1
|
Li P, Qi X, Liu D, Ma J, Wang S, Yang K, Yan W, Chen S. A high-performance chitosan-grafted Cu(Ⅱ) coating improves endothelialization and mitigates the degradation of biodegradable magnesium alloy stents. Biomaterials 2025; 318:123161. [PMID: 39923535 DOI: 10.1016/j.biomaterials.2025.123161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/22/2025] [Accepted: 01/29/2025] [Indexed: 02/11/2025]
Abstract
As biodegradable scaffolds with great application potential, magnesium alloy stents face problems in terms of their fast degradation rate and dysendothelialization of larger meshes. The present solution strategy was to achieve proper and long-term release of Cu(Ⅱ) ions by preparing a chitosan-grafted Cu(Ⅱ) coating to promote the endothelialization process and then reduce the degradation rate of magnesium alloy stents by improving their service environment. In this work, the effects of a functional coating on the corrosion resistance, endothelialization and blood compatibility of AZ31 magnesium alloy stents were systematically studied in vitro, and the relevant function of the coated stent was verified by implantation into the rabbit carotid artery. The in vitro results showed that this coating could promote the endothelialization function and blood compatibility of magnesium alloy stents and could maintain adequate corrosion resistance. The in vivo results indicated that endothelization was achieved one week after the implantation of a magnesium alloy stent with a chitosan-grafted Cu(Ⅱ) coating in the animal carotid artery, and its degradation rate was reduced by 50 %. In addition, this coating could induce the transformation of macrophages into the anti-inflammatory type. Thus, the chitosan-grafted Cu(Ⅱ) coating has been proven to promote the endothelization of magnesium alloy stents, reduce their degradation rate and further inhibit intimal hyperplasia, indicating good application prospects.
Collapse
Affiliation(s)
- Pengyu Li
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China; School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, China
| | - Xun Qi
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dexiao Liu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Jing Ma
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Shaogang Wang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Wenhua Yan
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China; The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Shanshan Chen
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Guo M, Zou Y, Dong K, Huang N, Chen Z, Sun C, Chen P, Chen Q, Zhu L, Lv Y, Zhang K, Jiang M, Gao Y, Cho YC, Tang Q, Liang G, Wu D. Anti-inflammatory agents design via the fragment hybrid strategy in the discovery of compound c1 for treating ALI and UC. Eur J Med Chem 2025; 289:117431. [PMID: 40037062 DOI: 10.1016/j.ejmech.2025.117431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/16/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
Acute lung injury (ALI) and ulcerative colitis (UC) are common inflammatory diseases with high mortality rates and unsatisfactory cure rates. Studies have indicated that inhibiting the expression and release of inflammatory factors holds potential for the treatment of inflammatory diseases. In this study, we designed and synthesized 28 derivatives of 6,7-disubstituted-4-cis-cyclohexanequinazoline and assessed their anti-inflammatory activities in mouse macrophages RAW264.7, J774A.1, and human monocyte THP-1 cell lines. Among them, derivative c1 was found to significantly inhibit the expression and release of pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) induced by lipopolysaccharide (LPS) in the three cells mentioned above. It was also demonstrated that c1 could bind to IRAK4 and affect the expression of these two inflammatory factors by inhibiting the activation of the MAPK pathway. Furthermore, in vivo experiments revealed that c1 effectively ameliorated LPS-induced ALI and dextran sulfate sodium (DSS)-induced UC. Additionally, we evaluated the pharmacokinetic properties and in vivo safety of c1. Therefore, our research has identified the 6,7-disubstituted-4-cis-cyclohexanequinazoline derivative c1 exhibiting promising anti-inflammatory effects as a prospective anti-inflammatory drug candidate.
Collapse
Affiliation(s)
- Mi Guo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Yu Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Ke Dong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Nan Huang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhichao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chenhui Sun
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Luxiao Zhu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuehua Lv
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Kaixin Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Miao Jiang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Yitian Gao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310053, China.
| | - Di Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
3
|
Barik P, Mondal S. Immunomodulatory effects of metal nanoparticles: current trends and future prospects. NANOSCALE 2025; 17:10433-10461. [PMID: 40202489 DOI: 10.1039/d5nr01030f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The advent of nanotechnology has steered into a new era of medical advancements, with metal nanoparticles (MNPs) emerging as potent agents for precise regulation of the immune system. This review provides a comprehensive overview of the immunomodulatory roles of MNPs, including gold, silver, and metal oxide nanoparticles, in regulating innate and adaptive immunity. Additionally, we discuss the immunological effects of metal ions and metal complexes, offering a comparative analysis with nanoparticulate systems. We analyse cutting-edge strategies utilising MNPs to optimise vaccine efficacy, achieve targeted delivery to immune cells, and orchestrate inflammatory responses. Additionally, we discuss the therapeutic potential of MNPs in combating autoimmune diseases, cancers, and infectious agents, which is evaluated within the framework of precision medicine. Furthermore, we critically assess challenges such as biocompatibility, potential toxicity, and regulatory hurdles. Finally, we propose future directions for integrating MNPs with advanced delivery systems and other nanomaterials to propel the frontiers of immunotherapy. This review aims to provide a foundational understanding of MNP-mediated immunomodulation, inspiring further research and development in this burgeoning field.
Collapse
Affiliation(s)
- Puspendu Barik
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah, 26666, United Arab Emirates
- Department of Physics, College of Arts and Sciences, American University of Sharjah, Sharjah, 26666, United Arab Emirates
| | - Samiran Mondal
- Department of Chemistry, Rammohan College (University of Calcutta), 102/1-Raja Rammohan Sarani, Kolkata 700009, West Bengal, India.
| |
Collapse
|
4
|
Zhou L, Mao HQ, Wen YH, Chen Z, Zhang L. Cuproptosis Aggravates Pulpitis by Inhibiting the Pentose Phosphate Pathway. J Dent Res 2025; 104:541-550. [PMID: 39953718 DOI: 10.1177/00220345251313797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025] Open
Abstract
Excessive copper becomes toxic, driving inflammation, and, when copper exceeds a certain threshold, it even leads to a novel programmed cell death termed cuproptosis. However, disordered copper metabolism and its mechanism in pulpitis remain unclear. In this work, we found that lipoteichoic acid (LTA) or lipopolysaccharides (LPS) triggered copper deposition in pulpitis and consequently intensified cuproptosis by impeding the pentose phosphate pathway (PPP). We initially assessed the copper content in pulpitis tissues via inductively coupled plasma mass spectrometry and observed significantly greater concentrations than in healthy pulp tissues. We found that a relatively high copper content was triggered by LTA or LPS, leading cells to cuproptosis. Stimulation of LTA or LPS induced copper deposition and cuproptosis, worsening the progression of pulpitis in vivo. Mechanistically, we found that copper detoxification is dependent on the PPP. We used a 13C-glucose stable isotope-tracing experiment to assess the effect of glucose utilization on cuproptosis. Excessive copper hindered the PPP, resulting in an inadequate generation of nicotinamide adenine dinucleotide phosphate to replenish glutathione and counteract copper toxicity. The PPP regulates the phenotype, function, and survival of preodontoblast-like cells in cuproptosis. Our findings revealed the intricate interplay among bacteria, copper homeostasis, and metabolic reprogramming, providing potential strategies for host-targeted therapy in pulpitis.
Collapse
Affiliation(s)
- L Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - H-Q Mao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y-H Wen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Z Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - L Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Li H, Hu Q, Zhu D, Wu D. The Role of NAD + Metabolism in Cardiovascular Diseases: Mechanisms and Prospects. Am J Cardiovasc Drugs 2025; 25:307-327. [PMID: 39707143 DOI: 10.1007/s40256-024-00711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 12/23/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a promising anti-aging molecule that plays a role in cellular energy metabolism and maintains redox homeostasis. Additionally, NAD+ is involved in regulating deacetylases, DNA repair enzymes, inflammation, and epigenetics, making it indispensable in maintaining the basic functions of cells. Research on NAD+ has become a hotspot, particularly regarding its potential in cardiovascular disease (CVD). Many studies have demonstrated that NAD+ plays a crucial role in the occurrence and development of CVD. This review summarizes the biosynthesis and consumption of NAD+, along with its precursors and their effects on raising NAD+ levels. We also discuss new mechanisms of NAD+ regulation in cardiovascular risk factors and its effects of NAD+ on atherosclerosis, aortic aneurysm, heart failure, hypertension, myocardial ischemia-reperfusion injury, diabetic cardiomyopathy, and dilated cardiomyopathy, elucidating different mechanisms and potential treatments. NAD+-centered therapy holds promising advantages and prospects in the field of CVD.
Collapse
Affiliation(s)
- Huimin Li
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Qingxun Hu
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Deqiu Zhu
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Dan Wu
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
6
|
Fu Y, Hou L, Han K, Zhao C, Hu H, Yin S. The physiological role of copper: Dietary sources, metabolic regulation, and safety concerns. Clin Nutr 2025; 48:161-179. [PMID: 40220473 DOI: 10.1016/j.clnu.2025.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/26/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025]
Abstract
Copper plays an important physiological role in the body, with both deficiency and excess potentially impacting overall health. The body maintains a stringent copper metabolism mechanism to oversee absorption, utilization, storage, and elimination. Dietary consumption serves as the principal source of copper. The dietary factors may interfere with the absorption and metabolism of copper, leading to fluctuation of copper levels in the body. However, these dietary factors can also be strategically employed to facilitate the precise regulation of copper. This paper delved into the advancements in research concerning copper in food processing, including dietary sources of copper, the regulatory processes of copper metabolism and health implications of copper. The safety and its underlying mechanisms of excess copper were also highlighted. In particular, the paper examines the influence of dietary factors on the absorption and metabolism of copper, aiming to provide direction for accurate copper regulation and the creation of functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Yuhan Fu
- Department of Nutrition and Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Lirui Hou
- Department of Nutrition and Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Kai Han
- Department of Nutrition and Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chong Zhao
- Department of Nutrition and Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Hongbo Hu
- Department of Nutrition and Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Shutao Yin
- Department of Nutrition and Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
7
|
Li B, Xie Z, Wang M, Nie S, Qian Z, Meng X, Liu X, Kang SS, Ye K. Neuronal C/EBPβ Shortens the Lifespan via Inactivating NAMPT. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414871. [PMID: 40308001 DOI: 10.1002/advs.202414871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/12/2025] [Indexed: 05/02/2025]
Abstract
The brain plays a central role in aging and longevity in diverse model organisms. Morphological and functional alteration in the aging brain elicits age-associated neuronal dysfunctions. However, the primary mechanism deteriorating the brain functions to regulate the aging process remains incompletely understood. Here, it is shown that neuronal CCAAT/enhancer binding protein β (C/EBPβ) escalation during aging dictates the frailty and lifespan via inactivating nicotinamide phosphoribosyltransferase (NAMPT). Upregulated C/EBPβ drives neuronal senescence and neuronal loss, associated with NAMPT fragmentation by active asparagine endopeptidase (AEP), leading to nicotinamide adenine dinucleotide (NAD+) depletion. Knockout of AEP or expression of AEP-resistant NAMPT N136A mutant significantly elongates the lifespan of neuronal-specific Thy 1-C/EBPβ transgenic mice. Overexpression of the C. elegans C/EBPβ ortholog cebp-2 in neurons shortens lifespan and decreases NAD+ levels, which are restored by feeding nicotinamide mononucleotide (NMN) or AEP inhibitor #11a. Feeding NMN or #11a substantially ameliorates the cognitive and motor impairments of Thy 1-C/EBPβ mice and increases the life expectancy. Notably, #11a demonstrates a better therapeutic effect than NMN in improving aging phenotype in Thy 1-C/EBPβ transgenic mice, which show accelerated aging features. Hence, blockade of AEP via therapeutic intervention may provide an unprecedented strategy for fighting aging and various age-associated diseases.
