
|
Poe AR, Zhu L, Szuperak M, McClanahan PD, Anafi RC, Scholl B, Thum AS, Cavanaugh DJ, Kayser MS. Developmental emergence of sleep rhythms enables long-term memory in Drosophila. SCIENCE ADVANCES 2023; 9:eadh2301. [PMID: 37683005 PMCID: PMC10491288 DOI: 10.1126/sciadv.adh2301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
In adulthood, sleep-wake rhythms are one of the most prominent behaviors under circadian control. However, during early life, sleep is spread across the 24-hour day. The mechanism through which sleep rhythms emerge, and consequent advantage conferred to a juvenile animal, is unknown. In the second-instar Drosophila larvae (L2), like in human infants, sleep is not under circadian control. We identify the precise developmental time point when the clock begins to regulate sleep in Drosophila, leading to emergence of sleep rhythms in early third-instars (L3). At this stage, a cellular connection forms between DN1a clock neurons and arousal-promoting Dh44 neurons, bringing arousal under clock control to drive emergence of circadian sleep. Last, we demonstrate that L3 but not L2 larvae exhibit long-term memory (LTM) of aversive cues and that this LTM depends upon deep sleep generated once sleep rhythms begin. We propose that the developmental emergence of circadian sleep enables more complex cognitive processes, including the onset of enduring memories.
Collapse
Affiliation(s)
- Amy R. Poe
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lucy Zhu
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Milan Szuperak
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Ron C. Anafi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin Scholl
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andreas S. Thum
- Department of Genetics, Institute of Biology, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | | | - Matthew S. Kayser
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
Duhart JM, Buchler JR, Inami S, Kennedy KJ, Jenny BP, Afonso DJS, Koh K. Modulation and neural correlates of postmating sleep plasticity in Drosophila females. Curr Biol 2023; 33:2702-2716.e3. [PMID: 37352854 PMCID: PMC10527417 DOI: 10.1016/j.cub.2023.05.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/25/2023]
Abstract
Sleep is essential, but animals may forgo sleep to engage in other critical behaviors, such as feeding and reproduction. Previous studies have shown that female flies exhibit decreased sleep after mating, but our understanding of the process is limited. Here, we report that postmating nighttime sleep loss is modulated by diet and sleep deprivation, demonstrating a complex interaction among sleep, reproduction, and diet. We also find that female-specific pC1 neurons and sleep-promoting dorsal fan-shaped body (dFB) neurons are required for postmating sleep plasticity. Activating pC1 neurons leads to sleep suppression on standard fly culture media but has little sleep effect on sucrose-only food. Published connectome data suggest indirect, inhibitory connections among pC1 subtypes. Using calcium imaging, we show that activating the pC1e subtype inhibits dFB neurons. We propose that pC1 and dFB neurons integrate the mating status, food context, and sleep drive to modulate postmating sleep plasticity.
Collapse
Affiliation(s)
- José M Duhart
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir-IIBBA-CONICET, Buenos Aires C1405BWE, Argentina; Universidad Nacional de Quilmes, Quilmes B1876BXD, Argentina.
| | - Joseph R Buchler
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sho Inami
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kyle J Kennedy
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - B Peter Jenny
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Dinis J S Afonso
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kyunghee Koh
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
26
|
Oh Y, Suh GSB. Starvation-induced sleep suppression requires the Drosophila brain nutrient sensor. J Neurogenet 2023:1-8. [PMID: 37267057 DOI: 10.1080/01677063.2023.2203489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 04/12/2023] [Indexed: 06/04/2023]
Abstract
Animals increase their locomotion activity and reduce sleep duration under starved conditions. This suggests that sleep and metabolic status are closely interconnected. The nutrient and hunger sensors in the Drosophila brain, including diuretic hormone 44 (DH44)-, CN-, and cupcake-expressing neurons, detect circulating glucose levels in the internal milieu, regulate the insulin and glucagon secretion and promote food consumption. Food deprivation is known to reduce sleep duration, but a potential role mediated by the nutrient and hunger sensors in regulating sleep and locomotion activity remains unclear. Here, we show that DH44 neurons are involved in regulating starvation-induced sleep suppression, but CN neurons or cupcake neurons may not be involved in regulating starvation-induced sleep suppression or baseline sleep patterns. Inactivation of DH44 neurons resulted in normal daily sleep durations and patterns under fed conditions, whereas it ablated sleep reduction under starved conditions. Inactivation of CN neurons or cupcake neurons, which were proposed to be nutrient and hunger sensors in the fly brain, did not affect sleep patterns under both fed and starved conditions. We propose that the glucose-sensing DH44 neurons play an important role in mediating starvation-induced sleep reduction.
