1
|
Ogden S, Metic N, Leylek O, Smith EA, Berner AM, Baker AM, Uddin I, Buzzetti M, Gerlinger M, Graham T, Kocher HM, Efremova M. Phenotypic heterogeneity and plasticity in colorectal cancer metastasis. CELL GENOMICS 2025:100881. [PMID: 40393458 DOI: 10.1016/j.xgen.2025.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/27/2025] [Accepted: 04/22/2025] [Indexed: 05/22/2025]
Abstract
Phenotypic heterogeneity and plasticity in colorectal cancer (CRC) has a crucial role in tumor progression, metastasis, and therapy resistance. However, the regulatory factors and the extrinsic signals driving phenotypic heterogeneity remain unknown. Using a combination of single-cell multiomics and spatial transcriptomics data from primary and metastatic CRC patients, we reveal cancer cell states with regenerative and inflammatory phenotypes that closely resemble metastasis-initiating cells in mouse models. We identify an intermediate population with a hybrid regenerative and stem phenotype. We reveal the transcription factors AP-1 and nuclear factor κB (NF-κB) as their key regulators and show localization of these states in an immunosuppressive niche both at the invasive edge in primary CRC and in liver metastasis. We uncover ligand-receptor interactions predicted to activate the regenerative and inflammatory phenotype in cancer cells. Together, our findings reveal regulatory and signaling factors that mediate distinct cancer cell states and can serve as potential targets to impair metastasis.
Collapse
Affiliation(s)
- Samuel Ogden
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Nasrine Metic
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ozen Leylek
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Elise A Smith
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Alison M Berner
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Imran Uddin
- CRUK City of London Centre Single Cell Genomics Facility, University College London, London, UK
| | - Marta Buzzetti
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Marco Gerlinger
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Hemant M Kocher
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Mirjana Efremova
- Barts Cancer Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
2
|
Shang K, Qi X, Tian T, Shi H, Zhu Y, Zhang F. Regulation of the tuft cell-ILC2 circuit in intestinal mucosal immunity. Front Immunol 2025; 16:1568062. [PMID: 40356895 PMCID: PMC12066627 DOI: 10.3389/fimmu.2025.1568062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/02/2025] [Indexed: 05/15/2025] Open
Abstract
The intestinal mucosal immune system maintains homeostasis through complex interactions between epithelial cells and innate lymphoid cells in the lamina propria. Tuft cells, previously overlooked intestinal epithelial cell types, detect parasites and metabolites via Sucnr1 and TAS2R receptors. They secrete IL-25, which activates type 2 innate lymphoid cell (ILC2) via the IL-25R receptor. ILC2 releases IL-13, resulting in further promotion of tuft and goblet cells from stem cells. This positive feedback loop amplifies the local type 2 immune response, combating parasitic infections. Tuft cells also recognize viruses and bacteria, but the role played by the tuft cell-ILC2 circuit in this process is not yet clear. Furthermore, tuft cell-ILC2 circuit is influenced by dietary fiber, intestinal microbiota, and other factors, contributing to new functions in maintaining intestinal homeostasis. In inflammatory bowel disease, this immunological circuit may be protective. This review summarizes the current understanding of the tuft cell-ILC2 circuit, its regulatory mechanisms, and potential implications in intestinal disease.Graphical abstract (by Figdraw 2.0).
Collapse
Affiliation(s)
- Kaiyu Shang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xinxin Qi
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Tingting Tian
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Huidong Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yuejie Zhu
- Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Fengbo Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
3
|
Huang D, Wang J, Chen L, Jiang W, Inuzuka H, Simon DK, Wei W. Molecular Subtypes and Targeted Therapeutic Strategies in Small Cell Lung Cancer: Advances, Challenges, and Future Perspectives. Molecules 2025; 30:1731. [PMID: 40333678 PMCID: PMC12029361 DOI: 10.3390/molecules30081731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/09/2025] Open
Abstract
Small cell lung cancer (SCLC) is a highly aggressive malignancy characterized by rapid progression, early metastasis, and high recurrence rates. Historically considered a homogeneous disease, recent multi-omic studies have revealed distinct molecular subtypes driven by lineage-defining transcription factors, including ASCL1, NEUROD1, POU2F3, and YAP1, as well as an inflamed subtype (SCLC-I). These subtypes exhibit unique therapeutic vulnerabilities, thereby paving the way for precision medicine and targeted therapies. Despite recent advances in molecular classification, tumor heterogeneity, plasticity, and therapy resistance continue to hinder clinical success in treating SCLC patients. To this end, novel therapeutic strategies are being explored, including BCL2 inhibitors, DLL3-targeting agents, Aurora kinase inhibitors, PARP inhibitors, and epigenetic modulators. Additionally, immune checkpoint inhibitors (ICIs) show promise, particularly in immune-enriched subtypes of SCLC patients. Hence, a deeper understanding of SCLC subtype characteristics, evolution, and the regulatory mechanisms of subtype-specific transcription factors is crucial for rationally optimizing precision therapy. This knowledge not only facilitates the identification of subtype-specific therapeutic targets, but also provides a foundation for overcoming resistance and developing personalized combination treatment strategies. In the future, the integration of multi-omic data, dynamic molecular monitoring, and precision medicine approaches are expected to further advance the clinical translation of SCLC subtype-specific therapies, ultimately improving patient survival and outcomes.
Collapse
Affiliation(s)
- Daoyuan Huang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jingchao Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Li Chen
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Weiwei Jiang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David K. Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
4
|
Rajasekaran V, Harris BT, Osborn RT, Smillie C, Donnelly K, Bacou M, Esiri-Bloom E, Ooi LY, Allan M, Walker M, Reid S, Meynert A, Grimes G, Blackmur JP, Vaughan-Shaw PG, Law PJ, Fernández-Rozadilla C, Tomlinson I, Houlston RS, Myant KB, Din FV, Timofeeva M, Dunlop MG, Farrington SM. Genetic variation at 11q23.1 confers colorectal cancer risk by dysregulation of colonic tuft cell transcriptional activator POU2AF2. Gut 2025; 74:787-803. [PMID: 39609081 PMCID: PMC12013567 DOI: 10.1136/gutjnl-2024-332121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 11/02/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Common genetic variation at 11q23.1 is associated with colorectal cancer (CRC) risk, exerting local expression quantitative trait locus (cis-eQTL) effects on POU2AF2, COLCA1 and POU2AF3 genes. However, complex linkage disequilibrium and correlated expression has hindered elucidation of the mechanisms by which genetic variants impart underlying CRC risk. OBJECTIVE Undertake an interdisciplinary approach to understand how variation at 11q23.1 locus imparts CRC risk. DESIGN We employ analysis of RNA sequencing, single-cell RNA sequencing, chromatin immunoprecipitation sequencing and single-cell ATAC sequencing data to identify, prioritise and characterise the genes that contribute to CRC risk. We further validate these findings using mouse models and demonstrate parallel effects in human colonic mucosa. RESULTS We establish rs3087967 as a prime eQTL variant at 11q23.1, colocalising with CRC risk. Furthermore, rs3087967 influences expression of 21 distant genes, thereby acting as a trans-eQTL hub for a gene-set highly enriched for tuft cell markers. Epigenomic analysis implicates POU2AF2 as controlling the tuft cell-specific trans-genes, through POU2F3-correlated genomic regulation. Immunofluorescence confirms rs3087967 risk genotype (T) to be associated with a tuft cell deficit in the human colon. CRISPR-mediated deletion of the 11q23.1 risk locus genes in the mouse germline exacerbated the ApcMin/+ mouse phenotype on abrogation of Pou2af2 expression specifically. CONCLUSION We demonstrate that genotype at rs3087967 controls a portfolio of genes through misregulation of POU2AF2. POU2AF2 is the primary transcriptional activator of tuft cells with a tumour suppressive role in mouse models. We therefore implicate tuft cells as having a key tumour-protective role in the large bowel epithelium.
Collapse
Affiliation(s)
- Vidya Rajasekaran
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Bradley T Harris
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
- Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Ruby T Osborn
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Claire Smillie
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Kevin Donnelly
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
- The University of Edinburgh MRC Human Genetics Unit, Edinburgh, UK
| | - Marion Bacou
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Edward Esiri-Bloom
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Li-Yin Ooi
- Department of Pathology, National University of Singapore, Singapore
| | - Morven Allan
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Marion Walker
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
- The University of Edinburgh MRC Human Genetics Unit, Edinburgh, UK
| | - Stuart Reid
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Alison Meynert
- The University of Edinburgh MRC Human Genetics Unit, Edinburgh, UK
| | - Graeme Grimes
- The University of Edinburgh MRC Human Genetics Unit, Edinburgh, UK
| | - James P Blackmur
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
- The University of Edinburgh MRC Human Genetics Unit, Edinburgh, UK
| | - Peter G Vaughan-Shaw
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
- The University of Edinburgh MRC Human Genetics Unit, Edinburgh, UK
| | - Philip J Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Ceres Fernández-Rozadilla
- Cancer Predisposition and Biomarkers Lab, Instituto de Investigacion Sanitaria de Santigao de Compostela, Santiago de Compostela, Spain
| | - Ian Tomlinson
- Department of Oncology, University of Oxford Department of Oncology, Oxford, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Kevin B Myant
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Farhat Vn Din
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Maria Timofeeva
- IST - EBB/Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, Odense, Denmark
| | - Malcolm G Dunlop
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
- The University of Edinburgh MRC Human Genetics Unit, Edinburgh, UK
| | - Susan M Farrington
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Ankenbauer KE, Yang Y, Chung CY, Andrade LR, Weiser Novak S, Jarvis B, Ali Hanel WH, Liu J, Sarkisian V, Dani N, Krystofiak E, Hu G, Ebrahim S, Kachar B, Gong Q, Wahl G, Manor U, Lau K, DelGiorno KE. Pcdh20 is a POU2F3 target gene required for proper tuft cell microvillus formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.644042. [PMID: 40166352 PMCID: PMC11957026 DOI: 10.1101/2025.03.18.644042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Tuft cells are solitary chemosensory cells known for their distinct tall, blunt microvilli, thought to be analogous to mechanosensory hair cell stereocilia. Identification of commonalities between tuft and hair cells could identify a role for tuft cells in mechanotransduction. Transcription factor POU2F3 is the master regulator of tuft cell formation, however how POU2F3 drives formation of this unique cell and the functional role of the microvillar apparatus is unknown. POU2F3 ChIP-seq was performed on isolated tuft cells and compared to the cochlear hair cell transcriptome. Structural genes common to both tuft and hair cells, including protocadherin 20 (PCDH20), were identified. Immunogold labeling and imaging localized PCDH20 to extensive intermicrovillar linkages in tuft cells. Knockdown of PCDH20 in mice resulted in impaired microvilli formation and a disruption in structure. Altogether, PCDH20 is a POU2F3 target gene in tuft cells critical to maintain the rigid microvillar apparatus, which may function in mechanotransduction.
Collapse
|
6
|
Bhattacharya S, Tie G, Singh PNP, Malagola E, Eskiocak O, He R, Kraiczy J, Gu W, Perlov Y, Alici-Garipcan A, Beyaz S, Wang TC, Zhou Q, Shivdasani RA. Intestinal secretory differentiation reflects niche-driven phenotypic and epigenetic plasticity of a common signal-responsive terminal cell. Cell Stem Cell 2025:S1934-5909(25)00095-5. [PMID: 40203837 DOI: 10.1016/j.stem.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/27/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025]
Abstract
Enterocytes and four classic secretory cell types derive from intestinal epithelial stem cells. Based on morphology, location, and canonical markers, goblet and Paneth cells are considered distinct secretory types. Here, we report high overlap in their transcripts and sites of accessible chromatin, in marked contrast to those of their enteroendocrine or tuft cell siblings. Mouse and human goblet and Paneth cells express extraordinary fractions of few antimicrobial genes, which reflect specific responses to local niches. Wnt signaling retains some ATOH1+ secretory cells in crypt bottoms, where the absence of BMP signaling potently induces Paneth features. Cells that migrate away from crypt bottoms encounter BMPs and thereby acquire goblet properties. These phenotypes and underlying accessible cis-elements interconvert in post-mitotic cells. Thus, goblet and Paneth properties represent alternative phenotypic manifestations of a common signal-responsive terminal cell type. These findings reveal exquisite niche-dependent cell plasticity and cis-regulatory dynamics in likely response to antimicrobial needs.
