1
|
Zheng Q, Lin Y, Zeng L, Chen S, Chen L, Lin X, Zhu J, Lin J, Weng X, Chai D. ITE-mediated AhR activation attenuates atherosclerosis by promoting macrophage M2-like polarization through NF-κB/LCN2 pathway suppression. Life Sci 2025; 375:123715. [PMID: 40389023 DOI: 10.1016/j.lfs.2025.123715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 05/04/2025] [Accepted: 05/10/2025] [Indexed: 05/21/2025]
Abstract
AIMS Atherosclerosis (AS) is a chronic inflammatory disease characterized by lipid accumulation and inflammation. Macrophage phenotypic transformation plays a critical role in AS progression. Aryl hydrocarbon receptor (AhR) has been proved to regulate the phenotype of macrophages. This study investigates the role and molecular mechanism of AhR activation by its endogenous ligand, 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) attenuates AS. MATERIALS AND METHODS We employed Western blotting to analyze the expression of AhR, NF-κB, and lipocalin-2 (LCN2). Flow cytometry and immunofluorescence staining were used to assess the phenotype of macrophages. Plaque progression was evaluated using pathological staining. Transcriptome sequencing was utilized to explore the potential mechanism by which AhR promotes macrophage phenotypic transformation. CUT&Tag-qPCR and lentivirus infection confirmed that the AhR/NF-κB/LCN2 pathway regulates macrophage polarization. KEY FINDINGS Activation of AhR by ITE reduced plaque area and inhibited lipid deposition. ITE significantly increased the number of M2-like macrophages both in vivo and in vitro. Transcriptome sequencing identified LCN2 as a key target for AhR-mediated macrophage M2-like polarization. Furthermore, AhR activation suppressed the NF-κB/LCN2 pathway. SIGNIFICANCE Our findings reveal that AhR promotes the macrophages to exhibit M2-like characteristics to attenuate AS by inhibiting the NF-κB/LCN2 pathway. These results suggest that AhR may serve as a novel therapeutic target for AS.
Collapse
Affiliation(s)
- Qiaowen Zheng
- Cardiovascular Department, Fuqing City Hospital, Fuzhou 350005, China
| | - Yifei Lin
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Key Laboratory of Metabolic Heart Disease in Fujian Province, Clinical Research Centre of Metabolic Cardiovascular Disease in Fujian Province, Fuzhou 350005, China; Cardiovascular Department, National Regional Medical Center, Binhai Branch of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Lishan Zeng
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Key Laboratory of Metabolic Heart Disease in Fujian Province, Clinical Research Centre of Metabolic Cardiovascular Disease in Fujian Province, Fuzhou 350005, China; Cardiovascular Department, National Regional Medical Center, Binhai Branch of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Shuaijie Chen
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Key Laboratory of Metabolic Heart Disease in Fujian Province, Clinical Research Centre of Metabolic Cardiovascular Disease in Fujian Province, Fuzhou 350005, China; Cardiovascular Department, National Regional Medical Center, Binhai Branch of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Longqing Chen
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Key Laboratory of Metabolic Heart Disease in Fujian Province, Clinical Research Centre of Metabolic Cardiovascular Disease in Fujian Province, Fuzhou 350005, China; Cardiovascular Department, National Regional Medical Center, Binhai Branch of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xiaoyan Lin
- Echocardiological Department, the First Affiliated Hospital, Fujian Medical University, Fujian Institute of Hypertension, Fuzhou 350005, China
| | - Jiang Zhu
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Key Laboratory of Metabolic Heart Disease in Fujian Province, Clinical Research Centre of Metabolic Cardiovascular Disease in Fujian Province, Fuzhou 350005, China; Cardiovascular Department, National Regional Medical Center, Binhai Branch of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Jinxiu Lin
