1
|
Xu C, Wu JH, Yu H, Chun-Ge, Liu YX, Zou JJ, Li J. Effect of two novel GABAA receptor positive allosteric modulators on neuropathic and inflammatory pain in mice. Neuropharmacology 2025; 269:110317. [PMID: 39884570 DOI: 10.1016/j.neuropharm.2025.110317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 02/01/2025]
Abstract
Loss of GABAergic inhibition in the spinal dorsal horn (SDH) is implicated in central sensitization and chronic pain. Both agonists and positive allosteric modulators (PAMs) of GABAA receptor are found to be effective in the management of chronic pain. In addition to benzodiazepines, neuroactive steroids (NASs) also act as PAMs through binding to unique sites of GABAA receptors. Thus, it is worth investigating whether these NASs can attenuate chronic pain. This study tested the antinociceptive properties of two novel NAS PAMs, ganaxolone and zuranolone, in segmental spinal nerve ligation (SNL)-induced neuropathic pain and complete Freund's adjuvant (CFA)-induced inflammation pain models. Spinally administered ganaxolone and zuranolone both exhibited dose-dependent analgesic effects but with quite different durations. This antinociceptive effect might be generated from elevated GABAergic inhibition, as the PAMs both enhanced GABA-evoked currents in SDH neurons, and the K+-Cl- cotransporter isoform 2 (KCC2) antagonist reversed the analgesic effect of the PAMs. Different from ganaxolone, zuranolone produced a durable increase in the surface expression of GABAA receptors and of the amplitude of spontaneous inhibitory currents, which may contribute to the long-lasting analgesic effect. Furthermore, the PAMs alleviated SNL-induced mechanical allodynia synergistically with diazepam or GABAA receptor activator muscimol at inactive doses, consistent with the non-competitive activity and distinct binding sites from benzodiazepines. In summary, our findings suggest that NASs may not only acutely modulate GABA receptor activity but also induce sustained metabotropic effects on GABAA receptors and thus exert long-lasting antinociceptive effects.
Collapse
Affiliation(s)
- Chu Xu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Jian-Hong Wu
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Hui Yu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Chun-Ge
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yun-Xin Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jian-Jun Zou
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jun Li
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
2
|
Belelli D, Lambert JJ, Wan MLY, Monteiro AR, Nutt DJ, Swinny JD. From bugs to brain: unravelling the GABA signalling networks in the brain-gut-microbiome axis. Brain 2025; 148:1479-1506. [PMID: 39716883 PMCID: PMC12074267 DOI: 10.1093/brain/awae413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/21/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024] Open
Abstract
Convergent data across species paint a compelling picture of the critical role of the gut and its resident microbiota in several brain functions and disorders. The chemicals mediating communication along these sophisticated highways of the brain-gut-microbiome (BGM) axis include both microbiota metabolites and classical neurotransmitters. Amongst the latter, GABA is fundamental to brain function, mediating most neuronal inhibition. Until recently, GABA's role and specific molecular targets in the periphery within the BGM axis had received limited attention. Yet, GABA is produced by neuronal and non-neuronal elements of the BGM, and recently, GABA-modulating bacteria have been identified as key players in GABAergic gut systems, indicating that GABA-mediated signalling is likely to transcend physiological boundaries and species. We review the available evidence to better understand how GABA facilitates the integration of molecularly and functionally disparate systems to bring about overall homeostasis and how GABA perturbations within the BGM axis can give rise to multi-system medical disorders, thereby magnifying the disease burden and the challenges for patient care. Analysis of transcriptomic databases revealed significant overlaps between GABAAR subunits expressed in the human brain and gut. However, in the gut, there are notable expression profiles for a select number of subunits that have received limited attention to date but could be functionally relevant for BGM axis homeostasis. GABAergic signalling, via different receptor subtypes, directly regulates BGM homeostasis by modulating the excitability of neurons within brain centres responsible for gastrointestinal (GI) function in a sex-dependent manner, potentially revealing mechanisms underlying the greater prevalence of GI disturbances in females. Apart from such top-down regulation of the BGM axis, a diverse group of cell types, including enteric neurons, glia, enteroendocrine cells, immune cells and bacteria, integrate peripheral GABA signals to influence brain functions and potentially contribute to brain disorders. We propose several priorities for this field, including the exploitation of available technologies to functionally dissect components of these GABA pathways within the BGM, with a focus on GI and brain-behaviour-disease. Furthermore, in silico ligand-receptor docking analyses using relevant bacterial metabolomic datasets, coupled with advances in knowledge of GABAAR 3D structures, could uncover new ligands with novel therapeutic potential. Finally, targeted design of dietary interventions is imperative to advancing their therapeutic potential to support GABA homeostasis across the BGM axis.
Collapse
Affiliation(s)
- Delia Belelli
- GABA Labs (Research) Ltd., Hemel Hempstead HP2 5HD, UK
- Division of Neuroscience, School of Medicine, Medical Sciences Institute, Dundee University, Dundee DD1 5HL, UK
- School of Medicine, Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Jeremy J Lambert
- Division of Neuroscience, School of Medicine, Medical Sciences Institute, Dundee University, Dundee DD1 5HL, UK
| | - Murphy Lam Yim Wan
- School of Medicine, Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Ana Rita Monteiro
- School of Medicine, Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - David J Nutt
- GABA Labs (Research) Ltd., Hemel Hempstead HP2 5HD, UK
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Jerome D Swinny
- School of Medicine, Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| |
Collapse
|
3
|
Karakuş F, Tanrıverdi Z, Kuzu B. Mechanisms of developmental neurotoxicity of Dechlorane Plus, a recently identified persistent organic pollutant: An in silico study. Neurotoxicology 2025; 108:318-327. [PMID: 40320214 DOI: 10.1016/j.neuro.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
Dechlorane Plus (DP), a polychlorinated flame retardant, has recently been recognized as a persistent organic pollutant. In this study, the molecular mechanisms and targets associated with DP-induced developmental neurotoxicity (DNT) in humans were investigated through network toxicology, multi-level bioinformatics approaches, and molecular docking. Through comprehensive database analysis, 32 potential targets associated with DP-induced DNT were identified. Gene Ontology terms enrichment analysis revealed significant enrichment in pathways related to the nervous system processes, GABA-A receptor complex, and various binding and channel activities. KEGG pathway enrichment analysis indicated that DP-induced DNT is mediated through complex interactions involving neuroactive ligand-receptor interaction pathways. Further analysis using GeneMANIA, STRING, Cytoscape tools, and MCODE identified 11 hub targets, including GABRA1, GABRB1, GABRB3, and GABRG2 as key targets. Molecular docking revealed that DP binds to the GABRB3-GABRA1-GABRG2 protein complex to a degree comparable to the control bicuculline, a potent and selective antagonist of the GABA-A receptor. These findings suggest that DP may have antagonistic effects on the GABA-A receptor, potentially increasing neuronal excitability. This study offers valuable insights into the molecular mechanisms underlying DP-induced DNT and provides data for in vitro or in vivo studies.
Collapse
Affiliation(s)
- Fuat Karakuş
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Türkiye.
| | - Zübeyde Tanrıverdi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ağrı İbrahim Çeçen University, Ağrı, Türkiye
| | - Burak Kuzu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Türkiye
| |
Collapse
|
4
|
Arslan A. Algorithmic assessment reveals functional implications of GABRD gene variants linked to idiopathic generalized epilepsy. Int J Neurosci 2025; 135:533-543. [PMID: 38289414 DOI: 10.1080/00207454.2024.2312987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/04/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVE The primary objective of this study is to address the challenge posed by the increasing number of variants of unknown clinical significance (VUS) within the GABRD gene, which encodes the δ subunit of γ-Aminobutyric acid type A receptors. The focus is on predicting the most pathogenic GABRD VUS to enhance precision medicine and improve our understanding of relevant pathophysiology. METHODS The study employs a combination of in silico algorithms to analyze 82 variants of unknown clinical significance of GABRD gene sourced from the ClinVar database. Initially, separate algorithms based on sequence homology are utilized to assess this variant set. Subsequently, consensus variants predicted as pathogenic undergo further evaluation through a web server employing an algorithm based on structural homology. The resulting 11 variants are then validated using in silico tools that assess variant effects based on genetic and molecular data. The evaluation includes consideration of disease association and protein stability due to amino acid substitutions. RESULTS The study identifies specific variants (L111R, R114C, D123N, G150S, and L243P) in the coding region of the GABRD gene, which are predicted as deleterious by multiple algorithms. These variants are evolutionarily conserved, mapped onto the extracellular domain of the δ subunit, and associated with idiopathic generalized epilepsy. CONCLUSIONS The findings suggest structural or functional consequences that lead to pathogenicity, offering valuable insights for wet-lab experimentation. Besides, the findings contribute to the validation of clinically significant genetic variants in the GABRD gene, which is critical for epilepsy precision medicine.
Collapse
Affiliation(s)
- Ayla Arslan
- Molecular Biology and Genetics Department, Üsküdar University, Istanbul, Turkiye
| |
Collapse
|
5
|
Lopez SMM, Lee JR, Lin WC. A subtype-selective photoswitchable agonist for precise manipulation of GABA A receptors. Br J Pharmacol 2025. [PMID: 40288764 DOI: 10.1111/bph.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 02/19/2025] [Accepted: 03/16/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND AND PURPOSE Neuronal inhibition is largely mediated by type-A GABA receptors (GABAARs), a family of ligand-gated chloride-permeable channels, which can be sub-classified by their subunit composition. Unravelling the function and distribution of each GABAAR subtype is essential for a holistic understanding of GABAergic inhibition in health and diseases. Photopharmacology, a technique that utilises light-sensitive compounds to precisely manipulate endogenous proteins, is powerful for this purpose. To resolve the molecular complexity of neuronal inhibition, we aimed to develop subtype-selective photoswitchable agonists for GABAARs. EXPERIMENTAL APPROACH Inspired by THIP (gaboxadol), an agonist selective for δ subunit-containing GABAARs (δ-GABAARs), we merged a photoswitch moiety (azobenzene) with an analogue of THIP (isoguvacine) to construct Az-IGU. Using whole-cell voltage-clamp recording, Az-IGU was tested on 13 GABAAR subtypes expressed in human embryonic kidney (HEK) cells. Optical activation of endogenous GABAARs was examined via electrophysiology in cultured cortical neurons. KEY RESULTS In HEK cells, Az-IGU exerted reversible photo-agonism selectively for α4β3δ and α6β3δ GABAARs, two major mediators of tonic inhibition. Pharmacological and mutagenesis studies suggested that activation of the α4β3δ GABAAR involves interaction between Az-IGU and the GABA-binding pocket and is strongly correlated with the spontaneous activity of the receptor. In cultured cortical neurons, photoisomerisation of Az-IGU triggered responses that enabled reversible control of action potential firing. CONCLUSIONS AND IMPLICATIONS GABAARs are potential therapeutic targets for many disorders. However, their physiological and pathophysiological roles remain largely unexplored. Az-IGU may enable photopharmacological studies of α4/6β3δ GABAARs, providing new opportunities for biomedical and neurobiological applications.
Collapse
Affiliation(s)
- Simon Miguel M Lopez
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jay-Ron Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wan-Chen Lin
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Neuroscience Program of Academia Sinica (NPAS), Academia Sinica, Taipei, Taiwan
| |
Collapse
|
6
|
Pant S, Tam SW, Long SB. The pentameric chloride channel BEST1 is activated by extracellular GABA. Proc Natl Acad Sci U S A 2025; 122:e2424474122. [PMID: 40249777 PMCID: PMC12037058 DOI: 10.1073/pnas.2424474122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/12/2025] [Indexed: 04/20/2025] Open
Abstract
Bestrophin-1 (BEST1) is a chloride channel expressed in the eye and other tissues of the body. A link between BEST1 and the principal inhibitory neurotransmitter γ-aminobutyric acid (GABA) has been proposed. The most appreciated receptors for extracellular GABA are the GABAB G-protein-coupled receptors and the pentameric GABAA chloride channels, both of which have fundamental roles in the central nervous system. Here, we demonstrate that BEST1 is directly activated by GABA. Through functional studies and atomic-resolution structures of human and chicken BEST1, we identify a GABA binding site on the channel's extracellular side and determine the mechanism by which GABA binding stabilizes opening of the channel's central gate. This same gate, "the neck," is activated by intracellular [Ca2+], indicating that BEST1 is controlled by ligands from both sides of the membrane. The studies demonstrate that BEST1, which shares no structural homology with GABAA receptors, is a GABA-activated chloride channel. The physiological implications of this finding remain to be studied.