Collapse
Affiliation(s)
- Swarnabh Bhattacharya
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Guodong Tie
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Pratik N P Singh
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Onur Eskiocak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Graduate Program in Genetics, State University of New York, Stony Brook, NY 11794, USA
| | - Ruiyang He
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Judith Kraiczy
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Gu
- Division of Regenerative Medicine & Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yakov Perlov
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Qiao Zhou
- Division of Regenerative Medicine & Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
7
|
Hughes EP, Syage AR, Mehrabad EM, Lane TE, Spike BT, Tantin D. OCA-B promotes pathogenic maturation of stem-like CD4 + T cells and autoimmune demyelination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.11.29.569210. [PMID: 38076925 PMCID: PMC10705450 DOI: 10.1101/2023.11.29.569210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Stem-like T cells selectively contribute to autoimmunity, but the activities that promote their pathogenicity are incompletely understood. Here, we identify the transcription coregulator OCA-B as a driver of the pathogenic maturation of stem-like CD4 + T cell to promote autoimmune demyelination. Using two human multiple sclerosis (MS) datasets, we show that POU2AF1 , the gene encoding OCA-B, is elevated in CD4 + T cells from MS patients. We show that T cell-intrinsic OCA-B loss protects mice from experimental autoimmune encephalomyelitis (EAE) while preserving responses to viral CNS infection. In EAE models driven by antigen reencounter, OCA-B deletion nearly eliminates CNS infiltration, proinflammatory cytokine production and clinical disease. OCA-B-expressing CD4 + T cells of mice primed with autoantigen express an encephalitogenic gene program and preferentially confer disease. In a relapsing-remitting EAE model, OCA-B loss protects mice specifically at relapse. During remission, OCA-B promotes the expression of Tcf7 , Slamf6 , and Sell in proliferating CNS T cell populations. At relapse timepoints, OCA-B loss results in both the accumulation of an immunomodulatory CD4 + T cell population expressing Ccr9 and Bach2 , and loss of pro-inflammatory gene expression from Th17 cells. These results identify OCA-B as a driver of pathogenic CD4 + T cells.
Collapse
|
8
|
Schwab H, Kerkhoff M, Plaumann P, Collaud S, Dirksen U, Theegarten D, Herold T, Kalbourtzis S, Bölükbas S, Hegedüs B, Hegedüs L. Characterization of a novel sarcoma cell line with an EWSR1::POU2AF3 fusion. Pathol Oncol Res 2025; 31:1611986. [PMID: 40134582 PMCID: PMC11932835 DOI: 10.3389/pore.2025.1611986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Sarcomas with an EWSR1::POU2AF3(COLCA2) fusion are a very recently described entity of preferentially sinonasal origin and with undifferentiated round/spindle cell morphology. We established a novel cell line (PF1095) carrying a EWSR1::POU2AF3 fusion from the malignant pleural effusion of a 25-year-old sarcoma patient. The patient was first diagnosed with poorly differentiated neuroendocrine carcinoma based on tumor cell morphology and positivity to markers such as EMA, synaptophysin, and CD56. Later, the EWSR1 translocation was identified in the tumor cells with unknown partners and the patient received chemotherapy according to the Ewing 2008 protocol in combination with surgery and proton beam radiotherapy. At the time of cell line establishment, the disease progressed to pleural sarcomatosis with pleural effusion. In the cell line, we identified POU2AF3 as a fusion partner of EWSR1 and a TP53 frameshift deletion. Next, we determined the sensitivity of PF1095 cells to the currently approved chemotherapies in comparison to two conventional Ewing sarcoma lines (EW-7 and MHH-ES1) with the two most frequent EWSR::FLI1 fusions. Finally, we tested potential new combination therapies. We performed cell viability, proliferation, and cell cycle assays. We found that the proliferation rate of PF1095 cells was much slower than the EWSR1::FLI1 fusion lines and they also had a lower sensitivity to both irinotecan and doxorubicin treatment. Expression level of SLFN11, a predictor of sensitivity to DNA damaging agents, was also lower in PF1095 cells. Combination treatment with the PARP inhibitors olaparib and irinotecan or doxorubicin synergistically reduced cell viability and induced cell death and cell cycle arrest. This unique cell model provides an opportunity to test therapeutic approaches preclinically for this novel and aggressive sarcoma entity.
Collapse
Affiliation(s)
- Hannah Schwab
- Department of Thoracic Surgery, University Medicine Essen – Ruhrlandklinik, Essen, Germany
| | - Maximilian Kerkhoff
- Pediatrics III, West German Cancer Center, University Medicine Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany
- National Center for Cancer diseases (NCT-West), Essen, Germany
| | - Pauline Plaumann
- Pediatrics III, West German Cancer Center, University Medicine Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany
- National Center for Cancer diseases (NCT-West), Essen, Germany
| | - Stéphane Collaud
- Department of Thoracic Surgery, Cologne Merheim Hospital, University of Witten/Herdecke, Cologne, Germany
| | - Uta Dirksen
- Pediatrics III, West German Cancer Center, University Medicine Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany
- National Center for Cancer diseases (NCT-West), Essen, Germany
| | - Dirk Theegarten
- Institute of Pathology, University Medicine Essen, Essen, Germany
| | - Thomas Herold
- Institute of Pathology, University Medicine Essen, Essen, Germany
| | | | - Servet Bölükbas
- Department of Thoracic Surgery, University Medicine Essen – Ruhrlandklinik, Essen, Germany
| | - Balazs Hegedüs
- Department of Thoracic Surgery, University Medicine Essen – Ruhrlandklinik, Essen, Germany
| | - Luca Hegedüs
- Department of Thoracic Surgery, University Medicine Essen – Ruhrlandklinik, Essen, Germany
| |
Collapse
|
9
|
Bau DT, Liu TY, Yang JS, Chen WTL, Tsai CW, Chang WS, Ke TW, Liao CC, Chen YC, Chang YT, Tsai FJ. Characterizing Genetic Susceptibility to Colorectal Cancer in Taiwan Through Genome-Wide Association Study. Mol Carcinog 2025; 64:25-32. [PMID: 39392253 DOI: 10.1002/mc.23823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
We conducted the first genome-wide association study (GWAS) of colorectal cancer (CRC) in Taiwan with 5342 cases and 61,015 controls. Ninety-two SNPs in three genomic regions reached genome-wide significance (p < 5 × 10-8). The lead SNPs in these three regions were: rs12778523 (OR = 1.18, 95% CI, 1.15-1.23, p = 4.51 × 10-13), an intergenic SNP between RNA5SP299 and LINC02676 at chromosome 10p14; rs647161 (OR = 1.14, 95% CI, 1.09-1.19, p = 2.21 × 10-9), an intronic SNP in PITX1 at 5q31.1, and rs10427139 (OR = 1.20, 95% CI, 1.14-1.28, p = 3.62 × 10-9), an intronic SNP in GPATCH1 at 19q13.1. We further validated CRC susceptibility SNPs previously identified through GWAS in other populations. A total of 61 CRC susceptibility SNPs were confirmed in Taiwanese. The top validated putative CRC susceptibility genes included: POU2AF2, HAO1, LAMC1, EIF3H, BMP2, ZMIZ1, BMP4, POLD3, CDKN1A, PREX1, CDKN2B, CDH1, and LRIG1. The top enriched pathways included TGF-β signaling, BMP signaling, extracellular matrix organization, DNA repair, and cell cycle control. We could not validate SNPs in HLA-G at 6p22.1 and in NOTCH4 at 6p21.32. We generated a weighted genetic risk score (GRS) using the 61 SNPs and constructed receiver operating characteristic (ROC) curves using the GRS to predict CRC. The area under the ROC curve (AUC) was 0.589 for GRS alone and 0.645 for GRS, sex, and age. These susceptibility SNPs and genes provide important insights into the molecular mechanisms of CRC development and help identify high-risk individuals for CRC in Taiwan.
Collapse
Affiliation(s)
- Da-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Ting-Yuan Liu
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chia-Wen Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Shin Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chi-Chou Liao
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Chia Chen
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yen-Ting Chang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, Human Genetics Center, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Genetics, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
10
|
Kaczorowski M, Ylaya K, Chłopek M, Lasota J, Miettinen M. Expression of POU2F3 Transcription Factor and POU2AF2, POU2F3 Coactivator, in Tuft Cell-like Carcinoma and Other Tumors. Am J Surg Pathol 2025; 49:62-72. [PMID: 39319626 DOI: 10.1097/pas.0000000000002313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Epithelial chemosensory cells in hollow organs, also known as tuft cells, were implicated in tumorigenesis, including a tuft cell-like small cell lung carcinoma. Expression of the POU2F3 transcription factor is a marker of tuft cell lineage. However, tuft cell development, differentiation, and proliferation are controlled by the expression of the complex formed by POU2F3 and POU2AF2 or POU2AF3 transcriptional coactivators. A cohort of epithelial (n=6064) and mesenchymal/neuroectodermal (n=2730) tumors was screened for POU2F3 expression by immunohistochemistry. Variable immunoreactivity ranging from diffuse to scattered positive cells was found in ∼12.4% of epithelial and 4.6% of mesenchymal/neuroectodermal tumors. Cases with predominantly diffuse or patchy POU2F3 positivity representing various types of malignant tumors (n=43) were selected for further study, including POU2AF2 immunohistochemistry. Thirteen of 15 tumors with neuroendocrine differentiation originating from the lung, colon, head and neck, skin, and bladder revealed diffuse POU2F3 positivity. Most of those tumors (n=9) co-expressed POU2AF2, usually extensively. Seven squamous and basal cell carcinomas from the oral cavity, skin, lung, and thymus with diffuse POU2F3 immunostaining except one, lacked POU2AF2 expression. Other variably POU2F3-positive carcinomas (n=13) from the colon, pancreas, liver, kidney, testis, endometrium, ovary, and breast lacked POU2AF2 immunoreactivity. All POU2F3-positive mesenchymal and neuroectodermal tumors (n=8), including synovial sarcoma, solitary fibrous tumor, glioblastoma, Wilms tumor, and melanoma were POU2AF2-negative. POU2F3 expression is a highly sensitive but nonspecific indicator of tuft cell differentiation. Co-expression of POU2F3 and POU2AF2 appears to be a more specific marker, although it may not pinpoint tumors driven by the POU2F3-POU2AF3 complex.
Collapse
Affiliation(s)
- Maciej Kaczorowski
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Wrocław, Poland
| | - Kris Ylaya
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
| | | | - Jerzy Lasota
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
| | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
| |
Collapse
|
11
|
Feng X, Flüchter P, De Tenorio JC, Schneider C. Tuft cells in the intestine, immunity and beyond. Nat Rev Gastroenterol Hepatol 2024; 21:852-868. [PMID: 39327439 DOI: 10.1038/s41575-024-00978-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/28/2024]
Abstract
Tuft cells have gained substantial attention over the past 10 years due to numerous reports linking them with type 2 immunity and microorganism-sensing capacity in many mucosal tissues. This heightened interest is fuelled by their unique ability to produce an array of biological effector molecules, including IL-25, allergy-related eicosanoids, and the neurotransmitter acetylcholine, enabling downstream responses in diverse cell types. Operating through G protein-coupled receptor-mediated signalling pathways reminiscent of type II taste cells in oral taste buds, tuft cells emerge as chemosensory sentinels that integrate luminal conditions, eliciting appropriate responses in immune, epithelial and neuronal populations. How tuft cells promote tissue alterations and adaptation to the variety of stimuli at mucosal surfaces has been explored in multiple studies in the past few years. Since the initial recognition of the role of tuft cells, the discovery of diverse tuft cell effector functions and associated feedback loops have also revealed the complexity of tuft cell biology. Although earlier work largely focused on extraintestinal tissues, novel genetic tools and recent mechanistic studies on intestinal tuft cells established fundamental concepts of tuft cell activation and functions. This Review is an overview of intestinal tuft cells, providing insights into their development, signalling and interaction modules in immunity and other states.
