1
|
Dong K, Lin R, Huang K, Lu S, Ma J, Xu Y, Liu K, Liu J, Shen Z, Yue S, Wang Z, Qu S. Broadband Tunable Photonic Crystal Lasers Based on Quasi-2D Perovskites in Green Spectral Region. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412728. [PMID: 40317904 DOI: 10.1002/smll.202412728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 04/23/2025] [Indexed: 05/07/2025]
Abstract
Photonic crystal (PhC) lasers offer significant advantages in terms of wavelength tuning, mode control, and reduction of lasing thresholds, arising from their unique photonic band structure. However, the development of perovskite-based PhC lasers in the green light band remains a challenging endeavor, limited by factors such as device structural accuracy, material gain, and tolerance. Here, this work demonstrates the fabrication of quasi-2D perovskite-based PhC laser exhibiting single-mode lasing with a narrow linewidth of 0.9 nm, a high Q-factor of 622, and an ultralow threshold of 10 µJ cm-2. By precisely adjusting the hole diameter to the period ratio of the PhC structure, broadband wavelength tuning is achieved across the green spectral region, spanning 30 nm with an accuracy of 1 nm. Furthermore, both surface and edge emission configurations are observed during wavelength tuning, demonstrating the versatility of this device. These results highlight the versatility and potential of quasi-2D perovskite-based PhC lasers for applications in sensing, display, communication, and on-chip integration.
Collapse
Affiliation(s)
- Keqian Dong
- Laboratory of Solid-State Optoelectronics Information Technology, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Runkang Lin
- Laboratory of Solid-State Optoelectronics Information Technology, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kaige Huang
- Laboratory of Solid-State Optoelectronics Information Technology, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shudi Lu
- Laboratory of Solid-State Optoelectronics Information Technology, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- College of Physical Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, P. R. China
| | - Jingteng Ma
- Laboratory of Solid-State Optoelectronics Information Technology, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yipeng Xu
- Laboratory of Solid-State Optoelectronics Information Technology, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kong Liu
- Laboratory of Solid-State Optoelectronics Information Technology, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jun Liu
- Guangdong-Hong Kong Joint Laboratory for Water Security, Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, P. R. China
| | - Zhanwei Shen
- Laboratory of Solid-State Optoelectronics Information Technology, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shizhong Yue
- Laboratory of Solid-State Optoelectronics Information Technology, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhijie Wang
- Laboratory of Solid-State Optoelectronics Information Technology, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shengchun Qu
- Laboratory of Solid-State Optoelectronics Information Technology, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Liu Z, Chen X, Yao R, Li L, Luo H, Li G, Liu X. Pyramid-shaped quantum dot superlattice exhibiting tunable room-temperature coherent emission via oriented attachment. MATERIALS HORIZONS 2025; 12:2577-2586. [PMID: 39957421 DOI: 10.1039/d4mh01748j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Coherent emission, characterized by the collective photon emission from a dense ensemble of emitters, holds great promise for quantum optics and nanophotonics applications. However, achieving robust coherent emission, particularly superfluorescence, at room temperature remains challenging due to thermal decoherence. Here, we demonstrate room-temperature tunable coherent emission from perovskite quantum dot (QD) superlattices. Our approach involves the mesocrystallization of CsPbBr3-based QD superlattices driven by oriented attachment, which yields pyramidal-like solids with extended atomic coherency. This level of atomic-scale to nanoscale orientational structure control cannot be realized in previous QD superlattices, and it allows for quantum coherence to persist at ambient conditions. The resulting superlattices exhibit multiple narrowband emissions with exceptional spectral sharpness and tunability, reflecting the collective nature of the coherent emission. Our results establish superlattices as an emerging materials platform capable of robust quantum coherence without cryogenic constraints, opening up new possibilities for quantum optics and nanophotonics applications.
Collapse
Affiliation(s)
- Zheng Liu
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan, 528225, P. R. China.
- Canton Supranano Quantum Tech. Co., Ltd., No. 9, Guanghai Road, Huangpu District, Guangzhou, 210000, P. R. China
| | - Xiya Chen
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan, 528225, P. R. China.
| | - Ruizhao Yao
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, P. R. China.
| | - Lihui Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Huanteng Luo
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan, 528225, P. R. China.
| | - Guangcan Li
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, P. R. China.
| | - Xiao Liu
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan, 528225, P. R. China.
| |
Collapse
|
3
|
Yang Q, Zhang H, Jiang Z, Shen H, Gong X. Mobile Oxygen Capture Enhances Photothermal Stability of Perovskite Solar Cells Under ISOS Protocols. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500268. [PMID: 40059569 DOI: 10.1002/adma.202500268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/21/2025] [Indexed: 04/24/2025]
Abstract
Stability testing protocols from the International Summit on Organic and Hybrid Solar Cell Stability (ISOS) are essential for standardizing studies on the photothermally operational stability of perovskite solar cells (PSCs). Under photothermal conditions, the migration of oxygen from SnO2 layer induces cationic dehydrogenation at the A-site of the perovskite, accelerating degradation to PbI2. This leads to the formation of photoinduced I2 and Pb0 defects, significantly compromising long-term stability. In this study, ordonezite (ZnSb2O6-x) as a multifunctional electron transport layer (ETL) that captures migrating oxygen atoms at the SnO2/perovskite interface is introduced, effectively preventing degradation of the buried interface. Additionally, the lattice match between ZnSb2O6-x and perovskite facilitates well-ordered perovskite film growth. As a result, PSCs featuring ZnSb2O6-x ETLs achieved a high power conversion efficiency of 25.02% and retained 90.62% of their initial performance after 1000 h under the ISOS-D-2 protocol. Furthermore, devices demonstrated remarkable thermal stability, maintaining 83.69% of their original performance after 800 h of maximum power point tracking at 85 °C, meeting the stringent ISOS-L-2 protocol requirements.
Collapse
Affiliation(s)
- Qu Yang
- College of Physics, Guizhou Province Key Laboratory for Optoelectronic Technology and Application, Guizhou University, Guiyang, 550025, China
| | - Haozhe Zhang
- College of Physics, Guizhou Province Key Laboratory for Optoelectronic Technology and Application, Guizhou University, Guiyang, 550025, China
| | - Zhuojun Jiang
- College of Physics, Guizhou Province Key Laboratory for Optoelectronic Technology and Application, Guizhou University, Guiyang, 550025, China
| | - Hui Shen
- College of Physics, Guizhou Province Key Laboratory for Optoelectronic Technology and Application, Guizhou University, Guiyang, 550025, China
| | - Xiu Gong
- College of Physics, Guizhou Province Key Laboratory for Optoelectronic Technology and Application, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
4
|
Liu Y, Luo J, Ablez A, Liu J, Wang N, Lin H, Wang Z, Huang X. Humidity-Triggered Reversible 0-1D Phase Transition in Hybrid Antimony Halides. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:442. [PMID: 40137615 PMCID: PMC11945002 DOI: 10.3390/nano15060442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025]
Abstract
Stimulus-responsive inorganic-organic hybrid metal halides (IOMHs) have shown great potential in applications such as sensing and anti-counterfeiting. IOMHs can undergo a variety of structural changes when triggered by humidity; however, relevant reports of structural dimensionality change from zero dimension (0D) to one dimension (1D) are rare. This study investigates the synthesis, structure, and properties of two antimony-based IOMHs, namely 0D-(Mp)3SbCl6·MeCN and 1D-(Mp)2SbCl5 (Mp = protonated morpholine; MeCN = acetonitrile). Photophysical characterizations show that (Mp)3SbCl6·MeCN, when being excited at 375 nm, exhibits typical self-trapped exciton triplet state broad-band emission, with a peak at 620 nm and a quantum yield as high as 75.06%. Under humid conditions, the 0D structure of (Mp)3SbCl6·MeCN undergoes a phase transition, leading to the 1D structure of (Mp)2SbCl5. This transition is accompanied by fluorescence quenching. X-ray powder diffraction, Raman spectroscopy, and thermogravimetric analysis confirm the phase transition process and its reversibility. Based on the high contrast of fluorescence before and after phase transition, (Mp)3SbCl6·MeCN is demonstrated as an ideal material for fluorescence water sensing, capable of detecting trace amounts of water in tetrahydrofuran with a detection limit of 0.2% v/v.
Collapse
Affiliation(s)
- Yi Liu
- College of Chemistry, Fuzhou University, Fuzhou 350108, China; (Y.L.); (J.L.); (A.A.); (J.L.); (N.W.)
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Jiahua Luo
- College of Chemistry, Fuzhou University, Fuzhou 350108, China; (Y.L.); (J.L.); (A.A.); (J.L.); (N.W.)
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Abdusalam Ablez
- College of Chemistry, Fuzhou University, Fuzhou 350108, China; (Y.L.); (J.L.); (A.A.); (J.L.); (N.W.)
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Jinmei Liu
- College of Chemistry, Fuzhou University, Fuzhou 350108, China; (Y.L.); (J.L.); (A.A.); (J.L.); (N.W.)
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Nianhao Wang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China; (Y.L.); (J.L.); (A.A.); (J.L.); (N.W.)
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Haowei Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
| | - Zeping Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
| | - Xiaoying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
| |
Collapse
|
5
|
Zhang M, Hu J, Xi G, Tu J, Yang Q, Fan L, Lu Y, Sui M, Sun X, Zhang L, Tian J. Colloidal Perovskite Nanocrystal Superlattice Films with Simultaneous Polarized Emission and Orderly Electric Polarity via an In Situ Surface Cross-Linking Reaction. ACS NANO 2025; 19:7283-7293. [PMID: 39932160 DOI: 10.1021/acsnano.4c17654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Superlattices (SLs) based on colloidal nanocrystals (NCs) represent a fascinating structure with long-range and ordered NCs inside the assembled superstructures, displaying great potential application in electronic devices because of the customizable arrangement of building blocks. It is a great challenge to achieve macroscopical SL films by a solution process due to the inherent sensitivity and difficulty in controlling colloidal NCs. In this study, we propose a controllable strategy to create perovskite CsPbBr3 NC SL films through a surface in situ cross-linking reaction incorporating conjugated linoleic acid (CLA), a naturally polymerizable small molecule. CLA enables the in situ cross-linking of adjacent NCs under polarity-triggered conditions, which effectively arranges the NCs in a solid form at a molecular level to achieve fcc SL structural films. Importantly, we report for the first time NC SL films that are simultaneous with outstanding intrinsically linearly polarized emission and orderly electric polarity, which are derived from consistent dipole alignment, thus showing promising potential for application in information storage and optoelectronics. This method provides a general bottom-up approach, expanding the assembly library for fundamental studies and technological applications.
Collapse
Affiliation(s)
- Mengqi Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jingcong Hu
- Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
| | - Guoqiang Xi
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jie Tu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Qianqian Yang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Linhan Fan
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yue Lu
- Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
| | - Manling Sui
- Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
| | - Xuejiao Sun
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Linxing Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianjun Tian
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
6
|
Xia J, Wan Z, Peng C, Liu Y, Chen PA, Wei H, Ding J, Zhang Y, Hu Y. Ion-Gel Gated Perovskite Field-Effect Transistors with Low Power Consumption and High Stability for Neuromorphic Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10886-10897. [PMID: 39908040 DOI: 10.1021/acsami.4c19269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Ruddlesden-Popper (RP) tin halide perovskites (THPs), exemplified by PEA2SnI4, are promising two-dimensional semiconductors for optoelectronic applications, yet their field-effect transistors (FETs) often suffer from high operating voltages and stability issues. Addressing these challenges, we developed a novel approach for integrating ion gel dielectrics composed of PVDF-HFP and [EMIM+][TFSI-] with PEA2SnI4, achieving FETs with record-low operating voltages as low as 2 V. Additionally, by substituting PEA+ with BA+ in BA2SnI4 FETs, we achieve enhanced device stability, with these devices exhibiting prolonged functionality exceeding 100 days. Uniform performance was also observed across 30 randomly tested devices fabricated on a 2 inch silicon wafer. These FETs also demonstrated synaptic behavior with ultralow energy consumption (5 × 10-11 J per operation). Leveraging these advancements, we constructed artificial neural networks for item classification, achieving high accuracy (97%). Moreover, the energy consumption for a single training process based on ion-gel gated BA2SnI4 FETs is approximately 2 orders of magnitude lower than that of similar networks based on the NVIDIA GeForce RTX 4060 GPU. Our results highlight the potential of ion-gel gated BA2SnI4 FETs for low-power, high-stability applications, paving the way for the next generation of perovskite-based electronic and neuromorphic devices.