Collapse
Affiliation(s)
- Swati Pant
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
- Graduate Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY10065
| | - Stephanie W. Tam
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
- Graduate Program in Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY10065
| | - Stephen B. Long
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
| |
Collapse
|
7
|
Wang YB, Dow KE, Boychuk CR. GABA AR-δ-subunit mediates increased GABAergic inhibition in cardiac DMV neurons after high-fat diet. iScience 2025; 28:112268. [PMID: 40264791 PMCID: PMC12013407 DOI: 10.1016/j.isci.2025.112268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 12/20/2024] [Accepted: 03/18/2025] [Indexed: 04/24/2025] Open
Abstract
Activity of cardiac-projecting neurons in the dorsal motor nucleus of the vagus (CVNDMV) is vital in cardiac reflexes contributing to maintaining cardiovascular health. However, how this population adapts to metabolic challenges, such as high-fat diet (HFD), is unclear. This study aimed to identify neuroplasticity changes induced by HFD in CVNDMV. Using whole-cell patch-clamp electrophysiology, we found that 15-day HFD feeding increased tonic, but not phasic, gamma-aminobutyric acid type A (GABAA) inhibitory neurotransmission, exclusive to CVNDMV. Single-cell quantitative reverse-transcription PCR (scRT-qPCR) analysis revealed a higher number of CVNDMV expressing GABAA receptor δ-subunit (GABAA(δ)R) in HFD compared to normal fat diet (NFD). Deletion of GABAA(δ)R in ChAT-positive motor neurons abolished HFD-induced increased tonic GABAA neurotransmission in CVNDMV. Altogether, this evidence suggests that CVNDMV exhibits early onset HFD-induced increased GABAergic neurotransmission, likely mediated by GABAA(δ)R. This increased inhibitory tone could explain previously reported reduced cardiac vagal motor output, thus contributing to poor cardiometabolic health after HFD.
Collapse
Affiliation(s)
- Yoko Brigitte Wang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Kaylie E. Dow
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Carie R. Boychuk
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
8
|
Mohamed RAEH, Al-Hoshani N, Drar AM, Khodairy A, Abdou A, El-Hady OM, Bakry MMS, Gad MA. Functionalized Pyrazole: Synthesis, DFT Calculation, Molecular Docking Studies, and Insecticidal Evaluation of Some New Pyrazole Derivatives Against the Cotton Leafworm, Spodoptera littoralis (Boisd.). Chem Biodivers 2025:e202403450. [PMID: 40197769 DOI: 10.1002/cbdv.202403450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/10/2025]
Abstract
One of the main forces motivating the creation of innovative insecticidal active agents is the exponential rise in resistance to traditional chemical pesticides. Examining new classes of insecticidal compounds with distinct modes of action is one way to meet this problem. Thus, novel pyrazole derivatives 1-6 have been synthesized via a one-pot, three-component reaction of cyanoguanidine with various aldehydes and 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one in the presence of sodium methoxide as a catalyst. Under laboratory circumstances, all synthesized compounds were tested as insecticidal agents due to their chemical structures having the active center of phenylpyrazole insecticides. Bioassay experiments were carried out against the second and fourth larvae of Spodoptera littoralis. When compared to other synthetic target compounds, [4-(4-chlorophenyl)-3-methyl-1-phenyl-1,4,5,7-tetra-hydro-6H-pyrazolo[3,4-d]pyrimidin-6-ylidene] cyanamide 2 showed good insecticidal activity, with 0.553 mg/L for second instar larvae and LC50 values of 1.28 mg/L for fourth instar larvae. DFT optimization of the synthesized compounds using the B3LYP/6-311G revealed their electronic properties, highlighting key factors such as HOMO, LUMO energies, and the energy gap, which are crucial in predicting chemical reactivity and biological potential. Molecular docking studies against the 6HUP protein further confirmed compound 5's superior binding affinity, suggesting its strong inhibitory effect on ion channels, potentially making it a powerful insecticidal agent.
Collapse
Affiliation(s)
- Rania Ali El Hadi Mohamed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nawal Al-Hoshani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ali M Drar
- Research Institute of Plant Protection, Agricultural Research Center, Giza, Egypt
| | - Ahmed Khodairy
- Chemistry Department, Faculty of Science, Sohag University, Sohag, Egypt
| | - Aly Abdou
- Chemistry Department, Faculty of Science, Sohag University, Sohag, Egypt
| | - Omar M El-Hady
- Chemistry Department, Faculty of Science, Sohag University, Sohag, Egypt
| | - Moustafa M S Bakry
- Research Institute of Plant Protection, Agricultural Research Center, Giza, Egypt
| | - Mohamed A Gad
- Research Institute of Plant Protection, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
9
|
Gupta S, Babu MA, Kumar R, Singh TG, Goel A, Rastogi S, Sharma P, Tyagi Y, Goel KK, Kumar B. Exploring USFDA-Approved Imidazole-Based Small Molecules in Drug Discovery: A Mini Perspective. Chem Biodivers 2025:e202403020. [PMID: 40062971 DOI: 10.1002/cbdv.202403020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
In the present work, we have explored the importance of the imidazole ring and its importance in drug discovery, citing the key approvals in the present decade (2013-2024). The pharmacological attribution for the approved drugs revealed that out of 20 approved drugs, 45% of the approvals were made as anti-infectives, followed by approvals under the category of genetic and metabolic disorders, sexual endocrine disorders, anticancer, and to treat blood pressure, gastrointestinal disorders, and neurological conditions. Most approved drugs were dispensed through solid dosage forms (13) and thus had predominantly oral routes beside others. The metabolism pattern revealed that the drugs undergo metabolism via the involvement of multiple enzymes, where CYP3A4 and CYP3A5 were the core enzymes. The excretion pattern of these drugs revealed that the drugs are majorly excreted via the fecal route. The chemical analysis showed that pyrrolidine/pyrrole was the major heterocycle in the approved drugs, followed by the indole ring in the hybridization. Considering the substitution pattern, most drugs possessed amide, amines, and fluoro group as the functional substitution with the 2,4-substitution pattern seen in most approved drugs. Besides this, the three approved drugs were found to possess chiral centers and exhibit chirality. The article also expanded to cover the synthetic routes and metabolic routes for this versatile ring system and case studies for its utility to serve as bioisostere in drug discovery. Furthermore, this article also presents the receptor-ligand interactions of imidazole-based drugs with various target receptors. The present article is, therefore, put forth to assist medicinal chemists and chemists working in drug discovery of this versatile ring system.
Collapse
Affiliation(s)
- Sonali Gupta
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to be University), Haridwar, India
- Department of Chemistry, Gurukul Kangri (Deemed to be University), Haridwar, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Roshan Kumar
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, India
| | - Thakur Gurjeet Singh
- Centre of Research Impact and Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Anjali Goel
- Department of Chemistry, Gurukul Kangri (Deemed to be University), Haridwar, India
| | - Sameer Rastogi
- School of Pharmacy, Noida International University, Greater Noida, India
| | - Pankaj Sharma
- Smt Tarawati Institute of Biomedical and Allied Sciences, Roorkee, India
| | - Yogita Tyagi
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Kapil Kumar Goel
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to be University), Haridwar, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (Central University), Srinagar, Uttarakhand, India
| |
Collapse
|
10
|
Zhou J, Noviello CM, Teng J, Moore H, Lega B, Hibbs RE. Resolving native GABA A receptor structures from the human brain. Nature 2025; 638:562-568. [PMID: 39843743 PMCID: PMC12103249 DOI: 10.1038/s41586-024-08454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/26/2024] [Indexed: 01/24/2025]
Abstract
Type A GABA (γ-aminobutyric acid) receptors (GABAA receptors) mediate most fast inhibitory signalling in the brain and are targets for drugs that treat epilepsy, anxiety, depression and insomnia and for anaesthetics1,2. These receptors comprise a complex array of 19 related subunits, which form pentameric ligand-gated ion channels. The composition and structure of native GABAA receptors in the human brain have been inferred from subunit localization in tissue1,3, functional measurements and structural analysis from recombinant expression4-7 and in mice8. However, the arrangements of subunits that co-assemble physiologically in native human GABAA receptors remain unknown. Here we isolated α1 subunit-containing GABAA receptors from human patients with epilepsy. Using cryo-electron microscopy, we defined a set of 12 native subunit assemblies and their 3D structures. We address inconsistencies between previous native and recombinant approaches, and reveal details of previously undefined subunit interfaces. Drug-like densities in a subset of these interfaces led us to uncover unexpected activity on the GABAA receptor of antiepileptic drugs and resulted in localization of one of these drugs to the benzodiazepine-binding site. Proteomics and further structural analysis suggest interactions with the auxiliary subunits neuroligin 2 and GARLH4, which localize and modulate GABAA receptors at inhibitory synapses. This work provides a structural foundation for understanding GABAA receptor signalling and targeted pharmacology in the human brain.
Collapse
Affiliation(s)
- Jia Zhou
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
| | - Colleen M Noviello
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
| | - Jinfeng Teng
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
| | - Haley Moore
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bradley Lega
- Departments of Neurological Surgery, Neurology, Psychiatry and the Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ryan E Hibbs
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
11
|
Michałowski MA, Kłopotowski K, Wiera G, Czyżewska MM, Mozrzymas JW. Molecular mechanisms of the GABA type A receptor function. Q Rev Biophys 2025; 58:e3. [PMID: 39806800 DOI: 10.1017/s0033583524000179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The GABA type A receptor (GABAAR) belongs to the family of pentameric ligand-gated ion channels and plays a key role in inhibition in adult mammalian brains. Dysfunction of this macromolecule may lead to epilepsy, anxiety disorders, autism, depression, and schizophrenia. GABAAR is also a target for multiple physiologically and clinically relevant modulators, such as benzodiazepines (BDZs), general anesthetics, and neurosteroids. The first GABAAR structure appeared in 2014, but the past years have brought a particularly abundant surge in structural data for these receptors with various ligands and modulators. Although the open conformation remains elusive, this novel information has pushed the structure-function studies to an unprecedented level. Electrophysiology, mutagenesis, photolabeling, and in silico simulations, guided by novel structural information, shed new light on the molecular mechanisms of receptor functioning. The main goal of this review is to present the current knowledge of GABAAR functional and structural properties. The review begins with an outline of the functional and structural studies of GABAAR, accompanied by some methodological considerations, especially biophysical methods, enabling the reader to follow how major breakthroughs in characterizing GABAAR features have been achieved. The main section provides a comprehensive analysis of the functional significance of specific structural elements in GABAARs. We additionally summarize the current knowledge on the binding sites for major GABAAR modulators, referring to the molecular underpinnings of their action. The final chapter of the review moves beyond examining GABAAR as an isolated macromolecule and describes the interactions of the receptor with other proteins in a broader context of inhibitory plasticity. In the final section, we propose a general conclusion that agonist binding to the orthosteric binding sites appears to rely on local interactions, whereas conformational transitions of bound macromolecule (gating) and allosteric modulation seem to reflect more global phenomena involving vast portions of the macromolecule.
Collapse
Affiliation(s)
- Michał A Michałowski
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Karol Kłopotowski
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Grzegorz Wiera
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Marta M Czyżewska
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Jerzy W Mozrzymas
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
12
|
Krámos B, Béni Z, Túrós GI, Éliás O, Potor A, Kapus GL, Szabó G. Ligand Binding and Functional Effect of Novel Bicyclic α5 GABA A Receptor Negative Allosteric Modulators. J Chem Inf Model 2025; 65:402-416. [PMID: 39688538 DOI: 10.1021/acs.jcim.4c01431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The significant importance of GABAA receptors in the treatment of central nervous system (CNS) disorders has been known for a long time. However, only in recent years have experimental protein structures been published that can open the door to understanding protein-ligand interactions and may effectively help the rational drug design for the future. In our previous work (Szabó, G. J. Med. Chem. 2022, 65(11), 7876), where a promising selective α5-GABAA negative allosteric modulator (NAM) was developed containing the 3-(4-fluorophenyl)-5-methyl-1,2-oxazole headgroup, we noticed a switch-like effect of a single nitrogen atom for the receptor function in some derivatives having a dihydro-naphthyridinone or dihydro-isoquinolinone moiety. Here, we focused on this chemotype, and a small set of compounds were designed to investigate ligand-receptor interactions experimentally and through computational methods. Elaborated compounds were tested against GABAA α1 and α5 subunit-containing receptors, and binding affinities and functional activities were measured. Starting from the published experimental structure of an engineered, homopentameric, basmisanil-binding GABAA receptor-like construct consisting of modified α5 subunits and an α1-containing GABAA structure, we created a new model of the ligand binding site at the α5/γ2 interface. Using this model, the measured ligand affinities were able to be reproduced well by free energy perturbation (FEP) calculations. In addition, calculations were able to explain the obtained structure-activity relationships, among others, the switch-like effect of the aromatic nitrogen position in the dihydro-naphthyridinone motif for the functional character, and suggest different binding poses for the ligands presenting silent versus negative allosteric effects in this set (SAMs vs. NAMs, respectively). We believe that our results can help design α5 selective GABAA negative allosteric modulators and better understand the GABAA receptor.