Collapse
Affiliation(s)
- Xiaogang Feng
- Department of Physiology, University of Zurich, Zurich, Switzerland
| | - Pascal Flüchter
- Department of Physiology, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
12
|
Ireland AS, Hawgood SB, Xie DA, Barbier MW, Lucas-Randolph S, Tyson DR, Zuo LY, Witt BL, Govindan R, Dowlati A, Moser JC, Puri S, Rudin CM, Chan JM, Elliott A, Oliver TG. Basal cell of origin resolves neuroendocrine-tuft lineage plasticity in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623500. [PMID: 39605338 PMCID: PMC11601426 DOI: 10.1101/2024.11.13.623500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Neuroendocrine and tuft cells are rare, chemosensory epithelial lineages defined by expression of ASCL1 and POU2F3 transcription factors, respectively1,2. Neuroendocrine cancers, including small cell lung cancer (SCLC), frequently display tuft-like subsets, a feature linked to poor patient outcomes3-13. The mechanisms driving neuroendocrine-tuft tumour heterogeneity, and the origins of tuft-like cancers are unknown. Using multiple genetically-engineered animal models of SCLC, we demonstrate that a basal cell of origin (but not the accepted neuroendocrine origin) generates neuroendocrine-tuft-like tumours that highly recapitulate human SCLC. Single-cell clonal analyses of basal-derived SCLC further uncovers unexpected transcriptional states and lineage trajectories underlying neuroendocrine-tuft plasticity. Uniquely in basal cells, introduction of genetic alterations enriched in human tuft-like SCLC, including high MYC, PTEN loss, and ASCL1 suppression, cooperate to promote tuft-like tumours. Transcriptomics of 944 human SCLCs reveal a basal-like subset and a tuft-ionocyte-like state that altogether demonstrate remarkable conservation between cancer states and normal basal cell injury response mechanisms14-18. Together, these data suggest that the basal cell is a plausible origin for SCLC and other neuroendocrine-tuft cancers that can explain neuroendocrine-tuft heterogeneity-offering new insights for targeting lineage plasticity.
Collapse
Affiliation(s)
- Abbie S. Ireland
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Sarah B. Hawgood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Daniel A. Xie
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Margaret W. Barbier
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | | | - Darren R. Tyson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Lisa Y. Zuo
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Benjamin L. Witt
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ramaswamy Govindan
- Division of Oncology, Department of Medicine, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Afshin Dowlati
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | | | - Sonam Puri
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Charles M. Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Joseph M. Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Trudy G. Oliver
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
13
|
Romero R, Chu T, González Robles TJ, Smith P, Xie Y, Kaur H, Yoder S, Zhao H, Mao C, Kang W, Pulina MV, Lawrence KE, Gopalan A, Zaidi S, Yoo K, Choi J, Fan N, Gerstner O, Karthaus WR, DeStanchina E, Ruggles KV, Westcott PMK, Chaligné R, Pe'er D, Sawyers CL. The neuroendocrine transition in prostate cancer is dynamic and dependent on ASCL1. NATURE CANCER 2024; 5:1641-1659. [PMID: 39394434 PMCID: PMC11584404 DOI: 10.1038/s43018-024-00838-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/06/2024] [Indexed: 10/13/2024]
Abstract
Lineage plasticity is a hallmark of cancer progression that impacts therapy outcomes, yet the mechanisms mediating this process remain unclear. Here, we introduce a versatile in vivo platform to interrogate neuroendocrine lineage transformation throughout prostate cancer progression. Transplanted mouse prostate organoids with human-relevant driver mutations (Rb1-/-; Trp53-/-; cMyc+ or Pten-/-; Trp53-/-; cMyc+) develop adenocarcinomas, but only those with Rb1 deletion advance to aggressive, ASCL1+ neuroendocrine prostate cancer (NEPC) resistant to androgen receptor signaling inhibitors. Notably, this transition requires an in vivo microenvironment not replicated by conventional organoid culture. Using multiplexed immunofluorescence and spatial transcriptomics, we reveal that ASCL1+ cells arise from KRT8+ luminal cells, progressing into transcriptionally heterogeneous ASCL1+;KRT8- NEPC. Ascl1 loss in established NEPC causes transient regression followed by recurrence, but its deletion before transplantation abrogates lineage plasticity, resulting in castration-sensitive adenocarcinomas. This dynamic model highlights the importance of therapy timing and offers a platform to identify additional lineage plasticity drivers.
Collapse
Affiliation(s)
- Rodrigo Romero
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tinyi Chu
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tania J González Robles
- Institute of Systems Genetics, Department of Precision Medicine, NYU Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Perianne Smith
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yubin Xie
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Harmanpreet Kaur
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sara Yoder
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Huiyong Zhao
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chenyi Mao
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wenfei Kang
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria V Pulina
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kayla E Lawrence
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anuradha Gopalan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samir Zaidi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Genitourinary Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kwangmin Yoo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Ning Fan
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olivia Gerstner
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wouter R Karthaus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa DeStanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kelly V Ruggles
- Institute of Systems Genetics, Department of Precision Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Ronan Chaligné
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Dana Pe'er
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
14
|
Michelson DA, Mathis D. Thymic Mimetic Cells: Ontogeny as Immunology. Annu Rev Cell Dev Biol 2024; 40:283-300. [PMID: 38608315 PMCID: PMC11446667 DOI: 10.1146/annurev-cellbio-112122-023316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Medullary thymic epithelial cells (mTECs) generate immunological self-tolerance by ectopically expressing peripheral-tissue antigens (PTAs) within the thymus to preview the peripheral self to maturing T cells. Recent work, drawing inspiration from old histological observations, has shown that subtypes of mTECs, collectively termed mimetic cells, co-opt developmental programs from throughout the organism to express biologically coherent groups of PTAs. Here, we review key aspects of mimetic cells, especially as they relate to the larger contexts of molecular, cellular, developmental, and evolutionary biology. We highlight lineage-defining transcription factors as key regulators of mimetic cells and speculate as to what other factors, including Aire and the chromatin potential of mTECs, permit mimetic cell differentiation and function. Last, we consider what mimetic cells can teach us about not only the thymus but also other tissues.
Collapse
Affiliation(s)
- Daniel A Michelson
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, USA;
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
15
|
Jiang J, Han D, Wang J, Wen W, Zhang R, Qin W. Neuroendocrine transdifferentiation in human cancer: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e761. [PMID: 39372390 PMCID: PMC11450264 DOI: 10.1002/mco2.761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024] Open
Abstract
Neuroendocrine transdifferentiation (NEtD), also commonly referred to as lineage plasticity, emerges as an acquired resistance mechanism to molecular targeted therapies in multiple cancer types, predominately occurs in metastatic epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer treated with EGFR tyrosine kinase inhibitors and metastatic castration-resistant prostate cancer treated with androgen receptor targeting therapies. NEtD tumors are the lethal cancer histologic subtype with unfavorable prognosis and limited treatment. A comprehensive understanding of molecular mechanism underlying targeted-induced plasticity could greatly facilitate the development of novel therapies. In the past few years, increasingly elegant studies indicated that NEtD tumors share key the convergent genomic and phenotypic characteristics irrespective of their site of origin, but also embrace distinct change and function of molecular mechanisms. In this review, we provide a comprehensive overview of the current understanding of molecular mechanism in regulating the NEtD, including genetic alterations, DNA methylation, histone modifications, dysregulated noncoding RNA, lineage-specific transcription factors regulation, and other proteomic alterations. We also provide the current management of targeted therapies in clinical and preclinical practice.
Collapse
Affiliation(s)
- Jun Jiang
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
- Department of Health Service, Base of Health ServiceAir Force Medical UniversityXi'anChina
| | - Donghui Han
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
| | - Jiawei Wang
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, and National Translational Science Center for Molecular MedicineAir Force Medical UniversityXi'anChina
| | - Weihong Wen
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
| | - Rui Zhang
- State Key Laboratory of Cancer BiologyDepartment of ImmunologyAir Force Medical UniversityXi'anChina
| | - Weijun Qin
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
16
|
Redin E, Quintanal-Villalonga Á, Rudin CM. Small cell lung cancer profiling: an updated synthesis of subtypes, vulnerabilities, and plasticity. Trends Cancer 2024; 10:935-946. [PMID: 39164163 PMCID: PMC12107680 DOI: 10.1016/j.trecan.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024]
Abstract
Small cell lung cancer (SCLC) is a devastating disease with high proliferative and metastatic capacity. SCLC has been classified into molecular subtypes based on differential expression of lineage-defining transcription factors. Recent studies have proposed new subtypes that are based on both tumor-intrinsic and -extrinsic factors. SCLC demonstrates substantial intratumoral subtype heterogeneity characterized by highly plastic transcriptional states, indicating that the initially dominant subtype can shift during disease progression and in association with resistance to therapy. Strategies to promote or constrain plasticity and cell fate transitions have nominated novel targets that could prompt the development of more durably effective therapies for patients with SCLC. In this review, we describe the latest advances in SCLC subtype classification and their biological and clinical implications.
Collapse
Affiliation(s)
- Esther Redin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Álvaro Quintanal-Villalonga
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles M Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Pharmacology Program, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
17
|
Zhang J, Wang G, Ma J, Duan Y, Sharma SA, Oladejo S, Ma X, Arellano G, Orchard RC, Reese TA, Kuang Z. HDAC3 integrates TGF-β and microbial cues to program tuft cell biogenesis and diurnal rhythms in mucosal immune surveillance. Sci Immunol 2024; 9:eadk7387. [PMID: 39331726 DOI: 10.1126/sciimmunol.adk7387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/29/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024]
Abstract
The intestinal mucosal surface is directly exposed to daily fluctuations in food and microbes driven by 24-hour light and feeding cycles. Intestinal epithelial tuft cells are key sentinels that surveil the gut luminal environment, but how these cells are diurnally programmed remains unknown. Here, we show that histone deacetylase 3 (HDAC3) controls tuft cell specification and the diurnal rhythm of its biogenesis, which is regulated by the gut microbiota and feeding schedule. Disruption of epithelial HDAC3 decreases tuft cell numbers, impairing antihelminth immunity and norovirus infection. Mechanistically, HDAC3 functions noncanonically to activate transforming growth factor-β (TGF-β) signaling, which promotes rhythmic expression of Pou2f3, a lineage-defining transcription factor of tuft cells. Our findings reveal an environmental-epigenetic link that controls the diurnal differentiation of tuft cells and promotes rhythmic mucosal surveillance and immune responses in anticipation of exogenous challenges.
Collapse
Affiliation(s)
- Jianglin Zhang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Guoxun Wang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Junjie Ma
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Yiran Duan
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Samskrathi A Sharma
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sarah Oladejo
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Xianda Ma
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Giselle Arellano
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Robert C Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tiffany A Reese
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zheng Kuang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
18
|
Li J, Zhang W, Zhao Y, Li J, Nie Y, Feng A, Li Q, Zhou F, Zeng R, Yang Z. Characteristics of molecular subtypes and cinical outcomes in the immunotherapy Queue of extensive-stage small cell lung cancer patients. BMC Pulm Med 2024; 24:423. [PMID: 39210380 PMCID: PMC11360553 DOI: 10.1186/s12890-024-03221-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND With a series of clinical trials confirming the sensitivity of small cell lung cancer (SCLC) to immunotherapy, research on personalized treatment for SCLC has gained increasing attention. Currently, the most widely accepted subtype of SCLC is based on the expression levels of Achaete-Scute Family BHLH Transcription Factor 1 (ASCL1), neurogenic differentiation factor 1 (NEUROD1), and POU class 2 homeobox 3 (POU2F3). However, real-world studies on this classification remain limited. METHODS We retrospectively collected biopsy specimens from patients who received immunotherapy at Shandong Provincial Hospital between January 2019 and July 2021. After determining the patient subtypes using immunohistochemistry, we analyzed the relationships between each subtype and survival as well as some clinical characteristics. RESULTS In our study, we found that the subtype I achieved a significant survival advantage compared to the other groups. Additionally, the subtype A demonstrated a significant survival disadvantage. Among patients in the subtype I, there was a higher proportion of early brain metastasis and patients with a family history of tumors, while the subtype A had a lower proportion. Furthermore, the subtype A exhibited relatively poor immune infiltration. CONCLUSION In a diverse cohort of SCLC patients receiving immunotherapy, the subtype-I showed significant survival advantages while the subtype-A experienced a worse survival.