Collapse
Affiliation(s)
- Jiangnan Xia
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen 518063, China
| | - Ziyu Wan
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Chengyuan Peng
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Yu Liu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Ping-An Chen
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Huan Wei
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jiaqi Ding
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Yu Zhang
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Yuanyuan Hu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen 518063, China
| |
Collapse
|
7
|
Jiang X, Zhu L, Zhang B, Yang G, Zheng L, Dong K, Yin Y, Wang M, Liu S, Pang S, Guo X. Insights Into the Role of π-Electrons of Aromatic Aldehydes in Passivating Perovskite Defects. Angew Chem Int Ed Engl 2025; 64:e202420369. [PMID: 39667943 DOI: 10.1002/anie.202420369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 12/14/2024]
Abstract
Carbonyl-containing aromatic ketones or aldehydes have been demonstrated to be effective defect passivators for perovskite films to improve performances of perovskite solar cells (PSCs). It has been claimed that both π-electrons within aromatic units and carbonyl groups can, separately, interact with ionic defects, which, however, causes troubles in understanding the passivation mechanism of those aromatic ketone/aldehyde molecules. Herein, we clarify the effect of both moieties in one molecule on the defect passivation by investigating three aromatic aldehydes with varied conjugation planes, namely, biphenyl-4-carbaldehyde (BPCA), naphthalene-2-carbaldehyde (NACA) and pyrene-1-carbaldehyde (PyCA). Our findings reveal that the π-electrons located in the conjugated system do not directly present strong passivation for defects, but enhance the electron cloud density of the carbonyl group augmenting its interaction with defect sites; thereby, with the extended conjugation plane of the three molecules, their defect passivation ability is gradually improved. PSCs incorporating PyCA with the most extended π-electrons delocalization achieve maximum power conversion efficiencies of 25.67 % (0.09 cm2) and 21.76 % (14.0 cm2). Moreover, these devices exhibit outstanding long-term stability, retaining 95 % of their initial efficiency after operation for 1000 hours at the maximum power point.
Collapse
Affiliation(s)
- Xiaoqing Jiang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lina Zhu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Bingqian Zhang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Guangyue Yang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Likai Zheng
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Kaiwen Dong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yanfeng Yin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Minhuan Wang
- Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Shiwei Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shuping Pang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Xin Guo
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
8
|
Yang L, Li X, Li M, Liu D, Wang D, Wang T. Progress of 2D Perovskite Solar Cells: Structure and Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410731. [PMID: 39743944 DOI: 10.1002/smll.202410731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/11/2024] [Indexed: 01/04/2025]
Abstract
2D perovskite has demonstrated great potential for application in photovoltaic devices due to the tunable energy bands, suppressed ion migration, and high stability. However, 2D perovskite solar cells (PSCs) display suboptimal efficiency in comparison to 3D perovskite solar cells, which can be attributed to the quantum confinement and dielectric confinement effects resulting from the intercalation of organic spacer cations into the perovskite lattice. This review starts with the fundamental structural characteristics, optoelectronic properties, and carrier transport dynamics of 2D PSCs, followed by the discussion of approaches to improve the photovoltaic performance of 2D PSCs, including the manipulation of crystal orientation, phase distribution, pure phase, organic layer, and device engineering. Then the advancements in the structural, humidity, thermal, and maximum power point tracking stability of 2D PSCs are summarized. Afterward, the applications of 2D perovskite in 2/3D PSCs to improve efficiency and stability are discussed. This review provides a comprehensive understanding of the relationship between 2D perovskite structure and the performance of the resulting 2D PSCs, as well as offers insights for constructing efficient and stable 2/3D PSCs by integrating 2D and 3D perovskites.
Collapse
Affiliation(s)
- Liyan Yang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan, 430200, China
| | - Xiaofang Li
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan, 430200, China
| | - Mufang Li
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan, 430200, China
| | - Dan Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan, 430200, China
| | - Tao Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
9
|
Cai Y, Yan S, Du X, Lin T, Lin Y, Qiu L, Wang W. Reversible Asymmetric Deformation Modulating Dexter Energy Transfer in Manganese Halide Perovskite with Temperature-pressure Equivalence Effect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409528. [PMID: 39690844 DOI: 10.1002/smll.202409528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/05/2024] [Indexed: 12/19/2024]
Abstract
Deformation of metal halide perovskite can induce many interesting properties. This study focuses on a manganese-based organic-inorganic perovskite with a unique structure in which tetrahedral and octahedral coordination coexist in single crystal unit cell. This perovskite emits at 519 and 615 nm at room temperature. In contrast to conventional perovskites, this perovskite regulates the Dexter energy transfer between the two coordination modes through asymmetric deformation without phase transition, producing a reversible and tunable photoluminescence. Notably, under atmospheric pressure, as temperature increases from liquid nitrogen temperature to 135 °C, the luminescence color shifts progressively from red with a CIE coordinate of (0.59, 0.27) to yellow green with a CIE coordinate of (0.33, 0.56), with excellent reversibility. Additionally, at room temperature, the luminescence color shifts progressively from orange with a CIE coordinate of (0.54, 0.42) to red with a CIE coordinate of (0.61, 0.27) as pressure increases from 1 atm to 7.5 GPa. This novel tetrahedral and octahedral coexisting perovskite has a temperature-pressure equivalence effect in modulating luminescent color changes. It tunes emission by forming asymmetric deformations through the contraction (or expansion) of tetrahedra and expansion (or contraction) of octahedra upon stimulation, providing a new pathway to tune the emission of perovskites.
Collapse
Affiliation(s)
- Yangyang Cai
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Siyu Yan
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xinran Du
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Tingting Lin
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
| | - Yuejian Lin
- Advanced Materials Laboratory, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Weizhi Wang
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
10
|
Lee SJ, Jang JD, Choi SM. Interparticle Ligand Exchange Kinetics Revealed by Time-Resolved SANS. NANO LETTERS 2025; 25:981-986. [PMID: 39721971 DOI: 10.1021/acs.nanolett.4c04163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Interparticle ligand exchange can occur during the formation of nanoparticle superlattices (NPSLs), affecting the symmetry of the NPSLs. Here, we report time-resolved small-angle neutron scattering (TR-SANS) measurements of the interparticle exchange kinetics of thiolate ligands among gold nanoparticles (AuNPs) at different temperatures. To track the ligand exchange among AuNPs, two groups of AuNPs were functionalized with hydrogenated and deuterated dodecanethiol, respectively, and then mixed in a solvent mixture of toluene and deuterated toluene for shell contrast. The interparticle ligand exchange barely occurred at 25 °C even after 40 h, but 11%, 34%, and 74% occurred at 50, 60, and 70 °C, respectively. At 80 °C, the exchange saturated after 20 h. The exchange process follows first-order kinetics, and its activation energy is estimated to be 29.1 kcal/mol, supporting that ligand desorption is a rate-determining step. These findings can be used as valuable reference data, aiding in the design and understanding of NPSLs.
Collapse
Affiliation(s)
- Sang-Jo Lee
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jong Dae Jang
- Neutron Science Division, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 34057, Republic of Korea
| | - Sung-Min Choi
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| |
Collapse
|
11
|
Wu Y, Wang S, Lin Z, Kang L, Wu J, Chen Q, Lin Z. Lantern-Shaped Structure Induced by Racemic Ligands in Red-Light-Emitting Metal Halide with Near 100 % Quantum Yield and Multiple-Stimulus Response. Angew Chem Int Ed Engl 2025; 64:e202416062. [PMID: 39235408 DOI: 10.1002/anie.202416062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/06/2024]
Abstract
Organic-inorganic metal halides (OIMHs) have become a research hotspot in recent years due to their excellent luminescent properties and tunable emission wavelengths. However, the development of efficient red-light-emitting OIMHs remains a significant challenge. This work reports three Mn-based OIMHs derived from 1-methyl-1,2,3,4-tetrahydroisoquinoline hydrobromide: racemic one (Rac-TBM) and chiral ones (R-TBM and S-TBM). As a result of the synergism of chiral organic ligands inducing a unique lantern-shaped hybrid structure containing both tetrahedra and octahedra, Rac-TBM exhibits red-light emission with near-unity luminescence quantum yield. In comparison, the chiral counterparts R/S-TBM display strong green emission and circularly polarized luminescence (CPL) with a glum value up to ±2.5×10-2. Interestingly, a mixture of R- and S-TBM can transform into Rac-TBM, successfully achieving a sensitive and reversible switch between red light of octahedra and green light of tetrahedra under external stimuli. The outstanding luminescent properties allow Rac-TBM to be utilized not only for X-ray radioluminescence with a detection limit down to 46.29 nGys-1, but also for advanced information encryption systems to achieve leak-proof decryption.
Collapse
Affiliation(s)
- Yuechuan Wu
- Fujian Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Shuaiqi Wang
- Fujian Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Zhibin Lin
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Liwen Kang
- Fujian Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Junyan Wu
- Fujian Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Qiushui Chen
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zhenghuan Lin
- Fujian Key Laboratory of Polymer Materials College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
12
|
Cheng C, Chen F, Zhang B, Zhao BH, Du X. Promoting Water Dissociation and Weakening Active Hydrogen Adsorption to Boost the Hydrogen Transfer Reaction over a Cu-Ag Superlattice Electrocatalyst. Angew Chem Int Ed Engl 2025; 64:e202413897. [PMID: 39271455 DOI: 10.1002/anie.202413897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
The prerequisite for electrocatalytic hydrogenation reactions (EHRs) is H2O splitting to form surface hydrogen species (*H), which occupy catalytic sites and lead to mismatched coverage of *H and reactants, resulting in unsatisfactory activity and selectivity. Thus, modulating the splitting pathway of H2O is significant for optimizing the EHR process. Herein, a Cu-Ag alloy with a superlattice structure of staggered-ordered Cu and Ag is theoretically predicted and experimentally proven to undergo a pathway for H2O splitting called the hydrogen transfer reaction (HTR) in the water layer, which involves the formation of *H, the capture of *H by a water cluster to form H*(H2O)x and subsequent hydrogenation reactions by H*(H2O)x. Taking acetylene hydrogenation as a model case, the as-proposed HTR pathway could lead to a relaxation hydrogenation process to modulate the matching degree of C2H2 and *H, thus enabling a 91.2 % C2H4 Faradaic efficiency at a partial current density of 0.38 A cm-2, greatly outperforming its counterpart without a superlattice structure.
Collapse
Affiliation(s)
- Chuanqi Cheng
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Fanpeng Chen
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Bin Zhang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Bo-Hang Zhao
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Xiwen Du
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
13
|
Marcato T, Kumar S, Shih CJ. Strategies for Controlling Emission Anisotropy in Lead Halide Perovskite Emitters for LED Outcoupling Enhancement. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413622. [PMID: 39676496 DOI: 10.1002/adma.202413622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/14/2024] [Indexed: 12/17/2024]
Abstract
In the last decade, momentous progress in lead halide perovskite (LHP) light-emitting diodes (LEDs) is witnessed as their external quantum efficiency (ηext) has increased from 0.1 to more than 30%. Indeed, perovskite LEDs (PeLEDs), which can in principle reach 100% internal quantum efficiency as they are not limited by the spin-statistics, are reaching their full potential and approaching the theoretical limit in terms of device efficiency. However, ≈70% to 85% of total generated photons are trapped within the devices through the dissipation pathways of the substrate, waveguide, and evanescent modes. To this end, numerous extrinsic and intrinsic light-outcoupling strategies are studied to enhance light-outcoupling efficiency (ηout). At the outset, various external and internal light outcoupling techniques are reviewed with specific emphasis on emission anisotropy and its role on ηout. In particular, the device ηext can be enhanced by up to 50%, taking advantage of the increased probability for photons outcoupled to air by effectively inducing horizontally oriented emission transition dipole moments (TDM) in the perovskite emitters. The role of the TDM orientation in PeLED performance and the factors allowing its rational manipulation are reviewed extensively. Furthermore, this account presents an in-depth discussion about the effects of the self-assembly of LHP colloidal nanocrystals (NCs) into superlattices on the NC emission anisotropy and optical properties.