Collapse
Affiliation(s)
- Bowei Li
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongyun Xie
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Mengmeng Wang
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Shuke Nie
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Zhengjiang Qian
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Xin Meng
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Keqiang Ye
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
8
|
Sun Q, Liu H, Yang Y, Yao S, Liu Z, Guo Z. A Self-Immobilizing Photoacoustic Probe for Ratiometric In Vivo Imaging of Cu(II) in Tumors. CHEMICAL & BIOMEDICAL IMAGING 2025; 3:260-266. [PMID: 40313533 PMCID: PMC12041948 DOI: 10.1021/cbmi.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 05/03/2025]
Abstract
Cu(II) ions play a critical role in tumor growth and metastasis, making in vivo high-resolution imaging of Cu(II) crucial for understanding its role in tumor pathophysiology. However, designing suitable molecular probes for this purpose remains challenging. Herein, we report the development of a photoacoustic probe for specific in vivo imaging of Cu(II) in tumors. This probe utilizes β-galactoside as a targeting group and incorporates a unique self-immobilization strategy. Upon β-galactosidase-mediated cleavage, the probe generates a reactive quinone methide intermediate that covalently binds to intracellular proteins, enabling selective tumor accumulation. The probe exhibits a ratiometric photoacoustic response to Cu(II) with high selectivity over that of other biological species. In vitro and in vivo studies demonstrated the efficacy of the probe for Cu(II) imaging in tumors. This research provides valuable insights into the role of Cu(II) in tumorigenesis and may facilitate the development of diagnostic and therapeutic approaches for cancer.
Collapse
Affiliation(s)
- Qian Sun
- Chemistry
and Biomedicine Innovation Center (ChemBIC), State Key Laboratory
of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023 China
| | - Hang Liu
- College
of Materials Science and Engineering, College of Science, Co-Innovation
Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Ying Yang
- Chemistry
and Biomedicine Innovation Center (ChemBIC), State Key Laboratory
of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023 China
| | - Shankun Yao
- Chemistry
and Biomedicine Innovation Center (ChemBIC), State Key Laboratory
of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023 China
| | - Zhipeng Liu
- College
of Materials Science and Engineering, College of Science, Co-Innovation
Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Zijian Guo
- Chemistry
and Biomedicine Innovation Center (ChemBIC), State Key Laboratory
of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023 China
| |
Collapse
|
9
|
Dai D, Zhang Z, Ma M, Zhao C, Li J, Zhang S, Ma P, Wu Q, Song D. Low-background Near-infrared Fluorescent Probe for Real-time Monitoring of β-Glucuronidase Activity in Inflammation and Therapy. Anal Chem 2025. [PMID: 40272894 DOI: 10.1021/acs.analchem.5c00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
β-Glucuronidase (GUS) is an acidic hydrolase enzyme overexpressed in various inflammatory diseases, making it a promising biomarker for inflammation. However, current tools for real-time, in situ imaging of GUS activity are hindered by background interference, which reduces their effectiveness in dynamic biological environments. To address this challenge, we developed Ox-GUS, a GUS-specific fluorescent probe with a unique molecular design featuring a disrupted conjugated structure. This design provided Ox-GUS with near-zero background optical properties, a significantly enhanced signal-to-noise ratio, and a highly sensitive detection ability. The probe demonstrated a fluorescence enhancement of up to 400 folds in response to GUS activity, with a detection limit as low as 0.0035 U/mL. We successfully employed Ox-GUS to visualize GUS activity in real-time in mouse models of rheumatoid arthritis, autoimmune hepatitis, and inflammatory bowel disease, and effectively monitored therapeutic responses. This study highlights the potential of Ox-GUS as a robust tool for advancing research on GUS-related inflammatory mechanisms and for early diagnosis and treatment monitoring of inflammatory diseases.
Collapse
Affiliation(s)
- Dianfeng Dai
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Zhimin Zhang
- Department of Pharmacy, Changchun Medical College, Changchun 130031, China
| | - Mo Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
- School of Pharmacy, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Chen Zhao
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Jingkang Li
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Siqi Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Qiong Wu
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, The Third Bethune Hospital of Jilin University, Sendai Street 126, Changchun 130033, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| |
Collapse
|
10
|
Chen L, Ma S, Wu H, Zheng L, Yi Y, Liu G, Li B, Sun J, Du Y, Wang B, Liu Y, Zhang C, Chang J, Pang Y, Wang W, Wang M, Zhu M. Zonated Copper-Driven Breast Cancer Progression Countered by a Copper-Depleting Nanoagent for Immune and Metabolic Reprogramming. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2412434. [PMID: 40270472 DOI: 10.1002/advs.202412434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/14/2025] [Indexed: 04/25/2025]
Abstract
While studies of various carcinomas have reported aberrant metal metabolism, much remains unknown regarding their spatial accumulation and regulatory impacts in tumors. Here, elevated copper levels are detected in breast cancer tumors from patients and animal models, specifically exhibiting a zonate spatial pattern. Spatially resolved multiomics analyses reveal that copper zonation drives a tumor metabolic preference for oxidative phosphorylation (OXPHOS) over glycolysis and promotes tumor metastatic and immune-desert phenotypes. Then, a copper-depleting nanoagent is developed based on copper chelator tetrathiomolybdate (TM)-loaded hybridized bacterial outer membrane vesicles (hOMVs) from both Akkermansia muciniphila bacteria and CD326-targeting peptide-engineered Escherichia coli (TM@CD326hOMV). Systemic administration of TM@CD326hOMV reduces the labile copper level in tumors and inhibits both tumor growth and metastatic phenotypes, specifically through metabolic reprograming of OXPHOS toward glycolysis and restoration of antitumor immunity responses involving natural killer cells, CD4+ T cells, and cytotoxic CD8+ T cells in tumors. Assessing survival in murine breast cancer models, a combination of TM@CD326hOMV and a checkpoint blockade agent outperforms monotherapies. Notably, a copper-rich diet undermines the therapeutic efficacy of TM@CD326hOMV. Beyond demonstrating an effective nanoagent for treating breast cancer, this study deepens the understanding of how the pattern of copper accumulation in tumors affects pathophysiology and immunity.
Collapse
Affiliation(s)
- Lin Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Science, Beijing, 100049, China
| | - Saibo Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Hao Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Lingna Zheng
- Key Laboratory of Nuclear Analytical Techniques and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunpeng Yi
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, 250100, China
| | - Guangnian Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100035, China
| | - Baoyi Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100035, China
| | - Jiayi Sun
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yang Du
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Bing Wang
- Key Laboratory of Nuclear Analytical Techniques and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yike Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Science, Beijing, 100049, China
| | - Cheng Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jing Chang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Yuheng Pang
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, 100069, China
| | - Wenjing Wang
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, 100069, China
| | - Meng Wang
- Key Laboratory of Nuclear Analytical Techniques and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Science, Beijing, 100049, China
| |
Collapse
|
11
|
Massie PL, Garcia M, Decker A, Liu R, MazloumiBakhshayesh M, Kulkarni D, Justus MP, Gallardo J, Abrums A, Markle K, Pace C, Campen M, Clark RM. Essential and Non-Essential Metals and Metalloids and Their Role in Atherosclerosis. Cardiovasc Toxicol 2025:10.1007/s12012-025-09998-y. [PMID: 40251456 DOI: 10.1007/s12012-025-09998-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
Peripheral arterial disease (PAD) is becoming more prevalent in the aging developed world and can have significant functional impacts on patients. There is a recent recognition that environmental toxicants such as circulating metals and metalloids may contribute to the pathogenesis of atherosclerotic disease, but the mechanisms are complex. While the broad toxic biologic effects of metals in human systems have been extensively reviewed, the role of non-essential exposure and essential metal aberrancy in PAD specifically is less frequently discussed. This review of the literature describes current scientific knowledge regarding the individual roles several major metals and metalloids play in atherogenesis and highlights areas where a dearth of data exist. The roles of lead (Pb), arsenic (As), cadmium (Cd), iron (Fe), copper (Cu), selenium (Se) are included. Contemporary outcomes of therapeutic trials aimed at chelation therapy of circulating metals to impact cardiovascular outcomes are also discussed. This review highlights the supported notion of differential metal presence within peripheral plaques themselves, although distinguishing their roles within these plaques requires further illumination.
Collapse
Affiliation(s)
- Pierce L Massie
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Marcus Garcia
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Aerlin Decker
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Rui Liu
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Milad MazloumiBakhshayesh
- Department of Biomedical Engineering, School of Engineering, University of New Mexico, Albuquerque, USA
| | - Deepali Kulkarni
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Matthew P Justus
- Department of Biomedical Engineering, School of Engineering, University of New Mexico, Albuquerque, USA
| | - Jorge Gallardo
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Avalon Abrums
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Kristin Markle
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Carolyn Pace
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Matthew Campen
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Ross M Clark
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA.
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, USA.
| |
Collapse
|
12
|
Zhu Y, Lin X, Wang T, Wang S, Wang W, Ke M, Zhu Y, Zhang B, Ofosuhemaa P, Wang Y, Hu M, Yang W, Hu A, Huang F, Zhao Q. Associated effects of blood metal(loid) exposure and impaired glucose metabolism in patients with gastric precancerous lesions or gastric cancer. Biometals 2025:10.1007/s10534-025-00684-8. [PMID: 40232351 DOI: 10.1007/s10534-025-00684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
Exposure to metal(loid)s and glucose metabolism may influence the progression of gastric precancerous lesions (GPLs) or gastric cancer (GC), but their combined effects remain unclear. Our study aimed to elucidate the combined impact of metal (including metalloid and trace element) exposure and disturbances in glucose metabolism on the progression of GPLs and GC. From a prospective observational cohort of 1829 individuals, their metal(loid) levels and blood metabolism were analysed via inductively coupled plasma‒mass spectrometry and targeted metabolomics gas chromatography‒mass spectrometry, respectively. From healthy normal controls (NC) or GPLs to GC, we observed that the aluminum and arsenic levels decreased, whereas the vanadium, titanium and rubidium levels increased, but the iron, copper, zinc and barium levels initially decreased but then increased; these changes were not obvious from the NC to GPL group. With respect to glucose homeostasis, most metabolites decreased, except for phosphoenolpyruvate (PEP), which increased. Multiple logistic regression analysis revealed that titanium and phosphoenolpyruvate might be risk factors for GPLs, that barium is a protective factor for GC, and that D-glucaric acid might be a protective factor for GPLs and GC. Selenium, vanadium, titanium, succinate, maleate, isocitrate, PEP, and the tricarboxylic acid cycle (TCA) had good predictive potential for GPL and GC. Additionally, metal(loid)s such as arsenic, titanium, barium, aluminum, and vanadium were significantly correlated with multiple glucose metabolites involved in the TCA cycle in the GPL and GC groups. Our findings imply that metal(loid) exposure disrupts glucose metabolism, jointly influencing GPL and GC progression.
Collapse
Affiliation(s)
- Yuting Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Xiao Lin
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Department of Tuberculosis Control, Xiangcheng Center for Disease Control and Prevention, Suzhou, 215131, China
| | - Tingting Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Department of Hospital Nosocomial Infection, Chaohu Hospital of Anhui Medical University, Hefei, 230032, China
| | - Sheng Wang
- Research and Experiment Center, Anhui Medical University, Hefei, 230032, China
| | - Wuqi Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Mengran Ke
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Yan Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Bowen Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Princess Ofosuhemaa
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Yalei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230011, China
| | - Mingjun Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Wanshui Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Anla Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Fen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| | - Qihong Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
13
|
Liu Y, Nafees M, Hanif M. Copper Depletion in Tumors Boosts Immunotherapy. Chembiochem 2025; 26:e202500026. [PMID: 39887868 DOI: 10.1002/cbic.202500026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
Copper depletion is being billed as a viable approach for cancer treatment. Vittorio and co-workers successfully demonstrated that Cuprior, an FDA-approved drug that binds with copper, effectively enhances anti-GD2 immunotherapy and improves the responses for neuroblastoma patients. These findings highlight the important role of copper chelation in modulating the tumor microenvironment. This study presented a novel approach to potentiate immunotherapies for neuroblastoma patients, warranting further investigations into copper depletion as a potential adjuvant therapy for other tumors.