Collapse
Affiliation(s)
- Balázs Krámos
- Spectroscopic Research Department, Gedeon Richter Plc., Gyömrői út 19-21, Budapest 1103, Hungary
| | - Zoltán Béni
- Spectroscopic Research Department, Gedeon Richter Plc., Gyömrői út 19-21, Budapest 1103, Hungary
| | - György István Túrós
- Medicinal Chemistry Laboratory II, Gedeon Richter Plc., Gyömrői út 19-21, Budapest 1103, Hungary
| | - Olivér Éliás
- Medicinal Chemistry Laboratory II, Gedeon Richter Plc., Gyömrői út 19-21, Budapest 1103, Hungary
| | - Attila Potor
- Medicinal Chemistry Laboratory II, Gedeon Richter Plc., Gyömrői út 19-21, Budapest 1103, Hungary
| | - Gábor László Kapus
- Proprietary R&D Coordination Department, Gedeon Richter Plc., Gyömrői út 19-21, Budapest 1103, Hungary
| | - György Szabó
- Medicinal Chemistry Laboratory II, Gedeon Richter Plc., Gyömrői út 19-21, Budapest 1103, Hungary
| |
Collapse
|
13
|
Haloi N, Eriksson Lidbrink S, Howard RJ, Lindahl E. Adaptive sampling-based structural prediction reveals opening of a GABA A receptor through the αβ interface. SCIENCE ADVANCES 2025; 11:eadq3788. [PMID: 39772677 PMCID: PMC11708891 DOI: 10.1126/sciadv.adq3788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
γ-Aminobutyric acid type A (GABAA) receptors are ligand-gated ion channels in the central nervous system with largely inhibitory function. Despite being a target for drugs including general anesthetics and benzodiazepines, experimental structures have yet to capture an open state of classical synaptic α1β2γ2 GABAA receptors. Here, we use a goal-oriented adaptive sampling strategy in molecular dynamics simulations followed by Markov state modeling to capture an energetically stable putative open state of the receptor. The model conducts chloride ions with comparable conductance as in electrophysiology measurements. Relative to experimental structures, our open model is relatively expanded at both the cytoplasmic (-2') and central (9') gates, coordinated with distinctive rearrangements at the transmembrane αβ subunit interface. Consistent with previous experiments, targeted substitutions disrupting interactions at this interface slowed the open-to-desensitized transition rate. This work demonstrates the capacity of advanced simulation techniques to investigate a computationally and experimentally plausible functionally critical of a complex membrane protein yet to be resolved by experimental methods.
Collapse
Affiliation(s)
- Nandan Haloi
- SciLifeLab, Department of Applied Physics, KTH Royal Institute of Technology, Tomtebodävagen 23, Solna, 17165 Stockholm, Sweden
| | - Samuel Eriksson Lidbrink
- SciLifeLab, Department of Biochemistry and Biophysics, Stockholm University, Tomtebodavägen 23, Solna, 17165 Stockholm, Sweden
| | - Rebecca J. Howard
- SciLifeLab, Department of Applied Physics, KTH Royal Institute of Technology, Tomtebodävagen 23, Solna, 17165 Stockholm, Sweden
- SciLifeLab, Department of Biochemistry and Biophysics, Stockholm University, Tomtebodavägen 23, Solna, 17165 Stockholm, Sweden
| | - Erik Lindahl
- SciLifeLab, Department of Applied Physics, KTH Royal Institute of Technology, Tomtebodävagen 23, Solna, 17165 Stockholm, Sweden
- SciLifeLab, Department of Biochemistry and Biophysics, Stockholm University, Tomtebodavägen 23, Solna, 17165 Stockholm, Sweden
| |
Collapse
|
14
|
Germann AL, Pierce SR, Steinbach JH, Akk G. Null method to estimate the maximal PA at subsaturating concentrations of agonist. J Gen Physiol 2025; 157:e202413644. [PMID: 39585302 PMCID: PMC11602654 DOI: 10.1085/jgp.202413644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/10/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024] Open
Abstract
The maximal probability of being in an active state (PA,max) is a measure of gating efficacy for a given agonist acting on a given receptor channel. In macroscopic electrophysiological recordings, PA,max is typically estimated by comparing the amplitude of the current response to a saturating concentration of a test agonist to that of a reference agonist with known PA. Here, we describe an approach to estimate the PA,max for low-efficacy agonists at subsaturating concentrations. In this approach, the amplitude of the response to a high-efficacy control agonist applied alone is compared with the amplitude of the response to a control agonist coapplied with the low-efficacy test agonist that binds to the same site(s). If the response to the combination is larger than the response to the control agonist alone, then the PA,max of the test agonist is greater than the PA of the control response. Conversely, if the response to the control agonist is reduced upon exposure to the test agonist, then the PA,max of the test agonist is smaller than the PA of the control response. The exact PA,max of the test agonist can be determined by testing its effect at different concentrations of the control agonist to estimate the PA at which the effect changes direction. The main advantage of this approach lies in the ability to use low, subsaturating concentrations of the test agonist. The model-based predictions are supported by observations from activation of heteromeric and homomeric GABAA receptors by combinations of high- and low-efficacy orthosteric agonists.
Collapse
Affiliation(s)
- Allison L. Germann
- Department of Anesthesiology, Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Spencer R. Pierce
- Department of Anesthesiology, Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Joe Henry Steinbach
- Department of Anesthesiology, Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Gustav Akk
- Department of Anesthesiology, Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
15
|
Wang Y, Zhang Y, Li W, Salovska B, Zhang J, Li T, Li H, Liu Y, Kaczmarek LK, Pusztai L, Klein DE. GABA A receptor π forms channels that stimulate ERK through a G-protein-dependent pathway. Mol Cell 2025; 85:166-176.e5. [PMID: 39642883 PMCID: PMC11698630 DOI: 10.1016/j.molcel.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/03/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
The rare γ-aminobutyric acid type-A receptor (GABAAR) subunit π (GABRP) is highly expressed in certain cancers, where it stimulates growth through extracellular-regulated kinase (ERK) signaling by an uncharacterized pathway. To elucidate GABRP's signaling mechanism, we determined cryoelectron microscopy (cryo-EM) structures of GABRP embedded in native nanodiscs, both in the presence and absence of GABA. Structurally, GABRP homopentamers closely resemble heteropentameric GABAAR anion channels, transitioning from a closed "resting" state to an open "active" state upon GABA binding. However, functional assays reveal that GABRP responds more like a type-B metabotropic receptor. At physiological concentrations of GABA, chloride flux is not detected. Rather, GABRP activates a G-protein-coupled pathway leading to ERK signaling. Ionotropic activity is only triggered at supraphysiological GABA concentrations, effectively decoupling it from GABRP's signaling functions. These findings provide a structural and functional blueprint for GABRP, opening new avenues for targeted inhibition of GABA growth signals in GABRP-positive cancers.
Collapse
Affiliation(s)
- Yueyue Wang
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Breast Medical Oncology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yalan Zhang
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Wenxue Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Barbora Salovska
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jianan Zhang
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tongqing Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hengyi Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Informatics & Data Science, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lajos Pusztai
- Breast Medical Oncology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Daryl E Klein
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
16
|
Fujioka Y, Shiura H, Ishii M, Ono R, Endo T, Kiyonari H, Hirate Y, Ito H, Kanai-Azuma M, Kohda T, Kaneko-Ishino T, Ishino F. Targeting of retrovirus-derived Rtl8a/ 8b causes late-onset obesity, reduced social response and increased apathy-like behaviour. Open Biol 2025; 15:240279. [PMID: 39875098 PMCID: PMC11774587 DOI: 10.1098/rsob.240279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 01/30/2025] Open
Abstract
Retrotransposon Gag-like (RTL) 8A, 8B and 8C are eutherian-specific genes derived from a certain retrovirus. They cluster as a triplet of genes on the X chromosome, but their function remains unknown. Here, we demonstrate that Rtl8a and Rtl8b play important roles in the brain: their double knockout (DKO) mice not only exhibit reduced social responses and increased apathy-like behaviour, but also become obese from young adulthood, similar to patients with late Prader-Willi syndrome (PWS), a neurodevelopmental genomic imprinting disorder. Mouse RTL8A/8B proteins are expressed in the prefrontal cortex and hypothalamus and localize to both the nucleus and cytoplasm of neurons, presumably due to the N-terminal nuclear localization signal-like sequence at the N-terminus. An RNAseq study in the cerebral cortex revealed reduced expression of several GABA type A receptor subunit genes in DKO, in particular Gabrb2, which encodes its β2 subunit. We confirmed the reduction of GABRB2 protein in the DKO cerebral cortex by western blotting. As GABRB2 has been implicated in the aetiology of several neurodevelopmental and neuropsychiatric disorders, it is likely that the reduction of GABRB2 is one of the major causes of the neuropsychiatric defects in the DKO mice.
Collapse
Affiliation(s)
- Yoshifumi Fujioka
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo113-8510, Japan
- Center for Experimental Animals, TMDU, Tokyo113-8510, Japan
| | - Hirosuke Shiura
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo113-8510, Japan
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kohfu,Yamanashi 400-8510, Japan
| | - Masayuki Ishii
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo113-8510, Japan
| | - Ryuichi Ono
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo113-8510, Japan
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences (NIHS), Kawasaki, Kanagawa210-9501, Japan
| | - Tsutomu Endo
- Center for Experimental Animals, TMDU, Tokyo113-8510, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo650-0047, Japan
| | | | - Hikaru Ito
- Center for Experimental Animals, TMDU, Tokyo113-8510, Japan
- Research Facility Center for Science and Technology, Kagawa University, Takamatsu,Kagawa 761-0793, Japan
| | | | - Takashi Kohda
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kohfu,Yamanashi 400-8510, Japan
| | - Tomoko Kaneko-Ishino
- Faculty of Nursing, Tokai University School of Medicine, Isehara, Kanagawa259-1193, Japan
| | - Fumitoshi Ishino
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo113-8510, Japan
- Center for Experimental Animals, TMDU, Tokyo113-8510, Japan
| |
Collapse
|
17
|
Zhu Y, Gu L, Wang J, Han J, Gou J, Wu Z. DNA methylation profiling of CpG islands in trigeminal ganglion of rats with orofacial pain induced by experimental tooth movement. BMC Oral Health 2024; 24:1474. [PMID: 39633318 PMCID: PMC11619421 DOI: 10.1186/s12903-024-05269-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Tooth movement induced orofacial pain is the most cited negative effect during orthodontic treatment, while treatment options without side effects are limited. The differential expression of pain-related genes due to DNA methylation and demethylation is instrumental in pain. The purpose of the study was to evaluate the DNA methylation profiling of CpG islands (CGI) and CGI shores in promoter regions in trigeminal ganglions (TG) of tooth movement induced orofacial pain rats, thus to further insight the DNA methylation regulation in orofacial pain. MATERIALS AND METHODS An orofacial pain rat model was constructed by ligating coil springs between the incisor and first maxillary molar with 40 g of force. The Rat Grimace Score (RGS) was used for pain evaluation. The genome methylation status was analyzed by the reduced representation bisulfite sequencing (RRBS) technique. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analyses were conducted in the differentially methylated regions (DMRs). Moreover, a protein-protein interaction (PPI) network was established to detect annotated genes associated with pain. RESULTS RGS was significantly higher in orofacial pain rats than in sham rats. RRBS showed widespread methylation changes in CGI and CGI shores in TG promoter regions. Both 902 hypermethylated DMRs and 862 hypomethylated DMRs were found in the CGIs of promoter regions. KEGG analysis revealed that annotated genes are participated in endocrine, nervous, immune, and sensory systems. Moreover, the "Calcium signaling pathway", "Wnt signaling pathway" and "Neuroactive ligand-receptor interaction" were significantly enriched pathways. Furthermore, PPI network showed several genes (Ctnnb1, Dlg4, Creb1, Camk2g, Bmp2, etc.) with different methylation statuses were reported to be associated with pain. CONCLUSIONS This study demonstrated methylation changes were existed in CGI and CGI shores in TG promoter regions when pain occurs, thus providing a basis for further study on the mechanism of DNA methylation in orofacial pain.