Collapse
Affiliation(s)
- Tommaso Marcato
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, 8093, Switzerland
| | - Sudhir Kumar
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, 8093, Switzerland
| | - Chih-Jen Shih
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, 8093, Switzerland
| |
Collapse
|
14
|
Duan J, Zhao Y, Wu Y, Liu Y, Chen J, Yang R, Huang J, Luo C, Wu M, Zheng X, Li P, Jiang X, Guan J, Zhai T. Strain-induced charge delocalization achieves ultralow exciton binding energy toward efficient photocatalysis. Chem Sci 2024; 15:19546-19555. [PMID: 39568926 PMCID: PMC11575543 DOI: 10.1039/d4sc05873a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024] Open
Abstract
The exciton effect is commonly observed in photocatalysts, where substantial exciton binding energy (E b) significantly hampers the efficient generation of photo-excited electron-hole pairs, thereby severely constraining photocatalysis. Herein, we propose a strategy to reduce E b through strain-induced charge delocalization. Taking Ta2O5 as a prototype, tensile strain was introduced by engineering a crystalline/amorphous interface, weakening the interaction between Ta 5d and O 2p orbitals, thus endowing a delocalized charge transport and significantly lowering E b. Consequently, the E b of strained Ta2O5 nanorods (s-Ta2O5 NRs) was reduced to 24.26 meV, below the ambient thermal energy (26 meV). The ultralow E b significantly enhanced the yield of free charges, resulting in a two-fold increase in carrier lifetime and surface potential. Remarkably, the hydrogen evolution rate of s-Ta2O5 NRs increased 51.5 times compared to that of commercial Ta2O5. This strategy of strain-induced charge delocalization to significantly reduce E b offers a promising avenue for developing advanced semiconductor photoconversion systems.
Collapse
Affiliation(s)
- Junyuan Duan
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
- Hubei Key Laboratory of Plasma Chemistry and New Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology Wuhan 430205 China
| | - Yinghe Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Yu Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Junnian Chen
- School of Materials Science & Engineering, Hubei University Wuhan 430062 China
| | - Ruoou Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Jiazhao Huang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Chuanqi Luo
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Mao Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Xiaodong Zheng
- Department of Applied Physics, The Hong Kong Polytechnic University Kowloon Hong Kong China
| | - Pengyu Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Xueliang Jiang
- Hubei Key Laboratory of Plasma Chemistry and New Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology Wuhan 430205 China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
15
|
Cabrera CI, Pérez-Álvarez R. Special-point approach for optical absorption coefficient calculations on two-dimensional self-assemblies of type-II perovskite quantum dots. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:025504. [PMID: 39406259 DOI: 10.1088/1361-648x/ad8716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
All-inorganic perovskite quantum dots with the usual cubic shape have emerged as a successful and low-cost alternative to electronically functional nanomaterials motivating various fields of applications, including high-efficiency photovoltaics. Here, we present an efficient and almost analytic approach for optical absorption coefficient calculation on self-assembled perovskite quantum dot films with type-II band alignment. The approach takes advantage of the special point technique for integration over the two-dimensional Brillouin zone, which minimizes the computational cost. The set of special wave-vector points is generated using the Monkhorst and Pack method. The optical absorption spectrum for phenyl-C60-butyric acid methyl ester (PCBM)/CsPbI3quantum dot films is computed, in good agreement with the experiment assuming a homogeneous linewidth of 50 meV and considering a ten special-point set. We show that light absorption in these systems is a cooperative optoelectronic property resulting from the quantum-mechanical coupling between perovskite nanocubes, leading to extended system states. The generality of this approach makes it suitable for calculating the optical absorption coefficient in a broad class of perovskite quantum dot systems.
Collapse
Affiliation(s)
- C I Cabrera
- Unidad Académica de Ciencia y Tecnología de la Luz y la Materia, Universidad Autónoma de Zacatecas, 98160 Zacatecas, Mexico
| | - R Pérez-Álvarez
- Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62209 Cuernavaca, Morelos, Mexico
| |
Collapse
|
16
|
Zhou H, Feng Q, Sun C, Li Y, Tao W, Tang W, Li L, Shi E, Nan G, Zhu H. Robust excitonic light emission in 2D tin halide perovskites by weak excited state polaronic effect. Nat Commun 2024; 15:8541. [PMID: 39358359 PMCID: PMC11447268 DOI: 10.1038/s41467-024-52952-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024] Open
Abstract
2D perovskites hold immense promise in optoelectronics due to their strongly bound electron-hole pairs (i.e., excitons). While exciton polaron from interplay between exciton and lattice has been established in 2D lead-based perovskites, the exciton nature and behavior in the emerging 2D tin-based perovskites remains unclear. By combining spin-resolved ultrafast spectroscopy and sophisticated theoretical calculations, we reveal 2D tin-based perovskites as genuine excitonic semiconductors with weak polaronic screening effect and persistent Coulomb interaction, thanks to weak exciton-phonon coupling. We determine an excited state exciton binding energy of ~0.18 eV in n = 2 tin iodide perovskites, nearly twice of that in lead counterpart, despite of same large value of ~0.2 eV from steady state measurement. This finding emphasizes the pivotal role of excited state polaronic effect in these materials. The robust excitons in 2D tin-based perovskites exhibit excitation power-insensitive, high-efficiency and color-purity emission, rendering them superior for light-emitting applications.
Collapse
Affiliation(s)
- Hongzhi Zhou
- Department of Chemistry, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Key Laboratory of Excited State Energy Conversion and Storage, Zhejiang University, Hangzhou, China
| | - Qingjie Feng
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Cheng Sun
- Department of Chemistry, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Key Laboratory of Excited State Energy Conversion and Storage, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, China
| | - Yahui Li
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou, China
| | - Weijian Tao
- Department of Chemistry, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Key Laboratory of Excited State Energy Conversion and Storage, Zhejiang University, Hangzhou, China
| | - Wei Tang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Linjun Li
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Enzheng Shi
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou, China
| | - Guangjun Nan
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Haiming Zhu
- Department of Chemistry, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Key Laboratory of Excited State Energy Conversion and Storage, Zhejiang University, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Naqvi SMKA, Zhu Y, Long H, Nazir Z, Vasiliev RB, Kulakovich O, Chang S. Computational approaches to enhance charge transfer and stability in TPBi-(PEA) 2PbI 4 perovskite interfaces through molecular orientation optimization. NANOSCALE ADVANCES 2024; 6:4149-4159. [PMID: 39114143 PMCID: PMC11302203 DOI: 10.1039/d4na00186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/29/2024] [Indexed: 08/10/2024]
Abstract
The optimization of material interfaces is crucial for the performance and longevity of optoelectronic devices. This study focuses on 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi), a key component in perovskite devices known for its efficient charge transfer capabilities. We investigate the TPBi-(PEA)2PbI4 heterostructure interfaces to enhance device durability by optimizing interfacial properties. Our findings reveal that those specific TPBi orientations - at 15 and 30 degrees - ensure strong electronic coupling between TPBi and (PEA)2PbI4, which improves stability at these interfaces. Furthermore, orientations at 15 and 60 degrees markedly enhance charge transfer kinetics, indicating reduced recombination rates and potentially increased efficiency in optoelectronic devices. These results not only underscore the importance of molecular orientation in perovskite devices but also open new avenues for developing more stable and efficient hybrid materials in optoelectronic applications.
Collapse
Affiliation(s)
- Syed Muhammad Kazim Abbas Naqvi
- School of Materials Science & Engineering, Beijing Institute of Technology Beijing 100081 China
- Platform for Applied Nanophotonics, Faculty of Materials Science, Shenzhen MSU-BIT University Shenzhen 518115 China
| | - Yanan Zhu
- Platform for Applied Nanophotonics, Faculty of Materials Science, Shenzhen MSU-BIT University Shenzhen 518115 China
| | - Hui Long
- Platform for Applied Nanophotonics, Faculty of Materials Science, Shenzhen MSU-BIT University Shenzhen 518115 China
- Department of Materials Science, Department of Chemistry, Lomonosov Moscow State University Moscow 119991 Russia
| | - Zahid Nazir
- Platform for Applied Nanophotonics, Faculty of Materials Science, Shenzhen MSU-BIT University Shenzhen 518115 China
| | - Roman B Vasiliev
- Department of Materials Science, Department of Chemistry, Lomonosov Moscow State University Moscow 119991 Russia
| | - Olga Kulakovich
- Institute of Physics of the National Academy of Sciences of Belarus Minsk 220072 Belarus
| | - Shuai Chang
- Platform for Applied Nanophotonics, Faculty of Materials Science, Shenzhen MSU-BIT University Shenzhen 518115 China
| |
Collapse
|
18
|
Qi D, Cao Y, Feng X, Ge J, Yan N, Yuan Y, Zhang J, Song F, Wang K, Liu SF, Feng J. Implementation of a Multi-Functional-Group Strategy for Enhanced Performance of Perovskite Solar Cells through the Incorporation of 3-Amino-4-Phenylbutyric Acid Hydrochloride. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401487. [PMID: 38767498 DOI: 10.1002/smll.202401487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/02/2024] [Indexed: 05/22/2024]
Abstract
Reducing the defect density of perovskite films during the crystallization process is critical in preparing high-performance perovskite solar cells (PSCs). Here, a multi-functional molecule, 3-phenyl-4-aminobutyric acid hydrochloride (APH), with three functional groups including a benzene ring, ─NH3 + and ─COOH, is added into the perovskite precursor solution to improve perovskite crystallization and device performance. The benzene ring increases the hydrophobicity of perovskites, while ─NH3 + and ─COOH passivate defects related to I- and Pb2+, respectively. Consequently, the power conversion efficiency (PCE) of the optimal device increased to 24.65%. Additionally, an effective area of 1 cm2 with a PCE of 22.45% is also prepared using APH as an additive. Furthermore, PSCs prepared with APH exhibit excellent stability by 87% initial PCE without encapsulation after exposure at room temperature under 25% humidity for 5000 h and retaining 70% of initial PCE after aging at 85 °C in an N2 environment for 864 h.
Collapse
Affiliation(s)
- Danyang Qi
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Yang Cao
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Xiaolong Feng
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Jinghao Ge
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Nan Yan
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Yin Yuan
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Jiafan Zhang
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Fei Song
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Kang Wang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, China
| | - Shengzhong Frank Liu
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiangshan Feng
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| |
Collapse
|
19
|
Ma K, Sun J, Dou L. Advances and challenges in molecular engineering of 2D/3D perovskite heterostructures. Chem Commun (Camb) 2024; 60:7824-7842. [PMID: 38963168 DOI: 10.1039/d4cc02299h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Organic-inorganic hybrid perovskites have been intensively studied in past decades due to their outstanding performance in solar cells and other optoelectronic devices. Recently, the emergence of two-dimensional/three-dimensional (2D/3D) heterojunctions have enabled many solar cell devices with >25% power conversion efficiency, driven by advances in our understanding of the structural and photophysical properties of the heterojunctions and our ability to control these properties through organic cation configuration in 2D perovskites. In this feature article, we discuss a fundamental understanding of structural characteristics and the carrier dynamics in the 2D/3D heterojunctions and their impact factors. We further elaborate the design strategies for the molecular configuration of organic cations to achieve thorough management of these properties. Finally, recent advances in 2D/3D heterostructures in solar cells, light-emitting devices and photodetectors are highlighted, which translate fundamental understandings to device applications and also reveal the remaining challenges in ligand design for the next generation of stable devices. Future development prospects and related challenges are also provided, with wide perspectives and insightful thoughts.