Collapse
Affiliation(s)
- Yuge Liu
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Muhammad Nafees
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, P. R. China
| | - Muhammad Hanif
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| |
Collapse
|
14
|
Wang Y, Zhu W, Zhang T, Liu Q, Zou M, Xie Y, Wang M, Wang TS, Pang Y, Jing T, Zhang R. Associations between serum trace elements and biological age acceleration in the Chinese elderly: A community-based study investigating the mediating role of inflammatory markers and the moderating effect of physical activity. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138273. [PMID: 40250274 DOI: 10.1016/j.jhazmat.2025.138273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/25/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025]
Abstract
Growing evidence suggests that environmental factors play a significant role in the aging process. We established the Klemera and Doubal Method biological age acceleration (KDM-BAA) by using the KDM as a biological age predictor to assess the trace elements (ELEs) role. Generalized Linear Model (GLM) was used to assess the associations between single ELE (trace element) and KDM-BAA. Restricted cubic splines (RCS) were used to assess the nonlinear relationship between elemental levels and KDM-BAA. Quantile G-Computation (QGC) regression was employed to explore the direction and weight. Weighted Quantile Sum (WQS) Regression was used to study the weights of different groups of ELEs. Bayesian Kernel Machine Regression (BKMR) was utilized to analyze the overall effect of mixed elemental exposure. Mediation analysis was conducted to investigate the role of intermediate biomarkers and the moderating effects of physical activity (PA) was used on the pathway. The results showed serum Copper (Cu) levels positively correlated with KDM-BAA, while Zinc (Zn) and Iron (Fe) negatively correlated with it, respectively. The mixture of Zn, Cobalt (Co), Selenium (Se), and Fe exhibited a significant overall negative effect. Additionally, PA could ease the association between Cu and KDM-BAA through impacting the inflammation level. This study provides novel insights into how inflammation mediates the association between ELEs exposure and KDM-BAA, while PA acts as a potential protective factor.
Collapse
Affiliation(s)
- Yan Wang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Wenyuan Zhu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Tao Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Qingping Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Mengqi Zou
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yujia Xie
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Mengruo Wang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Tian Shuai Wang
- Shijiazhuang Great Wall Hospital of Integrated Traditional Chinese and Western Medicine, PR China
| | - Yaxian Pang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China.
| | - Tao Jing
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China.
| |
Collapse
|
15
|
Jaber S, Eldawra E, Rakotopare J, Simeonova I, Lejour V, Gabriel M, Cañeque T, Volochtchouk V, Licaj M, Fajac A, Rodriguez R, Morillon A, Bardot B, Toledo F. Oncogenic and teratogenic effects of Trp53Y217C, an inflammation-prone mouse model of the human hotspot mutant TP53Y220C. eLife 2025; 13:RP102434. [PMID: 40223808 PMCID: PMC11996178 DOI: 10.7554/elife.102434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
Missense 'hotspot' mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.
Collapse
Affiliation(s)
- Sara Jaber
- Genetics of Tumor Suppression, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
| | - Eliana Eldawra
- Genetics of Tumor Suppression, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
| | - Jeanne Rakotopare
- Genetics of Tumor Suppression, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
| | - Iva Simeonova
- Chromatin Dynamics, Institut Curie, CNRS UMR3664, Sorbonne University, PSL UniversityParisFrance
| | - Vincent Lejour
- Genetics of Tumor Suppression, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
| | - Marc Gabriel
- Non Coding RNA, Epigenetic and Genome Fluidity, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
| | - Tatiana Cañeque
- Chemical Biology, Institut Curie, CNRS UMR3666, INSERM U1143, PSL UniversityParisFrance
| | - Vitalina Volochtchouk
- Genetics of Tumor Suppression, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
| | - Monika Licaj
- Genetics of Tumor Suppression, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
| | - Anne Fajac
- Genetics of Tumor Suppression, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
| | - Raphaël Rodriguez
- Chemical Biology, Institut Curie, CNRS UMR3666, INSERM U1143, PSL UniversityParisFrance
| | - Antonin Morillon
- Non Coding RNA, Epigenetic and Genome Fluidity, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
| | - Boris Bardot
- Genetics of Tumor Suppression, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
- Signaling and Neural Crest Development, Institut Curie, CNRS UMR3347, INSERM U1021, Université Paris-Saclay, PSL UniversityOrsayFrance
| | - Franck Toledo
- Genetics of Tumor Suppression, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
- Hematopoietic and Leukemic Development, Centre de Recherche Saint-Antoine, INSERM UMRS938, Sorbonne UniversityParisFrance
| |
Collapse
|
16
|
Yu Y, Xie B, Wang J, Luo W, Yang M, Xiong Z, Huang G, Yang J, Tang Z, Qiao R, Yuan Z, He L, Chen T. Translational Selenium Nanoparticles Promotes Clinical Non-small-cell Lung Cancer Chemotherapy via Activating Selenoprotein-driven Immune Manipulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415818. [PMID: 40095246 DOI: 10.1002/adma.202415818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Reconstructing the tumor immune microenvironment is an effective strategy to enhance therapeutic efficacy limited by immunosuppression in non-small-cell lung cancer (NSCLC). In this study, it is found that selenium (Se) depletion and immune dysfunction are present in patients with advanced NSCLC compared with healthy volunteers. Surprisingly, Se deficiency resulted in decreased immunity and accelerated rapid tumor growth in the mice model, which further reveals that the correlation between micronutrient Se and lung cancer progression. This pioneering work achieves 500-L scale production of Se nanoparticles (SeNPs) at GMP level and utilizes it to reveal how and why the trace element Se can enhance clinical immune-mediated treatment efficacy against NSCLC. The results found that translational SeNPs can promote the proliferation of NK cells and enhance its cytotoxicity against cancer cells by activating mTOR signaling pathway driven by GPXs to regulate the secretion of cytokines to achieve an antitumor response. Moreover, a clinical study of an Investigator-initiated Trial shows that translational SeNPs supplementation in combination with bevacizumab/cisplatin/pemetrexed exhibits enhanced therapeutic efficacy with an objective response rate of 83.3% and a disease control rate of 100%, through potentiating selenoprotein-driven antitumor immunity. Taken together, this study, for the first time, highlights the translational SeNPs-enhanced therapeutic efficacy against clinical advanced NSCLC.
Collapse
Affiliation(s)
- Yanzi Yu
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Bin Xie
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Jinlin Wang
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Weizhan Luo
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Meijin Yang
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Zushuang Xiong
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Guanning Huang
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Jianwei Yang
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Zhiying Tang
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Rui Qiao
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Zhongwen Yuan
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Lizhen He
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
17
|
Zhang T, Tang D, Wu P, Jiang S, Zhang Y, Naeem A, Li Y, Li C, Hu B, Guo S, Sun C, Xiao H, Yan R, Weng Y, Huang Y. NIR-II photo-accelerated polymer nanoparticles boost tumor immunotherapy via PD-L1 silencing and immunogenic cell death. Bioact Mater 2025; 46:285-300. [PMID: 39811466 PMCID: PMC11732249 DOI: 10.1016/j.bioactmat.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Immune checkpoint blockade (ICB) therapy is a widely favored anti-tumor treatment, but it shows limited response to non-immunogenic "cold" tumors and suffers from drug resistance. Photodynamic therapy (PDT), as a powerful localized treatment approach, can convert a "cold tumor" into a "hot tumor" by inducing immunogenic cell death (ICD) in tumor cells, thereby enhancing tumor immunogenicity and promoting tumor immunotherapy. However, the effectiveness of PDT is largely hindered by the limited penetration depth into tumor tissues. To address these issues, we proposed an all-in-one drug system with NIR-II photo-accelerated PDT effects, efficient immune checkpoint gene silencing, and a facile manufacturing process. The so-called all-in-one drug system comprises a multi-modal designed polymer PPNP and siRNA. PPNP is an amphipathic polymer that includes the near infrared-II (NIR-II) photosensitizer Aza-boron-dipyrromethene (Aza-BODIPY), a glutathione (GSH)-cleavable linker, and a cationic monomer derived from cholesterol. PPNP can self-assemble and efficiently load siRNA. Under laser irradiation, PPNP triggers a potent ICD cascade, causing the on-demand release of siPD-L1, reshaping the tumor's immunosuppressive microenvironment, effectively inhibiting the growth of various tumors, and stimulating the immune memory. This study represents a generalized platform for PDT and gene silencing, designed to modulate immune-related signaling pathways for improved anticancer therapy.
Collapse
Affiliation(s)
- Tian Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Science Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Science Beijing 100190, China
| | - Pengfei Wu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shaoping Jiang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuquan Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Abid Naeem
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yong Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chunhui Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Bo Hu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shuai Guo
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Caixia Sun
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 637371, Singapore
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Science Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Science Beijing 100190, China
| | - Ran Yan
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuhua Weng
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology (BIT), Zhuhai 519088, China
- Advanced Technology Research Institute, Beijing Institute of Technology (BIT), Jinan 250101, China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology (BIT), Zhuhai 519088, China
- Advanced Technology Research Institute, Beijing Institute of Technology (BIT), Jinan 250101, China
| |
Collapse
|
18
|
Li M, Liu Z, Peng D, Liu Y, Cheng L, Chen B, Liu J. Multifunctional porous organic polymer-based hybrid nanoparticles for sonodynamically enhanced cuproptosis and synergistic tumor therapy. Acta Biomater 2025; 196:350-363. [PMID: 39993518 DOI: 10.1016/j.actbio.2025.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Cuproptosis has gained significant attention among different cell death pathways in cancer therapy, which relies on the excessive accumulation of Cu2+ in mitochondria of tumor cells. Nevertheless, the high levels of glutathione in tumor microenvironment chelates with Cu2+ and thereby reducing its cytotoxicity. In this study, we designed core-shell porous organic polymers (POPs) nanoparticles to deliver and accumulate Cu2+ in tumor cells for enhanced cuproptosis. The porous organic polymers, containing bipyridine structural units, were synthesized on the aminated silica template, followed by the coordination of Cu2+ and the loading of artesunate (ART) as the sonosensitizer, yielding the Cu/ART@Hpy nanoparticles. In the acidic tumor microenvironment, the nanoparticles realized pH-responsive release of Cu2+. Meanwhile, the generation of ROS under ultrasound irradiation depleted intracellular glutathione, leading to the increased intracellular accumulation of Cu2+ for cuproptosis and triggering multiple cell death mechanisms for sonodynamically enhanced tumor therapy. Our study highlights the potential of the porous organic polymer as a platform for cuproptosis and synergistic tumor therapy. STATEMENT OF SIGNIFICANCE: Cuproptosis is induced by the excessive accumulation of Cu²⁺ within the mitochondria of tumor cells. However, the high level of glutathione in the tumor microenvironment can chelate Cu²⁺, thereby reducing the therapeutic efficacy. In this study, we developed the core-shell structured Cu/ART@Hpy nanoparticles for pH-responsive delivery of Cu²⁺. Under ultrasound irradiation, the generated reactive oxygen species deplete intracellular glutathione, enhancing Cu²⁺ accumulation for cuproptosis and activating multiple cell death pathways. The Cu/ART@Hpy nanoparticles enable sonodynamically enhanced cuproptosis, achieving synergistic tumor therapy.
Collapse
Affiliation(s)
- Meiting Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China
| | - Zhuoyin Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China
| | - Dan Peng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China
| | - Yadong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China
| | - Lili Cheng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China
| | - Baizhu Chen
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou, PR China.
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou, PR China.
| |
Collapse
|
19
|
Ling Z, Ge X, Jin C, Song Z, Zhang H, Fu Y, Zheng K, Xu R, Jiang H. Copper doped bioactive glass promotes matrix vesicles-mediated biomineralization via osteoblast mitophagy and mitochondrial dynamics during bone regeneration. Bioact Mater 2025; 46:195-212. [PMID: 39760064 PMCID: PMC11699476 DOI: 10.1016/j.bioactmat.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/05/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Bone defect repair remains a great challenge in the field of orthopedics. Human body essential trace element such as copper is essential for bone regeneration, but how to use it in bone defects and the underlying its mechanisms of promoting bone formation need to be further explored. In this study, by doping copper into mesoporous bioactive glass nanoparticles (Cu-MBGNs), we unveil a previously unidentified role of copper in facilitating osteoblast mitophagy and mitochondrial dynamics, which enhance amorphous calcium phosphate (ACP) release and subsequent biomineralization, ultimately accelerating the process of bone regeneration. Specifically, by constructing conditional knockout mice lacking the autophagy gene Atg5 in osteogenic lineage cells, we first confirmed the role of Cu-MBGNs-promoted bone formation via mediating osteoblast autophagy pathway. Then, the in vitro studies revealed that Cu-MBGNs strengthened mitophagy by inducing ROS production and recruiting PINK1/Parkin, thereby facilitating the efficient release of ACP from mitochondria into matrix vesicles for biomineralization during bone regeneration. Moreover, we found that Cu-MBGNs promoted mitochondrion fission via activating dynamin related protein 1 (Drp1) to reinforce mitophagy pathway. Together, this study highlights the potential of Cu-MBGNs-mediated mitophagy and biomineralization for augmenting bone regeneration, offering a promising avenue for the development of advanced bioactive materials in orthopedic applications.