Collapse
Affiliation(s)
- Yafen Zhu
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Liqun Gu
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jian Wang
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jie Han
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Junzhuo Gou
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhifang Wu
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| |
Collapse
|
18
|
Chen G, Xu M, Chen Z, Yang F. Clinical applications of small-molecule GABA AR modulators for neurological disorders. Bioorg Chem 2024; 153:107983. [PMID: 39581171 DOI: 10.1016/j.bioorg.2024.107983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Gamma-aminobutyric acid type A receptor (GABAAR) modulators are crucial in treating neurological and psychiatric disorders, including epilepsy, anxiety, insomnia, and depression. This review examines the synthetic approaches and clinical applications of representative small-molecule GABAAR modulators. Benzodiazepines, such as Diazepam, are well-known positive allosteric modulators (PAMs) that enhance GABAAR function, providing therapeutic effects but also associated with side effects like sedation and dependence. Non-benzodiazepine modulators, including Z-drugs like Zolpidem and Zaleplon, offer improved selectivity for the α1 subunit of GABAAR, reducing some of these side effects. Neurosteroids such as allopregnanolone and its synthetic analogs, including Brexanolone, have emerged as potent GABAAR modulators with applications in conditions like postpartum depression and refractory epilepsy. Advances in molecular biology and pharmacology have facilitated the development of isoform-specific modulators, potentially reducing off-target effects and enhancing therapeutic profiles. Additionally, combining GABAAR modulators with other therapeutic agents has shown promise in enhancing efficacy and minimizing side effects. This review highlights the design strategies, pharmacodynamics, clinical efficacy, and safety profiles of these compounds, emphasizing the opportunities for developing novel GABAAR modulators with improved therapeutic outcomes.
Collapse
Affiliation(s)
- Guangyong Chen
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meiling Xu
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhuo Chen
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Fuwei Yang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
19
|
Pant S, Tam SW, Long SB. The pentameric chloride channel BEST1 is activated by extracellular GABA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624909. [PMID: 39605608 PMCID: PMC11601618 DOI: 10.1101/2024.11.22.624909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Bestrophin 1 (BEST1) is chloride channel expressed in the eye, central nervous system (CNS), and other tissues in the body. A link between BEST1 and the principal inhibitory neurotransmitter γ-aminobutyric acid (GABA) has been proposed. The most appreciated receptors for extracellular GABA are the GABAB G-protein coupled receptors and the pentameric GABAA chloride channels, both of which have fundamental roles in the CNS. Here, we demonstrate that BEST1 is directly activated by GABA. Through functional studies and atomic-resolution structures of human and chicken BEST1, we identify a GABA binding site on the channel's extracellular side and determine the mechanism by which GABA binding induces opening of the channel's central gate. This same gate is activated by intracellular [Ca2+], indicating that BEST1 is controlled by ligands from both sides of the membrane. The studies demonstrate that BEST1, which shares no structural homology with GABAA, is a GABA-activated chloride channel. The physiological implications of this finding remain to be studied.
Collapse
Affiliation(s)
- Swati Pant
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
- Graduate Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Medicine Graduate School of Medical Sciences, New York, USA
| | - Stephanie W. Tam
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
- Graduate Program in Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine Graduate School of Medical Sciences, New York, USA
| | - Stephen B. Long
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
20
|
Sente A. Gatekeepers of the brain: Identifying hidden mechanisms of type A GABA receptor signaling and assembly. Science 2024; 386:738-739. [PMID: 39541461 DOI: 10.1126/science.adt8990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Identifying hidden mechanisms of type A GABA receptor signaling and assembly.
Collapse
Affiliation(s)
- Andrija Sente
- MRC Laboratory of Molecular Biology, Cambridge, UK
- InstaDeep, London, UK
| |
Collapse
|
21
|
Hooda Y, Sente A, Judy RM, Smalinskaitė L, Peak-Chew SY, Naydenova K, Malinauskas T, Hardwick SW, Chirgadze DY, Aricescu AR, Hegde RS. Mechanism of NACHO-mediated assembly of pentameric ligand-gated ion channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620708. [PMID: 39553992 PMCID: PMC11565801 DOI: 10.1101/2024.10.28.620708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Pentameric ligand-gated ion channels (pLGICs) are cell surface receptors of crucial importance for animal physiology1-4. This diverse protein family mediates the ionotropic signals triggered by major neurotransmitters and includes γ-aminobutyric acid receptors (GABAARs) and acetylcholine receptors (nAChRs). Receptor function is fine-tuned by a myriad of endogenous and pharmacological modulators3. A functional pLGIC is built from five homologous, sometimes identical, subunits, each containing a β-scaffold extracellular domain (ECD), a four-helix transmembrane domain (TMD) and intracellular loops of variable length. Although considerable progress has been made in understanding pLGICs in structural and functional terms, the molecular mechanisms that enable their assembly at the endoplasmic reticulum (ER)5 in a vast range of potential subunit configurations6 remain unknown. Here, we identified candidate pLGICs assembly factors selectively associated with an unassembled GABAAR subunit. Focusing on one of the candidates, we determined the cryo-EM structure of an assembly intermediate containing two α1 subunits of GABAAR each bound to an ER-resident membrane protein NACHO. The structure showed how NACHO shields the principal (+) transmembrane interface of α1 subunits containing an immature extracellular conformation. Crosslinking and structure-prediction revealed an adjacent surface on NACHO for β2 subunit interactions to guide stepwise oligimerisation. Mutations of either subunit-interacting surface on NACHO also impaired the formation of homopentameric α7 nAChRs, pointing to a generic framework for pLGIC assembly. Our work provides the foundation for understanding the regulatory principles underlying pLGIC structural diversity.
Collapse
Affiliation(s)
- Yogesh Hooda
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
- Equal contribution
| | - Andrija Sente
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
- Equal contribution
| | - Ryan M. Judy
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
- Equal contribution
| | - Luka Smalinskaitė
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Sew-Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | | | - Tomas Malinauskas
- Division of Structural Biology, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Steven W. Hardwick
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | - Dimitri Y. Chirgadze
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | - A. Radu Aricescu
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | | |
Collapse
|
22
|
Armenta-Resendiz M, Carter JS, Hunter Z, Taniguchi M, Reichel CM, Lavin A. Sex differences in behavior, cognitive, and physiological recovery following methamphetamine administration. Psychopharmacology (Berl) 2024; 241:2331-2345. [PMID: 38953940 PMCID: PMC11513735 DOI: 10.1007/s00213-024-06638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
Intact executive functions are required for proper performance of cognitive tasks and relies on balance of excitatory and inhibitory (E/I) transmission in the medial prefrontal cortex (mPFC). Hypofrontality is a state of decreased activity in the mPFC and is seen in several neuropsychiatric conditions, including substance use disorders. People who chronically use methamphetamine (meth) develop hypofrontality and concurrent changes in cognitive processing across several domains. Despite the fact that there are sex difference in substance use disorders, few studies have considered sex as a biological variable regarding meth-mediated hypoactivity in mPFC and concurrent cognitive deficits. Hypofrontality along with changes in cognition are emulated in rodent models following repeated meth administration. Here, we used a meth sensitization regimen to study sex differences in a Temporal Order Memory (TOM) task following short (7 days) or prolonged (28 days) periods of abstinence. GABAergic transmission, GABAA receptor (GABAAR) and GABA Transporter (GAT) mRNA expression in the mPFC were evaluated with patch-clamp recordings and RT-qPCR, respectively. Both sexes sensitized to the locomotor activating effects of meth, with the effect persisting in females. After short abstinence, males and females had impaired TOM and increased GABAergic transmission. Female rats recovered from these changes after prolonged abstinence, whereas male rats showed enduring changes. In general, meth appears to elicit an overall decrease in GABAAR expression after short abstinence; whereas GABA transporters are decreased in meth female rats after prolonged abstinence. These results show sex differences in the long-term effects of repeated meth exposure and suggest that females have neuroprotective mechanisms that alleviate some of the meth-mediated cognitive deficits.
Collapse
Affiliation(s)
| | - Jordan S Carter
- Department of Neuroscience, MUSC, 173 Ashley Ave 403BSB, Charleston, SC, 29425, USA
| | - Zachariah Hunter
- Department of Neuroscience, MUSC, 173 Ashley Ave 403BSB, Charleston, SC, 29425, USA
| | - Makoto Taniguchi
- Department of Neuroscience, MUSC, 173 Ashley Ave 403BSB, Charleston, SC, 29425, USA
| | - Carmela M Reichel
- Department of Neuroscience, MUSC, 173 Ashley Ave 403BSB, Charleston, SC, 29425, USA
| | - Antonieta Lavin
- Department of Neuroscience, MUSC, 173 Ashley Ave 403BSB, Charleston, SC, 29425, USA.
| |
Collapse
|
23
|
Liu X, Wang W. Gating mechanism of the human α1β GlyR by glycine. Structure 2024; 32:1621-1631.e3. [PMID: 39146932 PMCID: PMC11562016 DOI: 10.1016/j.str.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/20/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
Glycine receptors (GlyRs) are members of the Cys-loop receptors that constitute a major portion of mammalian neurotransmitter receptors. Recent resolution of heteromeric GlyR structures in multiple functional states raised fundamental questions regarding the gating mechanism of GlyR, and generally the Cys-loop family receptors. Here, we characterized in detail equilibrium properties as well as the transition kinetics between functional states. We show that, while all allosteric sites bind cooperatively to glycine, occupation of 2 sites at the α-α interfaces is sufficient for activation and necessary for high-efficacy gating. Differential glycine concentration dependence of desensitization rate, extent, and its recovery suggests separate but concerted roles of ligand-binding and ionophore reorganization. Based on these observations and available structural information, we developed a quantitative gating model that accurately predicts both equilibrium and kinetical properties throughout the glycine gating cycle. This model likely applies generally to the Cys-loop receptors and informs on pharmaceutical endeavors.
Collapse
Affiliation(s)
- Xiaofen Liu
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weiwei Wang
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
24
|
Chen ZW, Chintala SM, Bracamontes J, Sugasawa Y, Pierce SR, Varga BR, Smith EH, Edge CJ, Franks NP, Cheng WWL, Akk G, Evers AS. Three classes of propofol binding sites on GABA A receptors. J Biol Chem 2024; 300:107778. [PMID: 39270821 PMCID: PMC11490885 DOI: 10.1016/j.jbc.2024.107778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Propofol is a widely used anesthetic and sedative that acts as a positive allosteric modulator of gamma-aminobutyric acid type A (GABAA) receptors. Several potential propofol binding sites that may mediate this effect have been identified using propofol-analogue photoaffinity labeling. Ortho-propofol diazirine (o-PD) labels β-H267, a pore-lining residue, whereas AziPm labels residues β-M286, β-M227, and α-I239 in the two membrane-facing interfaces [β(+)/α(-) and α(+)/β(-)] between α and β subunits. This study used photoaffinity labeling of α1β3 GABAA receptors to reconcile the apparently conflicting results obtained with AziPm and o-PD labeling, focusing on whether β3-H267 identifies specific propofol binding site(s). The results show that propofol, but not AziPm protects β3-H267 from labeling by o-PD, whereas both propofol and o-PD protect against AziPm labeling of β3-M286, β3-M227, and α1I239. These data indicate that there are three distinct classes of propofol binding sites, with AziPm binding to two of the classes and o-PD to all three. Analysis of binding stoichiometry using native mass spectrometry in β3 homomeric receptors, demonstrated a minimum of five AziPm labeled residues and three o-PD labeled residues per pentamer, suggesting that there are two distinct propofol binding sites per β-subunit. The native mass spectrometry data, coupled with photolabeling performed in the presence of zinc, indicate that the binding site(s) identified by o-PD are adjacent to, but not within the channel pore, since the pore at the 17' H267 residue can accommodate only one propofol molecule. These data validate the existence of three classes of specific propofol binding sites on α1β3 GABAA receptors.