Collapse
Affiliation(s)
- Ke Ma
- Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Jiaonan Sun
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
20
|
Zhao C, Guo J, Tao J, Chu J, Chen S, Xing G. Pulse-doubling perovskite nanowire lasers enabled by phonon-assisted multistep energy funneling. LIGHT, SCIENCE & APPLICATIONS 2024; 13:170. [PMID: 39019895 PMCID: PMC11255266 DOI: 10.1038/s41377-024-01494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/01/2024] [Accepted: 05/24/2024] [Indexed: 07/19/2024]
Abstract
Laser pulse multiplication from an optical gain medium has shown great potential in miniaturizing integrated optoelectronic devices. Perovskite multiple quantum wells (MQWs) structures have recently been recognized as an effective gain media capable of doubling laser pulses that do not rely on external optical equipment. Although the light amplifications enabled with pulse doubling are reported based on the perovskite MQWs thin films, the micro-nanolasers possessed a specific cavity for laser pulse multiplication and their corresponding intrinsic laser dynamics are still inadequate. Herein, a single-mode double-pulsed nanolaser from self-assembled perovskite MQWs nanowires is realized, exhibiting a pulse duration of 28 ps and pulse interval of 22 ps based on single femtosecond laser pulse excitation. It is established that the continuous energy building up within a certain timescale is essential for the multiple population inversion in the gain medium, which arises from the slowing carrier localization process owning to the stronger exciton-phonon coupling in the smaller-n QWs. Therefore, the double-pulsed lasing is achieved from one fast energy funnel process from the adjacent small-n QWs to gain active region and another slow process from the spatially separated ones. This report may shed new light on the intrinsic energy relaxation mechanism and boost the further development of perovskite multiple-pulse lasers.
Collapse
Affiliation(s)
- Chunhu Zhao
- Hunan Provincial Key Laboratory of Carbon Neutrality and Intelligent Energy, School of Resource & Environment, Hunan University of Technology and Business, 410205, Changsha, China
- Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, 200241, Shanghai, China
| | - Jia Guo
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, 999078, Macau, China
| | - Jiahua Tao
- Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, 200241, Shanghai, China.
| | - Junhao Chu
- Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, 200241, Shanghai, China
| | - Shaoqiang Chen
- Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, 200241, Shanghai, China.
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, 999078, Macau, China.
| |
Collapse
|
21
|
Feng M, Kong L, Chen J, Ma H, Zha C, Zhang L. Band alignment engineering of 2D/3D halide perovskite lateral heterostructures. J Chem Phys 2024; 161:024703. [PMID: 38984962 DOI: 10.1063/5.0214887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
Two-dimensional (2D)/three-dimensional (3D) halide perovskite heterostructures have been extensively studied for their ability to combine the outstanding long-term stability of 2D perovskites with the superb optoelectronic properties of 3D perovskites. While current studies mostly focus on vertically stacked 2D/3D perovskite heterostructures, a theoretical understanding regarding the optoelectronic properties of 2D/3D perovskite lateral heterostructures is still lacking. Herein, we construct a series of 2D/3D perovskite lateral heterostructures to study their optoelectronic properties and interfacial charge transfer using density functional theory (DFT) calculations. We find that the band alignments of 2D/3D heterostructures can be regulated by varying the quantum-well thickness of 2D perovskites. Moreover, decreasing the 2D component ratio in 2D/3D heterostructures can be favorable to form type-I band alignment, whereas a large component ratio of 2D perovskites tends to form type-II band alignment. We can improve the amount of charge transfer at the 2D/3D perovskite interfaces and the light absorption of 2D perovskites by increasing quantum-well thickness. These present findings can provide a clear designing principle for achieving 3D/2D perovskite lateral heterostructures with tunable optoelectronic properties.
Collapse
Affiliation(s)
- Mengjia Feng
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Lingkun Kong
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Jinlian Chen
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Huifang Ma
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Chenyang Zha
- Institute of Applied Physics and Materials Engineering, Zhuhai UM Science & Technology Research Institute, University of Macau, Taipa 999078, Macau SAR, China
| | - Linghai Zhang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
22
|
Hong E, Li Z, Zhang X, Fan X, Fang X. Deterministic Fabrication and Quantum-Well Modulation of Phase-Pure 2D Perovskite Heterostructures for Encrypted Light Communication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400365. [PMID: 38752379 DOI: 10.1002/adma.202400365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/10/2024] [Indexed: 05/24/2024]
Abstract
Deterministic integration of phase-pure Ruddlesden-Popper (RP) perovskites has great significance for realizing functional optoelectronic devices. However, precise fabrications of artificial perovskite heterostructures with pristine interfaces and rational design over electronic structure configurations remain a challenge. Here, the controllable synthesis of large-area ultrathin single-crystalline RP perovskite nanosheets and the deterministic fabrication of arbitrary 2D vertical perovskite heterostructures are reported. The 2D heterostructures exhibit intriguing dual-peak emission phenomenon and dual-band photoresponse characteristic. Importantly, the interlayer energy transfer behaviors from wide-bandgap component to narrow-bandgap component modulated by comprising quantum wells are thoroughly revealed. Functional nanoscale photodetectors are further constructed based on the 2D heterostructures. Moreover, by combining the modulated dual-band photoresponse characteristic with double-beam irradiation modes, and introducing an encryption algorithm mechanism, a light communication system with high security and reliability is achieved. This work can greatly promote the development of heterogeneous integration technologies of 2D perovskites, and could provide a competitive candidate for advanced integrated optoelectronics.
Collapse
Affiliation(s)
- Enliu Hong
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Ziqing Li
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, P. R. China
| | - Xinyu Zhang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Xueshuo Fan
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
23
|
Duan J, Li J, Divitini G, Cortecchia D, Yuan F, You J, Liu SF, Petrozza A, Wu Z, Xi J. 2D Hybrid Perovskites: From Static and Dynamic Structures to Potential Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403455. [PMID: 38723249 DOI: 10.1002/adma.202403455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/29/2024] [Indexed: 05/22/2024]
Abstract
2D perovskites have received great attention recently due to their structural tunability and environmental stability, making them highly promising candidates for various applications by breaking property bottlenecks that affect established materials. However, in 2D perovskites, the complicated interplay between organic spacers and inorganic slabs makes structural analysis challenging to interpret. A deeper understanding of the structure-property relationship in these systems is urgently needed to enable high-performance tunable optoelectronic devices. Herein, this study examines how structural changes, from constant lattice distortion and variable structural evolution, modeled with both static and dynamic structural descriptors, affect macroscopic properties and ultimately device performance. The effect of chemical composition, crystallographic inhomogeneity, and mechanical-stress-induced static structural changes and corresponding electronic band variations is reported. In addition, the structure dynamics are described from the viewpoint of anharmonic vibrations, which impact electron-phonon coupling and the carriers' dynamic processes. Correlated carrier-matter interactions, known as polarons and acting on fine electronic structures, are then discussed. Finally, reliable guidelines to facilitate design to exploit structural features and rationally achieve breakthroughs in 2D perovskite applications are proposed. This review provides a global structural landscape of 2D perovskites, expected to promote the prosperity of these materials in emerging device applications.
Collapse
Affiliation(s)
- Jianing Duan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jingrui Li
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic Science and Engineering & International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Giorgio Divitini
- Electron Spectroscopy and Nanoscopy, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Daniele Cortecchia
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via Piero Gobetti 85, Bologna, 40129, Italy
- Center for Nano Science and Technology@Polimi, Istituto Italiano di Tecnologia, via Rubattino 81, Milano, 20134, Italy
| | - Fang Yuan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaxue You
- Department of Materials Science and Engineering, Hong Kong Institute for Clean Energy, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science & Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Annamaria Petrozza
- Center for Nano Science and Technology@Polimi, Istituto Italiano di Tecnologia, via Rubattino 81, Milano, 20134, Italy
| | - Zhaoxin Wu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jun Xi
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
24
|
Lee SJ, Kim J, Dey J, Jin KS, Choi SM. Nanoparticle Superlattices Driven by Linker-Mediated Covalent Bonding Interaction. J Phys Chem Lett 2024; 15:6691-6698. [PMID: 38899919 DOI: 10.1021/acs.jpclett.4c01469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The stability of the nanoparticle superlattice (NPSL) is essential for realizing its broad spectrum of potential applications. Here, we report a linker-mediated covalent bonding interaction method for the synthesis of highly stable NPSLs. Adipic acid is used as a linker molecule which connects two Au NPs functionalized with 6-mercaptohexanol through esterification reactions in the presence of H2SO4. As-prepared NPSLs are mostly fcc Wulff polyhedra with a fairly narrow size distribution and are highly stable in solvents of different polarities and pHs (0-14) as well as in dry conditions and at temperatures as high as 175 °C. The formation of NPSLs involves random homogeneous nucleation simultaneously accompanied by growth, a gradual change of the growth mode from reaction-controlled to diffusion-controlled with time, and the oriented attachments of small crystals. The size of the NPSL can be easily tuned by the concentration of linker molecules and the reaction temperature.
Collapse
Affiliation(s)
- Sang-Jo Lee
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jiwhan Kim
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jahar Dey
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sung-Min Choi
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
25
|
Ma X, Fang WH, Long R, Prezhdo OV. Compression of Organic Molecules Coupled with Hydrogen Bonding Extends the Charge Carrier Lifetime in BA 2SnI 4. J Am Chem Soc 2024; 146:16314-16323. [PMID: 38812460 DOI: 10.1021/jacs.4c05191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Two-dimensional (2D) metal halide perovskites, such as BA2SnI4 (BA═CH3(CH2)3NH3), exhibit an enhanced charge carrier lifetime in experiments under strain. Experiments suggest that significant compression of the BA molecule, rather than of the inorganic lattice, contributes to this enhancement. To elucidate the underlying physical mechanism, we apply a moderate compressive strain to the entire system and subsequently introduce significant compression to the BA molecules. We then perform ab initio nonadiabatic molecular dynamics simulations of nonradiative electron-hole recombination. We observe that the overall lattice compression reduces atomic motions and decreases nonadiabatic coupling, thereby delaying electron-hole recombination. Additionally, compression of the BA molecules enhances hydrogen bonding between the BA molecules and iodine atoms, which lengthens the Sn-I bonds, distorts the [SnI6]4- octahedra, and suppresses atomic motions further, thus reducing nonadiabatic coupling. Also, the elongated Sn-I bonds and weakened antibonding interactions increase the band gap. Altogether, the compression delays the nonradiative electron-hole recombination by more than a factor of 3. Our simulations provide new and valuable physical insights into how compressive strain, accommodated primarily by the organic ligands, positively influences the optoelectronic properties of 2D layered halide perovskites, offering a promising pathway for further performance improvements.
Collapse
Affiliation(s)
- Xinbo Ma
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Oleg V Prezhdo
- University of Southern California, Los Angeles, California 90007, United States
| |
Collapse
|
26
|
Yan W, Li C, Peng C, Tan S, Zhang J, Jiang H, Xin F, Yue F, Zhou Z. Hot-Carrier Cooling Regulation for Mixed Sn-Pb Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312170. [PMID: 38245819 DOI: 10.1002/adma.202312170] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/11/2024] [Indexed: 01/22/2024]
Abstract
The rapid relaxation of hot carriers leads to energy loss in the form of heat and consequently restricts the theoretical efficiency of single-junction solar cells; However, this issue has not received much attention in tin-lead perovskites solar cells. Herein, tin(II) oxalate (SnC2O4) is introduced into tin-lead perovskite precursor solution to regulate hot-carrier cooling dynamics. The addition of SnC2O4 increases the length of carrier diffusion, extends the lifetime of carriers, and simultaneously slows down the cooling rate of carriers. Furthermore, SnC2O4 can bond with uncoordinated Sn2+ and Pb2+ ions to regulate the crystallization of perovskite and enable large grains. The strongly reducing properties of the C2O4 2- can inhibit the oxidation of Sn2+ to Sn4+ and minimize the formation of Sn vacancies in the resulting perovskite films. Additionally, as a substitute for tin(II) fluoride, the introduction of SnC2O4 avoids the carrier transport issues caused by the aggregation of F- ions at the interface. As a result, the SnC2O4-treated Sn-Pb cells show a champion efficiency of 23.36%, as well as 27.56% for the all-perovskite tandem solar cells. Moreover, the SnC2O4-treated devices show excellent long-term stability. This finding is expected to pave the way toward stable and highly efficient all-perovskite tandem solar cells.