Collapse
Affiliation(s)
- Jianan Li
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Wentao Zhang
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Yi Zhao
- Qingdao Cancer Institute, Qingdao, China
| | - Jixian Li
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Yuanliu Nie
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Alei Feng
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Qiang Li
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Fengge Zhou
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China.
| | - Renya Zeng
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China.
| | - Zhe Yang
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China.
| |
Collapse
|
19
|
He T, Xiao L, Qiao Y, Klingbeil O, Young E, Wu XS, Mannan R, Mahapatra S, Redin E, Cho H, Bao Y, Kandarpa M, Ching-Yi Tien J, Wang X, Eyunni S, Zheng Y, Kim N, Zheng H, Hou S, Su F, Miner SJ, Mehra R, Cao X, Abbineni C, Samajdar S, Ramachandra M, Dhanasekaran SM, Talpaz M, Parolia A, Rudin CM, Vakoc CR, Chinnaiyan AM. Targeting the mSWI/SNF complex in POU2F-POU2AF transcription factor-driven malignancies. Cancer Cell 2024; 42:1336-1351.e9. [PMID: 39029462 DOI: 10.1016/j.ccell.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/19/2024] [Accepted: 06/11/2024] [Indexed: 07/21/2024]
Abstract
The POU2F3-POU2AF2/3 transcription factor complex is the master regulator of the tuft cell lineage and tuft cell-like small cell lung cancer (SCLC). Here, we identify a specific dependence of the POU2F3 molecular subtype of SCLC (SCLC-P) on the activity of the mammalian switch/sucrose non-fermentable (mSWI/SNF) chromatin remodeling complex. Treatment of SCLC-P cells with a proteolysis targeting chimera (PROTAC) degrader of mSWI/SNF ATPases evicts POU2F3 and its coactivators from chromatin and attenuates downstream signaling. B cell malignancies which are dependent on the POU2F1/2 cofactor, POU2AF1, are also sensitive to mSWI/SNF ATPase degraders, with treatment leading to chromatin eviction of POU2AF1 and IRF4 and decreased IRF4 signaling in multiple myeloma cells. An orally bioavailable mSWI/SNF ATPase degrader significantly inhibits tumor growth in preclinical models of SCLC-P and multiple myeloma without signs of toxicity. This study suggests that POU2F-POU2AF-driven malignancies have an intrinsic dependence on the mSWI/SNF complex, representing a therapeutic vulnerability.
Collapse
Affiliation(s)
- Tongchen He
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Olaf Klingbeil
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Eleanor Young
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaoli S Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Somnath Mahapatra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Esther Redin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hanbyul Cho
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yi Bao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Malathi Kandarpa
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jean Ching-Yi Tien
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaoju Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sanjana Eyunni
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yang Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - NamHoon Kim
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Heng Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Siyu Hou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephanie J Miner
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rohit Mehra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | - Saravana M Dhanasekaran
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Moshe Talpaz
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abhijit Parolia
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medicine Graduate School of Medicine Sciences, New York, NY 10065, USA
| | | | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
20
|
Duplaquet L, So K, Ying AW, Pal Choudhuri S, Li X, Xu GD, Li Y, Qiu X, Li R, Singh S, Wu XS, Hamilton S, Chien VD, Liu Q, Qi J, Somerville TDD, Heiling HM, Mazzola E, Lee Y, Zoller T, Vakoc CR, Doench JG, Forrester WC, Abrams T, Long HW, Niederst MJ, Drapkin BJ, Kadoch C, Oser MG. Mammalian SWI/SNF complex activity regulates POU2F3 and constitutes a targetable dependency in small cell lung cancer. Cancer Cell 2024; 42:1352-1369.e13. [PMID: 39029464 PMCID: PMC11494612 DOI: 10.1016/j.ccell.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/22/2024] [Accepted: 06/21/2024] [Indexed: 07/21/2024]
Abstract
Small cell lung cancers (SCLCs) are composed of heterogeneous subtypes marked by lineage-specific transcription factors, including ASCL1, NEUROD1, and POU2F3. POU2F3-positive SCLCs, ∼12% of all cases, are uniquely dependent on POU2F3 itself; as such, approaches to attenuate POU2F3 expression may represent new therapeutic opportunities. Here using genome-scale screens for regulators of POU2F3 expression and SCLC proliferation, we define mSWI/SNF complexes as top dependencies specific to POU2F3-positive SCLC. Notably, chemical disruption of mSWI/SNF ATPase activity attenuates proliferation of all POU2F3-positive SCLCs, while disruption of non-canonical BAF (ncBAF) via BRD9 degradation is effective in pure non-neuroendocrine POU2F3-SCLCs. mSWI/SNF targets to and maintains accessibility over gene loci central to POU2F3-mediated gene regulatory networks. Finally, clinical-grade pharmacologic disruption of SMARCA4/2 ATPases and BRD9 decreases POU2F3-SCLC tumor growth and increases survival in vivo. These results demonstrate mSWI/SNF-mediated governance of the POU2F3 oncogenic program and suggest mSWI/SNF inhibition as a therapeutic strategy for POU2F3-positive SCLCs.
Collapse
Affiliation(s)
- Leslie Duplaquet
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Kevin So
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Biological and Biomedical Sciences Graduate Program, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander W Ying
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shreoshi Pal Choudhuri
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xinyue Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Grace D Xu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Yixiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Rong Li
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shilpa Singh
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Xiaoli S Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
| | - Seth Hamilton
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Victor D Chien
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qi Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Hillary M Heiling
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Emanuele Mazzola
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yenarae Lee
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thomas Zoller
- Novartis BioMedical Research, Cambridge, MA 02139, USA
| | | | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Tinya Abrams
- Novartis BioMedical Research, Cambridge, MA 02139, USA
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Benjamin J Drapkin
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Li YH, Yang YS, Xue YB, Lei H, Zhang SS, Qian J, Yao Y, Zhou R, Huang L. G protein subunit G γ13-mediated signaling pathway is critical to the inflammation resolution and functional recovery of severely injured lungs. eLife 2024; 12:RP92956. [PMID: 38836551 DOI: 10.7554/elife.92956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Tuft cells are a group of rare epithelial cells that can detect pathogenic microbes and parasites. Many of these cells express signaling proteins initially found in taste buds. It is, however, not well understood how these taste signaling proteins contribute to the response to the invading pathogens or to the recovery of injured tissues. In this study, we conditionally nullified the signaling G protein subunit Gγ13 and found that the number of ectopic tuft cells in the injured lung was reduced following the infection of the influenza virus H1N1. Furthermore, the infected mutant mice exhibited significantly larger areas of lung injury, increased macrophage infiltration, severer pulmonary epithelial leakage, augmented pyroptosis and cell death, greater bodyweight loss, slower recovery, worsened fibrosis and increased fatality. Our data demonstrate that the Gγ13-mediated signal transduction pathway is critical to tuft cells-mediated inflammation resolution and functional repair of the damaged lungs.To our best knowledge, it is the first report indicating subtype-specific contributions of tuft cells to the resolution and recovery.
Collapse
Affiliation(s)
- Yi-Hong Li
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yi-Sen Yang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yan-Bo Xue
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hao Lei
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sai-Sai Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Junbin Qian
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yushi Yao
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruhong Zhou
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Zhejiang University Shanghai Institute for Advanced Study, Shanghai, Shanghai, China
| | - Liquan Huang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Zhejiang University Shanghai Institute for Advanced Study, Shanghai, Shanghai, China
- Monell Chemical Senses Center, Philadelphia, United States
| |
Collapse
|
22
|
He T, Xiao L, Qiao Y, Klingbeil O, Young E, Wu XS, Mannan R, Mahapatra S, Eyunni S, Ching-Yi Tien J, Wang X, Zheng Y, Kim N, Zheng H, Hou S, Su F, Miner SJ, Mehra R, Cao X, Abbineni C, Samajdar S, Ramachandra M, Parolia A, Vakoc CR, Chinnaiyan AM. Targeting the mSWI/SNF Complex in POU2F-POU2AF Transcription Factor-Driven Malignancies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576669. [PMID: 38328238 PMCID: PMC10849552 DOI: 10.1101/2024.01.22.576669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The POU2F3-POU2AF2/3 (OCA-T1/2) transcription factor complex is the master regulator of the tuft cell lineage and tuft cell-like small cell lung cancer (SCLC). Here, we found that the POU2F3 molecular subtype of SCLC (SCLC-P) exhibits an exquisite dependence on the activity of the mammalian switch/sucrose non-fermentable (mSWI/SNF) chromatin remodeling complex. SCLC-P cell lines were sensitive to nanomolar levels of a mSWI/SNF ATPase proteolysis targeting chimera (PROTAC) degrader when compared to other molecular subtypes of SCLC. POU2F3 and its cofactors were found to interact with components of the mSWI/SNF complex. The POU2F3 transcription factor complex was evicted from chromatin upon mSWI/SNF ATPase degradation, leading to attenuation of downstream oncogenic signaling in SCLC-P cells. A novel, orally bioavailable mSWI/SNF ATPase PROTAC degrader, AU-24118, demonstrated preferential efficacy in the SCLC-P relative to the SCLC-A subtype and significantly decreased tumor growth in preclinical models. AU-24118 did not alter normal tuft cell numbers in lung or colon, nor did it exhibit toxicity in mice. B cell malignancies which displayed a dependency on the POU2F1/2 cofactor, POU2AF1 (OCA-B), were also remarkably sensitive to mSWI/SNF ATPase degradation. Mechanistically, mSWI/SNF ATPase degrader treatment in multiple myeloma cells compacted chromatin, dislodged POU2AF1 and IRF4, and decreased IRF4 signaling. In a POU2AF1-dependent, disseminated murine model of multiple myeloma, AU-24118 enhanced survival compared to pomalidomide, an approved treatment for multiple myeloma. Taken together, our studies suggest that POU2F-POU2AF-driven malignancies have an intrinsic dependence on the mSWI/SNF complex, representing a therapeutic vulnerability.
Collapse
Affiliation(s)
- Tongchen He
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- These authors contributed equally
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- These authors contributed equally
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Olaf Klingbeil
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Eleanor Young
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoli S. Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Somnath Mahapatra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sanjana Eyunni
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jean Ching-Yi Tien
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoju Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yang Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - NamHoon Kim
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Heng Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Siyu Hou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie J. Miner
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rohit Mehra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | - Abhijit Parolia
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | | | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
- Lead contact
| |
Collapse
|
23
|
Simbolo M, Centonze G, Gkountakos A, Monti V, Maisonneuve P, Golovco S, Sabella G, Del Gobbo A, Gobbo S, Ferrero S, Fabbri A, Pardo C, Garzone G, Prinzi N, Pusceddu S, Testi A, Rolli L, Mangogna A, Bercich L, Benvenuti MR, Bria E, Pilotto S, Berruti A, Pastorino U, Capella C, Infante M, Milella M, Scarpa A, Milione M. Characterization of two transcriptomic subtypes of marker-null large cell carcinoma of the lung suggests different origin and potential new therapeutic perspectives. Virchows Arch 2024; 484:777-788. [PMID: 38168015 PMCID: PMC11106141 DOI: 10.1007/s00428-023-03721-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/13/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Pulmonary large cell carcinoma (LCC) is an undifferentiated neoplasm lacking morphological, histochemical, and immunohistochemical features of small cell lung cancer, adenocarcinoma (ADC), or squamous cell carcinoma (SCC). The available molecular information on this rare disease is limited. This study aimed to provide an integrated molecular overview of 16 cases evaluating the mutational asset of 409 genes and the transcriptomic profiles of 20,815 genes. Our data showed that TP53 was the most frequently inactivated gene (15/16; 93.7%) followed by RB1 (5/16; 31.3%) and KEAP1 (4/16; 25%), while CRKL and MYB genes were each amplified in 4/16 (25%) cases and MYC in 3/16 (18.8%) cases; transcriptomic analysis identified two molecular subtypes including a Pure-LCC and an adenocarcinoma like-LCC (ADLike-LCC) characterized by different activated pathways and cell of origin. In the Pure-LCC group, POU2F3 and FOXI1 were distinctive overexpressed markers. A tuft cell-like profile and the enrichment of a replication stress signature, particularly involving ATR, was related to this profile. Differently, the ADLike-LCC were characterized by an alveolar-cell transcriptomic profile and association with AIM2 inflammasome complex signature. In conclusion, our study split the histological marker-null LCC into two different transcriptomic entities, with POU2F3, FOXI1, and AIM2 genes as differential expression markers that might be probed by immunohistochemistry for the differential diagnosis between Pure-LCC and ADLike-LCC. Finally, the identification of several signatures linked to replication stress in Pure-LCC and inflammasome complex in ADLike-LCC could be useful for designing new potential therapeutic approaches for these subtypes.
Collapse
Affiliation(s)
- Michele Simbolo
- Section of Pathology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Giovanni Centonze
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Anastasios Gkountakos
- Section of Pathology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Valentina Monti
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Patrick Maisonneuve
- Division of Epidemiology and Biostatistics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Stela Golovco
- Section of Pathology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Giovanna Sabella
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Alessandro Del Gobbo
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Gobbo
- Department of Traslational Medicine, University of Ferrara, Ferrara, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Fabbri
- 2nd Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Carlotta Pardo
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Giovanna Garzone
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Natalie Prinzi
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Pusceddu
- Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale Dei Tumori, Milan, Italy
| | - Adele Testi
- 2nd Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Luigi Rolli
- Thoracic Surgery Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, IRCCS Burlo Garofalo, Trieste, Italy
| | - Luisa Bercich
- Department of Pathology, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Mauro Roberto Benvenuti
- Thoracic Surgery Unit, Department of Medical and Surgical Specialties Radiological Sciences and Public Health, Medical Oncology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Emilio Bria
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Sara Pilotto
- Section of Oncology, Department of Medicine, University of Verona, Verona, Italy
| | - Alfredo Berruti
- Medical Oncology Unit, ASST Spedali Civili of Brescia, Department of Medical and Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
| | - Ugo Pastorino
- Thoracic Surgery Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Carlo Capella
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | | | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona, Verona, Italy
| | - Aldo Scarpa
- Section of Pathology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy.