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Key Laboratory of Metabolic Heart Disease in Fujian Province, Clinical Research Centre of Metabolic Cardiovascular Disease in Fujian Province, Fuzhou 350005, China; Cardiovascular Department, National Regional Medical Center, Binhai Branch of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xiuzhu Weng
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Key Laboratory of Metabolic Heart Disease in Fujian Province, Clinical Research Centre of Metabolic Cardiovascular Disease in Fujian Province, Fuzhou 350005, China; Cardiovascular Department, National Regional Medical Center, Binhai Branch of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Dajun Chai
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Key Laboratory of Metabolic Heart Disease in Fujian Province, Clinical Research Centre of Metabolic Cardiovascular Disease in Fujian Province, Fuzhou 350005, China; Cardiovascular Department, National Regional Medical Center, Binhai Branch of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| |
Collapse
|
2
|
Yang TM, Fang TC, Lee YC, Lee CC, Chan YJ, Fitriana I, Cheng YW, Li CH. Aryl hydrocarbon receptor deficiency upregulates intercellular adhesion molecule 1 in retinal pigment epithelial cells and contributes to retinal inflammation. J Transl Med 2025:104197. [PMID: 40409542 DOI: 10.1016/j.labinv.2025.104197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 05/11/2025] [Accepted: 05/15/2025] [Indexed: 05/25/2025] Open
Abstract
Retinal pigment epithelium (RPE) cells, located between the photoreceptors and choroid, play a crucial role in maintaining retinal health and function. They act as immunosuppressive barriers, preventing immune cell infiltration from the choroid. Retinal inflammation contributes to the development of various ocular diseases. The aryl hydrocarbon receptor (AHR) is a well-established ligand-dependent transcription factor that mediates potent anti-inflammatory signals following ligand binding. AHR expression is notably reduced under several conditions that negatively affect the retina. We hypothesized that AHR protein loss may impairs RPE cell function, shifting them toward a pro-inflammatory phenotype. In this study, we investigated the pro-inflammatory pathways activated by AHR knockout (AHR-KO) and examined associated retinal phenotypic changes in AHR-KO mice. Our findings suggest that AHR deficiency may enhance the activity of αvβ3-integrin, extracellular signal-regulated kinases (ERK1/2), and p65 subunit of nuclear factor kappa B (NF-κB), leading to an upregulation of intercellular adhesion molecule 1 (ICAM1) and promoting monocyte adhesion in vitro. Introducing an AHR-green fluorescent protein into AHR-KO RPE cells or pre-treating the cells with pharmacological inhibitors targeting αvβ3 (cycloRGDfk), focal adhesion kinase (PF573228), phospholipase C (U73122), ERK1/2 (U0126), and NF-κB (Bay11-7082) prevented ICAM1 induction in AHR-KO RPE cells. These results suggest that the pro-inflammatory pathway is driven by AHR deficiency. In AHR-KO mice, retinal tissues showed ICAM1 accumulation, microglial activation, and migration, indicating chronic retinal inflammation due to AHR deficiency. These mice also displayed early-onset electroretinogram degeneration. Collectively, our data support the protective role of AHR in maintaining RPE cell physiology and retinal health.
Collapse
Affiliation(s)
- Tsung-Min Yang
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Te-Chao Fang
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Taipei Medical University-Research Center of Urology and Kidney (RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Cheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chen-Chen Lee
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Yen-Ju Chan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ida Fitriana
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yu-Wen Cheng
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan; TMU Neuroscience Research Center, Taipei Medical University.
| | - Ching-Hao Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Neuroscience Research Center, Taipei Medical University.