Collapse
Affiliation(s)
- Wenjian Yan
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chongwen Li
- Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Cheng Peng
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shuchen Tan
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jiakang Zhang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Haokun Jiang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Feifei Xin
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Fang Yue
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhongmin Zhou
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
27
|
Min H, Wang N, Chen N, Tong Y, Wang Y, Wang J, Liu J, Wang S, Wu X, Yang P, Shi H, Zhuo C, Chen Q, Li J, Zhang D, Lu X, Zhu C, Peng Q, Zhu L, Chang J, Huang W, Wang J. Spin coating epitaxial heterodimensional tin perovskites for light-emitting diodes. NATURE NANOTECHNOLOGY 2024; 19:632-637. [PMID: 38216685 DOI: 10.1038/s41565-023-01588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/29/2023] [Indexed: 01/14/2024]
Abstract
Environmentally friendly tin (Sn) perovskites have received considerable attention due to their great potential for replacing their toxic lead counterparts in applications of photovoltaics and light-emitting diodes (LEDs). However, the device performance of Sn perovskites lags far behind that of lead perovskites, and the highest reported external quantum efficiencies of near-infrared Sn perovskite LEDs are below 10%. The poor performance stems mainly from the numerous defects within Sn perovskite crystallites and grain boundaries, leading to serious non-radiative recombination. Various epitaxy methods have been introduced to obtain high-quality perovskites, although their sophisticated processes limit the scalable fabrication of functional devices. Here we demonstrate that epitaxial heterodimensional Sn perovskite films can be fabricated using a spin-coating process, and efficient LEDs with an external quantum efficiency of 11.6% can be achieved based on these films. The film is composed of a two-dimensional perovskite layer and a three-dimensional perovskite layer, which is highly ordered and has a well-defined interface with minimal interfacial areas between the different dimensional perovskites. This unique nanostructure is formed through direct spin coating of the perovskite precursor solution with tryptophan and SnF2 additives onto indium tin oxide glass. We believe that our approach will provide new opportunities for further developing high-performance optoelectronic devices based on heterodimensional perovskites.
Collapse
Affiliation(s)
- Hao Min
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Nana Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Nana Chen
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Yunfang Tong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Yujiao Wang
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Jiaqi Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Jinglong Liu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Saixue Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Xiao Wu
- Department of Physics, The Chinese University of Hong Kong, Hong Kong, China
| | - Pinghui Yang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Haokun Shi
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Chunxue Zhuo
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Qi Chen
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Jingwei Li
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Daliang Zhang
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, Hong Kong, China
| | - Chao Zhu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, China
| | - Qiming Peng
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Lin Zhu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Jin Chang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China.
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China.
- Shaanxi Institute of Flexible Electronics (SIFE), Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, China.
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, China.
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, China.
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China.
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, China.
- Changzhou University, Changzhou, China.
| |
Collapse
|
28
|
Gao JX, Ng YS, Cheng H, Wang HQ, Lü TY, Zheng JC. Local symmetry-driven interfacial magnetization and electronic states in (ZnO) n/(w-FeO) n superlattices. Phys Chem Chem Phys 2024; 26:12084-12096. [PMID: 38586994 DOI: 10.1039/d4cp00481g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Superlattices constructed with the wide-band-gap semiconductor ZnO and magnetic oxide FeO, both in the wurtzite structure, have been investigated using spin-polarized first-principles calculations. The structural, electronic and magnetic properties of the (ZnO)n/(w-FeO)n superlattices were studied in great detail. Two different interfaces in the (ZnO)n/(w-FeO)n superlattices were identified and they showed very different magnetic and electronic properties. Local symmetry-driven interfacial magnetization and electronic states can arise from different Fe/Zn distributions at different interfaces or spin ordering of Fe in the superlattice. The local symmetry-driven interfacial magnetization and electronic states, originating either from different Fe/Zn distribution across interfaces I and II, or by spin ordering of Fe in the superlattice, can be identified. It was also found that, in the case of the ferromagnetic phase, the electrons are more delocalized for the majority spin but strongly localized for the minority spin, which resulted in interesting spin-dependent transport properties. Our results will pave the way for designing novel spin-dependent electronic devices through the construction of superlattices from semiconductors and multiferroics.
Collapse
Affiliation(s)
- Jia-Xin Gao
- Engineering Research Center of Micro-nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, and Department of Physics, Xiamen University, Xiamen 361005, China.
| | - Yi Sheng Ng
- Department of New Energy Science and Engineering, Xiamen University Malaysia, Sepang 43900, Malaysia
| | - Hao Cheng
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hui-Qiong Wang
- Engineering Research Center of Micro-nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, and Department of Physics, Xiamen University, Xiamen 361005, China.
- Department of New Energy Science and Engineering, Xiamen University Malaysia, Sepang 43900, Malaysia
| | - Tie-Yu Lü
- Engineering Research Center of Micro-nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, and Department of Physics, Xiamen University, Xiamen 361005, China.
| | - Jin-Cheng Zheng
- Engineering Research Center of Micro-nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, and Department of Physics, Xiamen University, Xiamen 361005, China.
- Department of New Energy Science and Engineering, Xiamen University Malaysia, Sepang 43900, Malaysia
| |
Collapse
|
29
|
Hu S, Thiesbrummel J, Pascual J, Stolterfoht M, Wakamiya A, Snaith HJ. Narrow Bandgap Metal Halide Perovskites for All-Perovskite Tandem Photovoltaics. Chem Rev 2024; 124:4079-4123. [PMID: 38527274 PMCID: PMC11009966 DOI: 10.1021/acs.chemrev.3c00667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024]
Abstract
All-perovskite tandem solar cells are attracting considerable interest in photovoltaics research, owing to their potential to surpass the theoretical efficiency limit of single-junction cells, in a cost-effective sustainable manner. Thanks to the bandgap-bowing effect, mixed tin-lead (Sn-Pb) perovskites possess a close to ideal narrow bandgap for constructing tandem cells, matched with wide-bandgap neat lead-based counterparts. The performance of all-perovskite tandems, however, has yet to reach its efficiency potential. One of the main obstacles that need to be overcome is the─oftentimes─low quality of the mixed Sn-Pb perovskite films, largely caused by the facile oxidation of Sn(II) to Sn(IV), as well as the difficult-to-control film crystallization dynamics. Additional detrimental imperfections are introduced in the perovskite thin film, particularly at its vulnerable surfaces, including the top and bottom interfaces as well as the grain boundaries. Due to these issues, the resultant device performance is distinctly far lower than their theoretically achievable maximum efficiency. Robust modifications and improvements to the surfaces of mixed Sn-Pb perovskite films are therefore critical for the advancement of the field. This Review describes the origins of imperfections in thin films and covers efforts made so far toward reaching a better understanding of mixed Sn-Pb perovskites, in particular with respect to surface modifications that improved the efficiency and stability of the narrow bandgap solar cells. In addition, we also outline the important issues of integrating the narrow bandgap subcells for achieving reliable and efficient all-perovskite double- and multi-junction tandems. Future work should focus on the characterization and visualization of the specific surface defects, as well as tracking their evolution under different external stimuli, guiding in turn the processing for efficient and stable single-junction and tandem solar cell devices.
Collapse
Affiliation(s)
- Shuaifeng Hu
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, United
Kingdom
- Institute
for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Jarla Thiesbrummel
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, United
Kingdom
- Institute
for Physics and Astronomy, University of
Potsdam,14476 Potsdam-Golm, Germany
| | - Jorge Pascual
- Institute
for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Polymat, University of the
Basque Country UPV/EHU, 20018 Donostia-San
Sebastian, Spain
| | - Martin Stolterfoht
- Institute
for Physics and Astronomy, University of
Potsdam,14476 Potsdam-Golm, Germany
- Electronic
Engineering Department, The Chinese University
of Hong Kong, Hong Kong 999077, SAR China
| | - Atsushi Wakamiya
- Institute
for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Henry J. Snaith
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, United
Kingdom
| |
Collapse
|
30
|
Su J, Chen G, Ma C, Zhang Q, Li X, Geng Y, Jia B, Luo H, Liu D. A Metastructure Based on Amorphous Carbon for High Efficiency and Selective Solar Absorption. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:580. [PMID: 38607115 PMCID: PMC11013282 DOI: 10.3390/nano14070580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
Efficient solar thermal conversion is crucial for renewable clean energy technologies such as solar thermal power generation, solar thermophotovoltaic and seawater desalination. To maximize solar energy conversion efficiency, a solar selective absorber with tailored absorption properties designed for solar applications is indispensable. In this study, we propose a broadband selective absorber based on amorphous carbon (a-C) metamaterials that achieves high absorption in the ultraviolet (UV), visible (Vis) and near-infrared (NIR) spectral ranges. Additionally, through metal doping, the optical properties of carbon matrix materials can be modulated. We introduce Ti@a-C thin film into the nanostructure to enhance light absorption across most of the solar spectrum, particularly in the NIR wavelength band, which is essential for improving energy utilization. The impressive solar absorptivity and photothermal conversion efficiency reach 97.8% and 95.6%, respectively. Notably, these superior performances are well-maintained even at large incident angles with different polarized states. These findings open new avenues for the application of a-C matrix materials, especially in fields related to solar energy harvesting.
Collapse
Affiliation(s)
- Junli Su
- Shanghai Key Laboratory of Optical Coatings and Spectral Modulation, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; (J.S.); (G.C.); (C.M.); (Q.Z.); (X.L.); (Y.G.); (B.J.)
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Gang Chen
- Shanghai Key Laboratory of Optical Coatings and Spectral Modulation, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; (J.S.); (G.C.); (C.M.); (Q.Z.); (X.L.); (Y.G.); (B.J.)
| | - Chong Ma
- Shanghai Key Laboratory of Optical Coatings and Spectral Modulation, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; (J.S.); (G.C.); (C.M.); (Q.Z.); (X.L.); (Y.G.); (B.J.)
| | - Qiuyu Zhang
- Shanghai Key Laboratory of Optical Coatings and Spectral Modulation, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; (J.S.); (G.C.); (C.M.); (Q.Z.); (X.L.); (Y.G.); (B.J.)
| | - Xingyu Li
- Shanghai Key Laboratory of Optical Coatings and Spectral Modulation, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; (J.S.); (G.C.); (C.M.); (Q.Z.); (X.L.); (Y.G.); (B.J.)
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Yujia Geng
- Shanghai Key Laboratory of Optical Coatings and Spectral Modulation, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; (J.S.); (G.C.); (C.M.); (Q.Z.); (X.L.); (Y.G.); (B.J.)
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Bojie Jia
- Shanghai Key Laboratory of Optical Coatings and Spectral Modulation, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; (J.S.); (G.C.); (C.M.); (Q.Z.); (X.L.); (Y.G.); (B.J.)
| | - Haihan Luo
- Shanghai Key Laboratory of Optical Coatings and Spectral Modulation, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; (J.S.); (G.C.); (C.M.); (Q.Z.); (X.L.); (Y.G.); (B.J.)
- School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dingquan Liu
- Shanghai Key Laboratory of Optical Coatings and Spectral Modulation, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; (J.S.); (G.C.); (C.M.); (Q.Z.); (X.L.); (Y.G.); (B.J.)
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
- School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Wang YY, Kang HY, Zhang SY, Qu H, Zhu L, Zhao D, Li XF, Lei XW, Yue CY. Exploring 0D lead-free metal halide with highly efficient blue light emission and high-sensitivity photodetection. Chem Commun (Camb) 2024; 60:2784-2787. [PMID: 38362615 DOI: 10.1039/d3cc06010a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Environmentally friendly and highly efficient blue luminescent materials are an unremitting pursuit in the optoelectronic field. Herein, we assembled a new 0D lead-free metal halide of (F-PPA)ZnBr4, which exhibits narrow blue light emission with a remarkable PLQY of 50.15%, high stability and high detection sensitivity toward UV light. These results indicate the potential for the application of low-dimensional zinc-based halides in multiple optoelectronic devices.