Collapse
Affiliation(s)
- Ziji Ling
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Xiao Ge
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Chengyu Jin
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Zesheng Song
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Hang Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Yu Fu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Kai Zheng
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Rongyao Xu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Hongbing Jiang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 210029, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| |
Collapse
|
20
|
Wang H, Wang C, Wu S, Yan D, Huang C, Mao C, Zheng Y, Liu H, Jin L, Zhu S, Li Z, Jiang H, Liu X. Accelerating Interface NIR-Induced Charge Transfer Through Cu and Black Phosphorus Modifying G-C 3N 4 for Rapid Healing of Staphylococcus aureus Infected Diabetic Ulcer Wounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500378. [PMID: 40159828 DOI: 10.1002/smll.202500378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/06/2025] [Indexed: 04/02/2025]
Abstract
Bacteria-infected diabetic wounds seriously threaten the lives of patients because diabetic ulcer tissues are quite difficult to repair while the bacteria infections deteriorate this course. Clinically used antibiotics cannot fulfil this mission but introduce the risk of bacterial resistance simultaneously. Herein, a near-infrared (NIR) light-responsive composite hydrogel is developed for rapid bacterial eradication and healing of Staphylococcus aureus (S. aureus)-infected diabetic wounds. The hydrogel incorporates copper (Cu)-doped graphitic carbon nitride (g-C3N4) nanosheets combined with black phosphorus (BP) nanosheets through electrostatic bonding and π-π stacking interactions, uniformly dispersed within a chitosan (CS) matrix crosslinked with polyvinyl alcohol (PVA) (Cu-CN/BP@Gel). Under NIR light irradiation, Cu-doping accelerated hot electron flow and improved the photothermal effect. Additionally, the built-in electric field formed by Cu-CN/BP accelerated interfacial electron flow and inhibited the recombination of electron-hole pairs, enhancing reactive oxygen species (ROS) generation. Then, Cu-CN/BP@Gel hydrogel can reach the antibacterial rate of 99.18% against S. aureus. The successful application of the Cu-CN/BP@Gel hydrogel in diabetic wound infection presents a new method for wound healing in a high blood sugar and ROS environment.
Collapse
Affiliation(s)
- Hongbo Wang
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, P. R. China
| | - Chaofeng Wang
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, P. R. China
| | - Shuilin Wu
- School of Materials Science and Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, P. R. China
| | - Danning Yan
- School of Materials Science and Engineering, Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Caihui Huang
- School of Materials Science and Engineering, Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Congyang Mao
- School of Materials Science and Engineering, Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Yufeng Zheng
- Materials Science and Engineering, School of Peking University, Beijing, 100871, P. R. China
| | - Hanpeng Liu
- School of Materials Science and Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, P. R. China
| | - Liguo Jin
- School of Materials Science and Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, P. R. China
| | - Shengli Zhu
- School of Materials Science and Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhaoyang Li
- School of Materials Science and Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, P. R. China
| | - Hui Jiang
- School of Materials Science and Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiangmei Liu
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, P. R. China
- School of Materials Science and Engineering, Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
21
|
Zhang Y, Xin J, Zhao D, Chen G, Ji P, Liu P, Wei H, Wang H, Xia Y, Wang Y, Wang Z, Ren X, Huo M, Yu H, Yang J. Magnesium hexacyanoferrate mitigates sepsis-associated encephalopathy through inhibiting microglial activation and neuronal cuproptosis. Biomaterials 2025; 321:123279. [PMID: 40164040 DOI: 10.1016/j.biomaterials.2025.123279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 03/02/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Sepsis-associated encephalopathy (SAE) is a severe neurological complication stemming from sepsis, characterized by cognitive impairment. The underlying mechanisms involve oxidative stress, neuroinflammation, and disruptions in copper/iron homeostasis. This study introduces magnesium hexacyanoferrate (MgHCF) as a novel compound and explores its therapeutic potential in SAE. Our investigation reveals that MgHCF features intriguing properties in effectively scavenging reactive oxygen species (ROS), and chelating excess copper and iron. Treatment with MgHCF significantly attenuates microglia activation, and protects neuronal cells from oxidative damage and cytotoxicity induced by activated microglia in vitro and in vivo. Furthermore, the cognitive impairment in SAE mice is effectively alleviated by MgHCF treatment, mechanically through a reduction in the copper/iron-responsive histone methylation, and neuronal cuproptosis. These findings suggest MgHCF as a promising therapeutic agent for SAE, targeting the copper/iron signaling pathway to alleviate neuroinflammation, and neuronal cuproptosis.
Collapse
Affiliation(s)
- Yabing Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China; Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Juan Xin
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Di Zhao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| | - Gezi Chen
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| | - Penghao Ji
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Panmiao Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| | - Hua Wei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| | - Hongwei Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| | - Yuzhong Xia
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| | - Yong Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| | - Zhongyu Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| | - Xiangyi Ren
- Core Facilities of West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Minfeng Huo
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Hai Yu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| |
Collapse
|
22
|
Qiu Y, Liu H, Han C, Yan Z, Lu Y, Ren L, Wang Q, Zhou Q, Xue L. The effect of copper content in Ti-Cu alloy with bone regeneration ability on the phenotypic transformation of macrophages. Colloids Surf B Biointerfaces 2025; 252:114641. [PMID: 40138785 DOI: 10.1016/j.colsurfb.2025.114641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/09/2025] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
Titanium (Ti) alloys are widely used in bone repair due to their excellent biocompatibility and mechanical properties. However, managing post-implantation inflammatory responses in the defect region and accelerating the healing process remain major challenges in the design of such materials. As a bridge between the innate and adaptive immune systems, macrophages play a pivotal role in bone defect healing through their M2 polarization, which facilitates the secretion of tissue repair-promoting cytokines. Research on the role of copper ions (Cu²⁺) in regulating inflammatory responses at injury sites suggests their potential as active ions for incorporation into alloys as a secondary phase to modulate macrophage polarization. However, the effective concentration and mechanisms in this process remain unclear. Here, we synthesized Ti-xCu (x = 3, 5, 7 wt%) alloys and investigated the effects of copper concentration on macrophage M1/M2 polarization and the underlying mechanisms. In an 8-week rat mandibular bone regeneration experiment, Ti-5Cu demonstrated superior performance compared to pure titanium. At the early stage (2 weeks), Ti-5Cu promoted the dominance of M1 macrophages and upregulated inflammatory cytokines, facilitating the initial inflammatory response. Subsequently, a timely M1-to-M2 phenotype transition was observed, accompanied by elevated expression of the repair-related cytokine IL-10, ultimately leading to improved bone healing. This study provides a theoretical foundation for the development of titanium-copper composite materials with anti-inflammatory and pro-healing properties, paving the way for innovative solutions to promote bone defect repair.
Collapse
Affiliation(s)
- Yueyang Qiu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Hui Liu
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | | | - Zhuoqun Yan
- Liaoning Upcera Co., Ltd, Benxi 117004, China
| | - Yanjin Lu
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350117, China.
| | - Ling Ren
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Qing Zhou
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China.
| | - Lei Xue
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China.
| |
Collapse
|
23
|
Ling YY, Shen QH, Hao L, Li ZY, Yu LB, Chen XX, Tan CP. Theranostic Rhenium Complexes as Suborganelle-Targeted Copper Ionophores To Stimulate Cuproptosis for Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15237-15249. [PMID: 40025808 DOI: 10.1021/acsami.5c01443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Being a recently identified mode of programmed cell demise, the functional implications of cuproptosis in the genesis, progression, and therapeutic modulation of cancer remain largely unknown. Given that cuproptosis is predominantly elicited by cellular copper overload, notably attributable to the dysregulation of copper homeostasis within mitochondria, we designed a series of phosphorescent rhenium(I) complexes (Re1-Re5) as suborganelle-targeted copper ionophores. Among them, Re5 can successfully transport extracellular copper into mitochondria and the Golgi apparatus and especially enrich copper into mitochondria. Consequently, Re5 breaks the cellular redox balance and disturbs the energetic and metabolism pathways to induce cuproptosis. Finally, we prove that Re5 can promote immune responses and modulate cancer immune microenvironments. In all, we present here the first subcellular organelle-targeted copper ionophore and prove that cuproptosis-inducing small molecules are potent cancer immunotherapeutic candidates.
Collapse
Affiliation(s)
- Yu-Yi Ling
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Qing-Hua Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Zhi-Yuan Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Long-Bo Yu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiao-Xiao Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Guangzhou 510006, China
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
24
|
Deng H, Chen J, Wang H, Liu R, Zhang Y, Chang H, Tung CH, Zhang W. Hijacking the hyaluronan assisted iron endocytosis to promote the ferroptosis in anticancer photodynamic therapy. Carbohydr Polym 2025; 351:123123. [PMID: 39779030 DOI: 10.1016/j.carbpol.2024.123123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
Photodynamic therapy (PDT) eradicates tumor cells by the light-stimulated reactive oxygen species, which also induces lipid peroxidation (LPO) and subsequently ferroptosis, an iron-depended cell death. Ferroptosis has a tremendous therapeutic potential in cancer treatment, however, the ferroptosis efficiency is largely limited by the available iron in cells. Through hijacking the CD44-mediated iron endocytosis of hyaluronan (HA), here PDT with enhanced ferroptosis was realized by a HA@Ce6 nanogel self-assembled from HA, a photosensitizer Chlorin e6 (Ce6) and Fe3+ as cross-linkers. Taking advantages of HA's natural affinity towards CD44, HA@Ce6 enabled a targeted Ce6 delivery in CD44-overexpressed breast cancer cells and meanwhile enhanced iron uptake to "fuel" ferroptosis together with the light-stimulated LPO. Further, HA@Ce6 demonstrated an excellent anticancer PDT efficacy and ferroptosis induction in the murine 4 T1 xenograft model. This HA@Ce6 successfully exploited the role of HA in iron transport to sensitize ferroptosis, providing a potent strategy to facilitate the anticancer PDT.
Collapse
Affiliation(s)
- Hong Deng
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Jiayu Chen
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Huimin Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Runmeng Liu
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Yiyi Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Hui Chang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Ching-Hsuan Tung
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Weiqi Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China.
| |
Collapse
|
25
|
Huang J, Meng P, Liang Y, Li X, Zhou S, Li J, Wang X, Miao J, Shen W, Zhou L. Tubular CD44 plays a key role in aggravating AKI through NF-κB p65-mediated mitochondrial dysfunction. Cell Death Dis 2025; 16:119. [PMID: 39979265 PMCID: PMC11842857 DOI: 10.1038/s41419-025-07438-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/26/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
Acute kidney injury (AKI) is in rapid prevalence nowadays. Of note, the underlying mechanisms have not been clarified. Several reports showed a cluster of differentiation-44 (CD44), a cell-surface glycoprotein, might be involved in AKI. However, its role in AKI has not been clearly clarified. Herein, we found CD44 increased in renal tubules in AKI mice. Gene ablation of CD44 improved mitochondrial biogenesis and fatty acid oxidation (FAO) function, further protecting against tubular cell death and kidney injury. Conversely, ectopic CD44 impaired mitochondrial homeostasis and exacerbated tubular cell apoptosis to aggravate AKI progression. From transcriptome sequencing, we found that CD44 induces mitogen-activated protein kinase (MAPK) and NF-κB p65 signaling. Lipidomics also showed that CD44 interfered with multiple aspects of lipid metabolism. We deeply investigated NF-κB p65 inhibited the transcription of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), resulting in mitochondrial dysfunction and cell apoptosis. CD44 also facilitated iron intake to assist cell ferroptosis. Hence, our study provided a new mechanism for AKI, and demonstrated that targeted inhibition on CD44 could be a promising therapeutic strategy to resist AKI.