| |
Collapse
|
3
|
Chen Y, Bi S, Zhang X, Chen J, Xin J, Liu Z, Guan Q, Qiu P, Wang P, Liu J. Engineered probiotics remodel the intestinal epithelial barrier and enhance bacteriotherapy for inflammatory bowel diseases. Acta Biomater 2025; 198:467-481. [PMID: 40210182 DOI: 10.1016/j.actbio.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Inflammatory bowel diseases (IBDs) are often associated with compromised epithelial barriers and dysregulated gut microbiota. In this study, we revealed the synergistic effect that zinc and indole-3-carbinol (I3C) have in restoring the epithelial barrier, and co-localized them on a ZI platform, which was further conjugated to the surface of Escherichia coli Nissle 1917 (EcN). The ZI@EcN formulation effectively delivered ZI to colon tissues and extended its retention in the intestines due to the colonic colonization effect of EcN, thereby promoting the sustained release of zinc and I3C for optimal synergistic effects on epithelial barrier remodeling. The restored epithelium acts as a protective barrier, preventing the infiltration of toxins and pathogens, which significantly reduces inflammation in colonic tissues. Additionally, EcN enriched the gut microbiome, increasing the abundance of beneficial bacteria while reducing that of pathogens, demonstrating its significant efficacy in gut microbiome regulation. In dextran sulfate sodium-induced mouse colitis models, ZI@EcN exhibited substantially improved prophylactic and therapeutic efficacy with favorable safety profiles, highlighting its potential for clinical applications. STATEMENT OF SIGNIFICANCE: This study highlighted the synergistic effects that zinc and indole-3-carbinol, both derived from dietary sources, have on restoring integrity of the intestinal epithelial barrier. A platform (ZI@EcN) was also developed for the targeted delivery and sustained release of zinc and indole-3-carbinol, specifically in colonic tissues, for colitis treatment. This platform not only restores the compromised intestinal epithelial barrier but also regulates the dysbiotic gut microbiota, promoting the recovery of a healthy intestinal microenvironment and showing promise in alleviating complex symptoms in a single formulation. Furthermore, the formulation demonstrated potent prophylactic and therapeutic efficacy against colitis, with favorable safety profiles, and a strong potential for clinical applications.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shijie Bi
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiaoli Zhang
- Department of Integrated Traditional Chinese and Western Medicine, the People's Hospital of Huaiyin, Jinan City, Jinan 250000, China
| | - Junjie Chen
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jianfeng Xin
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhaonan Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qing Guan
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Peiju Qiu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Peng Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jun Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| |
Collapse
|
4
|
Bustani G, Alghetaa H, Mohammed A, Nagarkatti M, Nagarkatti P. The aryl hydrocarbon receptor: a new frontier in male reproductive system. Reprod Biol Endocrinol 2025; 23:70. [PMID: 40369574 PMCID: PMC12076877 DOI: 10.1186/s12958-025-01401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/25/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor historically recognized for its role in the regulation of toxicity mediated by environmental chemicals. Recent research points to AhR's critical participation in male reproductive physiology, particularly in spermatogenesis, hormone signaling, and the maintenance of sperm quality. Both endogenous ligands (e.g., dietary and gut microbiota-derived metabolites) and exogenous pollutants (e.g., dioxins and benzo-α-pyrene) influence AhR-mediated pathways, making it a key link between environmental exposures and male fertility. RESULTS This review highlights AhR's influence on the male reproductive system, emphasizing the role of endogenous AhR ligands and AhR expression in the maturation and function of male reproductive organs. Environmental AhR agonists have been shown to induce oxidative stress, hormonal imbalance, and sperm DNA damage, which impact harmfully on the spermatogenesis process, which leads to reproductive abnormalities. Conversely, certain natural compounds such as resveratrol, curcumin, and lycopene appear to antagonize AhR activation and reduce its negative effects, thus offering potential protective benefits against male reproductive toxicity. Nevertheless, discrepancies persist regarding the exact interplay between AhR signaling and critical reproductive hormones such as testosterone and LH, and it remains unclear how transgenerational epigenetic changes triggered by AhR activation might affect long-term male fertility. CONCLUSION AhR is pivotal in male reproductive physiology, influencing spermatogenesis, sperm quality, and hormone regulation through its interactions with both endogenous and environmental ligands. Persistent pollutants such as dioxins and polycyclic aromatic hydrocarbons cause oxidative damage and hormonal disturbances via AhR, contributing to reduced sperm quality and fertility.