Collapse
Affiliation(s)
- Yu-Yin Wang
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong, 273155, P. R. China.
| | - Huai-Yuan Kang
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong, 273155, P. R. China.
| | - Shao-Ya Zhang
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong, 273155, P. R. China.
| | - Hao Qu
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong, 273155, P. R. China.
| | - Lin Zhu
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong, 273155, P. R. China.
| | - Dan Zhao
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong, 273155, P. R. China.
| | - Xian-Feng Li
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Xiao-Wu Lei
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong, 273155, P. R. China.
| | - Cheng-Yang Yue
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong, 273155, P. R. China.
| |
Collapse
|
32
|
Huang H, Wang J, Liu Y, Zhao M, Zhang N, Hu Y, Fan F, Feng J, Li Z, Zou Z. Stacking textured films on lattice-mismatched transparent conducting oxides via matched Voronoi cell of oxygen sublattice. NATURE MATERIALS 2024; 23:383-390. [PMID: 38062169 DOI: 10.1038/s41563-023-01746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 10/31/2023] [Indexed: 12/24/2023]
Abstract
Transparent conducting oxides are a critical component in modern (opto)electronic devices and solar energy conversion systems, and forming textured functional films on them is highly desirable for property manipulation and performance optimization. However, technologically important materials show varied crystal structures, making it difficult to establish coherent interfaces and consequently the oriented growth of these materials on transparent conducting oxides. Here, taking lattice-mismatched hexagonal α-Fe2O3 and tetragonal fluorine-doped tin oxide as the example, atomic-level investigations reveal that a coherent ordered structure forms at their interface, and via an oxygen-mediated dimensional and chemical-matching manner, that is, matched Voronoi cells of oxygen sublattices, [110]-oriented α-Fe2O3 films develop on fluorine-doped tin oxide. Further measurements of charge transport characteristics and photoelectronic effects highlight the importance and advantages of coherent interfaces and well-defined orientation in textured α-Fe2O3 films. Textured growth of lattice-mismatched oxides, including spinel Co3O4, fluorite CeO2, perovskite BiFeO3 and even halide perovskite Cs2AgBiBr6, on fluorine-doped tin oxide is also achieved, offering new opportunities to develop high-performance transparent-conducting-oxide-supported devices.
Collapse
Affiliation(s)
- Huiting Huang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Jun Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, People's Republic of China
- Jiangsu Key Laboratory for Nano Technology, School of Physics, Nanjing University, Nanjing, People's Republic of China
| | - Yong Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China
| | - Minyue Zhao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Ningsi Zhang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Yingfei Hu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, People's Republic of China
- Jiangsu Key Laboratory for Nano Technology, School of Physics, Nanjing University, Nanjing, People's Republic of China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China
| | - Jianyong Feng
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, People's Republic of China.
| | - Zhaosheng Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, People's Republic of China.
- Jiangsu Key Laboratory for Nano Technology, School of Physics, Nanjing University, Nanjing, People's Republic of China.
| | - Zhigang Zou
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, People's Republic of China
- Jiangsu Key Laboratory for Nano Technology, School of Physics, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
33
|
Dudipala KR, Le T, Nie W, Hoye RLZ. Halide Perovskites and Their Derivatives for Efficient, High-Resolution Direct Radiation Detection: Design Strategies and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304523. [PMID: 37726105 PMCID: PMC11475525 DOI: 10.1002/adma.202304523] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/03/2023] [Indexed: 09/21/2023]
Abstract
The past decade has witnessed a rapid rise in the performance of optoelectronic devices based on lead-halide perovskites (LHPs). The large mobility-lifetime products and defect tolerance of these materials, essential for optoelectronics, also make them well-suited for radiation detectors, especially given the heavy elements present, which is essential for strong X-ray and γ-ray attenuation. Over the past decade, LHP thick films, wafers, and single crystals have given rise to direct radiation detectors that have outperformed incumbent technologies in terms of sensitivity (reported values up to 3.5 × 106 µC Gyair -1 cm-2 ), limit of detection (directly measured values down to 1.5 nGyair s-1 ), along with competitive energy and imaging resolution at room temperature. At the same time, lead-free perovskite-inspired materials (e.g., methylammonium bismuth iodide), which have underperformed in solar cells, have recently matched and, in some areas (e.g., in polarization stability), surpassed the performance of LHP detectors. These advances open up opportunities to achieve devices for safer medical imaging, as well as more effective non-invasive analysis for security, nuclear safety, or product inspection applications. Herein, the principles behind the rapid rises in performance of LHP and perovskite-inspired material detectors, and how their properties and performance link with critical applications in non-invasive diagnostics are discussed. The key strategies to engineer the performance of these materials, and the important challenges to overcome to commercialize these new technologies are also discussed.
Collapse
Affiliation(s)
| | - Thanh‐Hai Le
- Center for Integrated NanotechnologiesLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Wanyi Nie
- Center for Integrated NanotechnologiesLos Alamos National LaboratoryLos AlamosNM87545USA
| | | |
Collapse
|
34
|
Li P, Zhang J, Hayashi H, Yue J, Li W, Yang C, Sun C, Shi J, Huberman-Shlaes J, Hibino N, Tian B. Monolithic silicon for high spatiotemporal translational photostimulation. Nature 2024; 626:990-998. [PMID: 38383782 PMCID: PMC11646366 DOI: 10.1038/s41586-024-07016-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/02/2024] [Indexed: 02/23/2024]
Abstract
Electrode-based electrical stimulation underpins several clinical bioelectronic devices, including deep-brain stimulators1,2 and cardiac pacemakers3. However, leadless multisite stimulation is constrained by the technical difficulties and spatial-access limitations of electrode arrays. Optogenetics offers optically controlled random access with high spatiotemporal capabilities, but clinical translation poses challenges4-6. Here we show tunable spatiotemporal photostimulation of cardiac systems using a non-genetic platform based on semiconductor-enabled biomodulation interfaces. Through spatiotemporal profiling of photoelectrochemical currents, we assess the magnitude, precision, accuracy and resolution of photostimulation in four leadless silicon-based monolithic photoelectrochemical devices. We demonstrate the optoelectronic capabilities of the devices through optical overdrive pacing of cultured cardiomyocytes (CMs) targeting several regions and spatial extents, isolated rat hearts in a Langendorff apparatus, in vivo rat hearts in an ischaemia model and an in vivo mouse heart model with transthoracic optical pacing. We also perform the first, to our knowledge, optical override pacing and multisite pacing of a pig heart in vivo. Our systems are readily adaptable for minimally invasive clinical procedures using our custom endoscopic delivery device, with which we demonstrate closed-thoracic operations and endoscopic optical stimulation. Our results indicate the clinical potential of the leadless, lightweight and multisite photostimulation platform as a pacemaker in cardiac resynchronization therapy (CRT), in which lead-placement complications are common.
Collapse
Affiliation(s)
- Pengju Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Jing Zhang
- The James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Hidenori Hayashi
- Section of Cardiac Surgery, Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Jiping Yue
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Wen Li
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Chuanwang Yang
- The James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Changxu Sun
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Jiuyun Shi
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | | | - Narutoshi Hibino
- Section of Cardiac Surgery, Department of Surgery, The University of Chicago, Chicago, IL, USA.
| | - Bozhi Tian
- The James Franck Institute, The University of Chicago, Chicago, IL, USA.
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
35
|
Lu H, Long R. Nonadiabatic Molecular Dynamics with Non-Condon Effect of Charge Carrier Dynamics. J Am Chem Soc 2024; 146:1167-1173. [PMID: 38127733 DOI: 10.1021/jacs.3c12687] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Nonradiative multiphonon transitions play a crucial role in understanding charge carrier dynamics. To capture the non-Condon effect in nonadiabatic molecular dynamics (NA-MD), we develop a simple and accurate method to calculate noncrossing and crossing k-point NA coupling in momentum space on an equal footing and implement it with a trajectory surface hopping algorithm. Multiple k-point MD trajectories can provide sufficient nonzero momentum multiphonons coupled to electrons, and the momentum conservation is maintained during nonvertical electron transition. The simulations of indirect bandgap transition in silicon and intra- and intervalley transitions in graphene show that incorporation of the non-Condon effect is needed to correctly depict these types of charge dynamics. In particular, a hidden process is responsible for the delayed nonradiative electron-hole recombination in silicon: the thermal-assisted rapid trapping of an excited electron at the conduction band minimum by a long-lived higher energy state through a nonvertical transition extends charge carrier lifetime, approaching 1 ns, which is about 1.5 times slower than the direct bandgap recombination. For graphene, intervalley scattering takes place within about 225 fs, which can occur only when the intravalley relaxation proceeds to about 50 fs to gain enough phonon momentum. The intra- and intervalley scattering constitute energy relaxation, which completes within sub-500 fs. All the simulated time scales are in excellent agreement with experiments. The study establishes the underlying mechanisms for a long-lived charge carrier in silicon and valley scattering in graphene and underscores the robustness of the non-Condon approximation NA-MD method, which is suitable for rigid, soft, and large defective systems.
Collapse
Affiliation(s)
- Haoran Lu
- College of Chemistry and Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Run Long
- College of Chemistry and Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
36
|
Gao Z, Leng C, Zhao H, Wei X, Shi H, Xiao Z. The Electrical Behaviors of Grain Boundaries in Polycrystalline Optoelectronic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304855. [PMID: 37572037 DOI: 10.1002/adma.202304855] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/18/2023] [Indexed: 08/14/2023]
Abstract
Polycrystalline optoelectronic materials are widely used for photoelectric signal conversion and energy harvesting and play an irreplaceable role in the semiconductor field. As an important factor in determining the optoelectronic properties of polycrystalline materials, grain boundaries (GBs) are the focus of research. Particular emphases are placed on the generation and height of GB barriers, how carriers move at GBs, whether GBs act as carrier transport channels or recombination sites, and how to change the device performance by altering the electrical behaviors of GBs. This review introduces the evolution of GB theory and experimental observation history, classifies GB electrical behaviors from the perspective of carrier dynamics, and summarizes carrier transport state under external conditions such as bias and illumination and the related band bending. Then the carrier scattering at GBs and the electrical differences between GBs and twin boundaries are discussed. Last, the review describes how the electrical behaviors of GBs can be influenced and modified by treatments such as passivation or by consciously adjusting the distribution of grain boundary elements. By studying the carrier dynamics and the relevant electrical behaviors of GBs in polycrystalline materials, researchers can develop optoelectronics with higher performance.
Collapse
Affiliation(s)
- Zheng Gao
- Research Center for Quantum Information, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Research Center for Nanofabrication and System Integration, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Chongqian Leng
- Research Center for Nanofabrication and System Integration, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Hongquan Zhao
- Research Center for Quantum Information, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xingzhan Wei
- Research Center for Nanofabrication and System Integration, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Haofei Shi
- Research Center for Nanofabrication and System Integration, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Zeyun Xiao
- Research Center for Quantum Information, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
- Research Center for Thin Film Solar Cells, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| |
Collapse
|
37
|
Oddo AM, Gao M, Weinberg D, Jin J, Folgueras MC, Song C, Ophus C, Mani T, Rabani E, Yang P. Energy Funneling in a Noninteger Two-Dimensional Perovskite. NANO LETTERS 2023; 23:11469-11476. [PMID: 38060980 DOI: 10.1021/acs.nanolett.3c03058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Energy funneling is a phenomenon that has been exploited in optoelectronic devices based on low-dimensional materials to improve their performance. Here, we introduce a new class of two-dimensional semiconductor, characterized by multiple regions of varying thickness in a single confined nanostructure with homogeneous composition. This "noninteger 2D semiconductor" was prepared via the structural transformation of two-octahedron-layer-thick (n = 2) 2D cesium lead bromide perovskite nanosheets; it consisted of a central n = 2 region surrounded by edge-lying n = 3 regions, as imaged by electron microscopy. Thicker noninteger 2D CsPbBr3 nanostructures were obtained as well. These noninteger 2D perovskites formed a laterally coupled quantum well band alignment with virtually no strain at the interface and no dielectric barrier, across which unprecedented intramaterial funneling of the photoexcitation energy was observed from the thin to the thick regions using time-resolved absorption and photoluminescence spectroscopy.