Collapse
Affiliation(s)
- Zi-Wei Chen
- Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri, USA; The Taylor Family Institute for Innovative Psychiatric Research Washington University School of Medicine, St Louis, Missouri, USA
| | | | - John Bracamontes
- Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Yusuke Sugasawa
- Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri, USA; Department of Anesthesiology and Pain Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Spencer R Pierce
- Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Balazs R Varga
- Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Edward H Smith
- Department of Life Sciences, Imperial College, London, UK
| | | | - Nicholas P Franks
- Department of Life Sciences, Imperial College, London, UK; UK Dementia Research Institute, Imperial College, London, UK
| | - Wayland W L Cheng
- Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Gustav Akk
- Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri, USA; The Taylor Family Institute for Innovative Psychiatric Research Washington University School of Medicine, St Louis, Missouri, USA
| | - Alex S Evers
- Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri, USA; Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri, USA; The Taylor Family Institute for Innovative Psychiatric Research Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
25
|
Zhang W, Liu T, Li J, Singh J, Chan A, Islam A, Petrache A, Peng Y, Harvey K, Ali AB. Decreased extrasynaptic δ-GABA A receptors in PNN-associated parvalbumin interneurons correlates with anxiety in APP and tau mouse models of Alzheimer's disease. Br J Pharmacol 2024; 181:3944-3975. [PMID: 38886118 DOI: 10.1111/bph.16441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is associated with gradual memory loss and anxiety which affects ~75% of AD patients. This study investigated whether AD-associated anxiety correlated with modulation of extrasynaptic δ-subunit-containing GABAA receptors (δ-GABAARs) in experimental mouse models of AD. EXPERIMENTAL APPROACH We combined behavioural experimental paradigms to measure cognition performance, and anxiety with neuroanatomy and molecular biology, using familial knock-in (KI) mouse models of AD that harbour β-amyloid (Aβ) precursor protein App (AppNL-F) with or without humanized microtubule-associated protein tau (MAPT), age-matched to wild-type control mice at three different age windows. RESULTS AppNL-F KI and AppNL-F/MAPT AD models showed a similar magnitude of cognitive decline and elevated magnitude of anxiety correlated with neuroinflammatory hallmarks, including triggering receptor expressed on myeloid cells 2 (TREM2), reactive astrocytes and activated microglia consistent with accumulation of Aβ, tau and down-regulation of Wnt/β-catenin signalling compared to aged-matched WT controls. In both the CA1 region of the hippocampus and dentate gyrus, there was an age-dependent decline in the expression of δ-GABAARs selectively expressed in parvalbumin (PV)-expressing interneurons, encapsulated by perineuronal nets (PNNs) in the AD mouse models compared to WT mice. In vivo positive allosteric modulation of the δ-GABAARs, using a δ-selective-compound DS2, decreased the level of anxiety in the AD mouse models, which was correlated with reduced hallmarks of neuroinflammation, and 'normalisation' of the expression of δ-GABAARs. CONCLUSIONS Our data show that the δ-GABAARs could potentially be targeted for alleviating symptoms of anxiety, which would greatly improve the quality of life of AD individuals.
Collapse
|
26
|
Wei X, Campagna JJ, Jagodzinska B, Wi D, Cohn W, Lee JT, Zhu C, Huang CS, Molnár L, Houser CR, John V, Mody I. A therapeutic small molecule enhances γ-oscillations and improves cognition/memory in Alzheimer's disease model mice. Proc Natl Acad Sci U S A 2024; 121:e2400420121. [PMID: 39106304 PMCID: PMC11331084 DOI: 10.1073/pnas.2400420121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/08/2024] [Indexed: 08/09/2024] Open
Abstract
Brain rhythms provide the timing for recruitment of brain activity required for linking together neuronal ensembles engaged in specific tasks. The γ-oscillations (30 to 120 Hz) orchestrate neuronal circuits underlying cognitive processes and working memory. These oscillations are reduced in numerous neurological and psychiatric disorders, including early cognitive decline in Alzheimer's disease (AD). Here, we report on a potent brain-permeable small molecule, DDL-920 that increases γ-oscillations and improves cognition/memory in a mouse model of AD, thus showing promise as a class of therapeutics for AD. We employed anatomical, in vitro and in vivo electrophysiological, and behavioral methods to examine the effects of our lead therapeutic candidate small molecule. As a novel in central nervous system pharmacotherapy, our lead molecule acts as a potent, efficacious, and selective negative allosteric modulator of the γ-aminobutyric acid type A receptors most likely assembled from α1β2δ subunits. These receptors, identified through anatomical and pharmacological means, underlie the tonic inhibition of parvalbumin (PV) expressing interneurons (PV+INs) critically involved in the generation of γ-oscillations. When orally administered twice daily for 2 wk, DDL-920 restored the cognitive/memory impairments of 3- to 4-mo-old AD model mice as measured by their performance in the Barnes maze. Our approach is unique as it is meant to enhance cognitive performance and working memory in a state-dependent manner by engaging and amplifying the brain's endogenous γ-oscillations through enhancing the function of PV+INs.
Collapse
Affiliation(s)
- Xiaofei Wei
- Department of Neurology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
- Department of Neurosurgery, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Jesus J. Campagna
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Barbara Jagodzinska
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Dongwook Wi
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Whitaker Cohn
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Jessica T. Lee
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Chunni Zhu
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Christine S. Huang
- Department of Neurobiology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - László Molnár
- Department of Electrical Engineering, Sapientia Hungarian University of Transylvania, Târgu Mureş540485, Romania
| | - Carolyn R. Houser
- Department of Neurobiology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Varghese John
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Istvan Mody
- Department of Neurology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
- Department of Physiology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| |
Collapse
|
27
|
Sajan SA, Gradisch R, Vogel FD, Coffey AJ, Salyakina D, Soler D, Jayakar P, Jayakar A, Bianconi SE, Cooper AH, Liu S, William N, Benkel-Herrenbrück I, Maiwald R, Heller C, Biskup S, Leiz S, Westphal DS, Wagner M, Clarke A, Stockner T, Ernst M, Kesari A, Krenn M. De novo variants in GABRA4 are associated with a neurological phenotype including developmental delay, behavioral abnormalities and epilepsy. Eur J Hum Genet 2024; 32:912-919. [PMID: 38565639 PMCID: PMC11291759 DOI: 10.1038/s41431-024-01600-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/03/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Nine out of 19 genes encoding GABAA receptor subunits have been linked to monogenic syndromes characterized by seizures and developmental disorders. Previously, we reported the de novo variant p.(Thr300Ile) in GABRA4 in a patient with epilepsy and neurodevelopmental abnormalities. However, no new cases have been reported since then. Through an international collaboration, we collected molecular and phenotype data of individuals carrying de novo variants in GABRA4. Patients and their parents were investigated either by exome or genome sequencing, followed by targeted Sanger sequencing in some cases. All variants within the transmembrane domain, including the previously reported p.(Thr300Ile) variant, were characterized in silico and analyzed by molecular dynamics (MD) simulation studies. We identified three novel de novo missense variants in GABRA4 (NM_000809.4): c.797 C > T, p.(Pro266Leu), c.899 C > A, p.(Thr300Asn), and c.634 G > A, p.(Val212Ile). The p.(Thr300Asn) variant impacts the same codon as the previously reported variant p.(Thr300Ile) and likely arose post-zygotically as evidenced by sequencing oral mucosal cells. Overlapping phenotypes among affected individuals included developmental delay (4/4), epileptiform EEG abnormalities (3/4), attention deficits (3/4), seizures (2/4), autistic features (2/4) and structural brain abnormalities (2/4). MD simulations of the three variants within the transmembrane domain of the receptor indicate that sub-microsecond scale dynamics differ between wild-type and mutated subunits. Taken together, our findings further corroborate an association between GABRA4 and a neurological phenotype including variable neurodevelopmental, behavioral and epileptic abnormalities.
Collapse
Affiliation(s)
- Samin A Sajan
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ralph Gradisch
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Florian D Vogel
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Alison J Coffey
- lllumina Clinical Services Laboratory, Illumina Inc., San Diego, CA, USA
| | - Daria Salyakina
- Personalized Medicine and Health Outcomes Research, Nicklaus Children's Hospital, Miami, FL, USA
| | - Diana Soler
- Personalized Medicine and Health Outcomes Research, Nicklaus Children's Hospital, Miami, FL, USA
| | - Parul Jayakar
- Division of Genetics and Metabolism, Nicklaus Children's Hospital, Miami, FL, USA
| | - Anuj Jayakar
- Department of Neurology, Division of Epilepsy, Nicklaus Children's Hospital, Miami, FL, USA
| | | | | | | | | | | | - Robert Maiwald
- Medizinisches Versorgungszentrum für Gerinnungsdiagnostik und Medizinische Genetik Köln, Köln, Germany
| | | | - Saskia Biskup
- Zentrum für Humangenetik, Tübingen, Germany
- Center for Genomics and Transcriptomics (CeGaT), Tübingen, Germany
| | - Steffen Leiz
- Division of Neuropediatrics, Klinikum Dritter Orden, Munich, Germany
| | - Dominik S Westphal
- Institute of Human Genetics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Internal Medicine I, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Amy Clarke
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Stockner
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Akanchha Kesari
- lllumina Clinical Services Laboratory, Illumina Inc., San Diego, CA, USA
| | - Martin Krenn
- Department of Neurology, Medical University of Vienna, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
28
|
Do HQ, Pirayesh E, Ferreira G, Pandhare A, Gallardo ZR, Jansen M. A bupropion modulatory site in the Gloeobacter violaceus ligand-gated ion channel. Biophys J 2024; 123:2185-2198. [PMID: 38678367 PMCID: PMC11309978 DOI: 10.1016/j.bpj.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/27/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024] Open
Abstract
Bupropion is an atypical antidepressant and smoking cessation drug that causes adverse effects such as insomnia, irritability, and anxiety. Bupropion inhibits dopamine and norepinephrine reuptake transporters and eukaryotic cation-conducting pentameric ligand-gated ion channels, such as nicotinic acetylcholine and serotonin type 3A receptors, at clinically relevant concentrations. Here, we demonstrate that bupropion also inhibits a prokaryotic homolog of pentameric ligand-gated ion channels, the Gloeobacter violaceus ligand-gated ion channel (GLIC). Using the GLIC as a model, we used molecular docking to predict binding sites for bupropion. Bupropion was found to bind to several sites within the transmembrane domain, with the predominant site being localized to the interface between transmembrane segments M1 and M3 of two adjacent subunits. Residues W213, T214, and W217 in the first transmembrane segment, M1, and F267 and I271 in the third transmembrane segment, M3, most frequently reside within a 4 Å distance from bupropion. We then used single amino acid substitutions at these positions and two-electrode voltage-clamp recordings to determine their impact on bupropion inhibitory effects. The substitution T214F alters bupropion potency by shifting the half-maximal inhibitory concentration to a 13-fold higher value compared to wild-type GLIC. Residue T214 is found within a previously identified binding pocket for neurosteroids and lipids in the GLIC. This intersubunit binding pocket is structurally conserved and almost identical to a binding pocket described for neurosteroids in γ-aminobutyric acid type A receptors. Our data thus suggest that the T214 that lines a previously identified lipophilic binding pocket in GLIC and γ-aminobutyric acid type A receptors is also a modulatory site for bupropion interaction with the GLIC.
Collapse
Affiliation(s)
- Hoa Quynh Do
- Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Elham Pirayesh
- Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Garren Ferreira
- Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Akash Pandhare
- Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Zackary Ryan Gallardo
- Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Michaela Jansen
- Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas.
| |
Collapse
|
29
|
Nors JW, Endres Z, Goldschen-Ohm MP. GABA A receptor subunit M2-M3 linkers have asymmetric roles in pore gating and diazepam modulation. Biophys J 2024; 123:2085-2096. [PMID: 38400541 PMCID: PMC11309982 DOI: 10.1016/j.bpj.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024] Open
Abstract
GABAA receptors (GABAARs) are neurotransmitter-gated ion channels critical for inhibitory synaptic transmission as well as the molecular target for benzodiazepines (BZDs), one of the most widely prescribed class of psychotropic drugs today. Despite structural insight into the conformations underlying functional channel states, the detailed molecular interactions involved in conformational transitions and the physical basis for their modulation by BZDs are not fully understood. We previously identified that alanine substitution at the central residue in the α1 subunit M2-M3 linker (V279A) enhances the efficiency of linkage between the BZD site and the pore gate. Here, we expand on this work by investigating the effect of alanine substitutions at the analogous positions in the M2-M3 linkers of β2 (I275A) and γ2 (V290A) subunits, which together with α1 comprise typical heteromeric α1β2γ2 synaptic GABAARs. We find that these mutations confer subunit-specific effects on the intrinsic pore closed-open equilibrium and its modulation by the BZD diazepam (DZ). The mutations α1(V279A) or γ2(V290A) bias the channel toward a closed conformation, whereas β2(I275A) biases the channel toward an open conformation to the extent that the channel becomes leaky and opens spontaneously in the absence of agonist. In contrast, only α1(V279A) enhances the efficiency of DZ-to-pore linkage, whereas mutations in the other two subunits have no effect. These observations show that the central residue in the M2-M3 linkers of distinct subunits in synaptic α1β2γ2 GABAARs contribute asymmetrically to the intrinsic closed-open equilibrium and its modulation by DZ.