Collapse
Affiliation(s)
- Yangkyun Oh
- Department of Life Sciences, College of Natural Sciences, Ewha Womans University, Seoul, South Korea
| | - Greg S B Suh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
27
|
Liu D, Rahman M, Johnson A, Tsutsui-Kimura I, Pena N, Talay M, Logeman BL, Finkbeiner S, Choi S, Capo-Battaglia A, Abdus-Saboor I, Ginty DD, Uchida N, Watabe-Uchida M, Dulac C. A Hypothalamic Circuit Underlying the Dynamic Control of Social Homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.540391. [PMID: 37293031 PMCID: PMC10245688 DOI: 10.1101/2023.05.19.540391] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Social grouping increases survival in many species, including humans1,2. By contrast, social isolation generates an aversive state (loneliness) that motivates social seeking and heightens social interaction upon reunion3-5. The observed rebound in social interaction triggered by isolation suggests a homeostatic process underlying the control of social drive, similar to that observed for physiological needs such as hunger, thirst or sleep3,6. In this study, we assessed social responses in multiple mouse strains and identified the FVB/NJ line as exquisitely sensitive to social isolation. Using FVB/NJ mice, we uncovered two previously uncharacterized neuronal populations in the hypothalamic preoptic nucleus that are activated during social isolation and social rebound and that orchestrate the behavior display of social need and social satiety, respectively. We identified direct connectivity between these two populations of opposite function and with brain areas associated with social behavior, emotional state, reward, and physiological needs, and showed that animals require touch to assess the presence of others and fulfill their social need, thus revealing a brain-wide neural system underlying social homeostasis. These findings offer mechanistic insight into the nature and function of circuits controlling instinctive social need and for the understanding of healthy and diseased brain states associated with social context.
Collapse
Affiliation(s)
- Ding Liu
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Mostafizur Rahman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Autumn Johnson
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Iku Tsutsui-Kimura
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
- Present address: Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Nicolai Pena
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Mustafa Talay
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Brandon L. Logeman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Samantha Finkbeiner
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Seungwon Choi
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Present address: Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Athena Capo-Battaglia
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Ishmail Abdus-Saboor
- Zuckerman Mind Brain Behavior Institute, Department of Biological Sciences, Columbia University, New York, NY, USA
| | - David D. Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Naoshige Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Mitsuko Watabe-Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
28
|
Ren L, Tai F. Voluntary wheel running ameliorates abnormalities in social behavior induced by social isolation: involvement of neural and neurochemical responses. Neurosci Lett 2023; 806:137241. [PMID: 37031945 DOI: 10.1016/j.neulet.2023.137241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Social isolation (SI) can lead to devastating behavioral effects. Increasing evidence has demonstrated that physical activity can improve sociability and brain functions, but whether voluntary exercise can ameliorate SI-induced abnormalities in social behavior and its underlying neuronal mechanisms remains unknown. The present study found that SI during adulthood increased aggression in the resident-intruder test and motivation for social exploration in the three-chamber test. Voluntary wheel running (VWR) could reverse the alterations in social behavior induced by SI in male mice. In addition, SI reduced the number of c-Fos-immunoreactive neurons and increased c-Fos/AVP-labeled neurons in the PVN and c-Fos/TPH2-labeled neurons in the DRN. These alterations could be reversed by VWR. Together, our results reveal that voluntary exercise could ameliorate SI-induced negative effects on social behavior, possibly via alterations of neuronal activation in the brain. This finding provides a potential therapy and targets to prevent or treat the psychological diseases associated with abnormalities in social behaviors.
Collapse
Affiliation(s)
- Lu Ren
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
29
|
Delbare SYN, Venkatraman S, Scuderi K, Wells MT, Wolfner MF, Basu S, Clark AG. Time series transcriptome analysis implicates the circadian clock in the Drosophila melanogaster female's response to sex peptide. Proc Natl Acad Sci U S A 2023; 120:e2214883120. [PMID: 36706221 PMCID: PMC9945991 DOI: 10.1073/pnas.2214883120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/28/2022] [Indexed: 01/28/2023] Open
Abstract
Sex peptide (SP), a seminal fluid protein of Drosophila melanogaster males, has been described as driving a virgin-to-mated switch in females, through eliciting an array of responses including increased egg laying, activity, and food intake and a decreased remating rate. While it is known that SP achieves this, at least in part, by altering neuronal signaling in females, the genetic architecture and temporal dynamics of the female's response to SP remain elusive. We used a high-resolution time series RNA-sequencing dataset of female heads at 10 time points within the first 24 h after mating to learn about the genetic architecture, at the gene and exon levels, of the female's response to SP. We find that SP is not essential to trigger early aspects of a virgin-to-mated transcriptional switch, which includes changes in a metabolic gene regulatory network. However, SP is needed to maintain and diversify metabolic changes and to trigger changes in a neuronal gene regulatory network. We further find that SP alters rhythmic gene expression in females and suggests that SP's disruption of the female's circadian rhythm might be key to its widespread effects.