- ARC-NET Research Centre for Applied Research On Cancer, University and Hospital Trust of Verona, Piazzale Scuro, 10, 37134, Verona (VR), Italy.
| | - Massimo Milione
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| |
Collapse
|
24
|
Hiatt JB, Doebley AL, Arnold HU, Adil M, Sandborg H, Persse TW, Ko M, Wu F, Quintanal Villalonga A, Santana-Davila R, Eaton K, Dive C, Rudin CM, Thomas A, Houghton AM, Ha G, MacPherson D. Molecular phenotyping of small cell lung cancer using targeted cfDNA profiling of transcriptional regulatory regions. SCIENCE ADVANCES 2024; 10:eadk2082. [PMID: 38598634 PMCID: PMC11006233 DOI: 10.1126/sciadv.adk2082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/27/2024] [Indexed: 04/12/2024]
Abstract
We report an approach for cancer phenotyping based on targeted sequencing of cell-free DNA (cfDNA) for small cell lung cancer (SCLC). In SCLC, differential activation of transcription factors (TFs), such as ASCL1, NEUROD1, POU2F3, and REST defines molecular subtypes. We designed a targeted capture panel that identifies chromatin organization signatures at 1535 TF binding sites and 13,240 gene transcription start sites and detects exonic mutations in 842 genes. Sequencing of cfDNA from SCLC patient-derived xenograft models captured TF activity and gene expression and revealed individual highly informative loci. Prediction models of ASCL1 and NEUROD1 activity using informative loci achieved areas under the receiver operating characteristic curve (AUCs) from 0.84 to 0.88 in patients with SCLC. As non-SCLC (NSCLC) often transforms to SCLC following targeted therapy, we applied our framework to distinguish NSCLC from SCLC and achieved an AUC of 0.99. Our approach shows promising utility for SCLC subtyping and transformation monitoring, with potential applicability to diverse tumor types.
Collapse
Affiliation(s)
- Joseph B. Hiatt
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Veterans Affairs Puget Sound Healthcare System - Seattle Branch, Seattle, WA, USA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Anna-Lisa Doebley
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Henry U. Arnold
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mohamed Adil
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Holly Sandborg
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Thomas W. Persse
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Minjeong Ko
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Feinan Wu
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Alvaro Quintanal Villalonga
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rafael Santana-Davila
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Keith Eaton
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Caroline Dive
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
| | - Charles M. Rudin
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Graduate Program in Pharmacology, Weill Cornell Medical College; New York, NY, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - A. McGarry Houghton
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Gavin Ha
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - David MacPherson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
25
|
Romero R, Chu T, González-Robles TJ, Smith P, Xie Y, Kaur H, Yoder S, Zhao H, Mao C, Kang W, Pulina MV, Lawrence KE, Gopalan A, Zaidi S, Yoo K, Choi J, Fan N, Gerstner O, Karthaus WR, DeStanchina E, Ruggles KV, Westcott PM, Chaligné R, Pe’er D, Sawyers CL. The neuroendocrine transition in prostate cancer is dynamic and dependent on ASCL1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588557. [PMID: 38645223 PMCID: PMC11030418 DOI: 10.1101/2024.04.09.588557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Lineage plasticity is a recognized hallmark of cancer progression that can shape therapy outcomes. The underlying cellular and molecular mechanisms mediating lineage plasticity remain poorly understood. Here, we describe a versatile in vivo platform to identify and interrogate the molecular determinants of neuroendocrine lineage transformation at different stages of prostate cancer progression. Adenocarcinomas reliably develop following orthotopic transplantation of primary mouse prostate organoids acutely engineered with human-relevant driver alterations (e.g., Rb1-/-; Trp53-/-; cMyc+ or Pten-/-; Trp53-/-; cMyc+), but only those with Rb1 deletion progress to ASCL1+ neuroendocrine prostate cancer (NEPC), a highly aggressive, androgen receptor signaling inhibitor (ARSI)-resistant tumor. Importantly, we show this lineage transition requires a native in vivo microenvironment not replicated by conventional organoid culture. By integrating multiplexed immunofluorescence, spatial transcriptomics and PrismSpot to identify cell type-specific spatial gene modules, we reveal that ASCL1+ cells arise from KRT8+ luminal epithelial cells that progressively acquire transcriptional heterogeneity, producing large ASCL1+;KRT8- NEPC clusters. Ascl1 loss in established NEPC results in transient tumor regression followed by recurrence; however, Ascl1 deletion prior to transplantation completely abrogates lineage plasticity, yielding adenocarcinomas with elevated AR expression and marked sensitivity to castration. The dynamic feature of this model reveals the importance of timing of therapies focused on lineage plasticity and offers a platform for identification of additional lineage plasticity drivers.
Collapse
Affiliation(s)
- Rodrigo Romero
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tinyi Chu
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tania J. González-Robles
- Institute of Systems Genetics, Department of Precision Medicine, NYU Grossman School of Medicine, New York, NY 10061, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10061, USA
| | - Perianne Smith
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yubin Xie
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Harmanpreet Kaur
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sara Yoder
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Huiyong Zhao
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chenyi Mao
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wenfei Kang
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maria V. Pulina
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kayla E. Lawrence
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anuradha Gopalan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Samir Zaidi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Genitourinary Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kwangmin Yoo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Ning Fan
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Olivia Gerstner
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wouter R. Karthaus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa DeStanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kelly V. Ruggles
- Institute of Systems Genetics, Department of Precision Medicine, NYU Grossman School of Medicine, New York, NY 10061, USA
| | | | - Ronan Chaligné
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dana Pe’er
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Charles L. Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
26
|
Strine MS, Fagerberg E, Darcy PW, Barrón GM, Filler RB, Alfajaro MM, D'Angelo-Gavrish N, Wang F, Graziano VR, Menasché BL, Damo M, Wang YT, Howitt MR, Lee S, Joshi NS, Mucida D, Wilen CB. Intestinal tuft cell immune privilege enables norovirus persistence. Sci Immunol 2024; 9:eadi7038. [PMID: 38517952 PMCID: PMC11555782 DOI: 10.1126/sciimmunol.adi7038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
The persistent murine norovirus strain MNVCR6 is a model for human norovirus and enteric viral persistence. MNVCR6 causes chronic infection by directly infecting intestinal tuft cells, rare chemosensory epithelial cells. Although MNVCR6 induces functional MNV-specific CD8+ T cells, these lymphocytes fail to clear infection. To examine how tuft cells promote immune escape, we interrogated tuft cell interactions with CD8+ T cells by adoptively transferring JEDI (just EGFP death inducing) CD8+ T cells into Gfi1b-GFP tuft cell reporter mice. Unexpectedly, some intestinal tuft cells partially resisted JEDI CD8+ T cell-mediated killing-unlike Lgr5+ intestinal stem cells and extraintestinal tuft cells-despite seemingly normal antigen presentation. When targeting intestinal tuft cells, JEDI CD8+ T cells predominantly adopted a T resident memory phenotype with decreased effector and cytotoxic capacity, enabling tuft cell survival. JEDI CD8+ T cells neither cleared nor prevented MNVCR6 infection in the colon, the site of viral persistence, despite targeting a virus-independent antigen. Ultimately, we show that intestinal tuft cells are relatively resistant to CD8+ T cells independent of norovirus infection, representing an immune-privileged niche that can be leveraged by enteric microbes.
Collapse
Affiliation(s)
- Madison S Strine
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Eric Fagerberg
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Patrick W Darcy
- Laboratory of Mucosal Immunology, Rockefeller University, New York, NY, USA
| | - Gabriel M Barrón
- Program in Immunology, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Renata B Filler
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Mia Madel Alfajaro
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Fang Wang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Vincent R Graziano
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, USA
| | - Bridget L Menasché
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Martina Damo
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Ya-Ting Wang
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Tsinghua University School of Medicine, Beijing, China
| | - Michael R Howitt
- Program in Immunology, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Sanghyun Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Nikhil S Joshi
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Rockefeller University, New York, NY, USA
| | - Craig B Wilen
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
27
|
Alpsoy A, Wu XS, Pal S, Klingbeil O, Kumar P, El Demerdash O, Nalbant B, Vakoc CR. IκBζ is a dual-use coactivator of NF-κB and POU transcription factors. Mol Cell 2024; 84:1149-1157.e7. [PMID: 38309274 PMCID: PMC10960667 DOI: 10.1016/j.molcel.2024.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/01/2023] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
OCA-B, OCA-T1, and OCA-T2 belong to a family of coactivators that bind to POU transcription factors (TFs) to regulate gene expression in immune cells. Here, we identify IκBζ (encoded by the NFKBIZ gene) as an additional coactivator of POU TFs. Although originally discovered as an inducible regulator of NF-κB, we show here that IκBζ shares a microhomology with OCA proteins and uses this segment to bind to POU TFs and octamer-motif-containing DNA. Our functional experiments suggest that IκBζ requires its interaction with POU TFs to coactivate immune-related genes. This finding is reinforced by epigenomic analysis of MYD88L265P-mutant lymphoma cells, which revealed colocalization of IκBζ with the POU TF OCT2 and NF-κB:p50 at hundreds of DNA elements harboring octamer and κB motifs. These results suggest that IκBζ is a transcriptional coactivator that can amplify and integrate the output of NF-κB and POU TFs at inducible genes in immune cells.
Collapse
Affiliation(s)
- Aktan Alpsoy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Xiaoli S Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sujay Pal
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Olaf Klingbeil
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Pramod Kumar
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Benan Nalbant
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
28
|
Szczepanski A, Tsuboyama N, Lyu H, Wang P, Beytullahoglu O, Zhang T, Singer BD, Yue F, Zhao Z, Wang L. A SWI/SNF-dependent transcriptional regulation mediated by POU2AF2/C11orf53 at enhancer. Nat Commun 2024; 15:2067. [PMID: 38453939 PMCID: PMC10920751 DOI: 10.1038/s41467-024-46492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/13/2024] [Indexed: 03/09/2024] Open
Abstract
Recent studies have identified a previously uncharacterized protein C11orf53 (now named POU2AF2/OCA-T1), which functions as a robust co-activator of POU2F3, the master transcription factor which is critical for both normal and neoplastic tuft cell identity and viability. Here, we demonstrate that POU2AF2 dictates opposing transcriptional regulation at distal enhance elements. Loss of POU2AF2 leads to an inhibition of active enhancer nearby genes, such as tuft cell identity genes, and a derepression of Polycomb-dependent poised enhancer nearby genes, which are critical for cell viability and differentiation. Mechanistically, depletion of POU2AF2 results in a global redistribution of the chromatin occupancy of the SWI/SNF complex, leading to a significant 3D genome structure change and a subsequent transcriptional reprogramming. Our genome-wide CRISPR screen further demonstrates that POU2AF2 depletion or SWI/SNF inhibition leads to a PTEN-dependent cell growth defect, highlighting a potential role of POU2AF2-SWI/SNF axis in small cell lung cancer (SCLC) pathogenesis. Additionally, pharmacological inhibition of SWI/SNF phenocopies POU2AF2 depletion in terms of gene expression alteration and cell viability decrease in SCLC-P subtype cells. Therefore, impeding POU2AF2-mediated transcriptional regulation represents a potential therapeutic approach for human SCLC therapy.
Collapse
Affiliation(s)
- Aileen Szczepanski
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Natsumi Tsuboyama
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Huijue Lyu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ping Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Oguzhan Beytullahoglu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Te Zhang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Benjamin David Singer
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zibo Zhao
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Lu Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
29
|
Eshleman EM, Rice T, Potter C, Waddell A, Hashimoto-Hill S, Woo V, Field S, Engleman L, Lim HW, Schumacher MA, Frey MR, Denson LA, Finkelman FD, Alenghat T. Microbiota-derived butyrate restricts tuft cell differentiation via histone deacetylase 3 to modulate intestinal type 2 immunity. Immunity 2024; 57:319-332.e6. [PMID: 38295798 PMCID: PMC10901458 DOI: 10.1016/j.immuni.2024.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/14/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
Tuft cells in mucosal tissues are key regulators of type 2 immunity. Here, we examined the impact of the microbiota on tuft cell biology in the intestine. Succinate induction of tuft cells and type 2 innate lymphoid cells was elevated with loss of gut microbiota. Colonization with butyrate-producing bacteria or treatment with butyrate suppressed this effect and reduced intestinal histone deacetylase activity. Epithelial-intrinsic deletion of the epigenetic-modifying enzyme histone deacetylase 3 (HDAC3) inhibited tuft cell expansion in vivo and impaired type 2 immune responses during helminth infection. Butyrate restricted stem cell differentiation into tuft cells, and inhibition of HDAC3 in adult mice and human intestinal organoids blocked tuft cell expansion. Collectively, these data define a HDAC3 mechanism in stem cells for tuft cell differentiation that is dampened by a commensal metabolite, revealing a pathway whereby the microbiota calibrate intestinal type 2 immunity.