Collapse
Affiliation(s)
- Joseph W Nors
- Department of Neuroscience, University of Texas at Austin, Austin, Texas; Department of Molecular and Cellular Physiology, Stanford University, Stanford, California
| | - Zachary Endres
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | | |
Collapse
|
30
|
Ernst M, Lu W, Mattei C. Editorial: The GABAA receptor: a target of pharmacologically active molecules. Front Pharmacol 2024; 15:1440937. [PMID: 38957389 PMCID: PMC11217765 DOI: 10.3389/fphar.2024.1440937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Affiliation(s)
- Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Wei Lu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - César Mattei
- University Angers, CarMe, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France
| |
Collapse
|
31
|
Nemecz D, Nowak WA, Nemecz Á. VHH Nanobody Versatility against Pentameric Ligand-Gated Ion Channels. J Med Chem 2024; 67:8502-8518. [PMID: 38829690 PMCID: PMC11181324 DOI: 10.1021/acs.jmedchem.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
Pentameric ligand-gated ion channels provide rapid chemical-electrical signal transmission between cells in the central and peripheral nervous system. Their dysfunction is associated with many nervous system disorders. They are composed of five identical (homomeric receptors) or homologous (heteromeric receptors) subunits. VHH nanobodies, or single-chain antibodies, are the variable domain, VHH, of antibodies that are composed of the heavy chain only from camelids. Their unique structure results in many specific biochemical and biophysical properties that make them an excellent alternative to conventional antibodies. This Perspective explores the published VHH nanobodies which have been isolated against pentameric ligand-gated ion channel subfamilies. It outlines the genetic and chemical modifications available to alter nanobody function. An assessment of the available functional and structural data indicate that it is feasible to create therapeutic agents and impart, through their modification, a given desired modulatory effect of its target receptor for current stoichiometric-specific VHH nanobodies.
Collapse
Affiliation(s)
- Dorota Nemecz
- Biochemistry
Department, Nicolaus Copernicus University
in Torun, 87-100 Torun, Poland
| | - Weronika A. Nowak
- Biochemistry
Department, Nicolaus Copernicus University
in Torun, 87-100 Torun, Poland
| | - Ákos Nemecz
- Biochemistry
Department, Nicolaus Copernicus University
in Torun, 87-100 Torun, Poland
| |
Collapse
|
32
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
33
|
Verma S, Singh V, Nagampalli V, Ponsky LE, Li CSR, Chao H, Gupta S. Ligand-gated ion channels as potential biomarkers for ADT-mediated cognitive decline in prostate cancer patients. Mol Carcinog 2024; 63:1051-1063. [PMID: 38482990 PMCID: PMC11096008 DOI: 10.1002/mc.23708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 05/16/2024]
Abstract
Men with prostate cancer are at increased risk of developing cognitive decline by the use of second-generation androgen signaling inhibitors. To date, reliable and sensitive biomarkers that could distinguish men at high risk of cognitive dysfunction under androgen deprivation therapy (ADT) have not been characterized. We used high-throughput transcriptional profiling utilizing human prostate cancer cell culture models mimicking ADT, biomarker selection using minimal common oncology data elements-cytoscape, and bioinformatic analyses employing Advaita® iPathwayGuide and DisGeNET for identification of disease-related gene associations. Validation analysis of genes was performed on brain neuronal and glial cells by quantitative real-time polymerase chain reaction assay. Our systematic analysis of androgen deprivation-associated genes involved multiple biological processes, including neuroactive ligand-receptor interaction, axon guidance, cytokine-cytokine receptor interaction, and metabolic and cancer signaling pathways. Genes associated with neuroreceptor ligand interaction, including gamma-aminobutyric acid (GABA) A and B receptors and nuclear core proteins, were identified as top upstream regulators. Functional enrichment and protein-protein interaction network analysis highlighted the role of ligand-gated ion channels (LGICs) and their receptors in cognitive dysfunction. Gene-disease association assigned forgetfulness, intellectual disability, visuospatial deficit, bipolar disorder, and other neurocognitive impairment with upregulation of type-1 angiotensin II receptor, brain-derived neurotrophic factor, GABA type B receptor subunit 2 (GABBR2), GABRA3, GABRA5, GABRB1, glycine receptor beta, glutamate ionotropic receptor N-methyl-D-aspartate receptor (NMDA) type subunit 1, glutamate ionotropic receptor NMDA type subunit 2D, 5-hydroxytryptamine receptor 1D, interferon beta 1, and nuclear receptor subfamily 3 group C member 1 as top differentially expressed genes. Validation studies of brain glial cells, neurons, and patients on ADT demonstrated the association of these genes with cognitive decline. Our findings highlight LGICs as potential biomarkers for ADT-mediated cognitive decline. Further validation of these biomarkers may lead to future practical clinical use.
Collapse
Affiliation(s)
- Shiv Verma
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106 USA
| | - Vaibhav Singh
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | | | - Lee E Ponsky
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106 USA
| | - Chiang-Shan R Li
- Department of Psychiatry and of Neuroscience, Yale University School of Medicine, New Haven, CT 06519
| | - Herta Chao
- Department of Medicine & Yale Comprehensive Cancer Center, Yale University, New Haven, CT 06510, USA
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106 USA
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- Department of Nutrition, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106 USA
| |
Collapse
|
34
|
Anagnostopoulos G, Saavedra E, Lambertucci F, Motiño O, Dimitrov J, Roiz-Valle D, Quesada V, Alvarez-Valadez K, Chen H, Sauvat A, Rong Y, Nogueira-Recalde U, Li S, Montégut L, Djavaheri-Mergny M, Castedo M, Lopez-Otin C, Maiuri MC, Martins I, Kroemer G. Inhibition of acyl-CoA binding protein (ACBP) by means of a GABA ARγ2-derived peptide. Cell Death Dis 2024; 15:249. [PMID: 38582872 PMCID: PMC10998878 DOI: 10.1038/s41419-024-06633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
Acyl-CoA binding protein (ACBP) encoded by diazepam binding inhibitor (DBI) is an extracellular inhibitor of autophagy acting on the gamma-aminobutyric acid A receptor (GABAAR) γ2 subunit (GABAARγ2). Here, we show that lipoanabolic diets cause an upregulation of GABAARγ2 protein in liver hepatocytes but not in other major organs. ACBP/DBI inhibition by systemically injected antibodies has been demonstrated to mediate anorexigenic and organ-protective, autophagy-dependent effects. Here, we set out to develop a new strategy for developing ACBP/DBI antagonists. For this, we built a molecular model of the interaction of ACBP/DBI with peptides derived from GABAARγ2. We then validated the interaction between recombinant and native ACBP/DBI protein and a GABAARγ2-derived eicosapeptide (but not its F77I mutant) by pull down experiments or surface plasmon resonance. The GABAARγ2-derived eicosapeptide inhibited the metabolic activation of hepatocytes by recombinant ACBP/DBI protein in vitro. Moreover, the GABAARγ2-derived eicosapeptide (but not its F77I-mutated control) blocked appetite stimulation by recombinant ACBP/DBI in vivo, induced autophagy in the liver, and protected mice against the hepatotoxin concanavalin A. We conclude that peptidomimetics disrupting the interaction between ACBP/DBI and GABAARγ2 might be used as ACBP/DBI antagonists. This strategy might lead to the future development of clinically relevant small molecules of the ACBP/DBI system.
Collapse
Affiliation(s)
- Gerasimos Anagnostopoulos
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Ester Saavedra
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Paris, Spain
| | - Flavia Lambertucci
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Omar Motiño
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Jordan Dimitrov
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - David Roiz-Valle
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Victor Quesada
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Karla Alvarez-Valadez
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
| | - Hui Chen
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
| | - Allan Sauvat
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Yan Rong
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
| | - Uxía Nogueira-Recalde
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de (INIBIC), Fundación Profesor Novoa Santos, A Coruña, Spain
| | - Sijing Li
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
| | - Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Mojgan Djavaheri-Mergny
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Maria Castedo
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Carlos Lopez-Otin
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, 80131, Naples, Italy
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
35
|
Benarroch E. What Is the Role of the "GABA Tone" in Normal and Pathological Conditions? Neurology 2024; 102:e209152. [PMID: 38252909 DOI: 10.1212/wnl.0000000000209152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2024] Open
|
36
|
Sharo C, Zhai T, Huang Z. Investigation of Potential Drug Targets Involved in Inflammation Contributing to Alzheimer's Disease Progression. Pharmaceuticals (Basel) 2024; 17:137. [PMID: 38276010 PMCID: PMC10819325 DOI: 10.3390/ph17010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Alzheimer's disease has become a major public health issue. While extensive research has been conducted in the last few decades, few drugs have been approved by the FDA to treat Alzheimer's disease. There is still an urgent need for understanding the disease pathogenesis, as well as identifying new drug targets for further drug discovery. Alzheimer's disease is known to arise from a build-up of amyloid beta (Aβ) plaques as well as tangles of tau proteins. Along similar lines to Alzheimer's disease, inflammation in the brain is known to stem from the degeneration of tissue and build-up of insoluble materials. A minireview was conducted in this work assessing the genes, proteins, reactions, and pathways that link brain inflammation and Alzheimer's disease. Existing tools in Systems Biology were implemented to build protein interaction networks, mainly for the classical complement pathway and G protein-coupled receptors (GPCRs), to rank the protein targets according to their interactions. The top 10 protein targets were mainly from the classical complement pathway. With the consideration of existing clinical trials and crystal structures, proteins C5AR1 and GARBG1 were identified as the best targets for further drug discovery, through computational approaches like ligand-protein docking techniques.
Collapse
Affiliation(s)
| | | | - Zuyi Huang
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19085, USA
| |
Collapse
|
37
|
Hernandez CC, Hu N, Shen W, Macdonald RL. Epileptic Encephalopathy GABRB Structural Variants Share Common Gating and Trafficking Defects. Biomolecules 2023; 13:1790. [PMID: 38136660 PMCID: PMC10741827 DOI: 10.3390/biom13121790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Variants in the GABRB gene, which encodes the β subunit of the GABAA receptor, have been implicated in various epileptic encephalopathies and related neurodevelopmental disorders such as Dravet syndrome and Angelman syndrome. These conditions are often associated with early-onset seizures, developmental regression, and cognitive impairments. The severity and specific features of these encephalopathies can differ based on the nature of the genetic variant and its impact on GABAA receptor function. These variants can lead to dysfunction in GABAA receptor-mediated inhibition, resulting in an imbalance between neuronal excitation and inhibition that contributes to the development of seizures. Here, 13 de novo EE-associated GABRB variants, occurring as missense mutations, were analyzed to determine their impact on protein stability and flexibility, channel function, and receptor biogenesis. Our results showed that all mutations studied significantly impact the protein structure, altering protein stability, flexibility, and function to varying degrees. Variants mapped to the GABA-binding domain, coupling zone, and pore domain significantly impact the protein structure, modifying the β+/α- interface of the receptor and altering channel activation and receptor trafficking. Our study proposes that the extent of loss or gain of GABAA receptor function can be elucidated by identifying the specific structural domain impacted by mutation and assessing the variability in receptor structural dynamics. This paves the way for future studies to explore and uncover links between the incidence of a variant in the receptor topology and the severity of the related disease.
Collapse
Affiliation(s)
- Ciria C. Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ningning Hu
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (N.H.); (W.S.); (R.L.M.)
| | - Wangzhen Shen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (N.H.); (W.S.); (R.L.M.)
| | - Robert L. Macdonald
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (N.H.); (W.S.); (R.L.M.)
| |
Collapse
|
38
|
Wei X, Campagna JJ, Jagodzinska B, Wi D, Cohn W, Lee J, Zhu C, Huang CS, Molnár L, Houser CR, John V, Mody I. A therapeutic small molecule lead enhances γ-oscillations and improves cognition/memory in Alzheimer's disease model mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569994. [PMID: 38106006 PMCID: PMC10723366 DOI: 10.1101/2023.12.04.569994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Brain rhythms provide the timing and concurrence of brain activity required for linking together neuronal ensembles engaged in specific tasks. In particular, the γ-oscillations (30-120 Hz) orchestrate neuronal circuits underlying cognitive processes and working memory. These oscillations are reduced in numerous neurological and psychiatric disorders, including early cognitive decline in Alzheimer's disease (AD). Here we report on a potent brain permeable small molecule, DDL-920 that increases γ-oscillations and improves cognition/memory in a mouse model of AD, thus showing promise as a new class of therapeutics for AD. As a first in CNS pharmacotherapy, our lead candidate acts as a potent, efficacious, and selective negative allosteric modulator (NAM) of the γ-aminobutyric acid type A receptors (GABA A Rs) assembled from α1β2δ subunits. We identified these receptors through anatomical and pharmacological means to mediate the tonic inhibition of parvalbumin (PV) expressing interneurons (PV+INs) critically involved in the generation of γ-oscillations. Our approach is unique as it is meant to enhance cognitive performance and working memory in a state-dependent manner by engaging and amplifying the brain's endogenous γ-oscillations through enhancing the function of PV+INs.