Collapse
Affiliation(s)
- Sofie Y. N. Delbare
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY14853
- Department of Statistics & Data Science, Cornell University, Ithaca, NY14853
| | - Sara Venkatraman
- Department of Statistics & Data Science, Cornell University, Ithaca, NY14853
| | - Kate Scuderi
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY14853
| | - Martin T. Wells
- Department of Statistics & Data Science, Cornell University, Ithaca, NY14853
| | - Mariana F. Wolfner
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY14853
| | - Sumanta Basu
- Department of Statistics & Data Science, Cornell University, Ithaca, NY14853
| | - Andrew G. Clark
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY14853
| |
Collapse
|
30
|
Playing to the crowd: Using Drosophila to dissect mechanisms underlying plastic male strategies in sperm competition games. ADVANCES IN THE STUDY OF BEHAVIOR 2023. [DOI: 10.1016/bs.asb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
31
|
Xiong Y, Hong H, Liu C, Zhang YQ. Social isolation and the brain: effects and mechanisms. Mol Psychiatry 2023; 28:191-201. [PMID: 36434053 PMCID: PMC9702717 DOI: 10.1038/s41380-022-01835-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2022]
Abstract
An obvious consequence of the coronavirus disease (COVID-19) pandemic is the worldwide reduction in social interaction, which is associated with many adverse effects on health in humans from babies to adults. Although social development under normal or isolated environments has been studied since the 1940s, the mechanism underlying social isolation (SI)-induced brain dysfunction remains poorly understood, possibly due to the complexity of SI in humans and translational gaps in findings from animal models. Herein, we present a systematic review that focused on brain changes at the molecular, cellular, structural and functional levels induced by SI at different ages and in different animal models. SI studies in humans and animal models revealed common socioemotional and cognitive deficits caused by SI in early life and an increased occurrence of depression and anxiety induced by SI during later stages of life. Altered neurotransmission and neural circuitry as well as abnormal development and function of glial cells in specific brain regions may contribute to the abnormal emotions and behaviors induced by SI. We highlight distinct alterations in oligodendrocyte progenitor cell differentiation and oligodendrocyte maturation caused by SI in early life and later stages of life, respectively, which may affect neural circuit formation and function and result in diverse brain dysfunctions. To further bridge animal and human SI studies, we propose alternative animal models with brain structures and complex social behaviors similar to those of humans.
Collapse
Affiliation(s)
- Ying Xiong
- grid.9227.e0000000119573309State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Huilin Hong
- grid.9227.e0000000119573309State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Cirong Liu
- grid.9227.e0000000119573309Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031 China ,grid.511008.dShanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210 China
| | - Yong Q. Zhang
- grid.9227.e0000000119573309State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
32
|
Lin YC, Zhang M, Wang SH, Chieh CW, Shen PY, Chen YL, Chang YC, Kuo TH. The deleterious effects of old social partners on Drosophila lifespan and stress resistance. NPJ AGING 2022; 8:1. [PMID: 35927252 PMCID: PMC9158773 DOI: 10.1038/s41514-022-00081-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 02/16/2022] [Indexed: 11/09/2022]
Abstract
Social interactions play important roles in the modulation of behavior, physiology, and, potentially, lifespan. Although longevity has been studied extensively in different model organisms, due to the complexity of social environments, the social modulation of aging remains poorly investigated. The present study used the fruit fly, Drosophila melanogaster, as a model to study lifespan and stress resistance under different social conditions. Our experiments first showed that social isolation increased fly lifespan, suggesting a potential deleterious effect of social companions. Furthermore, we exposed flies to different aged social partners and found that living with old animals significantly reduced lifespan and stress resistance in young animals. In contrast, living with young animals increased old animal lifespan, although the effects were less robust. Overall, our results suggest that while social interaction can influence fly health, specific social partners may have more pronounced effects than others. This study provides new evidence that different social environments have significant impacts on animal physiology and longevity.