Collapse
Affiliation(s)
- Jiewu Huang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Ping Meng
- Department of Central Laboratory, Huadu District People's Hospital of Guangzhou, Guangzhou, China
| | - Ye Liang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Xiaolong Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Shan Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Jiemei Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Xiaoxu Wang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Jinhua Miao
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Weiwei Shen
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Lili Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China.
| |
Collapse
|
26
|
Zhang W, Hu J, Hu H, Zhang Z, Zhang W, Lu H, Lei X, Zeng Y, Xia J, Xu F. Trained Decoy Nanocages Confer Selective Cuproptosis and Metabolic Reprogramming for Drug-Resistant Bacterial Targeting Therapy. ACS NANO 2025; 19:5217-5239. [PMID: 39869308 DOI: 10.1021/acsnano.4c10708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Nonantibiotic strategies are urgently needed to treat acute drug-resistant bacterial pneumonia. Recently, nanomaterial-mediated bacterial cuproptosis has arisen widespread interest due to its superiority against antibiotic resistance. However, it may also cause indiscriminate and irreversible damage to healthy cells. Here, we synthesized trained decoy mCuS@lm nanocages, consisting of trained membranes, copper sulfide, mitoquinone, and luteolin for selective cuproptosis and targeted therapeutic strategies. The nanocages could amplify bacterial cuproptosis through quorum sensing inhibition that cuts off bacterial interactions and modulates virulence factors and biofilm formation. Meanwhile, the nanocages could protect cells from cuproptosis-induced damage through mitochondrial-targeted antioxidants. Trained biomimetic membranes facilitated broad-spectrum bacterial targeting ability and functioned as a decoy to neutralize cytokine storms during pneumonia. Moreover, the nanocages could reprogram the metabolic conditions of both bacteria and host cells. In conclusion, the nanocages provide an approach to treat challenging drug-resistant bacterial pneumonia.
Collapse
Affiliation(s)
- Wenting Zhang
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jiahao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Huiqun Hu
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zengwen Zhang
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wanying Zhang
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Huidan Lu
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiaoyue Lei
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Yifei Zeng
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jingyan Xia
- Department of Radiation Therapy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Feng Xu
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou 310053, China
| |
Collapse
|
27
|
Petruzzelli R, Catalano F, Crispino R, Polishchuk EV, Elia M, Masone A, Lavigna G, Grasso A, Battipaglia M, Sepe LV, Akdogan B, Reinold Q, Del Prete E, Carrella D, Torella A, Nigro V, Caruso E, Innocenti N, Biasini E, Puchkova LV, Indrieri A, Ilyechova EY, Piccolo P, Zischka H, Chiesa R, Polishchuk RS. Prion protein promotes copper toxicity in Wilson disease. Nat Commun 2025; 16:1468. [PMID: 39922819 PMCID: PMC11807206 DOI: 10.1038/s41467-025-56740-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/17/2025] [Indexed: 02/10/2025] Open
Abstract
Copper (Cu) is a vitally important micronutrient, whose balance between essential and toxic levels requires a tightly regulated network of proteins. Dysfunction in key components of this network leads to the disruption of Cu homeostasis, resulting in fatal disorders such as Wilson disease, which is caused by mutations in the hepatic Cu efflux transporter ATP7B. Unfortunately, the molecular targets for normalizing Cu homeostasis in Wilson disease remain poorly understood. Here, using genome-wide screening, we identified the cellular prion protein (PrP) as an important mediator of Cu toxicity in WD. Loss of ATP7B stimulates hepatic expression of PrP, which promotes endocytic Cu uptake, leading to toxic Cu overload. Suppression of PrP significantly reduces Cu toxicity in cell and animal models of Wilson disease. These findings highlight the critical regulatory role of PrP in copper metabolism and open new avenues for exploring the therapeutic potential of PrP suppression in Wilson disease.
Collapse
Affiliation(s)
- Raffaella Petruzzelli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Genomics and Experimental Medicine Program, Scuola Superiore Meridionale (SSM, School of Advanced Studies), Naples, Italy
| | - Federico Catalano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Institute of Biosciences and Bioresources, National Research Council, Naples, Italy
| | - Roberta Crispino
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | | | - Antonio Masone
- Department of Neuroscience, Laboratory of Prion Neurobiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giada Lavigna
- Department of Neuroscience, Laboratory of Prion Neurobiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Anna Grasso
- Department of Neuroscience, Laboratory of Prion Neurobiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Maria Battipaglia
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Banu Akdogan
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Quirin Reinold
- Institute of Toxicology and Environmental Hygiene, Technical University Munich School of Medicine and Health, Munich, Germany
| | - Eugenio Del Prete
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Diego Carrella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Annalaura Torella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Enrico Caruso
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Nicole Innocenti
- Department of Cellular, Computational and Integrative Biology, University of Trento, Povo, TN, Italy
| | - Emiliano Biasini
- Department of Cellular, Computational and Integrative Biology, University of Trento, Povo, TN, Italy
| | - Ludmila V Puchkova
- Department of Molecular Genetics, Research Institute of Experimental Medicine, St. Petersburg, Russia
- ITMO University, St. Petersburg, Russia
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan, Italy
| | - Ekaterina Y Ilyechova
- Department of Molecular Genetics, Research Institute of Experimental Medicine, St. Petersburg, Russia
- ITMO University, St. Petersburg, Russia
| | - Pasquale Piccolo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Toxicology and Environmental Hygiene, Technical University Munich School of Medicine and Health, Munich, Germany
| | - Roberto Chiesa
- Department of Neuroscience, Laboratory of Prion Neurobiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| | | |
Collapse
|
28
|
Bischoff ME, Shamsaei B, Yang J, Secic D, Vemuri B, Reisz JA, D’Alessandro A, Bartolacci C, Adamczak R, Schmidt L, Wang J, Martines A, Venkat J, Tcheuyap VT, Biesiada J, Behrmann CA, Vest KE, Brugarolas J, Scaglioni PP, Plas DR, Patra KC, Gulati S, Landero Figueroa JA, Meller J, Cunningham JT, Czyzyk-Krzeska MF. Copper Drives Remodeling of Metabolic State and Progression of Clear Cell Renal Cell Carcinoma. Cancer Discov 2025; 15:401-426. [PMID: 39476412 PMCID: PMC11803400 DOI: 10.1158/2159-8290.cd-24-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/23/2024] [Accepted: 10/30/2024] [Indexed: 11/02/2024]
Abstract
SIGNIFICANCE The work establishes a requirement for glucose-dependent coordination between energy production and redox homeostasis, which is fundamental for the survival of cancer cells that accumulate Cu and contributes to tumor growth.
Collapse
Affiliation(s)
- Megan E. Bischoff
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Behrouz Shamsaei
- Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Juechen Yang
- Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Dina Secic
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Bhargav Vemuri
- Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado
| | - Caterina Bartolacci
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Rafal Adamczak
- Institute of Engineering and Technology, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun, Poland
| | - Lucas Schmidt
- Trace Elements Group, Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jiang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Amelia Martines
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jahnavi Venkat
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Vanina Toffessi Tcheuyap
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jacek Biesiada
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Catherine A. Behrmann
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Katherine E. Vest
- Department of Molecular and Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Pier Paolo Scaglioni
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David R. Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Krushna C. Patra
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Shuchi Gulati
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Oncology and Hematology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, California
| | - Julio A. Landero Figueroa
- Trace Elements Group, Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jarek Meller
- Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Institute of Engineering and Technology, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun, Poland
- Department of Computer Science, University of Cincinnati College of Engineering and Applied Sciences, Cincinnati, Ohio
| | - John T. Cunningham
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Maria F. Czyzyk-Krzeska
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Department of Veterans Affairs, Veteran Affairs Medical Center, Cincinnati, Ohio
- Department of Pharmacology and System Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
29
|
Tian Z, Wang X, Chen S, Guo Z, Di J, Xiang C. Mitochondria-Targeted Biomaterials-Regulating Macrophage Polarization Opens New Perspectives for Disease Treatment. Int J Nanomedicine 2025; 20:1509-1528. [PMID: 39925677 PMCID: PMC11806677 DOI: 10.2147/ijn.s505591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/18/2025] [Indexed: 02/11/2025] Open
Abstract
Macrophage immunotherapy is an emerging therapeutic approach designed for modulating the immune response to alleviate disease symptoms. The balance between pro-inflammatory and anti-inflammatory macrophages plays a pivotal role in the progression of inflammatory diseases. Mitochondria, often referred to as the "power plants" of the cell, are essential organelles responsible for critical functions such as energy metabolism, material synthesis, and signal transduction. The functional state of mitochondria is closely linked to macrophage polarization, prompting interest in therapeutic strategies that target mitochondria to regulate this process. To this end, biomaterials with excellent targeting capabilities and effective therapeutic properties have been developed to influence mitochondrial function and regulate macrophage polarization. However, a comprehensive summary of biomaterial-driven modulation of mitochondrial function to control macrophage phenotypes is still lacking. This review highlights the critical role of mitochondrial function in macrophage polarization and discusses therapeutic strategies mediated by biomaterials, including mitochondria-targeted biomaterials. Finally, the prospects and challenges of the use of these biomaterials in disease modulation have been explored, emphasizing their potential to be translated to the clinic. It is anticipated that this review will serve as a valuable resource for materials scientists and clinicians in the development of next-generation mitochondria-targeted biomaterials.
Collapse
Affiliation(s)
- Zui Tian
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xudong Wang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Shuai Chen
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Zijian Guo
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jingkai Di
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Chuan Xiang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
30
|
Acharjee S, Pal R, Anand S, Thakur P, Anjana V, Singh R, Paul M, Biswas A, Tomar RS. Mutations in histones dysregulate copper homeostasis leading to defect in Sec61-dependent protein translocation mechanism in Saccharomyces cerevisiae. J Biol Chem 2025; 301:108163. [PMID: 39793894 PMCID: PMC11847117 DOI: 10.1016/j.jbc.2025.108163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
The translocation of proteins from the cytoplasm to the endoplasmic reticulum occurs via a conserved Sec61 protein channel. Previously, we reported that mutations in histones cause downregulation of a CUP1 copper metallothionein, and copper exposure inhibits the activity of Sec61. However, the role of epigenetic dysregulation on the activity of channel is not clear. Identification of cellular factors regulating copper metabolism and Sec61 activity is needed as the dysregulation can cause human diseases. In this study, we elucidate the intricate relationship between copper homeostasis and Sec61-mediated protein translocation. Utilizing copper-sensitive yeast histone mutants exhibiting deficiencies in the expression of CUP1, we uncover a copper-specific impairment of the protein translocation process, causing a reduction in the maturation of secretory proteins. Our findings highlight the inhibitory effect of copper on both cotranslational and posttranslational protein translocations. We demonstrate that supplementation with a copper-specific chelator or amino acids such as cysteine, histidine, and reduced glutathione, zinc, and overexpression of CUP1 restores the translocation process and growth. This study, for the first time provides a functional insight on epigenetic and metabolic regulation of copper homeostasis in governing Sec61-dependent protein translocation process and may be useful to understand human disorders of copper metabolism.
Collapse
Affiliation(s)
- Santoshi Acharjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Rajshree Pal
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Smriti Anand
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Prateeksha Thakur
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Vandana Anjana
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Ranu Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Mrittika Paul
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Ashis Biswas
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Raghuvir Singh Tomar
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
31
|
Li SR, Tao SY, Li Q, Hu CY, Sun ZJ. Harnessing nanomaterials for copper-induced cell death. Biomaterials 2025; 313:122805. [PMID: 39250865 DOI: 10.1016/j.biomaterials.2024.122805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
Copper (Cu), an essential micronutrient with redox properties, plays a pivotal role in a wide array of pathological and physiological processes across virtually all cell types. Maintaining an optimal copper concentration is critical for cellular survival: insufficient copper levels disrupt respiration and metabolism, while excess copper compromises cell viability, potentially leading to cell death. Similarly, in the context of cancer, copper exhibits a dual role: appropriate amount of copper can promote tumor progression and be an accomplice, yet beyond befitting level, copper can bring about multiple types of cell death, including autophagy, apoptosis, ferroptosis, immunogenic cell death, pyroptosis, and cuproptosis. These forms of cell death are beneficial against cancer progression; however, achieving precise copper regulation within tumors remains a significant challenge in the pursuit of effective cancer therapies. The emergence of nanodrug delivery systems, distinguished by their precise targeting, controlled release, high payload capacity, and the ability to co-deliver multiple agents, has revitalized interest in exploiting copper's precise regulatory capabilities. Nevertheless, there remains a dearth of comprehensive review of copper's bidirectional effects on tumorigenesis and the role of copper-based nanomaterials in modulating tumor progression. This paper aims to address this gap by elucidating the complex role in cancer biology and highlighting its potential as a therapeutic target. Through an exploration of copper's dualistic nature and the application of nanotechnology, this review seeks to offer novel insights and guide future research in advancing cancer treatment.