Collapse
|
39
|
Bampali K, Koniuszewski F, Vogel FD, Fabjan J, Andronis C, Lekka E, Virvillis V, Seidel T, Delaunois A, Royer L, Rolf MG, Giuliano C, Traebert M, Roussignol G, Fric-Bordat M, Mazelin-Winum L, Bryant SD, Langer T, Ernst M. GABA A receptor-mediated seizure liabilities: a mixed-methods screening approach. Cell Biol Toxicol 2023; 39:2793-2819. [PMID: 37093397 PMCID: PMC10693519 DOI: 10.1007/s10565-023-09803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/09/2023] [Indexed: 04/25/2023]
Abstract
GABAA receptors, members of the pentameric ligand-gated ion channel superfamily, are widely expressed in the central nervous system and mediate a broad range of pharmaco-toxicological effects including bidirectional changes to seizure threshold. Thus, detection of GABAA receptor-mediated seizure liabilities is a big, partly unmet need in early preclinical drug development. This is in part due to the plethora of allosteric binding sites that are present on different subtypes of GABAA receptors and the critical lack of screening methods that detect interactions with any of these sites. To improve in silico screening methods, we assembled an inventory of allosteric binding sites based on structural data. Pharmacophore models representing several of the binding sites were constructed. These models from the NeuroDeRisk IL Profiler were used for in silico screening of a compiled collection of drugs with known GABAA receptor interactions to generate testable hypotheses. Amoxapine was one of the hits identified and subjected to an array of in vitro assays to examine molecular and cellular effects on neuronal excitability and in vivo locomotor pattern changes in zebrafish larvae. An additional level of analysis for our compound collection is provided by pharmacovigilance alerts using FAERS data. Inspired by the Adverse Outcome Pathway framework, we postulate several candidate pathways leading from specific binding sites to acute seizure induction. The whole workflow can be utilized for any compound collection and should inform about GABAA receptor-mediated seizure risks more comprehensively compared to standard displacement screens, as it rests chiefly on functional data.
Collapse
Affiliation(s)
- Konstantina Bampali
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Filip Koniuszewski
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Florian D Vogel
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Jure Fabjan
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | | | | | | | - Thomas Seidel
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Annie Delaunois
- UCB Biopharma SRL, Chemin du Foriest, Braine-L'Alleud, Belgium
| | - Leandro Royer
- UCB Biopharma SRL, Chemin du Foriest, Braine-L'Alleud, Belgium
| | - Michael G Rolf
- R&D Biopharmaceuticals, Astra Zeneca, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Chiara Giuliano
- R&D Biopharmaceuticals, Astra Zeneca, Fleming Building (B623), Babraham Research Park, Babraham, Cambridgeshire, CB22 3AT, UK
| | - Martin Traebert
- Novartis Institutes for Biomedical Research, Fabrikstrasse 2, CH-4056, Basel, Switzerland
| | | | | | | | - Sharon D Bryant
- Inte:Ligand GmbH, Mariahilferstrasse 74B/11, 1070, Vienna, Austria
| | - Thierry Langer
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria.
| |
Collapse
|
40
|
Kasaragod VB, Malinauskas T, Wahid AA, Lengyel J, Knoflach F, Hardwick SW, Jones CF, Chen WN, Lucas X, El Omari K, Chirgadze DY, Aricescu AR, Cecere G, Hernandez MC, Miller PS. The molecular basis of drug selectivity for α5 subunit-containing GABA A receptors. Nat Struct Mol Biol 2023; 30:1936-1946. [PMID: 37903907 PMCID: PMC10716045 DOI: 10.1038/s41594-023-01133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/20/2023] [Indexed: 11/01/2023]
Abstract
α5 subunit-containing γ-aminobutyric acid type A (GABAA) receptors represent a promising drug target for neurological and neuropsychiatric disorders. Altered expression and function contributes to neurodevelopmental disorders such as Dup15q and Angelman syndromes, developmental epilepsy and autism. Effective drug action without side effects is dependent on both α5-subtype selectivity and the strength of the positive or negative allosteric modulation (PAM or NAM). Here we solve structures of drugs bound to the α5 subunit. These define the molecular basis of binding and α5 selectivity of the β-carboline, methyl 6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate (DMCM), type II benzodiazepine NAMs, and a series of isoxazole NAMs and PAMs. For the isoxazole series, each molecule appears as an 'upper' and 'lower' moiety in the pocket. Structural data and radioligand binding data reveal a positional displacement of the upper moiety containing the isoxazole between the NAMs and PAMs. Using a hybrid molecule we directly measure the functional contribution of the upper moiety to NAM versus PAM activity. Overall, these structures provide a framework by which to understand distinct modulator binding modes and their basis of α5-subtype selectivity, appreciate structure-activity relationships, and empower future structure-based drug design campaigns.
Collapse
Affiliation(s)
- Vikram Babu Kasaragod
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ayla A Wahid
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Judith Lengyel
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland
| | - Frederic Knoflach
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland
| | - Steven W Hardwick
- CryoEM Facility, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Wan-Na Chen
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Xavier Lucas
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center, Basel, Switzerland
| | - Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Dimitri Y Chirgadze
- CryoEM Facility, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - A Radu Aricescu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Giuseppe Cecere
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center, Basel, Switzerland
| | - Maria-Clemencia Hernandez
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland.
| | - Paul S Miller
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
41
|
Qian X, Zhao X, Yu L, Yin Y, Zhang XD, Wang L, Li JX, Zhu Q, Luo JL. Current status of GABA receptor subtypes in analgesia. Biomed Pharmacother 2023; 168:115800. [PMID: 37935070 DOI: 10.1016/j.biopha.2023.115800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Gamma-aminobutyric acid (GABA), a non-protein-producing amino acid synthesized from the excitatory amino acid glutamate via the enzyme glutamic acid decarboxylase, is extensively found in microorganisms, plants and vertebrates, and is abundantly expressed in the spinal cord and brain. It is the major inhibitory neurotransmitter in the mammalian nervous system. GABA plays crucial roles in the regulation of synaptic transmission, the promotion of neuronal development and relaxation, and the prevention of insomnia and depression. As the major inhibitory neurotransmitter, GABA plays pivotal roles in the regulation of pain sensation, which is initiated by the activation of peripheral nociceptors and transmitted to the spinal cord and brain along nerves. GABA exerts these roles by directly acting on three types of receptors: ionotropic GABAA and GABAC receptors and G protein-coupled GABAB receptor. The chloride-permeable ion channel receptors GABAA and GABAC mediate fast neurotransmission, while the metabotropic GABAB receptor mediates slow effect. Different GABA receptors regulate pain sensation via different signaling pathways. Here we highlight recent updates on the involvement of specific GABA receptors and their subtypes in the process of pain sensation. Further understanding of different GABA receptors and signaling pathways in pain sensation will benefit the development of novel analgesics for pain management by targeting specific GABA receptor subtypes and signaling pathways.
Collapse
Affiliation(s)
- Xunjia Qian
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Xinyi Zhao
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Lulu Yu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yujian Yin
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Xiao-Dan Zhang
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Liyun Wang
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jun-Xu Li
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China.
| | - Jia-Lie Luo
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
42
|
Chaudhuri T, Hosur MV. Molecular modelling reveals how abundance of α4 sub-type in synaptic GABAR A receptor can lead to refractoriness toward GABA and BZ-type drugs. J Biomol Struct Dyn 2023; 42:13680-13687. [PMID: 37948195 DOI: 10.1080/07391102.2023.2277858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Epilepsy is a complex neurological disorder with genetic and acquired causes, and the drugs presently used to treat epilepsy are not effective in about 30% of the cases. Identification of the molecular mechanisms of resistance will help in the development of newer molecules for treatment. Recent clinical data indicate increased expression of α4- and γ2-containing synaptic GABARA receptors in patients of focal cortical dysplasia (FCD), which is associated with refractory epilepsy pathology. We have investigated, by molecular modelling and docking, the structure and ligand-binding efficiency of the α4-containing hetero-pentameric synaptic GABARA receptor. Though the overall conformation is similar to that of the α1-containing receptor, local conformational changes are seen due to differences between aligned α1 and α4 sub-type residues. The overlaps ALA209(α1)/PRO215(α4) and PHE73(α1)/TYR79(α4) have together caused conformational changes in ARG100(α4) (aligned with ARG94 in α1) thereby affecting key hydrogen bonding interactions with the inhibitory neurotransmitter GABA. This may influence the nature of seizures as strength of GABA-binding is known to affect the nature of Inhibitory Post-Synaptic Currents (IPSCs) from GABAergic neurons. The residue ARG135 (α4) aligns with the residue HIS129 (α1) in the benzodiazapine binding pocket. Molecular modelling also shows that a steric clash between benzodiazapine-type (BZ-type) drugs and ARG135 would reduce the binding of BZ-type drugs to α4-containing receptor. These two findings rationalize the observed association between over-expression of α4-containing synaptic GABARA receptors and refractory epilepsy pathology in FCD. The accurate three-dimensional geometry of the receptor-drug complex made available by these modelling studies will help in designing effective drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tanusree Chaudhuri
- Department of Natural Sciences and Engineering, National Institute of Advanced Studies, Bangalore, India
| | - M V Hosur
- Department of Natural Sciences and Engineering, National Institute of Advanced Studies, Bangalore, India
| |
Collapse
|
43
|
Cowgill J, Fan C, Haloi N, Tobiasson V, Zhuang Y, Howard RJ, Lindahl E. Structure and dynamics of differential ligand binding in the human ρ-type GABA A receptor. Neuron 2023; 111:3450-3464.e5. [PMID: 37659407 DOI: 10.1016/j.neuron.2023.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 09/04/2023]
Abstract
The neurotransmitter γ-aminobutyric acid (GABA) drives critical inhibitory processes in and beyond the nervous system, partly via ionotropic type-A receptors (GABAARs). Pharmacological properties of ρ-type GABAARs are particularly distinctive, yet the structural basis for their specialization remains unclear. Here, we present cryo-EM structures of a lipid-embedded human ρ1 GABAAR, including a partial intracellular domain, under apo, inhibited, and desensitized conditions. An apparent resting state, determined first in the absence of modulators, was recapitulated with the specific inhibitor (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid and blocker picrotoxin and provided a rationale for bicuculline insensitivity. Comparative structures, mutant recordings, and molecular simulations with and without GABA further explained the sensitized but slower activation of ρ1 relative to canonical subtypes. Combining GABA with picrotoxin also captured an apparent uncoupled intermediate state. This work reveals structural mechanisms of gating and modulation with applications to ρ-specific pharmaceutical design and to our biophysical understanding of ligand-gated ion channels.
Collapse
Affiliation(s)
- John Cowgill
- Department of Biochemistry and Biophysics, SciLifeLab, Stockholm University, 17121 Solna, Sweden
| | - Chen Fan
- Department of Biochemistry and Biophysics, SciLifeLab, Stockholm University, 17121 Solna, Sweden
| | - Nandan Haloi
- Department of Applied Physics, SciLifeLab, KTH Royal Institute of Technology, 17121 Solna, Sweden
| | - Victor Tobiasson
- Department of Biochemistry and Biophysics, SciLifeLab, Stockholm University, 17121 Solna, Sweden
| | - Yuxuan Zhuang
- Department of Biochemistry and Biophysics, SciLifeLab, Stockholm University, 17121 Solna, Sweden
| | - Rebecca J Howard
- Department of Biochemistry and Biophysics, SciLifeLab, Stockholm University, 17121 Solna, Sweden.