Collapse
|
33
|
Kato YS, Tomita J, Kume K. Interneurons of fan-shaped body promote arousal in Drosophila. PLoS One 2022; 17:e0277918. [PMID: 36409701 PMCID: PMC9678257 DOI: 10.1371/journal.pone.0277918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/06/2022] [Indexed: 11/22/2022] Open
Abstract
Sleep is required to maintain physiological functions and is widely conserved across species. To understand the sleep-regulatory mechanisms, sleep-regulating genes and neuronal circuits are studied in various animal species. In the sleep-regulatory neuronal circuits in Drosophila melanogaster, the dorsal fan-shaped body (dFB) is a major sleep-promoting region. However, other sleep-regulating neuronal circuits were not well identified. We recently found that arousal-promoting T1 dopamine neurons, interneurons of protocerebral bridge (PB) neurons, and PB neurons innervating the ventral part of the FB form a sleep-regulatory circuit, which we named "the PB-FB pathway". In the exploration of other sleep-regulatory circuits, we found that activation of FB interneurons, also known as pontine neurons, promoted arousal. We then found that FB interneurons had possible connections with the PB-FB pathway and dFB neurons. Ca2+ imaging revealed that FB interneurons received excitatory signals from the PB-FB pathway. We also demonstrated the possible role of FB interneurons to regulate dFB neurons. These results suggested the role of FB interneurons in sleep regulation.
Collapse
Affiliation(s)
- Yoshiaki S. Kato
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Jun Tomita
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- * E-mail: ,
| |
Collapse
|
34
|
Wang Z, Lincoln S, Nguyen AD, Li W, Young MW. Chronic sleep loss disrupts rhythmic gene expression in Drosophila. Front Physiol 2022; 13:1048751. [PMID: 36467698 PMCID: PMC9716074 DOI: 10.3389/fphys.2022.1048751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022] Open
Abstract
Genome-wide profiling of rhythmic gene expression has offered new avenues for studying the contribution of circadian clock to diverse biological processes. Sleep has been considered one of the most important physiological processes that are regulated by the circadian clock, however, the effects of chronic sleep loss on rhythmic gene expression remain poorly understood. In the present study, we exploited Drosophila sleep mutants insomniac 1 (inc 1 ) and wide awake D2 (wake D2 ) as models for chronic sleep loss. We profiled the transcriptomes of head tissues collected from 4-week-old wild type flies, inc 1 and wake D2 at timepoints around the clock. Analysis of gene oscillation revealed a substantial loss of rhythmicity in inc 1 and wake D2 compared to wild type flies, with most of the affected genes common to both mutants. The disruption of gene oscillation was not due to changes in average gene expression levels. We also identified a subset of genes whose loss of rhythmicity was shared among animals with chronic sleep loss and old flies, suggesting a contribution of aging to chronic, sleep-loss-induced disruption of gene oscillation.
Collapse
Affiliation(s)
- Zikun Wang
- Laboratory of Genetics, The Rockefeller University, New York, NY, United States
| | - Samantha Lincoln
- Laboratory of Genetics, The Rockefeller University, New York, NY, United States
| | - Andrew D. Nguyen
- Laboratory of Genetics, The Rockefeller University, New York, NY, United States
| | - Wanhe Li
- Laboratory of Genetics, The Rockefeller University, New York, NY, United States
- Department of Biology, Center for Biological Clocks Research, Texas A&M University, College Station, United States
| | - Michael W. Young
- Laboratory of Genetics, The Rockefeller University, New York, NY, United States
| |
Collapse
|
35
|
Harbison ST. What have we learned about sleep from selective breeding strategies? Sleep 2022; 45:zsac147. [PMID: 36111812 PMCID: PMC9644121 DOI: 10.1093/sleep/zsac147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/19/2022] [Indexed: 09/18/2023] Open
Abstract
Selective breeding is a classic technique that enables an experimenter to modify a heritable target trait as desired. Direct selective breeding for extreme sleep and circadian phenotypes in flies successfully alters these behaviors, and sleep and circadian perturbations emerge as correlated responses to selection for other traits in mice, rats, and dogs. The application of sequencing technologies to the process of selective breeding identifies the genetic network impacting the selected trait in a holistic way. Breeding techniques preserve the extreme phenotypes generated during selective breeding, generating community resources for further functional testing. Selective breeding is thus a unique strategy that can explore the phenotypic limits of sleep and circadian behavior, discover correlated responses of traits having shared genetic architecture with the target trait, identify naturally-occurring genomic variants and gene expression changes that affect trait variability, and pinpoint genes with conserved roles.