Collapse
Affiliation(s)
- Emily M Eshleman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Taylor Rice
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Crystal Potter
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Immunology, Allergy and Rheumatology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Amanda Waddell
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Seika Hashimoto-Hill
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vivienne Woo
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sydney Field
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Laura Engleman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael A Schumacher
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pediatrics and Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mark R Frey
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pediatrics and Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lee A Denson
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fred D Finkelman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Immunology, Allergy and Rheumatology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Theresa Alenghat
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
30
|
Silverman JB, Vega PN, Tyska MJ, Lau KS. Intestinal Tuft Cells: Morphology, Function, and Implications for Human Health. Annu Rev Physiol 2024; 86:479-504. [PMID: 37863104 PMCID: PMC11193883 DOI: 10.1146/annurev-physiol-042022-030310] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Tuft cells are a rare and morphologically distinct chemosensory cell type found throughout many organs, including the gastrointestinal tract. These cells were identified by their unique morphologies distinguished by large apical protrusions. Ultrastructural data have begun to describe the molecular underpinnings of their cytoskeletal features, and tuft cell-enriched cytoskeletal proteins have been identified, although the connection of tuft cell morphology to tuft cell functionality has not yet been established. Furthermore, tuft cells display variations in function and identity between and within tissues, leading to the delineation of distinct tuft cell populations. As a chemosensory cell type, they display receptors that are responsive to ligands specific for their environment. While many studies have demonstrated the tuft cell response to protists and helminths in the intestine, recent research has highlighted other roles of tuft cells as well as implicated tuft cells in other disease processes including inflammation, cancer, and viral infections. Here, we review the literature on the cytoskeletal structure of tuft cells. Additionally, we focus on new research discussing tuft cell lineage, ligand-receptor interactions, tuft cell tropism, and the role of tuft cells in intestinal disease. Finally, we discuss the implication of tuft cell-targeted therapies in human health and how the morphology of tuft cells may contribute to their functionality.
Collapse
Affiliation(s)
- Jennifer B Silverman
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| | - Paige N Vega
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| | - Matthew J Tyska
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| | - Ken S Lau
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| |
Collapse
|
31
|
Oser MG, MacPherson D, Oliver TG, Sage J, Park KS. Genetically-engineered mouse models of small cell lung cancer: the next generation. Oncogene 2024; 43:457-469. [PMID: 38191672 PMCID: PMC11180418 DOI: 10.1038/s41388-023-02929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024]
Abstract
Small cell lung cancer (SCLC) remains the most fatal form of lung cancer, with patients in dire need of new and effective therapeutic approaches. Modeling SCLC in an immunocompetent host is essential for understanding SCLC pathogenesis and ultimately discovering and testing new experimental therapeutic strategies. Human SCLC is characterized by near universal genetic loss of the RB1 and TP53 tumor suppressor genes. Twenty years ago, the first genetically-engineered mouse model (GEMM) of SCLC was generated using conditional deletion of both Rb1 and Trp53 in the lungs of adult mice. Since then, several other GEMMs of SCLC have been developed coupling genomic alterations found in human SCLC with Rb1 and Trp53 deletion. Here we summarize how GEMMs of SCLC have contributed significantly to our understanding of the disease in the past two decades. We also review recent advances in modeling SCLC in mice that allow investigators to bypass limitations of the previous generation of GEMMs while studying new genes of interest in SCLC. In particular, CRISPR/Cas9-mediated somatic gene editing can accelerate how new genes of interest are functionally interrogated in SCLC tumorigenesis. Notably, the development of allograft models and precancerous precursor models from SCLC GEMMs provides complementary approaches to GEMMs to study tumor cell-immune microenvironment interactions and test new therapeutic strategies to enhance response to immunotherapy. Ultimately, the new generation of SCLC models can accelerate research and help develop new therapeutic strategies for SCLC.
Collapse
Affiliation(s)
- Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - David MacPherson
- Division of Human Biology, Fred Hutch Cancer Center, Seattle, WA, 98109, USA
| | - Trudy G Oliver
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC, 27708, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Kwon-Sik Park
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, 22903, USA.
| |
Collapse
|
32
|
Lyu R, Wu J, He Y, You Q, Qian Y, Jiang N, Cai Y, Chen D, Wu Z. Folate supports IL-25-induced tuft cell expansion following enteroviral infections. FASEB J 2024; 38:e23430. [PMID: 38243751 DOI: 10.1096/fj.202301928r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
Intestinal tuft cells, a kind of epithelial immune cells, rapidly expand in response to pathogenic infections, which is associated with infection-induced interleukin 25 (IL-25) upregulation. However, the metabolic mechanism of IL-25-induced tuft cell expansion is largely unknown. Folate metabolism provides essential purine and methyl substrates for cell proliferation and differentiation. Thus, we aim to investigate the roles of folate metabolism playing in IL-25-induced tuft cell expansion by enteroviral infection and recombinant murine IL-25 (rmIL-25) protein-stimulated mouse models. At present, enteroviruses, such as EV71, CVA16, CVB3, and CVB4, upregulated IL-25 expression and induced tuft cell expansion in the intestinal tissues of mice. However, EV71 did not induce intestinal tuft cell expansion in IL-25-/- mice. Interestingly, compared to the mock group, folate was enriched in the intestinal tissues of both the EV71-infected group and the rmIL-25 protein-stimulated group. Moreover, folate metabolism supported IL-25-induced tuft cell expansion since both folate-depletion and anti-folate MTX-treated mice had a disrupted tuft cell expansion in response to rmIL-25 protein stimulation. In summary, our data suggested that folate metabolism supported intestinal tuft cell expansion in response to enterovirus-induced IL-25 expression, which provided a new insight into the mechanisms of tuft cell expansion from the perspective of folate metabolism.
Collapse
Affiliation(s)
- Ruining Lyu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Jing Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Yating He
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Qiao You
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Yajie Qian
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Na Jiang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Yurong Cai
- School of Life Science, Ningxia University, Yinchuan, China
| | - Deyan Chen
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
- School of Life Science, Ningxia University, Yinchuan, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
33
|
Duplaquet L, So K, Ying AW, Li X, Li Y, Qiu X, Li R, Singh S, Wu XS, Liu Q, Qi J, Somerville TDD, Heiling H, Mazzola E, Lee Y, Zoller T, Vakoc CR, Doench JG, Forrester WC, Abrams T, Long HW, Niederst MJ, Kadoch C, Oser MG. Mammalian SWI/SNF complex activity regulates POU2F3 and constitutes a targetable dependency in small cell lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.21.576304. [PMID: 38328215 PMCID: PMC10849479 DOI: 10.1101/2024.01.21.576304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Small cell lung cancers (SCLC) are comprised of heterogeneous subtypes marked by lineage-specific transcription factors, including ASCL1, NEUROD1, and POU2F3. POU2F3-positive SCLC, ∼12% of all cases, are uniquely dependent on POU2F3 itself; as such, approaches to attenuate POU2F3 expression may represent new therapeutic opportunities. Here using genome-scale screens for regulators of POU2F3 expression and SCLC proliferation, we define mSWI/SNF complexes, including non-canonical BAF (ncBAF) complexes, as top dependencies specific to POU2F3-positive SCLC. Notably, clinical-grade pharmacologic mSWI/SNF inhibition attenuates proliferation of all POU2F3-positive SCLCs, while disruption of ncBAF via BRD9 degradation is uniquely effective in pure non-neuroendocrine POU2F3-SCLCs. mSWI/SNF maintains accessibility over gene loci central to POU2F3-mediated gene regulatory networks. Finally, chemical targeting of SMARCA4/2 mSWI/SNF ATPases and BRD9 decrease POU2F3-SCLC tumor growth and increase survival in vivo . Taken together, these results characterize mSWI/SNF-mediated global governance of the POU2F3 oncogenic program and suggest mSWI/SNF inhibition as a therapeutic strategy for SCLC.
Collapse
|
34
|
Yamada Y, Iwane K, Nakanishi Y, Haga H. Thymic Carcinoma: Unraveling Neuroendocrine Differentiation and Epithelial Cell Identity Loss. Cancers (Basel) 2023; 16:115. [PMID: 38201543 PMCID: PMC10778300 DOI: 10.3390/cancers16010115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/10/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The histogenesis of thymic epithelial tumors (TETs) has been a subject of debate. Recent technological advancements have revealed that thymic carcinomas often exhibit a phenotype akin to tuft cells, which is a subset of medullary TECs. Here, we further explored the gene expression signatures of thymic carcinomas in relation to tuft cells and their kinships-ionocytes and neuroendocrine cells (neuroendocrine group). METHODS We analyzed a single-cell RNA sequencing dataset from the normal human thymus. Concurrently, we examined publicly available datasets on the mRNA expression and methylation status of TECs and lung cancers. Real-time quantitative PCR was also conducted with our tissue samples. RESULTS Thymic carcinomas displayed a neuroendocrine phenotype biased toward tuft cells and ionocytes. When exploring the possible regulators of this phenotype, we discovered that HDAC9 and NFATC1 were characteristically expressed in the neuroendocrine group in adult TECs and thymic carcinomas. Additionally, the pan-thymic epithelium markers, exemplified by PAX9 and SIX1, were significantly suppressed in thymic carcinomas. CONCLUSIONS Thymic carcinomas might be characterized by unique neuroendocrine differentiation and loss of identity as thymic epithelial cells. Future studies investigating the role of HDAC9 and NFATC1 in thymic epithelium are warranted to explore their potential as therapeutic targets in TETs.
Collapse
Affiliation(s)
- Yosuke Yamada
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto 606-8507, Japan;
| | - Kosuke Iwane
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; (K.I.); (Y.N.)
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; (K.I.); (Y.N.)
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto 606-8507, Japan;
| |
Collapse
|
35
|
Koshyk O, Dehner CA, van den Hout MFCM, Bempt IV, Sciot R, Huang HY, Agaimy A, Din NU, Klubíčková N, Mosaieby E, Skálová A, Michalová K, Schöffski P, Oliveira AM, Halling KC, Gupta S, Gross JM, Nin JWM, Michal M, Folpe AL, Kosemehmetoglu K, Torres-Mora J, Michal M. EWSR1::POU2AF3(COLCA2) Sarcoma: An Aggressive, Polyphenotypic Sarcoma With a Head and Neck Predilection. Mod Pathol 2023; 36:100337. [PMID: 37742928 DOI: 10.1016/j.modpat.2023.100337] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 09/15/2023] [Indexed: 09/26/2023]
Abstract
EWSR1::POU2AF3 (COLCA2) sarcomas are a recently identified group of undifferentiated round/spindle cell neoplasms with a predilection for the head and neck region. Herein, we report our experience with 8 cases, occurring in 5 men and 3 women (age range, 37-74 years; median, 60 years). Tumors involved the head/neck (4 cases), and one each the thigh, thoracic wall, fibula, and lung. Seven patients received multimodal therapy; 1 patient was treated only with surgery. Clinical follow-up (8 patients; range, 4-122 months; median, 32 months) showed 5 patients with metastases (often multifocal, with a latency ranging from 7 to 119 months), and 3 of them also with local recurrence. The median local recurrence-free and metastasis-free survival rates were 24 months and 29 months, respectively. Of the 8 patients, 1 died of an unknown cause, 4 were alive with metastatic disease, 1 was alive with unresectable local disease, and 2 were without disease. The tumors were composed of 2 morphologic subgroups: (1) relatively bland tumors consisting of spindled to stellate cells with varying cellularity and fibromyxoid stroma (2 cases) and (2) overtly malignant tumors composed of nests of "neuroendocrine-appearing" round cells surrounded by spindled cells (6 cases). Individual cases in the second group showed glandular, osteogenic, or rhabdomyoblastic differentiation. Immunohistochemical results included CD56 (4/4 cases), GFAP (5/8), SATB2 (4/6), keratin (AE1/AE3) (5/8), and S100 protein (4/7). RNA sequencing identified EWSR1::POU2AF3 gene fusion in all cases. EWSR1 gene rearrangement was confirmed by fluorescence in situ hybridization in 5 cases. Our findings confirm the head/neck predilection and aggressive clinical behavior of EWSR1::POU2AF3 sarcomas and widen the morphologic spectrum of these rare lesions to include relatively bland spindle cell tumors and tumors with divergent differentiation.