Collapse
Affiliation(s)
- Ghadeer Bustani
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Baghdad, Abu Gharib Road, Al-Ameria Ave., Baghdad, Iraq
- The Islamic University, Najaf, Iraq
| | - Hasan Alghetaa
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Baghdad, Abu Gharib Road, Al-Ameria Ave., Baghdad, Iraq.
| | - Amira Mohammed
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Baghdad, Abu Gharib Road, Al-Ameria Ave., Baghdad, Iraq
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
5
|
Perez-Castro L, Alabi B, Nawas A, Lafita-Navarro M, Shay J, Conacci-Sorrell M. Aryl Hydrocarbon Receptor (AHR) is required for repopulation of decellularized intestinal colon scaffolds. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001529. [PMID: 40353141 PMCID: PMC12062895 DOI: 10.17912/micropub.biology.001529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025]
Abstract
This study investigates the role of the ligand-activated transcription factor AHR in repopulating the intestinal lining. Using organoid-derived cells and decellularized mouse intestinal scaffolds to investigate the importance of AHR in regulating intestinal regeneration, we found that silencing AHR expression hinders the capacity of colonic cells to repopulate decellularized colons. We therefore propose that AHR may play an important role in regulating intestinal regeneration. The ligand-dependent nature of AHR activity may provide an opportunity to interfere with disorders such as cancer and inflammatory bowel diseases which are caused by dysregulation in intestinal tissue renewal.
Collapse
Affiliation(s)
- Lizbeth Perez-Castro
- The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Busola Alabi
- The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Afshan Nawas
- The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | | | - Jerry Shay
- The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | | |
Collapse
|
6
|
Yan C, Yang W, Yan X, Liu Y, Zhang J, Bai X, Zeng Q, Liu X, Shao D, Li B. BolANT3 Positively Regulates Indolic Glucosinolate Accumulation by Transcriptionally Activating BolCYP83B1 in Cabbage. Int J Mol Sci 2025; 26:3415. [PMID: 40244287 PMCID: PMC11989275 DOI: 10.3390/ijms26073415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/30/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Indolic glucosinolates are a group of plant secondary metabolites found in Brassica vegetables, and their breakdown products could act as important anti-cancer and defense compounds against biotic stresses. Transcriptional regulation plays a key role in modulating the biosynthesis of indolic glucosinolates in the model plant Arabidopsis, but little is known about the transcriptional regulatory landscape of these glucosinolates in Brassica vegetables. In this study, we selected and functionally validated the important biosynthetic gene BolCYP83B1 from the indolic glucosinolate pathway in cabbage. Through a yeast one-hybrid assay, we systemically screened and identified upstream regulators of BolCYP83B1 in cabbage with BolANTs as the top candidates for further functional validation. Two homologs of BolANTs, BolANT1 and BolANT3, were confirmed to bind the promoter of BolCYP83B1 via both a yeast one-hybrid assay and an LUC assay. The overexpression of BolANT3 in cabbage significantly increased the accumulation of indolic glucosinolates, while the virus-induced gene silencing (VIGS) of BolANT3 significantly reduced the accumulation of indolic glucosinolates in cabbage. Our work provides valuable insights into the transcriptional regulatory mechanisms of indolic glucosinolates in Brassica vegetables.
Collapse
Affiliation(s)
- Chengtai Yan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.Y.); (W.Y.); (X.Y.); (Y.L.); (J.Z.); (X.B.); (Q.Z.); (X.L.)
| | - Wenjing Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.Y.); (W.Y.); (X.Y.); (Y.L.); (J.Z.); (X.B.); (Q.Z.); (X.L.)
| | - Xuemei Yan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.Y.); (W.Y.); (X.Y.); (Y.L.); (J.Z.); (X.B.); (Q.Z.); (X.L.)
| | - Yao Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.Y.); (W.Y.); (X.Y.); (Y.L.); (J.Z.); (X.B.); (Q.Z.); (X.L.)
| | - Jiahao Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.Y.); (W.Y.); (X.Y.); (Y.L.); (J.Z.); (X.B.); (Q.Z.); (X.L.)
| | - Xue Bai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.Y.); (W.Y.); (X.Y.); (Y.L.); (J.Z.); (X.B.); (Q.Z.); (X.L.)
| | - Qi Zeng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.Y.); (W.Y.); (X.Y.); (Y.L.); (J.Z.); (X.B.); (Q.Z.); (X.L.)
| | - Xifan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.Y.); (W.Y.); (X.Y.); (Y.L.); (J.Z.); (X.B.); (Q.Z.); (X.L.)