Collapse
Affiliation(s)
- Susan T Harbison
- Laboratory of Systems Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD,USA
| |
Collapse
|
36
|
Karigo T, Deutsch D. Flexibility of neural circuits regulating mating behaviors in mice and flies. Front Neural Circuits 2022; 16:949781. [PMID: 36426135 PMCID: PMC9679785 DOI: 10.3389/fncir.2022.949781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/28/2022] [Indexed: 11/11/2022] Open
Abstract
Mating is essential for the reproduction of animal species. As mating behaviors are high-risk and energy-consuming processes, it is critical for animals to make adaptive mating decisions. This includes not only finding a suitable mate, but also adapting mating behaviors to the animal's needs and environmental conditions. Internal needs include physical states (e.g., hunger) and emotional states (e.g., fear), while external conditions include both social cues (e.g., the existence of predators or rivals) and non-social factors (e.g., food availability). With recent advances in behavioral neuroscience, we are now beginning to understand the neural basis of mating behaviors, particularly in genetic model organisms such as mice and flies. However, how internal and external factors are integrated by the nervous system to enable adaptive mating-related decision-making in a state- and context-dependent manner is less well understood. In this article, we review recent knowledge regarding the neural basis of flexible mating behaviors from studies of flies and mice. By contrasting the knowledge derived from these two evolutionarily distant model organisms, we discuss potential conserved and divergent neural mechanisms involved in the control of flexible mating behaviors in invertebrate and vertebrate brains.
Collapse
Affiliation(s)
- Tomomi Karigo
- Kennedy Krieger Institute, Baltimore, MD, United States,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: Tomomi Karigo,
| | - David Deutsch
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel,David Deutsch,
| |
Collapse
|
37
|
Cao H, Tang J, Liu Q, Huang J, Xu R. Autism-like behaviors regulated by the serotonin receptor 5-HT2B in the dorsal fan-shaped body neurons of Drosophila melanogaster. Eur J Med Res 2022; 27:203. [PMID: 36253869 PMCID: PMC9575255 DOI: 10.1186/s40001-022-00838-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social interaction and repetitive stereotyped behaviors. Previous studies have reported an association of serotonin or 5-hydroxytryptamine (5-HT) with ASD, but the specific receptors and neurons by which serotonin modulates autistic behaviors have not been fully elucidated. METHODS RNAi-mediated knockdown was done to destroy the function of tryptophan hydroxylase (Trh) and all the five serotonin receptors. Given that ubiquitous knockdown of 5-HT2B showed significant defects in social behaviors, we applied the CRISPR/Cas9 system to knock out the 5-HT2B receptor gene. Social space assays and grooming assays were the major methods used to understand the role of serotonin and related specific receptors in autism-like behaviors of Drosophila melanogaster. RESULTS A close relationship was identified between serotonin and autism-like behaviors reflected by increased social space distance and high-frequency repetitive behavior in Drosophila. We further utilized the binary expression system to knock down all the five 5-HT receptors, and observed the 5-HT2B receptor as the main receptor responsible for the normal social space and repetitive behavior in Drosophila for the specific serotonin receptors underlying the regulation of these two behaviors. Our data also showed that neurons in the dorsal fan-shaped body (dFB), which expressed 5-HT2B, were functionally essential for the social behaviors of Drosophila. CONCLUSIONS Collectively, our data suggest that serotonin levels and the 5-HT2B receptor are closely related to the social interaction and repetitive behavior of Drosophila. Of all the 5 serotonin receptors, 5-HT2B receptor in dFB neurons is mainly responsible for serotonin-mediated regulation of autism-like behaviors.
Collapse
Affiliation(s)
- Haowei Cao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Junbo Tang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100193, China
| | - Qisha Liu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Juan Huang
- Capital Medical University School of Basic Medical Sciences, Beijing, 100069, China.
| | - Rui Xu
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, 211166, China. .,Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
38
|
Ishii K, Cortese M, Leng X, Shokhirev MN, Asahina K. A neurogenetic mechanism of experience-dependent suppression of aggression. SCIENCE ADVANCES 2022; 8:eabg3203. [PMID: 36070378 PMCID: PMC9451153 DOI: 10.1126/sciadv.abg3203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Aggression is an ethologically important social behavior, but excessive aggression can be detrimental to fitness. Social experiences among conspecific individuals reduce aggression in many species, the mechanism of which is largely unknown. We found that loss-of-function mutation of nervy (nvy), a Drosophila homolog of vertebrate myeloid translocation genes (MTGs), increased aggressiveness only in socially experienced flies and that this could be reversed by neuronal expression of human MTGs. A subpopulation of octopaminergic/tyraminergic neurons labeled by nvy was specifically required for such social experience-dependent suppression of aggression, in both males and females. Cell type-specific transcriptomic analysis of these neurons revealed aggression-controlling genes that are likely downstream of nvy. Our results illustrate both genetic and neuronal mechanisms by which the nervous system suppresses aggression in a social experience-dependent manner, a poorly understood process that is considered important for maintaining the fitness of animals.