Collapse
Affiliation(s)
- Su-Ran Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, Hubei, PR China
| | - Shi-Yue Tao
- Bathune School of Stomatology, Jilin University, Changchun, 130021, Jilin, PR China
| | - Qian Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, Hubei, PR China
| | - Chuan-Yu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, Hubei, PR China.
| |
Collapse
|
32
|
Zhang Y, Ma K, Fang X, Zhang Y, Miao R, Guan H, Tian J. Targeting ion homeostasis in metabolic diseases: Molecular mechanisms and targeted therapies. Pharmacol Res 2025; 212:107579. [PMID: 39756557 DOI: 10.1016/j.phrs.2025.107579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/13/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
The incidence of metabolic diseases-hypertension, diabetes, obesity, metabolic dysfunction-associated steatotic liver disease (MASLD), and atherosclerosis-is increasing annually, imposing a significant burden on both human health and the social economy. The occurrence and development of these diseases are closely related to the disruption of ion homeostasis, which is crucial for maintaining cellular functions and metabolic equilibrium. However, the specific mechanism of ion homeostasis in metabolic diseases is still unclear. This article reviews the role of ion homeostasis in the pathogenesis of metabolic diseases and assesses its potential as a therapeutic target. Furthermore, the article explores pharmacological strategies that target ion channels and transporters, including existing drugs and emerging drugs under development. Lastly, the article discusses the development direction of future therapeutic strategies, including the possibility of gene therapy targeting specific ion channels and personalized therapy using novel biomarkers. In summary, targeting ion homeostasis provides a new perspective and potential therapeutic approach for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Kaile Ma
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huifang Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
33
|
Müller S, Cañeque T, Solier S, Rodriguez R. Copper and iron orchestrate cell-state transitions in cancer and immunity. Trends Cell Biol 2025; 35:105-114. [PMID: 39079798 DOI: 10.1016/j.tcb.2024.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 02/09/2025]
Abstract
Whereas genetic mutations can alter cell properties, nongenetic mechanisms can drive rapid and reversible adaptations to changes in their physical environment, a phenomenon termed 'cell-state transition'. Metals, in particular copper and iron, have been shown to be rate-limiting catalysts of cell-state transitions controlling key chemical reactions in mitochondria and the cell nucleus, which govern metabolic and epigenetic changes underlying the acquisition of distinct cell phenotypes. Acquisition of a distinct cell identity, independently of genetic alterations, is an underlying phenomenon of various biological processes, including development, inflammation, erythropoiesis, aging, and cancer. Here, mechanisms that have been uncovered related to the role of these metals in the regulation of cell plasticity are described, illustrating how copper and iron can be exploited for therapeutic intervention.
Collapse
Affiliation(s)
- Sebastian Müller
- Institut Curie, CNRS, INSERM, PSL Research University, Equipe labellisée Ligue Contre Le Cancer, Paris, France
| | - Tatiana Cañeque
- Institut Curie, CNRS, INSERM, PSL Research University, Equipe labellisée Ligue Contre Le Cancer, Paris, France
| | - Stéphanie Solier
- Institut Curie, CNRS, INSERM, PSL Research University, Equipe labellisée Ligue Contre Le Cancer, Paris, France; Department of Genetics, Institut Curie, Paris, France; Paris Saclay University, UVSQ, Montigny-le-Bretonneux, France
| | - Raphaël Rodriguez
- Institut Curie, CNRS, INSERM, PSL Research University, Equipe labellisée Ligue Contre Le Cancer, Paris, France.
| |
Collapse
|
34
|
Yanjuan L, Shuangyou D, Ying W, Xing C, Yue C, Zixuan Y, Shumeng Z, Lingli C, Jie L. The Research Progress: Cuproptosis and Copper Metabolism in Regulating Cardiovascular Diseases. J Cardiovasc Pharmacol 2025; 85:89-96. [PMID: 39591592 DOI: 10.1097/fjc.0000000000001653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024]
Abstract
ABSTRACT Studies have shown an association between cardiovascular disease and abnormal copper metabolism. Cuproptosis is caused by the accumulation of copper in vivo, and is a newly identified form of cell death. It regulates cardiovascular diseases by affecting vascular endothelial function and myocardial energy metabolism through pathways such as oxidative stress, mitochondrial function, and gene expression. The treatment of copper accumulation in Traditional Chinese Medicine primarily involves heat-clearing and detoxification therapy, supplemented with diuretic therapy. In contrast, Western medicine mainly uses copper chelators. Flavonoids are common active ingredients used in the treatment of copper metabolism-related and cardiovascular diseases. In this article, we reviewed the relationship between copper metabolism, cuproptosis, and cardiovascular disease, providing novel strategies for preventing and treating cardiovascular disease; our ultimate aim is to encourage inspiration and contemplation among readers.
Collapse
Affiliation(s)
- Liu Yanjuan
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of TCM Diagnosis, Changsha, China
| | - Deng Shuangyou
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of TCM Diagnosis, Changsha, China
| | - Wang Ying
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of TCM Diagnosis, Changsha, China
| | - Chen Xing
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of TCM Diagnosis, Changsha, China
| | - Chen Yue
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of TCM Diagnosis, Changsha, China
| | - Yu Zixuan
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of TCM Diagnosis, Changsha, China
| | - Zhang Shumeng
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of TCM Diagnosis, Changsha, China
| | - Chen Lingli
- Hunan University of Chinese Medicine, Changsha, China
| | - Li Jie
- Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of TCM Diagnosis, Changsha, China
| |
Collapse
|
35
|
Lu K, Wijaya CS, Yao Q, Jin H, Feng L. Cuproplasia and cuproptosis, two sides of the coin. Cancer Commun (Lond) 2025. [PMID: 39865459 DOI: 10.1002/cac2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/03/2025] [Accepted: 01/19/2025] [Indexed: 01/28/2025] Open
Abstract
Copper is an essential micronutrient in the human body, mainly acting as a crucial cofactor required for a wide range of physiological processes across nearly all cell types. Recent advances revealed that tumor cells seize copper to fulfill their rapid proliferation, metastasis, immune evasion, and so on by reprogramming the copper regulatory network, defined as cuproplasia. Thus, targeting copper chelation to reduce copper levels has been considered a rational tumor therapy strategy. However, overloaded copper ions could be toxic, which leads to the aggregation of lipoylated mitochondrial proteins and the depletion of iron-sulfur clusters, ultimately resulting in cell death, termed cuproptosis. Upon its discovery, cuproptosis has attracted great interest from oncologists, and targeting cuproptosis by copper ionophores exhibits as a potential anti-tumor therapy. In this review, we present the underlying mechanisms involved in cuproplasia and cuproptosis. Additionally, we sum up the chemicals targeting either cuproplasia or cuproptosis for cancer therapy. Further attention should be paid to distinguishing cancer patients who are suitable for targeting cuproplasia or cuproptosis.
Collapse
Affiliation(s)
- Kaizhong Lu
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Chandra Sugiarto Wijaya
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Qinghua Yao
- Department of Oncology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, Zhejiang, P. R. China
- Key Laboratory for Research on the Pathogenesis of Inflammation-Cancer Transformation in Intestinal Diseases, Zhejiang Engineering Research Center of Intelligent Equipment of Chronic Chinese and Western Medicine, Hangzhou, Zhejiang, P. R. China
| | - Hongchuan Jin
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Lifeng Feng
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
36
|
Rodriguez R, Müller S, Colombeau L, Solier S, Sindikubwabo F, Cañeque T. Metal Ion Signaling in Biomedicine. Chem Rev 2025; 125:660-744. [PMID: 39746035 PMCID: PMC11758815 DOI: 10.1021/acs.chemrev.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/10/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Complex multicellular organisms are composed of distinct tissues involving specialized cells that can perform specific functions, making such life forms possible. Species are defined by their genomes, and differences between individuals within a given species directly result from variations in their genetic codes. While genetic alterations can give rise to disease-causing acquisitions of distinct cell identities, it is now well-established that biochemical imbalances within a cell can also lead to cellular dysfunction and diseases. Specifically, nongenetic chemical events orchestrate cell metabolism and transcriptional programs that govern functional cell identity. Thus, imbalances in cell signaling, which broadly defines the conversion of extracellular signals into intracellular biochemical changes, can also contribute to the acquisition of diseased cell states. Metal ions exhibit unique chemical properties that can be exploited by the cell. For instance, metal ions maintain the ionic balance within the cell, coordinate amino acid residues or nucleobases altering folding and function of biomolecules, or directly catalyze specific chemical reactions. Thus, metals are essential cell signaling effectors in normal physiology and disease. Deciphering metal ion signaling is a challenging endeavor that can illuminate pathways to be targeted for therapeutic intervention. Here, we review key cellular processes where metal ions play essential roles and describe how targeting metal ion signaling pathways has been instrumental to dissecting the biochemistry of the cell and how this has led to the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Raphaël Rodriguez
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sebastian Müller
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Ludovic Colombeau
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Stéphanie Solier
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
- Université
Paris-Saclay, UVSQ, 78180 Montigny-le-Bretonneux, France
| | | | - Tatiana Cañeque
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
37
|
Zhao L, Gui Y, Cai J, Deng X. Biometallic ions and derivatives: a new direction for cancer immunotherapy. Mol Cancer 2025; 24:17. [PMID: 39815289 PMCID: PMC11734411 DOI: 10.1186/s12943-025-02225-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/01/2025] [Indexed: 01/18/2025] Open
Abstract
Biometallic ions play a crucial role in regulating the immune system. In recent years, cancer immunotherapy has become a breakthrough in cancer treatment, achieving good efficacy in a wide range of cancers with its specificity and durability advantages. However, existing therapies still face challenges, such as immune tolerance and immune escape. Biometallic ions (e.g. zinc, copper, magnesium, manganese, etc.) can assist in enhancing the efficacy of immunotherapy through the activation of immune cells, enhancement of tumor antigen presentation, and improvement of the tumor microenvironment. In addition, biometallic ions and derivatives can directly inhibit tumor cell progression and offer the possibility of effectively overcoming the limitations of current cancer immunotherapy by promoting immune responses and reducing immunosuppressive signals. This review explores the role and potential application prospects of biometallic ions in cancer immunotherapy, providing new ideas for future clinical application of metal ions as part of cancer immunotherapy and helping to guide the development of more effective and safe therapeutic regimens.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 41001l, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Human, 410011, China
| | - Yajun Gui
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 41001l, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Human, 410011, China
| | - Jing Cai
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 41001l, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Human, 410011, China
| | - Xiangying Deng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 41001l, China.
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Human, 410011, China.
- Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
38
|
Liu Z, Gan Y, Shen Z, Cai S, Wang X, Li Y, Li X, Fu H, Chen J, Li N. Role of copper homeostasis and cuproptosis in heart failure pathogenesis: implications for therapeutic strategies. Front Pharmacol 2025; 15:1527901. [PMID: 39850564 PMCID: PMC11754225 DOI: 10.3389/fphar.2024.1527901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Copper is an essential micronutrient involved in various physiological processes in various cell types. Consequently, dysregulation of copper homeostasis-either excessive or deficient-can lead to pathological changes, such as heart failure (HF). Recently, a new type of copper-dependent cell death known as cuproptosis has drawn increasing attention to the impact of copper dyshomeostasis on HF. Notably, copper dyshomeostasis was associated with the occurrence of HF. Hence, this review aimed to investigate the biological processes involved in copper uptake, transport, excretion, and storage at both the cellular and systemic levels in terms of cuproptosis and HF, along with the underlying mechanisms of action. Additionally, the role of cuproptosis and its related mitochondrial dysfunction in HF pathogenesis was analyzed. Finally, we reviewed the therapeutic potential of current drugs that target copper metabolism for treating HF. Overall, the conclusions of this review revealed the therapeutic potential of copper-based therapies that target cuproptosis for the development of strategies for the treatment of HF.