Collapse
Affiliation(s)
- Olena Koshyk
- Department of Pathology, Charles University, Faculty of Medicine in Plzeň, Czech Republic; Medical Laboratory CSD, Ltd, Kyiv, Ukraine
| | - Carina A Dehner
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota; Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mari F C M van den Hout
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Isabelle Vanden Bempt
- Department for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Raf Sciot
- Department of Pathology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Hsuan-Ying Huang
- Department of Anatomical Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, University Hospital, Erlangen, Germany
| | - Nasir Ud Din
- Section of Histopathology, Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Natálie Klubíčková
- Department of Pathology, Charles University, Faculty of Medicine in Plzeň, Czech Republic; Bioptical Laboratory, Ltd, Plzeň, Czech Republic
| | - Elaheh Mosaieby
- Department of Pathology, Charles University, Faculty of Medicine in Plzeň, Czech Republic; Bioptical Laboratory, Ltd, Plzeň, Czech Republic
| | - Alena Skálová
- Department of Pathology, Charles University, Faculty of Medicine in Plzeň, Czech Republic; Bioptical Laboratory, Ltd, Plzeň, Czech Republic
| | - Květoslava Michalová
- Department of Pathology, Charles University, Faculty of Medicine in Plzeň, Czech Republic; Bioptical Laboratory, Ltd, Plzeň, Czech Republic
| | - Patrick Schöffski
- Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium; Department of Oncology, KU Leuven, Laboratory of Experimental Oncology, Leuven, Belgium
| | - Andre M Oliveira
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Kevin C Halling
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sounak Gupta
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - John M Gross
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Johanna W M Nin
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Michal Michal
- Department of Pathology, Charles University, Faculty of Medicine in Plzeň, Czech Republic; Bioptical Laboratory, Ltd, Plzeň, Czech Republic
| | - Andrew L Folpe
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Jorge Torres-Mora
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Michael Michal
- Department of Pathology, Charles University, Faculty of Medicine in Plzeň, Czech Republic; Bioptical Laboratory, Ltd, Plzeň, Czech Republic.
| |
Collapse
|
36
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
37
|
Sun J, Li MX, Xie YM, Zhang YR, Chai YR. Thymic tuft cells: potential "regulators" of non-mucosal tissue development and immune response. Immunol Res 2023; 71:554-564. [PMID: 36961668 PMCID: PMC10037390 DOI: 10.1007/s12026-023-09372-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 03/09/2023] [Indexed: 03/25/2023]
Abstract
As the leading central immune organ, the thymus is where T cells differentiate and mature, and plays an essential regulatory role in the adaptive immune response. Tuft cells, as chemosensory cells, were first found in rat tracheal epithelial, later gradually confirmed to exist in various mucosal and non-mucosal tissues. Although tuft cells are epithelial-derived, because of their wide heterogeneity, they show functions similar to cholinergic and immune cells in addition to chemosensory ability. As newly discovered non-mucosal tuft cells, thymic tuft cells have been demonstrated to be involved in and play vital roles in immune responses such as antigen presentation, immune tolerance, and type 2 immunity. In addition to their unique functions in the thymus, thymic tuft cells have the characteristics of peripheral tuft cells, so they may also participate in the process of tumorigenesis and virus infection. Here, we review tuft cells' characteristics, distribution, and potential functions. More importantly, the potential role of thymic tuft cells in immune response, tumorigenesis, and severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) infection was summarized and discussed.
Collapse
Affiliation(s)
- Jun Sun
- Medical School of Zhengzhou University, Zhengzhou, Henan Province, 450052, People's Republic of China
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, People's Republic of China
| | - Ming-Xin Li
- Medical School of Zhengzhou University, Zhengzhou, Henan Province, 450052, People's Republic of China
| | - Yi-Meng Xie
- School of Fine Arts of Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Ya-Ru Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, No.100, Kexuedadao Road, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Yu-Rong Chai
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, No.100, Kexuedadao Road, Zhengzhou, Henan Province, 450001, People's Republic of China.
| |
Collapse
|
38
|
Wei W, Zhang W, Wu S, Duan W, Wang Z. Advances in tuft cells, a chemosensory cell in sequential diseases of the pancreas. Biochim Biophys Acta Rev Cancer 2023; 1878:188911. [PMID: 37182665 DOI: 10.1016/j.bbcan.2023.188911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Tuft cells are solitary chemosensory cells distributed mainly in hollow organs and detected in human and mouse pancreas precursor lesions of pancreatic cancer. Induced by inflammation and KRAS mutation, pancreatic acinar cell-derived tuft cells play a protective role in epithelium injury. The tumour suppression of tuft cells has been indicated in some studies. However, the function of tuft cells in pancreatic cancer remains unclear. In this review, we first introduce the definition of tuft cells and then review the relationship between tuft cells and pancreatic inflammation. In addition, we emphasized the role of tuft cells in the genesis and development of pancreatic cancers, especially the part of markers for tuft cell's doublecortin-like kinase 1 (DCLK1). Finally, we turn to the microscopic perspective and review the interactions between tuft cells and the microbiome in the pancreatic microenvironment. Overall, we describe the role of tuft cells in response to tissue damage and tumour progression in the pancreas. Nevertheless, the specific formation principle and the more detailed mechanism of action of tuft cells in the pancreas remain to be further explored.
Collapse
Affiliation(s)
- Wanzhen Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Weifan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Shuai Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Wanxing Duan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China.
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China.
| |
Collapse
|
39
|
Yamada Y. Histogenetic and disease-relevant phenotypes in thymic epithelial tumors (TETs): The potential significance for future TET classification. Pathol Int 2023; 73:265-280. [PMID: 37278579 DOI: 10.1111/pin.13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023]
Abstract
Thymic epithelial tumors (TETs) encompass morphologically various subtypes. Thus, it would be meaningful to explore the expression phenotypes that delineate each TET subtype or overarching multiple subtypes. If these profiles are related to thymic physiology, they will improve our biological understanding of TETs and may contribute to the establishment of a more rational TET classification. Against this background, pathologists have attempted to identify histogenetic features in TETs for a long time. As part of this work, our group has reported several TET expression profiles that are histotype-dependent and related to the nature of thymic epithelial cells (TECs). For example, we found that beta5t, a constituent of thymoproteasome unique to cortical TECs, is expressed mainly in type B thymomas, for which the nomenclature of cortical thymoma was once considered. Another example is the discovery that most thymic carcinomas, especially thymic squamous cell carcinomas, exhibit expression profiles similar to tuft cells, a recently discovered special type of medullary TEC. This review outlines the currently reported histogenetic phenotypes of TETs, including those related to thymoma-associated myasthenia gravis, summarizes their genetic signatures, and provides a perspective for the future direction of TET classification.
Collapse
Affiliation(s)
- Yosuke Yamada
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
40
|
Wu XS, Vakoc CR. Made to order tuft cells by an OCA-T1 isoform switch. Sci Immunol 2023; 8:eadh3123. [PMID: 37172101 DOI: 10.1126/sciimmunol.adh3123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A genetic mechanism accounts for the variation in tuft cell abundance seen among inbred mouse strains: alternative isoforms of OCA-T1 (Oct coactivator from tuft cells 1), a recently discovered transcriptional coactivator that specifies the tuft cell lineage (see related Research Article by Nadjsombati et al.).
Collapse
Affiliation(s)
- Xiaoli S Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | |
Collapse
|
41
|
Nadjsombati MS, Niepoth N, Webeck LM, Kennedy EA, Jones DL, Billipp TE, Baldridge MT, Bendesky A, von Moltke J. Genetic mapping reveals Pou2af2/OCA-T1-dependent tuning of tuft cell differentiation and intestinal type 2 immunity. Sci Immunol 2023; 8:eade5019. [PMID: 37172102 PMCID: PMC10308849 DOI: 10.1126/sciimmunol.ade5019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/18/2023] [Indexed: 05/14/2023]
Abstract
Chemosensory epithelial tuft cells contribute to innate immunity at barrier surfaces, but their differentiation from epithelial progenitors is not well understood. Here, we exploited differences between inbred mouse strains to identify an epithelium-intrinsic mechanism that regulates tuft cell differentiation and tunes innate type 2 immunity in the small intestine. Balb/cJ (Balb) mice had fewer intestinal tuft cells than C57BL/6J (B6) mice and failed to respond to the tuft cell ligand succinate. Most of this differential succinate response was determined by the 50- to 67-Mb interval of chromosome 9 (Chr9), such that congenic Balb mice carrying the B6 Chr9 interval had elevated baseline numbers of tuft cells and responded to succinate. The Chr9 locus includes Pou2af2, which encodes the protein OCA-T1, a transcriptional cofactor essential for tuft cell development. Epithelial crypts expressed a previously unannotated short isoform of Pou2af2 predicted to use a distinct transcriptional start site and encode a nonfunctional protein. Low tuft cell numbers and the resulting lack of succinate response in Balb mice were explained by a preferential expression of the short isoform and could be rescued by expression of full-length Pou2af2. Physiologically, Pou2af2 isoform usage tuned innate type 2 immunity in the small intestine. Balb mice maintained responsiveness to helminth pathogens while ignoring commensal Tritrichomonas protists and reducing norovirus burdens.
Collapse
Affiliation(s)
- Marija S Nadjsombati
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Natalie Niepoth
- Zuckerman Mind Brain Behavior Institute, Columbia University, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, NY, USA
| | - Lily M Webeck
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Elizabeth A Kennedy
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Danielle L Jones
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Tyler E Billipp
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Megan T Baldridge
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andres Bendesky
- Zuckerman Mind Brain Behavior Institute, Columbia University, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, NY, USA
| | - Jakob von Moltke
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
42
|
Bas J, Jay P, Gerbe F. Intestinal tuft cells: Sentinels, what else? Semin Cell Dev Biol 2023:S1084-9521(23)00040-X. [PMID: 36889997 DOI: 10.1016/j.semcdb.2023.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
The intestinal epithelium plays crucial roles in maintaining gut homeostasis. A key function consists in constituting a physical and chemical barrier between self and non-self-compartments, and, based on its crosstalk with the luminal environment, in controlling activation of the host immune system. Tuft cells are a unique epithelial cell lineage, the function of which remained a mystery even 50 years after their initial discovery. The first function of intestinal tuft cells was recently described, with a central role in initiating type 2 immune responses following infection with helminth parasites. Since then, tuft cells have emerged as sentinel cells recognizing a variety of luminal cues, mediating the host-microorganisms crosstalk with additional pathogens, including viruses and bacteria. Although it can be anticipated that more functions will be discovered for tuft cells in the future, recent discoveries already propelled them at the forefront of gut mucosal homeostasis regulation, with important potential impact in gut physiopathology. This review focuses on intestinal tuft cells, from their initial description to the current understanding of their functions, and their potential impact in diseases.
Collapse
Affiliation(s)
- Julie Bas
- Institute of Functional Genomics, Montpellier University, CNRS, Inserm, Montpellier, France
| | - Philippe Jay
- Institute of Functional Genomics, Montpellier University, CNRS, Inserm, Montpellier, France.
| | - François Gerbe
- Institute of Functional Genomics, Montpellier University, CNRS, Inserm, Montpellier, France.
| |
Collapse
|
43
|
Molecular features and evolutionary trajectory of ASCL1 + and NEUROD1 + SCLC cells. Br J Cancer 2023; 128:748-759. [PMID: 36517551 PMCID: PMC9977910 DOI: 10.1038/s41416-022-02103-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is the most aggressive subtype of lung cancer without recognised morphologic or genetic heterogeneity. Based on the expression of four transcription factors, ASCL1, NEUROD1, POU2F3, and YAP1, SCLCs are classified into four subtypes. However, biological functions of these different subtypes are largely uncharacterised. METHODS We studied intratumoural heterogeneity of resected human primary SCLC tissues using single-cell RNA-Seq. In addition, we undertook a series of in vitro and in vivo functional studies to reveal the distinct features of SCLC subtypes. RESULTS We identify the coexistence of ASCL1+ and NEUROD1+ SCLC cells within the same human primary SCLC tissue. Compared with ASCL1+ SCLC cells, NEUROD1+ SCLC cells show reduced epithelial features and lack EPCAM expression. Thus, EPCAM can be considered as a cell surface marker to distinguish ASCL1+ SCLC cells from NEUROD1+ SCLC cells. We further demonstrate that NEUROD1+ SCLC cells exhibit higher metastatic capability than ASCL1+ SCLC cells and can be derived from ASCL1+ SCLC cells. CONCLUSIONS Our studies unveil the biology and evolutionary trajectory of ASCL1+ and NEUROD1+ SCLC cells, shedding light on SCLC tumourigenesis and progression.