Collapse
Affiliation(s)
- Kenichi Ishii
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Matteo Cortese
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Xubo Leng
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Maxim N. Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kenta Asahina
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
39
|
Padilla-Coreano N, Tye KM, Zelikowsky M. Dynamic influences on the neural encoding of social valence. Nat Rev Neurosci 2022; 23:535-550. [PMID: 35831442 PMCID: PMC9997616 DOI: 10.1038/s41583-022-00609-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/09/2022]
Abstract
Social signals can serve as potent emotional triggers with powerful impacts on processes from cognition to valence processing. How are social signals dynamically and flexibly associated with positive or negative valence? How do our past social experiences and present social standing shape our motivation to seek or avoid social contact? We discuss a model in which social attributes, social history, social memory, social rank and social isolation can flexibly influence valence assignment to social stimuli, termed here as 'social valence'. We emphasize how the brain encodes each of these four factors and highlight the neural circuits and mechanisms that play a part in the perception of social attributes, social memory and social rank, as well as how these factors affect valence systems associated with social stimuli. We highlight the impact of social isolation, dissecting the neural and behavioural mechanisms that mediate the effects of acute versus prolonged periods of social isolation. Importantly, we discuss conceptual models that may account for the potential shift in valence of social stimuli from positive to negative as the period of isolation extends in time. Collectively, this Review identifies factors that control the formation and attribution of social valence - integrating diverse areas of research and emphasizing their unique contributions to the categorization of social stimuli as positive or negative.
Collapse
Affiliation(s)
- Nancy Padilla-Coreano
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kay M Tye
- HHMI-Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Moriel Zelikowsky
- Department of Neurobiology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
40
|
Vora A, Nguyen AD, Spicer C, Li W. The impact of social isolation on health and behavior in Drosophila melanogaster and beyond. BRAIN SCIENCE ADVANCES 2022. [DOI: 10.26599/bsa.2022.9050016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Many organisms, including humans, have evolved dynamic social behaviors to promote survival. Public health studies show that isolation from social groups is a major risk factor for adverse health outcomes in humans, but these studies lack mechanistic understanding. Animal models can provide insight into the molecular and neural mechanisms underlying how social isolation impacts health through investigations using genetic, genomic, molecular, and neuroscience methods. In this review, we discuss Drosophila melanogaster as a robust genetic model for studying the effects of social isolation and for developing a mechanistic understanding of the perception of social isolation and how it impacts health.
Collapse
Affiliation(s)
- Aabha Vora
- Laboratory of Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Andrew D. Nguyen
- Laboratory of Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Carmen Spicer
- Laboratory of Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Wanhe Li
- Department of Biology, Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
41
|
Tan JXM, Ang RJW, Wee CL. Larval Zebrafish as a Model for Mechanistic Discovery in Mental Health. Front Mol Neurosci 2022; 15:900213. [PMID: 35813062 PMCID: PMC9263853 DOI: 10.3389/fnmol.2022.900213] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/25/2022] [Indexed: 12/23/2022] Open
Abstract
Animal models are essential for the discovery of mechanisms and treatments for neuropsychiatric disorders. However, complex mental health disorders such as depression and anxiety are difficult to fully recapitulate in these models. Borrowing from the field of psychiatric genetics, we reiterate the framework of 'endophenotypes' - biological or behavioral markers with cellular, molecular or genetic underpinnings - to reduce complex disorders into measurable behaviors that can be compared across organisms. Zebrafish are popular disease models due to the conserved genetic, physiological and anatomical pathways between zebrafish and humans. Adult zebrafish, which display more sophisticated behaviors and cognition, have long been used to model psychiatric disorders. However, larvae (up to 1 month old) are more numerous and also optically transparent, and hence are particularly suited for high-throughput screening and brain-wide neural circuit imaging. A number of behavioral assays have been developed to quantify neuropsychiatric phenomena in larval zebrafish. Here, we will review these assays and the current knowledge regarding the underlying mechanisms of their behavioral readouts. We will also discuss the existing evidence linking larval zebrafish behavior to specific human behavioral traits and how the endophenotype framework can be applied. Importantly, many of the endophenotypes we review do not solely define a diseased state but could manifest as a spectrum across the general population. As such, we make the case for larval zebrafish as a promising model for extending our understanding of population mental health, and for identifying novel therapeutics and interventions with broad impact.