Collapse
Affiliation(s)
- Zhichao Liu
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Yongkang Gan
- Department of Vascular Surgery, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Zhen Shen
- Department of Clinical Laboratory, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Siqi Cai
- College of Art, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Xizhen Wang
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Yong Li
- Experimental Center for Medical Research, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaofeng Li
- Department of Cardiovascular, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huanjie Fu
- Department of Cardiovascular, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinhong Chen
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Ningcen Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
39
|
Zhou T, Yu Y, Li L, Liu X, Xiang Q, Yu R. Bibliometric analysis of metformin as an immunomodulator (2013-2024). Front Immunol 2025; 15:1526481. [PMID: 39845945 PMCID: PMC11750822 DOI: 10.3389/fimmu.2024.1526481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Background Metformin, the frontline treatment for diabetes, has considerable potential as an immunomodulator; however, detailed bibliometric analyses on this subject are limited. Methods This study extracted 640 relevant articles from the Web of Science (WOS) Core Collection and conducted visual analyses using Microsoft Excel, VOSviewer, and CiteSpace. Results The findings showed that research on the immunomodulatory function of metformin has grown steadily since 2017, with China and the United States being the leading contributors. These studies have mostly been published in journals such as the International Journal of Molecular Sciences, Cancers, Frontiers in Immunology, and Scientific Reports. Keyword co-occurrence analysis highlighted metformin's role as an immunomodulator, particularly in the context of the tumor immune microenvironment, immunosuppressive checkpoints, and metformin derivatives. Recent research has highlighted metformin's application in aging, autoimmune diseases, COVID-19, and tuberculosis. Additionally, its role in regulating inflammation and gut microbiota is also being investigated. Conclusion Overall, the immunomodulatory effects of metformin were investigated in anti-tumor, antiviral, anti-aging, and autoimmune disease research. This highlights the scope of metformin use in these fields, while also significantly enhancing its clinical value as a repurposed drug.
Collapse
Affiliation(s)
- Tongyi Zhou
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yunfeng Yu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Liu Li
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiu Liu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qin Xiang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Rong Yu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
40
|
Lutsenko S, Roy S, Tsvetkov P. Mammalian copper homeostasis: physiological roles and molecular mechanisms. Physiol Rev 2025; 105:441-491. [PMID: 39172219 PMCID: PMC11918410 DOI: 10.1152/physrev.00011.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024] Open
Abstract
In the past decade, evidence for the numerous roles of copper (Cu) in mammalian physiology has grown exponentially. The discoveries of Cu involvement in cell signaling, autophagy, cell motility, differentiation, and regulated cell death (cuproptosis) have markedly extended the list of already known functions of Cu, such as a cofactor of essential metabolic enzymes, a protein structural component, and a regulator of protein trafficking. Novel and unexpected functions of Cu transporting proteins and enzymes have been identified, and new disorders of Cu homeostasis have been described. Significant progress has been made in the mechanistic studies of two classic disorders of Cu metabolism, Menkes disease and Wilson's disease, which paved the way for novel approaches to their treatment. The discovery of cuproptosis and the role of Cu in cell metastatic growth have markedly increased interest in targeting Cu homeostatic pathways to treat cancer. In this review, we summarize the established concepts in the field of mammalian Cu physiology and discuss how new discoveries of the past decade expand and modify these concepts. The roles of Cu in brain metabolism and in cell functional speciation and a recently discovered regulated cell death have attracted significant attention and are highlighted in this review.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Shubhrajit Roy
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Peter Tsvetkov
- Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| |
Collapse
|
41
|
Wang S, Zhang H, Chen T, Jiang W, Wang F, Yu Y, Guo B, Xu J, Yang F, Kang Q, Ma Z. Injectable hyaluronate-L- cysteine gel potentiates photothermal therapy in osteosarcoma via vorinostat-copper cell death. Mater Today Bio 2024; 29:101368. [PMID: 39659842 PMCID: PMC11629197 DOI: 10.1016/j.mtbio.2024.101368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/01/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024] Open
Abstract
The prognosis for osteosarcoma patients, a devastating malignancy affecting young individuals, remains grim despite multimodal therapeutic advances. Recently, the advent of cuproptosis, a novel programmed cell death, offers hope in fighting osteosarcoma. In this study, we introduce SAHAm@{[Cu(HA-Cys)2]Cl2}n, an injectable hyaluronate-L-cysteine hydrogel that integrates both copper ions (Cu2+) and vorinostat (SAHA) for the possible therapeutic effect. The Cu2+ targets the TCA cycle, inducing cuproptosis in osteosarcoma cells. While SAHA acts as both a histone deacetylase inhibitor and an ROS generator for eliminating tumor cells. The mechanism involves amplifying FDX-1 expression via SAHA modulation of the TCA cycle, which was an original discovery. Critically, the combined mechanisms and localized injection enables the hydrogel partially eradicating osteosarcoma without metastasis in rats. Therefore, this study advances cuproptosis induced photothermal therapy for promising clinical translations, shedding light on favorable prognosis for osteosarcoma.
Collapse
Affiliation(s)
- Sizhen Wang
- Department of Inorganic Chemistry, Pharmacy School, Naval Medical University, 325 Guohe Road, Shanghai, 200433, People's Republic of China
| | - Hanzhe Zhang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Tianheng Chen
- Department of Inorganic Chemistry, Pharmacy School, Naval Medical University, 325 Guohe Road, Shanghai, 200433, People's Republic of China
| | - Weiwei Jiang
- Department of Inorganic Chemistry, Pharmacy School, Naval Medical University, 325 Guohe Road, Shanghai, 200433, People's Republic of China
| | - Feng Wang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Yuhao Yu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Beibei Guo
- Department of Inorganic Chemistry, Pharmacy School, Naval Medical University, 325 Guohe Road, Shanghai, 200433, People's Republic of China
| | - Jia Xu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Feng Yang
- Department of Inorganic Chemistry, Pharmacy School, Naval Medical University, 325 Guohe Road, Shanghai, 200433, People's Republic of China
- Department of Nuclear Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, People's Republic of China
| | - Qinglin Kang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Zhiqiang Ma
- Department of Inorganic Chemistry, Pharmacy School, Naval Medical University, 325 Guohe Road, Shanghai, 200433, People's Republic of China
| |
Collapse
|
42
|
Yue Q, Zeng Q, Guo Q, Zhao X, Yuan Y, Yang Y, Jiang W, Zhou X. Pitaya-Inspired Metal-Organic Framework Nanozyme for Multimodal Imaging-Guided Synergistic Cuproptosis, Nanocatalytic Therapy, and Photothermal Therapy. Adv Healthc Mater 2024; 13:e2402915. [PMID: 39440641 DOI: 10.1002/adhm.202402915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Nature often provides invaluable insights into technological innovation and the construction of nanomaterials. Inspired by the pitaya fruit's strategy of wrapping seeds within its pulp to enhance seed survival, a unique nanocomposite based on metal-organic framework (MOF)-encapsulated CuS nanoparticles (NPs) is developed. This design effectively addresses the challenge of short retention time afforded by CuS NPs for therapeutic and imaging purposes. The MOF acts as the "pitaya pulp" protecting the internal CuS NPs ("pitaya seeds"), thereby increasing their retention time in vivo. This system exhibits triple-enzyme-mimicking activities and is proposed for application in photoacoustic and magnetic resonance imaging-guided therapies, including chemodynamic therapy, photothermal therapy, and cuproptosis-related therapy. The exceptional enzyme-mimicking activities of superoxide dismutase, catalase, and peroxidase not only produce oxygen to alleviate hypoxia but also generate a reactive oxygen species (ROS) storm for effective tumor destruction. By combining these multienzymatic properties, superior photothermal performance, and Cu-induced cuproptosis, nanozyme-treated mice exhibited an 84% inhibition of tumor growth-approximately double the effect observed in mice treated with CuS NPs alone. This study presents a smart strategy for integrating imaging with therapeutic modalities, achieving exceptional outcomes for precise imaging-guided tumor therapy.
Collapse
Affiliation(s)
- Quer Yue
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qingbin Zeng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qianni Guo
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiuchao Zhao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yaping Yuan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuqi Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Weiping Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Biomedical Engineering, Hainan University, Haikou, 570228, P. R. China
| |
Collapse
|
43
|
Huang L, Zhu J, Wu G, Xiong W, Feng J, Yan C, Yang J, Li Z, Fan Q, Ren B, Li Y, Chen C, Yu X, Shen Z. A strategy of "adding fuel to the flames" enables a self-accelerating cycle of ferroptosis-cuproptosis for potent antitumor therapy. Biomaterials 2024; 311:122701. [PMID: 38981152 DOI: 10.1016/j.biomaterials.2024.122701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/12/2024] [Accepted: 07/06/2024] [Indexed: 07/11/2024]
Abstract
Cuproptosis in antitumor therapy faces challenges from copper homeostasis efflux mechanisms and high glutathione (GSH) levels in tumor cells, hindering copper accumulation and treatment efficacy. Herein, we propose a strategy of "adding fuel to the flames" for potent antitumor therapy through a self-accelerating cycle of ferroptosis-cuproptosis. Disulfiram (DSF) loaded hollow mesoporous copper-iron sulfide (HMCIS) nanoparticle with conjugation of polyethylene glycol (PEG) and folic acid (FA) (i.e., DSF@HMCIS-PEG-FA) was developed to swiftly release DSF, H2S, Cu2+, and Fe2+ in the acidic tumor microenvironment (TME). The hydrogen peroxide (H2O2) levels and acidity within tumor cells enhanced by the released H2S induce acceleration of Fenton (Fe2+) and Fenton-like (Cu2+) reactions, enabling the powerful tumor ferroptosis efficacy. The released DSF acts as a role of "fuel", intensifying catalytic effect ("flame") in tumor cells through the sustainable Fenton chemistry (i.e., "add fuel to the flames"). Robust ferroptosis in tumor cells is characterized by serious mitochondrial damage and GSH depletion, leading to excess intracellular copper that triggers cuproptosis. Cuproptosis disrupts mitochondria, compromises iron-sulfur (Fe-S) proteins, and elevates intracellular oxidative stress by releasing free Fe3+. These interconnected processes form a self-accelerating cycle of ferroptosis-cuproptosis with potent antitumor capabilities, as validated in both cancer cells and tumor-bearing mice.
Collapse
Affiliation(s)
- Lin Huang
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Jiaoyang Zhu
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Guochao Wu
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Wei Xiong
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Chenggong Yan
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Jing Yang
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Zongheng Li
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Qingdeng Fan
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Bin Ren
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Yan Li
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Chaomin Chen
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China.
| | - Xiangrong Yu
- Department of Radiology, Zhuhai People's Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, 519000, China.
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
44
|
Guo H, Jing L, Xia C, Zhu Y, Xie Y, Ma X, Fang J, Wang Z, Zuo Z. Copper Promotes LPS-Induced Inflammation via the NF-кB Pathway in Bovine Macrophages. Biol Trace Elem Res 2024; 202:5479-5488. [PMID: 38376728 DOI: 10.1007/s12011-024-04107-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Inflammation is a complex physiological process that enables the clearance of pathogens and repairing damaged tissues. Elevated serum copper concentration has been reported in cases of inflammation, but the role of copper in inflammatory responses remains unclear. This study used bovine macrophages to establish lipopolysaccharide (LPS)-induced inflammation model. There were five groups in the study: a group treated with LPS (100 ng/ml), a group treated with either copper chelator (tetrathiomolybdate, TTM) (20 μmol) or CuSO4 (25 μmol or 50 μmol) after LPS stimulation, and a control group. Copper concentrations increased in macrophages after the LPS treatment. TTM decreased mRNA expression of pro-inflammatory factors (IL-1β, TNF-α, IL-6, iNOS, and COX-2), whereas copper supplement increased them. Compared to the control group, TLP4 and MyD88 protein levels were increased in the TTM and copper groups. However, TTM treatment decreased p-p65 and increased IкB-α while the copper supplement showed reversed results. In addition, the phagocytosis and migration of bovine macrophages decreased in the TTM treatment group while increased in the copper treatment groups. Results mentioned above indicated that copper could promote the LPS-induced inflammatory response in bovine macrophages, promote pro-inflammatory factors by activating the NF-кB pathway, and increase phagocytosis capacity and migration. Our study provides a possible targeted therapy for bovine inflammation.