Collapse
|
44
|
Kilinc M, Jia K, Jernigan RL. Improved global protein homolog detection with major gains in function identification. Proc Natl Acad Sci U S A 2023; 120:e2211823120. [PMID: 36827259 PMCID: PMC9992864 DOI: 10.1073/pnas.2211823120] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/20/2023] [Indexed: 02/25/2023] Open
Abstract
There are several hundred million protein sequences, but the relationships among them are not fully available from existing homolog detection methods. There is an essential need for an improved method to push homolog detection to lower levels of sequence identity. The method used here relies on a language model to represent proteins numerically in a matrix (an embedding) and uses discrete cosine transforms to compress the data to extract the most essential part, significantly reducing the data size. This PRotein Ortholog Search Tool (PROST) is significantly faster with linear runtimes, and most importantly, computes the distances between pairs of protein sequences to yield homologs at significantly lower levels of sequence identity than previously. The extent of allosteric effects in proteins points out the importance of global aspects of structure and sequence. PROST excels at global homology detection but not at detecting local homologs. Results are validated by strong similarities between the corresponding pairs of structures. The number of remote homologs detected increased significantly and pushes the effective sequence matches more deeply into the twilight zone. Human protein sequences presently having no assigned function now find significant numbers of putative homologs for 93% of cases and structurally verified assigned functions for 76.4% of these cases. The data compression enables massive searches for homologs with short search times while yielding significant gains in the numbers of remote homologs detected. The method is sufficiently efficient to permit whole-genome/proteome comparisons. The PROST web server is accessible at https://mesihk.github.io/prost.
Collapse
Affiliation(s)
- Mesih Kilinc
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA50011
| | - Kejue Jia
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA50011
| | - Robert L. Jernigan
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA50011
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA50011
| |
Collapse
|
45
|
Molecular Classification of Extrapulmonary Neuroendocrine Carcinomas With Emphasis on POU2F3-positive Tuft Cell Carcinoma. Am J Surg Pathol 2023; 47:183-193. [PMID: 36253891 PMCID: PMC9833113 DOI: 10.1097/pas.0000000000001977] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Extrapulmonary neuroendocrine carcinomas (EP-NECs) are associated with a poor clinical outcome, and limited information is available on the biology and treatment of EP-NECs. We studied EP-NECs by applying the recent novel findings from studies of pulmonary neuroendocrine carcinomas, including POU2F3, the master regulator of tuft cell variant of small cell lung carcinomas. A cohort of 190 patients with surgically resected EP-NECs or poorly differentiated carcinomas (PDCs) were established. Immunohistochemistry (IHC) for POU2F3 along with ASCL1, NEUROD1, YAP1, and conventional neuroendocrine markers was performed on tissue microarrays. Selected cases with or without POU2F3 expression were subjected to targeted gene expression profiling using nCounter PanCancer Pathway panel. POU2F3-positive tuft cell carcinomas were present in 12.6% of EP-NEC/PDCs, with variable proportions according to organ systems. POU2F3 expression was negatively correlated with the expression levels of ASCL1, NEUROD1, and conventional neuroendocrine markers ( P <0.001), enabling IHC-based molecular classification into ASCL1-dominant, NEUROD1-dominant, POU2F3-dominant, YAP1-dominant, and not otherwise specified subtypes. Compared wih POU2F3-negative cases, POU2F3-positive tuft cell carcinomas showed markedly higher expression levels of PLCG2 and BCL2 , which was also validated in the entire cohort by IHC. In addition to POU2F3, YAP1-positive tumors were a distinct subtype among EP-NEC/PDCs, characterized by unique T-cell inflamed microenvironment. We found rare extrapulmonary POU2F3-positive tumors arising from previously unappreciated cells of origin. Our data show novel molecular pathologic features of EP-NEC/PDCs including potential therapeutic vulnerabilities, thereby emphasizing the need for focusing on unique features of EP-NEC/PDCs.
Collapse
|
46
|
Li L, Ma M, Duan T, Sui X. The critical roles and therapeutic implications of tuft cells in cancer. Front Pharmacol 2022; 13:1047188. [PMID: 36569325 PMCID: PMC9780677 DOI: 10.3389/fphar.2022.1047188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Tuft cells are solitary chemosensory epithelial cells with microvilli at the top, which are found in hollow organs such as the gastrointestinal tract, pancreas, and lungs. Recently, an increasing number of studies have revealed the chemotactic abilities and immune function of the tuft cells, and numerous efforts have been devoted to uncovering the role of tuft cells in tumors. Notably, accumulating evidence has shown that the specific genes (POU2F3, DCLK1) expressed in tuft cells are involved in vital processes related with carcinogenesis and cancer development. However, the interaction between the tuft cells and cancer remains to be further elucidated. Here, based on an introduction of biological functions and specific markers of the tuft cells, we have summarized the functional roles and potential therapeutic implications of tuft cells in cancers, including pancreatic cancer, lung cancer, gastric cancer, colon cancer, and liver cancer, which is in the hope of inspiring the future research in validating tuft cells as novel strategies for cancer therapies.
Collapse
Affiliation(s)
- Lin Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Mengmeng Ma
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Ting Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Xinbing Sui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
47
|
Pulmonary cancers across different histotypes share hybrid tuft cell/ionocyte-like molecular features and potentially druggable vulnerabilities. Cell Death Dis 2022; 13:979. [PMID: 36402755 PMCID: PMC9675833 DOI: 10.1038/s41419-022-05428-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022]
Abstract
Tuft cells are chemosensory epithelial cells in the respiratory tract and several other organs. Recent studies revealed tuft cell-like gene expression signatures in some pulmonary adenocarcinomas, squamous cell carcinomas (SQCC), small cell carcinomas (SCLC), and large cell neuroendocrine carcinomas (LCNEC). Identification of their similarities could inform shared druggable vulnerabilities. Clinicopathological features of tuft cell-like (tcl) subsets in various lung cancer histotypes were studied in two independent tumor cohorts using immunohistochemistry (n = 674 and 70). Findings were confirmed, and additional characteristics were explored using public datasets (RNA seq and immunohistochemical data) (n = 555). Drug susceptibilities of tuft cell-like SCLC cell lines were also investigated. By immunohistochemistry, 10-20% of SCLC and LCNEC, and approximately 2% of SQCC expressed POU2F3, the master regulator of tuft cells. These tuft cell-like tumors exhibited "lineage ambiguity" as they co-expressed NCAM1, a marker for neuroendocrine differentiation, and KRT5, a marker for squamous differentiation. In addition, tuft cell-like tumors co-expressed BCL2 and KIT, and tuft cell-like SCLC and LCNEC, but not SQCC, also highly expressed MYC. Data from public datasets confirmed these features and revealed that tuft cell-like SCLC and LCNEC co-clustered on hierarchical clustering. Furthermore, only tuft cell-like subsets among pulmonary cancers significantly expressed FOXI1, the master regulator of ionocytes, suggesting their bidirectional but immature differentiation status. Clinically, tuft cell-like SCLC and LCNEC had a similar prognosis. Experimentally, tuft cell-like SCLC cell lines were susceptible to PARP and BCL2 co-inhibition, indicating synergistic effects. Taken together, pulmonary tuft cell-like cancers maintain histotype-related clinicopathologic characteristics despite overlapping unique molecular features. From a therapeutic perspective, identification of tuft cell-like LCNECs might be crucial given their close kinship with tuft cell-like SCLC.
Collapse
|
48
|
Yamada Y, Bohnenberger H, Kriegsmann M, Kriegsmann K, Sinn P, Goto N, Nakanishi Y, Seno H, Chigusa Y, Fujimoto M, Minamiguchi S, Haga H, Simon R, Sauter G, Ströbel P, Marx A. Tuft cell-like carcinomas: novel cancer subsets present in multiple organs sharing a unique gene expression signature. Br J Cancer 2022; 127:1876-1885. [PMID: 35999270 PMCID: PMC9643388 DOI: 10.1038/s41416-022-01957-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Tuft cells are chemosensory epithelial cells playing a role in innate immunity. Recent studies revealed cancers with a tuft cell-like gene expression signature in the thorax. We wondered whether this signature might also occur in extrathoracic cancers. METHODS We examined mRNA expression of tuft cell markers (POU2F3, GFI1B, TRPM5, SOX9, CHAT, and AVIL) in 19 different types of cancers in multiple extrathoracic organs with The Cancer Genome Atlas (TCGA) (N = 6322). Four different extrathoracic cancers in our local archives (N = 909) were analysed by immunohistochemistry. RESULTS Twenty-two (0.35%) extrathoracic tumours with co-expression of POU2F3 and other tuft cell markers were identified in various TCGA datasets. Twelve of the 22 "tuft cell-like tumours" shared poor differentiation and a gene expression pattern, including KIT, anti-apoptotic BCL2, and ionocyte-associated genes. In our archival cases, eleven (1.21%) tumours co-expressing POU2F3, KIT, and BCL2 on immunohistochemistry, i.e., were presumable tuft cell-like cancers. In three among five TCGA cohorts, the tuft cell-like cancer subsets expressed SLFN11, a promising biomarker of PARP inhibitor susceptibility. CONCLUSIONS Tuft cell-like carcinomas form distinct subsets in cancers of many organs. It appears warranted to investigate their shared gene expression signature as a predictive biomarker for novel therapeutic strategies.
Collapse
Affiliation(s)
- Yosuke Yamada
- Institute of Pathology, University Medical Centre Mannheim and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan.
| | - Hanibal Bohnenberger
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Mark Kriegsmann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Lung Cancer Research (DZL), Heidelberg, Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Sinn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Norihiro Goto
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshitsugu Chigusa
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | - Hironori Haga
- Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
49
|
Zhou C, Huang H, Wang Y, Sendinc E, Shi Y. Selective regulation of tuft cell-like small cell lung cancer by novel transcriptional co-activators C11orf53 and COLCA2. Cell Discov 2022; 8:112. [PMID: 36253350 PMCID: PMC9576728 DOI: 10.1038/s41421-022-00470-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/13/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Chen Zhou
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK.,Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,PhD Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Hui Huang
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Yunyi Wang
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Erdem Sendinc
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yang Shi
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK. .,Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
50
|
Szczepanski AP, Tsuboyama N, Watanabe J, Hashizume R, Zhao Z, Wang L. POU2AF2/C11orf53 functions as a coactivator of POU2F3 by maintaining chromatin accessibility and enhancer activity. SCIENCE ADVANCES 2022; 8:eabq2403. [PMID: 36197978 PMCID: PMC9534498 DOI: 10.1126/sciadv.abq2403] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/18/2022] [Indexed: 05/11/2023]
Abstract
Small cell lung cancer (SCLC), accounting for around 13% of all lung cancers, often results in rapid tumor growth, early metastasis, and acquired therapeutic resistance. The POU class 2 homeobox 3 (POU2F3) is a master regulator of tuft cell identity and defines the SCLC-P subtype that lacks the neuroendocrine markers. Here, we have identified a previously uncharacterized protein, C11orf53, which is coexpressed with POU2F3 in both SCLC cell lines and patient samples. Mechanistically, C11orf53 directly interacts with POU2F3 and is recruited to chromatin by POU2F3. Depletion of C11orf53 reduced enhancer H3K27ac levels and chromatin accessibility, resulting in a reduction of POU2F3-dependent gene expression. On the basis of the molecular function of C11orf53, we renamed it as "POU Class 2 Homeobox Associating Factor 2" (POU2AF2). In summary, our study has identified a new coactivator of POU2F3 and sheds light on the therapeutic potential of targeting POU2AF2/POU2F3 heterodimer in human SCLC.
Collapse
Affiliation(s)
- Aileen Patricia Szczepanski
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Natsumi Tsuboyama
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jun Watanabe
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, 303 East Superior St., Chicago, IL 60611, USA
- Division of Hematology, Oncology, Neuro-Oncology & Stem Cell Transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, Box 205, Chicago, IL 60611, USA
| | - Rintaro Hashizume
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, 303 East Superior St., Chicago, IL 60611, USA
- Division of Hematology, Oncology, Neuro-Oncology & Stem Cell Transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, Box 205, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Zibo Zhao
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lu Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|