Collapse
Affiliation(s)
| | | | - Caroline Lei Wee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
42
|
Wang ZY, McKenzie-Smith GC, Liu W, Cho HJ, Pereira T, Dhanerawala Z, Shaevitz JW, Kocher SD. Isolation disrupts social interactions and destabilizes brain development in bumblebees. Curr Biol 2022; 32:2754-2764.e5. [PMID: 35584698 PMCID: PMC9233014 DOI: 10.1016/j.cub.2022.04.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022]
Abstract
Social isolation, particularly in early life, leads to deleterious physiological and behavioral outcomes. Here, we leverage new high-throughput tools to comprehensively investigate the impact of isolation in the bumblebee, Bombus impatiens, from behavioral, molecular, and neuroanatomical perspectives. We reared newly emerged bumblebees in complete isolation, in small groups, or in their natal colony, and then analyzed their behaviors while alone or paired with another bee. We find that when alone, individuals of each rearing condition show distinct behavioral signatures. When paired with a conspecific, bees reared in small groups or in the natal colony express similar behavioral profiles. Isolated bees, however, showed increased social interactions. To identify the neurobiological correlates of these differences, we quantified brain gene expression and measured the volumes of key brain regions for a subset of individuals from each rearing condition. Overall, we find that isolation increases social interactions and disrupts gene expression and brain development. Limited social experience in small groups is sufficient to preserve typical patterns of brain development and social behavior.
Collapse
Affiliation(s)
- Z Yan Wang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA; Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Grace C McKenzie-Smith
- Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Physics, Princeton University, Princeton, NJ, USA
| | - Weijie Liu
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Hyo Jin Cho
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Talmo Pereira
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Zahra Dhanerawala
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua W Shaevitz
- Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Physics, Princeton University, Princeton, NJ, USA
| | - Sarah D Kocher
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA; Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
43
|
Neural Control of Action Selection Among Innate Behaviors. Neurosci Bull 2022; 38:1541-1558. [PMID: 35633465 DOI: 10.1007/s12264-022-00886-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022] Open
Abstract
Nervous systems must not only generate specific adaptive behaviors, such as reproduction, aggression, feeding, and sleep, but also select a single behavior for execution at any given time, depending on both internal states and external environmental conditions. Despite their tremendous biological importance, the neural mechanisms of action selection remain poorly understood. In the past decade, studies in the model animal Drosophila melanogaster have demonstrated valuable neural mechanisms underlying action selection of innate behaviors. In this review, we summarize circuit mechanisms with a particular focus on a small number of sexually dimorphic neurons in controlling action selection among sex, fight, feeding, and sleep behaviors in both sexes of flies. We also discuss potentially conserved circuit configurations and neuromodulation of action selection in both the fly and mouse models, aiming to provide insights into action selection and the sexually dimorphic prioritization of innate behaviors.
Collapse
|
44
|
Wee CL, Song E, Nikitchenko M, Herrera KJ, Wong S, Engert F, Kunes S. Social isolation modulates appetite and avoidance behavior via a common oxytocinergic circuit in larval zebrafish. Nat Commun 2022; 13:2573. [PMID: 35545618 PMCID: PMC9095721 DOI: 10.1038/s41467-022-29765-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Animal brains have evolved to encode social stimuli and transform these representations into advantageous behavioral responses. The commonalities and differences of these representations across species are not well-understood. Here, we show that social isolation activates an oxytocinergic (OXT), nociceptive circuit in the larval zebrafish hypothalamus and that chemical cues released from conspecific animals are potent modulators of this circuit's activity. We delineate an olfactory to subpallial pathway that transmits chemical social cues to OXT circuitry, where they are transformed into diverse outputs simultaneously regulating avoidance and feeding behaviors. Our data allow us to propose a model through which social stimuli are integrated within a fundamental neural circuit to mediate diverse adaptive behaviours.
Collapse
Affiliation(s)
- Caroline L Wee
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
- Program in Neuroscience, Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Erin Song
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| | - Maxim Nikitchenko
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
- Duke University, Durham, North Carolina, USA
| | - Kristian J Herrera
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| | - Sandy Wong
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA.
| | - Samuel Kunes
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
45
|
Eickelberg V, Lüersen K, Staats S, Rimbach G. Phenotyping of Drosophila Melanogaster-A Nutritional Perspective. Biomolecules 2022; 12:221. [PMID: 35204721 PMCID: PMC8961528 DOI: 10.3390/biom12020221] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The model organism Drosophila melanogaster was increasingly applied in nutrition research in recent years. A range of methods are available for the phenotyping of D. melanogaster, which are outlined in the first part of this review. The methods include determinations of body weight, body composition, food intake, lifespan, locomotor activity, reproductive capacity and stress tolerance. In the second part, the practical application of the phenotyping of flies is demonstrated via a discussion of obese phenotypes in response to high-sugar diet (HSD) and high-fat diet (HFD) feeding. HSD feeding and HFD feeding are dietary interventions that lead to an increase in fat storage and affect carbohydrate-insulin homeostasis, lifespan, locomotor activity, reproductive capacity and stress tolerance. Furthermore, studies regarding the impacts of HSD and HFD on the transcriptome and metabolome of D. melanogaster are important for relating phenotypic changes to underlying molecular mechanisms. Overall, D. melanogaster was demonstrated to be a valuable model organism with which to examine the pathogeneses and underlying molecular mechanisms of common chronic metabolic diseases in a nutritional context.