Collapse
Affiliation(s)
- Alexander M Oddo
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mengyu Gao
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Daniel Weinberg
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jianbo Jin
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Maria C Folgueras
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Chengyu Song
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Colin Ophus
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tomoyasu Mani
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Eran Rabani
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| |
Collapse
|
38
|
Chen J, Lou YH, Wang ZK. Characterizing Spatial and Energetic Distributions of Trap States Toward Highly Efficient Perovskite Photovoltaics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305064. [PMID: 37635401 DOI: 10.1002/smll.202305064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/15/2023] [Indexed: 08/29/2023]
Abstract
Due to their greater opt electric performance, perovskite photovoltaics (PVs) present huge potential to be commercialized. Perovskite PV's high theoretical efficiency expands the available development area. The passivation of defects in perovskite films is crucial for approaching the theoretical limit. In addition to creating efficient passivation techniques, it is essential to direct the passivation approach by getting precise and real-time information on the trap states through measurements. Therefore, it is necessary to establish quantitative characterization methods for the trap states in energy and 3D spaces. The authors cover the characterization of the spatial and energy distributions of trap states in this article with an eye toward high-efficiency perovskite photovoltaics. After going over the strategies that have been created for characterizing and evaluating trap states, the authors will concentrate on how to direct the creative development of characterization techniques for trap states assessment and highlight the opportunities and challenges of future development. The 3D space and energy distribution mappings of trap states are anticipated to be realized. The review will give key guiding importance for further approaching the theoretical efficiency of perovskite photovoltaics, offering some future research direction and technological assistance for the development of appropriate targeted passivation technologies.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yan-Hui Lou
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou, 215006, China
| | - Zhao-Kui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
39
|
Zhang W, Sui P, Zheng W, Li L, Wang S, Huang P, Zhang W, Zhang Q, Yu Y, Chen X. Pseudo-2D Layered Organic-Inorganic Manganese Bromide with a Near-Unity Photoluminescence Quantum Yield for White Light-Emitting Diode and X-Ray Scintillator. Angew Chem Int Ed Engl 2023; 62:e202309230. [PMID: 37747789 DOI: 10.1002/anie.202309230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 09/26/2023]
Abstract
Eco-friendly lead-free organic-inorganic manganese halides (OIMHs) have attracted considerable attention in various optoelectronic applications because of their superior optical properties and flexible solution processibility. Herein, we report a novel pseudo-2D layered OIMH (MTP)2 MnBr4 (MTP: methyltriphenylphosphonium), which exhibits intense green emission under UV/blue or X-ray excitation, with a near-unity photoluminescence quantum yield, high resistance to thermal quenching (I150 °C =84.1 %) and good photochemical stability. These features enable (MTP)2 MnBr4 as an efficient green phosphor for blue-converted white light-emitting diodes, demonstrating a commercial-level luminous efficiency of 101 lm W-1 and a wide color gamut of 116 % NTSC. Moreover, these (MTP)2 MnBr4 crystals showcase outstanding X-ray scintillation properties, delivering a light yield of 67000 photon MeV-1 , a detection limit of 82.4 nGy s-1 , and a competitive spatial resolution of 6.2 lp mm-1 for X-ray imaging. This work presents a new avenue for the exploration of eco-friendly luminescent OIMHs towards multifunctional light-emitting applications.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Advanced Materials Technologies and International (Hongkong, Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, 350108, Fuzhou, Fujian, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Ping Sui
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Wei Zheng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, Fujian, China
| | - Lingyun Li
- Key Laboratory of Advanced Materials Technologies and International (Hongkong, Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, 350108, Fuzhou, Fujian, China
| | - Shuaihua Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, Fujian, China
| | - Ping Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, Fujian, China
| | - Wen Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Qi Zhang
- Key Laboratory of Advanced Materials Technologies and International (Hongkong, Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, 350108, Fuzhou, Fujian, China
| | - Yan Yu
- Key Laboratory of Advanced Materials Technologies and International (Hongkong, Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, 350108, Fuzhou, Fujian, China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, Fujian, China
| |
Collapse
|
40
|
Guo L, Qi Y, Wu Z, Yang X, Yan G, Cong R, Zhao L, Zhang W, Wang S, Pan C, Yang Z. A Self-Powered UV Photodetector With Ultrahigh Responsivity Based on 2D Perovskite Ferroelectric Films With Mixed Spacer Cations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301705. [PMID: 37683840 DOI: 10.1002/adma.202301705] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/30/2023] [Indexed: 09/10/2023]
Abstract
Self-powered photodetectors (PDs) have the advantages of no external power requirement, wireless operation, and long life. Spontaneous ferroelectric polarizations can significantly increase built-in electric field intensity, showing great potential in self-powered photodetection. Moreover, ferroelectrics possess pyroelectric and piezoelectric properties, beneficial for enhancing self-powered PDs. 2D metal halide perovskites (MHPs), which have ferroelectric properties, are suitable for fabricating high-performance self-powered PDs. However, the research on 2D metal halide perovskites ferroelectrics focuses on growing bulk crystals. Herein, 2D ferroelectric perovskite films with mixed spacer cations for self-powered PDs are demonstrated by mixing Ruddlesden-Popper (RP)-type and Dion-Jacobson (DJ)-type perovskite. The (BDA0.7 (BA2 )0.3 )(EA)2 Pb3 Br10 film possesses, overall, the best film qualities with the best crystalline quality, lowest trap density, good phase purity, and obvious ferroelectricity. Based on the ferro-pyro-phototronic effect, the PD at 360 nm exhibits excellent photoelectric properties, with an ultrahigh peak responsivity greater than 93 A W-1 and a detectivity of 2.5 × 1015 Jones, together with excellent reproducibility and stability. The maximum responsivities can be modulated by piezo-phototronic effect with an effective enhancement ratio of 480%. This work will open up a new route of designing MHP ferroelectric films for high-performance PDs and offers the opportunity to utilize it for various optoelectronics applications.
Collapse
Affiliation(s)
- Linjuan Guo
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
| | - Yaqian Qi
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Zihao Wu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Xiaoran Yang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Guoying Yan
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Ridong Cong
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Lei Zhao
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Wei Zhang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Shufang Wang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
| | - Zheng Yang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
| |
Collapse
|
41
|
Han D, Wang J, Agosta L, Zang Z, Zhao B, Kong L, Lu H, Mosquera-Lois I, Carnevali V, Dong J, Zhou J, Ji H, Pfeifer L, Zakeeruddin SM, Yang Y, Wu B, Rothlisberger U, Yang X, Grätzel M, Wang N. Tautomeric mixture coordination enables efficient lead-free perovskite LEDs. Nature 2023; 622:493-498. [PMID: 37557914 DOI: 10.1038/s41586-023-06514-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Lead halide perovskite light-emitting diodes (PeLEDs) have demonstrated remarkable optoelectronic performance1-3. However, there are potential toxicity issues with lead4,5 and removing lead from the best-performing PeLEDs-without compromising their high external quantum efficiencies-remains a challenge. Here we report a tautomeric-mixture-coordination-induced electron localization strategy to stabilize the lead-free tin perovskite TEA2SnI4 (TEAI is 2-thiopheneethylammonium iodide) by incorporating cyanuric acid. We demonstrate that a crucial function of the coordination is to amplify the electronic effects, even for those Sn atoms that aren't strongly bonded with cyanuric acid owing to the formation of hydrogen-bonded tautomeric dimer and trimer superstructures on the perovskite surface. This electron localization weakens adverse effects from Anderson localization and improves ordering in the crystal structure of TEA2SnI4. These factors result in a two-orders-of-magnitude reduction in the non-radiative recombination capture coefficient and an approximately twofold enhancement in the exciton binding energy. Our lead-free PeLED has an external quantum efficiency of up to 20.29%, representing a performance comparable to that of state-of-the-art lead-containing PeLEDs6-12. We anticipate that these findings will provide insights into the stabilization of Sn(II) perovskites and further the development of lead-free perovskite applications.
Collapse
Affiliation(s)
- Dongyuan Han
- College of Physics, Jilin University, Changchun, China
| | - Jie Wang
- College of Physics, Jilin University, Changchun, China
| | - Lorenzo Agosta
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ziang Zang
- College of Physics, Jilin University, Changchun, China
| | - Bin Zhao
- College of Physics, Jilin University, Changchun, China
| | - Lingmei Kong
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, China
| | - Haizhou Lu
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Key Laboratory of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, China.
| | - Irea Mosquera-Lois
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Virginia Carnevali
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jianchao Dong
- College of Physics, Jilin University, Changchun, China
| | - Jianheng Zhou
- College of Physics, Jilin University, Changchun, China
| | - Huiyu Ji
- College of Physics, Jilin University, Changchun, China
| | - Lukas Pfeifer
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Shaik M Zakeeruddin
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yingguo Yang
- Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- School of Microelectronics, Fudan University, Shanghai, China
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, China.
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Ning Wang
- College of Physics, Jilin University, Changchun, China.
| |
Collapse
|
42
|
Zhou B, Qi Z, Dai M, Xing C, Yan D. Ultralow-loss Optical Waveguides through Balancing Deep-Blue TADF and Orange Room Temperature Phosphorescence in Hybrid Antimony Halide Microstructures. Angew Chem Int Ed Engl 2023; 62:e202309913. [PMID: 37574452 DOI: 10.1002/anie.202309913] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Harnessing the potential of thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) is crucial for developing light-emitting diodes (LEDs), lasers, sensors, and many others. However, effective strategies in this domain are still relatively scarce. This study presents a new approach to achieving highly efficient deep-blue TADF (with a PLQY of 25 %) and low-energy orange RTP (with a PLQY of 90 %) through the fabrication of lead-free hybrid halides. This new class of monomeric and dimeric 0D antimony halides can be facilely synthesized using a bottom-up solution process, requiring only a few seconds to minutes, which offer exceptional stability and nontoxicity. By leveraging the highly adaptable molecular arrangement and crystal packing modes, the hybrid antimony halides demonstrate the ability to self-assemble into regular 1D microrod and 2D microplate morphologies. This self-assembly is facilitated by multiple non-covalent interactions between the inorganic cores and organic shells. Notably, these microstructures exhibit outstanding polarized luminescence and function as low-dimensional optical waveguides with remarkably low optical-loss coefficients. Therefore, this work not only presents a pioneering demonstration of deep-blue TADF in hybrid antimony halides, but also introduces 1D and 2D micro/nanostructures that hold promising potential for applications in white LEDs and low-dimensional photonic systems.
Collapse
Affiliation(s)
- Bo Zhou
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zhenhong Qi
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Meiqi Dai
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Chang Xing
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
43
|
Xu W, Liu J, Dong B, Huang J, Shi H, Xue X, Liu M. Atomic-scale imaging of ytterbium ions in lead halide perovskites. SCIENCE ADVANCES 2023; 9:eadi7931. [PMID: 37656785 PMCID: PMC10854428 DOI: 10.1126/sciadv.adi7931] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
Lanthanide-doped lead halide perovskites have demonstrated great potential for photoelectric applications. However, there is a long-standing controversy about the existence of lanthanide ions, e.g., whether the doping of Ln3+ is successful or not; the substituting sites of Ln3+ in lead halide perovskites are unclear. We directly identify the doped Yb3+ in CsPbCl3 perovskites by using the state-of-the-art transmission electron microscopy and three-dimensional atom probe tomography at atomic scale. Different from the previous assumptions and/or results, we evidence that Yb3+ simultaneously replace Pb2+ and occupy the lattice interstitial sites. Furthermore, we directly observe the cluster phenomenon of CsPbCl3 single crystal at near atomic scale. Density functional theory modeling further confirms and explains the mechanisms of our findings. Our findings thus provide an atomic-level understanding of the doping mechanism in perovskites and will stimulate a further thinking of the doping effect on the performance of perovskites.