Collapse
Affiliation(s)
- Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, People's Republic of China.
| | - Lin Jing
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Chenglong Xia
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, People's Republic of China
| | - Yue Xie
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, People's Republic of China
| | - Zhisheng Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611134, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
45
|
Zhang L, Deng R, Liu L, Du H, Tang D. Novel insights into cuproptosis inducers and inhibitors. Front Mol Biosci 2024; 11:1477971. [PMID: 39659361 PMCID: PMC11628392 DOI: 10.3389/fmolb.2024.1477971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Cuproptosis is a new pattern of Cu-dependent cell death distinct from classic cell death pathways and characterized by aberrant lipoylated protein aggregation in TCA cycle, Fe-S cluster protein loss, HSP70 elevation, proteotoxic and oxidative stress aggravation. Previous studies on Cu homeostasis and Cu-induced cell death provide a great basis for the discovery of cuproptosis. It has gradually gathered enormous research interests and large progress has been achieved in revealing the metabolic pathways and key targets of cuproptosis, due to its role in mediating some genetic, neurodegenerative, cardiovascular and tumoral diseases. In terms of the key targets in cuproptosis metabolic pathways, they can be categorized into three types: oxidative stress, mitochondrial respiration, ubiquitin-proteasome system. And strategies for developing cuproptosis inducers and inhibitors involved in these targets have been continuously improved. Briefly, based on the essential cuproptosis targets and metabolic pathways, this paper classifies some relevant inducers and inhibitors including small molecule compounds, transcription factors and ncRNAs with the overview of principle, scientific and medical application, in order to provide reference for the cuproptosis study and target therapy in the future.
Collapse
Affiliation(s)
- Ligang Zhang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ruiting Deng
- Beijing Mercer United International Education Consulting Co., Ltd., Guangzhou, China
| | - Lian Liu
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Dongsheng Tang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
| |
Collapse
|
46
|
Squitti R, Tondolo V, Pal A, Rizzo G, Arijit S, Mehboob H, di Veroli L, Catalano P, Ventura MD, Mastromoro G, Rossi L, Rongioletti M, De Luca A. Copper Dysmetabolism is Connected to Epithelial-Mesenchymal Transition: A Pilot Study in Colorectal Cancer Patients. Biol Trace Elem Res 2024:10.1007/s12011-024-04440-w. [PMID: 39557817 DOI: 10.1007/s12011-024-04440-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/29/2024] [Indexed: 11/20/2024]
Abstract
Colorectal cancer (CRC) is among the most diagnosed cancers worldwide, whose risk of mortality is associated with the development of metastases to the liver, lungs, and peritoneum. Of note, CRC is highly dependent on copper to sustain its proliferation and aggressiveness. Copper acts not only as a pivotal cofactor for several cuproproteins but also as an allosteric modulator of kinases essential to fulfill the epithelial-to-mesenchymal-transition (EMT), the main mechanism driving cancer cell spreading. System biology identified the APP and SOD1 genes among the top 10 genes shared between CRC and copper metabolism, as confirmed by the upregulation of the protein/mRNA levels of APP observed in CRC tissues. The significant increase of copper found in the sera of CRC patients was paralleled by a strong reduction of copper in the CRC tissues, in agreement with the decreased level of the high-affinity copper transporter CTR1 mRNA (SLC31A1) and LOXL2. As expected, in CRC tissues the mesenchymal marker fibronectin was significantly increased, whereas vimentin and vinculin protein levels were decreased compared to adjacent healthy mucosa. Interestingly, correlation analysis showed an interconnection between vinculin and both CCS and APP. A positive correlation was also observed between APP mRNA and both CDH1 and SOD1 mRNAs. Overall, we demonstrate a correlation between cell copper imbalance and CRC progression via EMT. The results obtained lay the scientific basis for further investigation to describe the kinetics of copper dysregulation during CRC progression and to identify the main cuproproteins involved in the modulation of EMT.
Collapse
Affiliation(s)
- Rosanna Squitti
- Department of Laboratory Science, Research and Development Division, Ospedale Isola Tiberina-Gemelli Isola, 00186, Rome, Italy.
- Department of Theoretical and Applied Sciences, eCampus University, Viale Massenzio Masia, 26, 22100, Como, Novedrate, Italy.
| | - Vincenzo Tondolo
- Digestive and Colorectal Surgery, Ospedale Isola Tiberina-Gemelli Isola, 00186, Rome, Italy
- Digestive Surgery Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Amit Pal
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani, 741245, India
| | - Gianluca Rizzo
- Digestive and Colorectal Surgery, Ospedale Isola Tiberina-Gemelli Isola, 00186, Rome, Italy
- Digestive Surgery Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Samanta Arijit
- Applied Bio-Chemistry Laboratory, Department of Biological Sciences, Aliah University, Kolkata, 700160, India
| | - Hoque Mehboob
- Applied Bio-Chemistry Laboratory, Department of Biological Sciences, Aliah University, Kolkata, 700160, India
| | - Laura di Veroli
- Department of Laboratory Science, Research and Development Division, Ospedale Isola Tiberina-Gemelli Isola, 00186, Rome, Italy
| | - Piera Catalano
- Department of Laboratory Science, Research and Development Division, Ospedale Isola Tiberina-Gemelli Isola, 00186, Rome, Italy
| | - Marco Della Ventura
- Department of Laboratory Science, Research and Development Division, Ospedale Isola Tiberina-Gemelli Isola, 00186, Rome, Italy
| | - Gioia Mastromoro
- Department of Laboratory Science, Research and Development Division, Ospedale Isola Tiberina-Gemelli Isola, 00186, Rome, Italy
| | - Luisa Rossi
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Mauro Rongioletti
- Department of Laboratory Science, Research and Development Division, Ospedale Isola Tiberina-Gemelli Isola, 00186, Rome, Italy
| | - Anastasia De Luca
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133, Rome, Italy.
| |
Collapse
|
47
|
Liu YT, Chen L, Li SJ, Wang WY, Wang YY, Yang QC, Song A, Zhang MJ, Mo WT, Li H, Hu CY, Sun ZJ. Dysregulated Wnt/β-catenin signaling confers resistance to cuproptosis in cancer cells. Cell Death Differ 2024; 31:1452-1466. [PMID: 38987382 PMCID: PMC11520902 DOI: 10.1038/s41418-024-01341-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
Cuproptosis is characterized by the aggregation of lipoylated enzymes of the tricarboxylic acid cycle and subsequent loss of iron-sulfur cluster proteins as a unique copper-dependent form of regulated cell death. As dysregulation of copper homeostasis can induce cuproptosis, there is emerging interest in exploiting cuproptosis for cancer therapy. However, the molecular drivers of cancer cell evasion of cuproptosis were previously undefined. Here, we found that cuproptosis activates the Wnt/β-catenin pathway. Mechanistically, copper binds PDK1 and promotes its interaction with AKT, resulting in activation of the Wnt/β-catenin pathway and cancer stem cell (CSC) properties. Notably, aberrant activation of Wnt/β-catenin signaling conferred resistance of CSCs to cuproptosis. Further studies showed the β-catenin/TCF4 transcriptional complex directly binds the ATP7B promoter, inducing its expression. ATP7B effluxes copper ions, reducing intracellular copper and inhibiting cuproptosis. Knockdown of TCF4 or pharmacological Wnt/β-catenin blockade increased the sensitivity of CSCs to elesclomol-Cu-induced cuproptosis. These findings reveal a link between copper homeostasis regulated by the Wnt/β-catenin pathway and cuproptosis sensitivity, and suggest a precision medicine strategy for cancer treatment through selective cuproptosis induction.
Collapse
Affiliation(s)
- Yuan-Tong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lei Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Shu-Jin Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Wu-Yin Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yuan-Yuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Qi-Chao Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - An Song
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Meng-Jie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Wen-Tao Mo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Hao Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chuan-Yu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
48
|
Zhang L, Xie A, Ma J, Liu H, Zeng C. Unveiling Cuproptosis: Mechanistic insights, roles, and leading advances in oncology. Biochim Biophys Acta Rev Cancer 2024; 1879:189180. [PMID: 39276875 DOI: 10.1016/j.bbcan.2024.189180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Copper, a vital micronutrient, performs essential functions in numerous biological settings. Its disrupted metabolism is implicated in both the initiation of tumors and therapeutic interventions for cancer, underscoring the critical necessity of preserving copper homeostasis. Cuproptosis, a regulated cell death (RCD) modulated by copper, is activated in response to elevated copper concentrations, prompting an investigation into its implication in oncogenesis. Within this review, an exploration is conducted into copper dynamics and homeostasis maintenance within cells. Furthermore, it delves into the mechanisms underlying cuproptosis and its interplay with signaling pathways implicated in cancer. The potential synergy between cuproptosis and ferroptosis and its impact on tumor immunomodulation is discussed. Additionally, promising avenues for addressing cuproptosis in cancer involve assessing the utility of copper chelators and ionophores. By addressing pressing questions surrounding cuproptosis and outlining its pivotal role in cancer pathogenesis and treatment, this review propounds targeting cuproptosis as a promising frontier in antitumor therapy, potentially revolutionizing cancer treatment strategies.
Collapse
Affiliation(s)
- Limei Zhang
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Aihui Xie
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Jingxian Ma
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Huilin Liu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen 518110, China.
| |
Collapse
|
49
|
Amedei A, Parolini C. Editorial: Epigenetics of inflammatory reactions and pharmacological modulation. Front Pharmacol 2024; 15:1505196. [PMID: 39529877 PMCID: PMC11551011 DOI: 10.3389/fphar.2024.1505196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
50
|
Yang FK, Cao J, Zhang T, Jiang HX, Cui HB, Wang K. Dual-Activated Photoacoustic Probe for Reliably Detecting Hydroxyl Radical in Ischemic Cardiovascular Disease in Mouse and Human Samples. ACS Sens 2024; 9:5445-5453. [PMID: 39364916 DOI: 10.1021/acssensors.4c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Cardiovascular disease (CVD) is a chronic disease characterized by the accumulation of lipids and fibrous tissue within the arterial walls, potentially leading to vascular obstruction and an increased risk of heart disease and stroke. Hydroxyl radicals play a significant role in the formation and progression of CVD as they can instigate lipid peroxidation, resulting in cellular damage and inflammatory responses. However, precisely detecting hydroxyl radicals in CVD lesions presents significant challenges due to their high reactivity and short lifespan. Herein, we present the development and application of a novel activatable optical probe, Cy-OH-LP, designed to detect hydroxyl radicals in lipid-rich environments specifically. Built on the Cy7 molecular skeleton, Cy-OH-LP exhibits near-infrared absorption and fluorescence characteristics, and its specific response to hydroxyl radicals enables a turn-on signal in both photoacoustic and fluorescence spectra. The probe demonstrated excellent selectivity and stability in various tests. Furthermore, Cy-OH-LP was successfully applied in an in vivo model to detect hydroxyl radicals in mouse models, providing a potential tool for diagnosing and monitoring AS. The biosafety of Cy-OH-LP was also verified, showing low cytotoxicity and no significant organ damage in mice. The findings suggest that Cy-OH-LP is a promising tool for the specific detection of hydroxyl radicals in lipid-rich environments, providing new possibilities for research and clinical applications in the field of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Fang-Kun Yang
- Department of Cardiology, First Affiliated Hospital of Ningbo University (Ningbo First Hospital), School of Medicine, Ningbo University, Ningbo 315211, China
| | - Jie Cao
- The Fifth Dental Center, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Ting Zhang
- Wuxi Maternity and Chield Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi 214002, China
| | - Hao-Xiang Jiang
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
| | - Han-Bin Cui
- Department of Cardiology, First Affiliated Hospital of Ningbo University (Ningbo First Hospital), School of Medicine, Ningbo University, Ningbo 315211, China
| | - Kai Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
| |
Collapse
|