Collapse
Affiliation(s)
- Virginia Eickelberg
- Department of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6-8, D-24118 Kiel, Germany; (K.L.); (S.S.); (G.R.)
| | | | | | | |
Collapse
|
46
|
Devineni AV, Scaplen KM. Neural Circuits Underlying Behavioral Flexibility: Insights From Drosophila. Front Behav Neurosci 2022; 15:821680. [PMID: 35069145 PMCID: PMC8770416 DOI: 10.3389/fnbeh.2021.821680] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Behavioral flexibility is critical to survival. Animals must adapt their behavioral responses based on changes in the environmental context, internal state, or experience. Studies in Drosophila melanogaster have provided insight into the neural circuit mechanisms underlying behavioral flexibility. Here we discuss how Drosophila behavior is modulated by internal and behavioral state, environmental context, and learning. We describe general principles of neural circuit organization and modulation that underlie behavioral flexibility, principles that are likely to extend to other species.
Collapse
Affiliation(s)
- Anita V. Devineni
- Department of Biology, Emory University, Atlanta, GA, United States
- Zuckerman Mind Brain Institute, Columbia University, New York, NY, United States
| | - Kristin M. Scaplen
- Department of Psychology, Bryant University, Smithfield, RI, United States
- Center for Health and Behavioral Studies, Bryant University, Smithfield, RI, United States
- Department of Neuroscience, Brown University, Providence, RI, United States
| |
Collapse
|
47
|
Chen M, Sokolowski MB. How Social Experience and Environment Impacts Behavioural Plasticity in Drosophila. Fly (Austin) 2021; 16:68-84. [PMID: 34852730 DOI: 10.1080/19336934.2021.1989248] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
An organism's behaviour is influenced by its social environment. Experiences such as social isolation or crowding may have profound short or long-term effects on an individual's behaviour. The composition of the social environment also depends on the genetics and previous experiences of the individuals present, leading to additional potential outcomes from each social interaction. In this article, we review selected literature related to the social environment of the model organism Drosophila melanogaster, and how Drosophila respond to variation in their social experiences throughout their lifetimes. We focus on the effects of social environment on behavioural phenotypes such as courtship, aggression, and group dynamics, as well as other phenotypes such as development and physiology. The consequences of phenotypic plasticity due to social environment are discussed with respect to the ecology and evolution of Drosophila. We also relate these studies to laboratory research practices involving Drosophila and other animals.
Collapse
Affiliation(s)
- Molly Chen
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada.,Current Affiliation: Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Marla B Sokolowski
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada.,Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario M5G 1Z8, Canada
| |
Collapse
|
48
|
Niu M, Zhang X, Li W, Wang J, Li Y. dFRAME: A Video Recording-Based Analytical Method for Studying Feeding Rhythm in Drosophila. Front Genet 2021; 12:763200. [PMID: 34721548 PMCID: PMC8554052 DOI: 10.3389/fgene.2021.763200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022] Open
Abstract
Animals, from insects to humans, exhibit obvious diurnal rhythmicity of feeding behavior. Serving as a genetic animal model, Drosophila has been reported to display feeding rhythms; however, related investigations are limited due to the lack of suitable and practical methods. Here, we present a video recording-based analytical method, namely, Drosophila Feeding Rhythm Analysis Method (dFRAME). Using our newly developed computer program, FlyFeeding, we extracted the movement track of individual flies and characterized their food-approaching behavior. To distinguish feeding and no-feeding events, we utilized high-magnification video recording to optimize our method by setting cut-off thresholds to eliminate the interference of no-feeding events. Furthermore, we verified that this method is applicable to both female and male flies and for all periods of the day. Using this method, we analyzed long-term feeding status of wild-type and period mutant flies. The results recaptured previously reported feeding rhythms and revealed detailed profiles of feeding patterns in these flies under either light/dark cycles or constant dark environments. Together, our dFRAME method enables a long-term, stable, reliable, and subtle analysis of feeding behavior in Drosophila. High-throughput studies in this powerful genetic animal model will gain great insights into the molecular and neural mechanisms of feeding rhythms.
Collapse
Affiliation(s)
- Mengxia Niu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.,Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, China
| | - Xiaohang Zhang
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Weihan Li
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianxun Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Li
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
49
|
|