Collapse
Affiliation(s)
- Wen Xu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, P. R. China
| | - Jiamu Liu
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Bin Dong
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, P. R. China
| | - Jindou Huang
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, P. R. China
| | - Honglong Shi
- School of Science, Minzu University of China, Beijing, China
| | - Xiangxin Xue
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Mao Liu
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| |
Collapse
|
44
|
Li Y, Zhou H, Xia M, Shen H, Wang T, Gao H, Sheng X, Han Y, Chen Z, Dou L, Zhu H, Shi E. Phase-pure 2D tin halide perovskite thin flakes for stable lasing. SCIENCE ADVANCES 2023; 9:eadh0517. [PMID: 37556538 PMCID: PMC11801371 DOI: 10.1126/sciadv.adh0517] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023]
Abstract
Ruddlesden-Popper tin halide perovskites are a class of two-dimensional (2D) semiconductors with exceptional optoelectronic properties, high carrier mobility, and low toxicity. However, the synthesis of phase-pure 2D tin perovskites is still challenging, and the fundamental understanding of their optoelectronic properties is deficient compared to their lead counterparts. Here, we report the synthesis of a series of 2D tin perovskite bulk crystals with high phase purity via a mixed-solvent strategy. By engineering the quantum-well thickness (related to n value) and organic ligands, the optoelectronic properties, including photoluminescence emission, exciton-phonon coupling strength, and exciton binding energy, exhibit a wide tunability. In addition, these 2D tin perovskites exhibited excellent lasing performance. Both high-n value tin perovskite (n > 1) and n = 1 tin perovskite thin flakes were successfully optically pumped to lase. Furthermore, the lasing from 2D tin perovskites could be maintained up to room temperature. Our findings highlight the tremendous potential of 2D tin perovskites as promising candidates for high-performance lasers.
Collapse
Affiliation(s)
- Yahui Li
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou 310030, China
| | - Hongzhi Zhou
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Ming Xia
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou 310030, China
| | - Hongzhi Shen
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou 310030, China
| | - Tianyu Wang
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou 310030, China
| | - Haikuo Gao
- Shandong Engineering Research Center of Aeronautical Materials and Devices, College of Aeronautical Engineering, Binzhou University, Binzhou 251900, China
| | - Xin Sheng
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou 310030, China
| | - Yanxin Han
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou 310030, China
| | - Zhong Chen
- Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou 310030, China
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Haiming Zhu
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Enzheng Shi
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou 310030, China
| |
Collapse
|
45
|
Simbula A, Wu L, Pitzalis F, Pau R, Lai S, Liu F, Matta S, Marongiu D, Quochi F, Saba M, Mura A, Bongiovanni G. Exciton dissociation in 2D layered metal-halide perovskites. Nat Commun 2023; 14:4125. [PMID: 37433858 DOI: 10.1038/s41467-023-39831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/29/2023] [Indexed: 07/13/2023] Open
Abstract
Layered 2D perovskites are making inroads as materials for photovoltaics and light emitting diodes, but their photophysics is still lively debated. Although their large exciton binding energies should hinder charge separation, significant evidence has been uncovered for an abundance of free carriers among optical excitations. Several explanations have been proposed, like exciton dissociation at grain boundaries or polaron formation, without clarifying yet if excitons form and then dissociate, or if the formation is prevented by competing relaxation processes. Here we address exciton stability in layered Ruddlesden-Popper PEA2PbI4 (PEA stands for phenethylammonium) both in form of thin film and single crystal, by resonant injection of cold excitons, whose dissociation is then probed with femtosecond differential transmission. We show the intrinsic nature of exciton dissociation in 2D layered perovskites, demonstrating that both 2D and 3D perovskites are free carrier semiconductors and their photophysics is described by a unique and universal framework.
Collapse
Affiliation(s)
- Angelica Simbula
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy.
| | - Luyan Wu
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| | - Federico Pitzalis
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| | - Riccardo Pau
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 09747, AG, Groningen, The Netherlands
| | - Stefano Lai
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| | - Fang Liu
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Selene Matta
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| | - Daniela Marongiu
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| | - Francesco Quochi
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| | - Michele Saba
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy.
| | - Andrea Mura
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| | - Giovanni Bongiovanni
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| |
Collapse
|
46
|
Liu W, Hu S, Pascual J, Nakano K, Murdey R, Tajima K, Wakamiya A. Tin Halide Perovskite Solar Cells with Open-Circuit Voltages Approaching the Shockley-Queisser Limit. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37379236 DOI: 10.1021/acsami.3c06538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
The power conversion efficiency of tin-based halide perovskite solar cells is limited by large photovoltage losses arising from the significant energy-level offset between the perovskite and the conventional electron transport material, fullerene C60. The fullerene derivative indene-C60 bisadduct (ICBA) is a promising alternative to mitigate this drawback, owing to its superior energy level matching with most tin-based perovskites. However, the less finely controlled energy disorder of the ICBA films leads to the extension of its band tails that limits the photovoltage of the resultant devices and reduces the power conversion efficiency. Herein, we fabricate ICBA films with improved morphology and electrical properties by optimizing the choice of solvent and the annealing temperature. Energy disorder in the ICBA films is substantially reduced, as evidenced by the 22 meV smaller width of the electronic density of states. The resulting solar cells show open-circuit voltages of up to 1.01 V, one of the highest values reported so far for tin-based devices. Combined with surface passivation, this strategy enabled solar cells with efficiencies of up to 11.57%. Our work highlights the importance of controlling the properties of the electron transport material toward the development of efficient lead-free perovskite solar cells and demonstrates the potential of solvent engineering for efficient device processing.
Collapse
Affiliation(s)
- Wentao Liu
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Shuaifeng Hu
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Jorge Pascual
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kyohei Nakano
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Richard Murdey
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Keisuke Tajima
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Atsushi Wakamiya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
47
|
Zhang Z, Kim W, Ko MJ, Li Y. Perovskite single-crystal thin films: preparation, surface engineering, and application. NANO CONVERGENCE 2023; 10:23. [PMID: 37212959 PMCID: PMC10203094 DOI: 10.1186/s40580-023-00373-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/08/2023] [Indexed: 05/23/2023]
Abstract
Perovskite single-crystal thin films (SCTFs) have emerged as a significant research hotspot in the field of optoelectronic devices owing to their low defect state density, long carrier diffusion length, and high environmental stability. However, the large-area and high-throughput preparation of perovskite SCTFs is limited by significant challenges in terms of reducing surface defects and manufacturing high-performance devices. This review focuses on the advances in the development of perovskite SCTFs with a large area, controlled thickness, and high quality. First, we provide an in-depth analysis of the mechanism and key factors that affect the nucleation and crystallization process and then classify the methods of preparing perovskite SCTFs. Second, the research progress on surface engineering for perovskite SCTFs is introduced. Third, we summarize the applications of perovskite SCTFs in photovoltaics, photodetectors, light-emitting devices, artificial synapse and field-effect transistor. Finally, the development opportunities and challenges in commercializing perovskite SCTFs are discussed.
Collapse
Affiliation(s)
- Zemin Zhang
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Optoelectronics Technology (MoE), Nankai University, Tianjin, 300350, China
| | - Wooyeon Kim
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Min Jae Ko
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea.
| | - Yuelong Li
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Optoelectronics Technology (MoE), Nankai University, Tianjin, 300350, China.
| |
Collapse
|
48
|
Zhang R, Lin T, Peng S, Bi J, Zhang S, Su G, Sun J, Gao J, Cao H, Zhang Q, Gu L, Cao Y. Flexible but Refractory Single-Crystalline Hyperbolic Metamaterials. NANO LETTERS 2023; 23:3879-3886. [PMID: 37115190 DOI: 10.1021/acs.nanolett.3c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The fabrication of flexible single-crystalline plasmonic or photonic components in a scalable way is fundamentally important to flexible electronic and photonic devices with high speed, high energy efficiency, and high reliability. However, it remains a challenge. Here, we have successfully synthesized flexible single-crystalline optical hyperbolic metamaterials by directly depositing refractory nitride superlattices on flexible fluorophlogopite-mica substrates with magnetron sputtering. Interestingly, these flexible hyperbolic metamaterials show dual-band hyperbolic dispersion of dielectric constants with small dielectric losses and high figures of merit in the visible to near-infrared ranges. More importantly, the optical properties of these nitride-based flexible hyperbolic metamaterials show remarkable stability during 1000 °C heating or after being bent 1000 times. Therefore, the strategy developed in this work offers an easy and scalable route for fabricating flexible, high-performance, and refractory plasmonic or photonic components, which can significantly expand the applications of current electronic and photonic devices.
Collapse
Affiliation(s)
- Ruyi Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Lin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shaoqin Peng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiachang Bi
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunda Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanhua Su
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Sun
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Junhua Gao
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Hongtao Cao
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanwei Cao
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Yang W, Li M, Xie M, Tian Y. Simultaneous Photoluminescence and Photothermal Investigation of Individual CH 3NH 3PbBr 3 Microcrystals. J Phys Chem Lett 2023; 14:3506-3511. [PMID: 37014281 DOI: 10.1021/acs.jpclett.3c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The photoluminescence (PL) of CH3NH3PbBr3 (MAPbBr3), from thin films to nanoparticles, has been widely studied, providing information about charge carrier dynamics. However, the other energy dissipative channel, nonradiative relaxation, has not been thoroughly investigated due to a lack of proper technology. In this work, we simultaneously investigated the PL and photothermal (PT) properties of single MAPbBr3 microcrystals (MCs) by a home-built PL and PT microscope. In addition to the direct observation of the heterogeneity of the PL and PT images and kinetics of different MCs, we demonstrated the variation in the absorption of single MAPbBr3 MCs, which was believed to be constant. We also proved that more absorbed energy dissipated from the nonradiative channel at higher heating power. These results show that PL and PT microscopy is an effective and convenient method to investigate the charge carrier behaviors of optoelectronic materials at the single particle level for a deep understanding of their photophysical processes.
Collapse
Affiliation(s)
- Weiqing Yang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Meilian Li
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Mingyi Xie
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yuxi Tian
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
50
|
Xia J, Qiu X, Liu Y, Chen P, Guo J, Wei H, Ding J, Xie H, Lv Y, Li F, Li W, Liao L, Hu Y. Ferroelectric Wide-Bandgap Metal Halide Perovskite Field-Effect Transistors: Toward Transparent Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300133. [PMID: 36703612 PMCID: PMC10074105 DOI: 10.1002/advs.202300133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Indexed: 06/18/2023]
Abstract
Transparent field-effect transistors (FETs) are attacking intensive interest for constructing fancy "invisible" electronic products. Presently, the main technology for realizing transparent FETs is based on metal oxide semiconductors, which have wide-bandgap but generally demand sputtering technique or high-temperature (>350 °C) solution process for fabrication. Herein, a general device fabrication strategy for metal halide perovskite (MHP) FETs is shown, by which transparent perovskite FETs are successfully obtained using low-temperature (<150 °C) solution process. This strategy involves the employment of ferroelectric copolymer poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) as the dielectric, which conquers the challenging issue of gate-electric-field screening effect in MHP FETs. Additionally, an ultra-thin SnO2 is inserted between the source/drain electrodes and MHPs to facilitate electron injection. Consequently, n-type semi-transparent MAPbBr3 FETs and fully transparent MAPbCl3 FETs which can operate well at room temperature with mobility over 10-3 cm2 V-1 s-1 and on/off ratio >103 are achieved for the first time. The low-temperature solution processability of these FETs makes them particularly attractive for applications in low-cost, large-area transparent electronics.
Collapse
Affiliation(s)
- Jiangnan Xia
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of EducationSchool of Physics and ElectronicsHunan UniversityChangsha410082China
- Shenzhen Research Institute of Hunan UniversityShenzhen518063China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan ProvinceCollege of Semiconductors (College of Integrated Circuits)Hunan UniversityChangsha410082China
| | - Xincan Qiu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of EducationSchool of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Yu Liu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of EducationSchool of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Ping‐An Chen
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of EducationSchool of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Jing Guo
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of EducationSchool of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Huan Wei
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of EducationSchool of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Jiaqi Ding
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of EducationSchool of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Haihong Xie
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of EducationSchool of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Yawei Lv
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of EducationSchool of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Fuxiang Li
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of EducationSchool of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Wenwu Li
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and PerceptionInstitute of OptoelectronicsDepartment of Materials ScienceFudan UniversityShanghai200433China
| | - Lei Liao
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan ProvinceCollege of Semiconductors (College of Integrated Circuits)Hunan UniversityChangsha410082China
| | - Yuanyuan Hu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of EducationSchool of Physics and ElectronicsHunan UniversityChangsha410082China
- Shenzhen Research Institute of Hunan UniversityShenzhen518063China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan ProvinceCollege of Semiconductors (College of Integrated Circuits)Hunan UniversityChangsha410082China
| |
Collapse
|