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, SciLifeLab, Stockholm University, 17121 Solna, Sweden; Department of Applied Physics, SciLifeLab, KTH Royal Institute of Technology, 17121 Solna, Sweden.
| |
Collapse
|
44
|
Hannan SB, Penzinger R, Mickute G, Smart TG. CGP7930 - An allosteric modulator of GABA BRs, GABA ARs and inwardly-rectifying potassium channels. Neuropharmacology 2023; 238:109644. [PMID: 37422181 PMCID: PMC10951960 DOI: 10.1016/j.neuropharm.2023.109644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/01/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023]
Abstract
Type-A and -B GABA receptors (GABAARs/GABABRs) control brain function and behaviour by fine tuning neurotransmission. Over-time these receptors have become important therapeutic targets for treating neurodevelopmental and neuropsychiatric disorders. Several positive allosteric modulators (PAMs) of GABARs have reached the clinic and selective targeting of receptor subtypes is crucial. For GABABRs, CGP7930 is a widely used PAM for in vivo studies, but its full pharmacological profile has not yet been established. Here, we reveal that CGP7930 has multiple effects not only on GABABRs but also GABAARs, which for the latter involves potentiation of GABA currents, direct receptor activation, and also inhibition. Furthermore, at higher concentrations, CGP7930 also blocks G protein-coupled inwardly-rectifying K+ (GIRK) channels diminishing GABABR signalling in HEK 293 cells. In male and female rat hippocampal neuron cultures, CGP7930 allosteric effects on GABAARs caused prolonged rise and decay times and reduced the frequency of inhibitory postsynaptic currents and potentiated GABAAR-mediated tonic inhibition. Additional comparison between predominant synaptic- and extrasynaptic-isoforms of GABAAR indicated no evident subtype selectivity for CGP7930. In conclusion, our study of CGP7930 modulation of GABAARs, GABABRs and GIRK channels, indicates this compound is unsuitable for use as a specific GABABR PAM.
Collapse
Affiliation(s)
- Saad B Hannan
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Reka Penzinger
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ginte Mickute
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Trevor G Smart
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
45
|
Mohamad FH, Mohamad Jamali MA, Che Has AT. Structure-function Studies of GABA (A) Receptors and Related computer-aided Studies. J Mol Neurosci 2023; 73:804-817. [PMID: 37750966 DOI: 10.1007/s12031-023-02158-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
The γ-aminobutyric acid type A receptor (GABA (A) receptor) is a membrane protein activated by the neurotransmitter GABA. Structurally, this major inhibitory neurotransmitter receptor in the human central nervous system is a pentamer that can be built from a selection of 19 subunits consisting of α(1,2,3,4,5 or 6), β (1,2 or 3), γ (1,2 or 3), ρ (1,2 or 3), and δ, π, θ, and ε. This creates several possible pentameric arrangements, which also influence the pharmacological and physiological properties of the receptor. The complexity and heterogeneity of the receptors are further increased by the addition of short and long splice variants in several subunits and the existence of multiple allosteric binding sites and expansive ligands that can bind to the receptors. Therefore, a comprehensive understanding of the structure and function of the receptors is required to gain novel insights into the consequences of receptor dysfunction and subsequent drug development studies. Notably, advancements in computational-aided studies have facilitated the elucidation of residual interactions and exploring energy binding, which may otherwise be challenging to investigate. In this review, we aim to summarize the current understanding of the structure and function of GABA (A) receptors obtained from advancements in computational-aided applications.
Collapse
Affiliation(s)
- Fatin H Mohamad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia
| | - Muhamad Arif Mohamad Jamali
- Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia.
| |
Collapse
|
46
|
Sun C, Zhu H, Clark S, Gouaux E. Cryo-EM structures reveal native GABA A receptor assemblies and pharmacology. Nature 2023; 622:195-201. [PMID: 37730991 PMCID: PMC10550821 DOI: 10.1038/s41586-023-06556-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
Type A γ-aminobutyric acid receptors (GABAARs) are the principal inhibitory receptors in the brain and the target of a wide range of clinical agents, including anaesthetics, sedatives, hypnotics and antidepressants1-3. However, our understanding of GABAAR pharmacology has been hindered by the vast number of pentameric assemblies that can be derived from 19 different subunits4 and the lack of structural knowledge of clinically relevant receptors. Here, we isolate native murine GABAAR assemblies containing the widely expressed α1 subunit and elucidate their structures in complex with drugs used to treat insomnia (zolpidem (ZOL) and flurazepam) and postpartum depression (the neurosteroid allopregnanolone (APG)). Using cryo-electron microscopy (cryo-EM) analysis and single-molecule photobleaching experiments, we uncover three major structural populations in the brain: the canonical α1β2γ2 receptor containing two α1 subunits, and two assemblies containing one α1 and either an α2 or α3 subunit, in which the single α1-containing receptors feature a more compact arrangement between the transmembrane and extracellular domains. Interestingly, APG is bound at the transmembrane α/β subunit interface, even when not added to the sample, revealing an important role for endogenous neurosteroids in modulating native GABAARs. Together with structurally engaged lipids, neurosteroids produce global conformational changes throughout the receptor that modify the ion channel pore and the binding sites for GABA and insomnia medications. Our data reveal the major α1-containing GABAAR assemblies, bound with endogenous neurosteroid, thus defining a structural landscape from which subtype-specific drugs can be developed.
Collapse
Affiliation(s)
- Chang Sun
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Hongtao Zhu
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Sarah Clark
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA.
- Howard Hughes Medical Institute, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
47
|
Prevost MS, Barilone N, Dejean de la Bâtie G, Pons S, Ayme G, England P, Gielen M, Bontems F, Pehau-Arnaudet G, Maskos U, Lafaye P, Corringer PJ. An original potentiating mechanism revealed by the cryo-EM structures of the human α7 nicotinic receptor in complex with nanobodies. Nat Commun 2023; 14:5964. [PMID: 37749098 PMCID: PMC10520083 DOI: 10.1038/s41467-023-41734-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023] Open
Abstract
The human α7 nicotinic receptor is a pentameric channel mediating cellular and neuronal communication. It has attracted considerable interest in designing ligands for the treatment of neurological and psychiatric disorders. To develop a novel class of α7 ligands, we recently generated two nanobodies named E3 and C4, acting as positive allosteric modulator and silent allosteric ligand, respectively. Here, we solved the cryo-electron microscopy structures of the nanobody-receptor complexes. E3 and C4 bind to a common epitope involving two subunits at the apex of the receptor. They form by themselves a symmetric pentameric assembly that extends the extracellular domain. Unlike C4, the binding of E3 drives an agonist-bound conformation of the extracellular domain in the absence of an orthosteric agonist, and mutational analysis shows a key contribution of an N-linked sugar moiety in mediating E3 potentiation. The nanobody E3, by remotely controlling the global allosteric conformation of the receptor, implements an original mechanism of regulation that opens new avenues for drug design.
Collapse
Affiliation(s)
- Marie S Prevost
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France.
| | - Nathalie Barilone
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France
| | | | - Stéphanie Pons
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems Unit, Paris, France
| | - Gabriel Ayme
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Antibody Engineering Platform, Paris, France
| | - Patrick England
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Molecular Biophysics Platform, Paris, France
| | - Marc Gielen
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France
- Sorbonne Université, Paris, France
| | - François Bontems
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Structural Virology Unit, Paris, France
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Université Paris Saclay, Gif-sur-Yvette, France
| | - Gérard Pehau-Arnaudet
- Institut Pasteur, Université Paris Cité, Ultrastructural Bioimaging Core Facility, Paris, France
| | - Uwe Maskos
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems Unit, Paris, France
| | - Pierre Lafaye
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Antibody Engineering Platform, Paris, France
| | - Pierre-Jean Corringer
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France.
| |
Collapse
|
48
|
Beltrán González AN, López Pazos MI, Del Vas M, Calvo DJ. Negative modulation of the GABA Aρ1 receptor function by histamine. Eur J Pharmacol 2023; 955:175880. [PMID: 37406850 DOI: 10.1016/j.ejphar.2023.175880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
Besides its function as a local mediator of the immune response, histamine can play a role as a neurotransmitter and neuromodulator. Histamine actions are classically mediated through four different G protein-coupled receptor subtypes but non-classical actions were also described, including effects on many ligand-gated ion channels. Previous evidence indicated that histamine acts as a positive modulator on diverse GABAA receptor subtypes, such as GABAAα1β2γ2, GABAAα2β3γ2, GABAAα3β3γ2, GABAAα4β3γ2 and GABAAα5β3γ2. Meanwhile, its effects on GABAAρ1 receptors, known to stand for tonic currents in retinal neurons, had not been examined before. The effects of histamine on the function of human homomeric GABAAρ1 receptors were studied here, using heterologous expression in Xenopus laevis oocytes followed by the electrophysiological recording of GABA-evoked Cl- currents. Histamine inhibited GABAAρ1 receptor-mediated responses. Effects were reversible, independent of the membrane potential, and strongly dependent on both histamine and GABA concentration. A rightward parallel shift in the concentration-response curve for GABA was observed in the presence of histamine, without substantial change in the maximal response or the Hill coefficient. Results were compatible with a competitive antagonism of histamine on the GABAAρ1 receptors. This is the first report of inhibitory actions exerted by histamine on an ionotropic GABA receptor.
Collapse
Affiliation(s)
- Andrea N Beltrán González
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Manuel I López Pazos
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariana Del Vas
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Daniel J Calvo
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
49
|
Kaplan K, Hunsberger HC. Benzodiazepine-induced anterograde amnesia: detrimental side effect to novel study tool. Front Pharmacol 2023; 14:1257030. [PMID: 37781704 PMCID: PMC10536168 DOI: 10.3389/fphar.2023.1257030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Benzodiazepines (BZDs) are anxiolytic drugs that act on GABAa receptors and are used to treat anxiety disorders. However, these drugs come with the detrimental side effect of anterograde amnesia, or the inability to form new memories. In this review we discuss, behavioral paradigms, sex differences and hormonal influences affecting BZD-induced amnesia, molecular manipulations, including the knockout of GABAa receptor subunits, and regional studies utilizing lesion and microinjection techniques targeted to the hippocampus and amygdala. Additionally, the relationship between BZD use and cognitive decline related to Alzheimer's disease is addressed, as there is a lack of consensus on whether these drugs are involved in inducing or accelerating pathological cognitive deficits. This review aims to inspire new research directions, as there is a gap in knowledge in understanding the cellular and molecular mechanisms behind BZD-induced amnesia. Understanding these mechanisms will allow for the development of alternative treatments and potentially allow BZDs to be used as a novel tool to study Alzheimer's disease.
Collapse
Affiliation(s)
- Kameron Kaplan
- Center for Neurodegenerative Diseases and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL, United States
| | - Holly Christian Hunsberger
- Center for Neurodegenerative Diseases and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL, United States
| |
Collapse
|
50
|
Lorenz-Guertin JM, Povysheva N, Chapman CA, MacDonald ML, Fazzari M, Nigam A, Nuwer JL, Das S, Brady ML, Vajn K, Bambino MJ, Weintraub ST, Johnson JW, Jacob TC. Inhibitory and excitatory synaptic neuroadaptations in the diazepam tolerant brain. Neurobiol Dis 2023; 185:106248. [PMID: 37536384 PMCID: PMC10578451 DOI: 10.1016/j.nbd.2023.106248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Benzodiazepine (BZ) drugs treat seizures, anxiety, insomnia, and alcohol withdrawal by potentiating γ2 subunit containing GABA type A receptors (GABAARs). BZ clinical use is hampered by tolerance and withdrawal symptoms including heightened seizure susceptibility, panic, and sleep disturbances. Here, we investigated inhibitory GABAergic and excitatory glutamatergic plasticity in mice tolerant to benzodiazepine sedation. Repeated diazepam (DZP) treatment diminished sedative effects and decreased DZP potentiation of GABAAR synaptic currents without impacting overall synaptic inhibition. While DZP did not alter γ2-GABAAR subunit composition, there was a redistribution of extrasynaptic GABAARs to synapses, resulting in higher levels of synaptic BZ-insensitive α4-containing GABAARs and a concomitant reduction in tonic inhibition. Conversely, excitatory glutamatergic synaptic transmission was increased, and NMDAR subunits were upregulated at synaptic and total protein levels. Quantitative proteomics further revealed cortex neuroadaptations of key pro-excitatory mediators and synaptic plasticity pathways highlighted by Ca2+/calmodulin-dependent protein kinase II (CAMKII), MAPK, and PKC signaling. Thus, reduced inhibitory GABAergic tone and elevated glutamatergic neurotransmission contribute to disrupted excitation/inhibition balance and reduced BZ therapeutic power with benzodiazepine tolerance.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadya Povysheva
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Caitlyn A Chapman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew L MacDonald
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marco Fazzari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aparna Nigam
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica L Nuwer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sabyasachi Das
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Megan L Brady
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Katarina Vajn
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew J Bambino
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antoni, TX, USA
| | - Jon W Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|