| | - Dengkui Shao
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Xining 810016, China
| | - Baohua Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.Y.); (W.Y.); (X.Y.); (Y.L.); (J.Z.); (X.B.); (Q.Z.); (X.L.)
| |
Collapse
|
7
|
Haarmann-Stemmann T, Reichert D, Coumoul X, Lawrence BP, Perdew GH, Sherr DH, Weighardt H, Rolfes KM, Esser C. The Janus-facedness of the aryl hydrocarbon receptor pathway Report of the 6th International AHR Meeting: Research, Prevention, Therapy. Biochem Pharmacol 2025; 234:116808. [PMID: 39983850 DOI: 10.1016/j.bcp.2025.116808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
The ability to sense and process environmental cues is a fundamental aspect of an organism's biology. The evolutionary ancient transcription factor AHR (aryl hydrocarbon receptor) has evolved in animals to sense low molecular weight compounds derived from environmental exposure, dietary plants, the gut/skin microbiome, or generated endogenously from tryptophan upon ultraviolet light (UV) exposure or enzymatic catabolism. The binding of such molecules results in a cascade of events leading to the transcription of target genes. The AHR gene locus was first identified in mice in 1982. Since then, the beneficial and detrimental effects of AHR agonist-driven activation or lack thereof have been studied, particularly in relation to environmental chemical toxicity, carcinogenicity, or tissue homeostasis, e.g. barrier tissues. AHR ligands are also being considered as a potential new therapeutic class of molecules for the treatment of cancer, debilitating and chronic inflammatory diseases or metabolic disorders. A series of international meetings initiated twenty years ago have provided a comprehensive overview of AHR research. At the meeting in Düsseldorf in 2024, the identification of tailor-made ligands using modern, artificial intelligence (AI)-based approaches was a key topic of discussion, as were current attempts to resolve the dual nature of AHR activation - beneficial and harmful. While our understanding is still in its infancy, research was also presented that highlights previously unrecognized roles of the AHR in many diseases.
Collapse
Affiliation(s)
- Thomas Haarmann-Stemmann
- IUF - Leibniz Research Institute for Environmental Medicine Auf́m Hennekamp, 50 40225 Düsseldorf Germany.
| | - Doreen Reichert
- IUF - Leibniz Research Institute for Environmental Medicine Auf́m Hennekamp, 50 40225 Düsseldorf Germany
| | - Xavier Coumoul
- Université Paris Cité, INSERM, Health & Functional Exposomics - HealthFex, 75006 Paris, France
| | - B Paige Lawrence
- University of Rochester Medical Center, Departments of Environmental Medicine and Microbiology & Immunology. Rochester, NY 14642, USA
| | - Gary H Perdew
- Pennsylvania State University, University Park, PA 16802, USA
| | - David H Sherr
- Boston University, School of Public Health, Boston, MA 02118, USA
| | - Heike Weighardt
- University of Bonn, Life&Medical Scienes (LIMES) Institute, 53115 Bonn, Germany
| | - Katharina M Rolfes
- IUF - Leibniz Research Institute for Environmental Medicine Auf́m Hennekamp, 50 40225 Düsseldorf Germany
| | - Charlotte Esser
- IUF - Leibniz Research Institute for Environmental Medicine Auf́m Hennekamp, 50 40225 Düsseldorf Germany.
| |
Collapse
|
8
|
Li J, Wang L, Wang M, Zhang H. Activation of aryl hydrocarbon receptor attenuates intestinal inflammation by enhancing IRF4-mediated macrophage M2 polarization. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167735. [PMID: 39971258 DOI: 10.1016/j.bbadis.2025.167735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/16/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Crohn's disease (CD) is characterized by immune cell dysregulation, with macrophages playing an indisputable role. Macrophages can exhibit opposing polarization under different conditions, resulting in pro- or anti-inflammatory effects. The aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, is implicated in intestinal inflammation by regulating both innate and adaptive immune responses. However, the regulatory mechanism between AhR and macrophages in colitis has not been thoroughly investigated. METHODS Macrophage polarization in the colonic tissue of active CD patients was assessed. Following colitis induction in mice by 2,4,6-trinitro-benzenesulfonic acid (TNBS), an intraperitoneal injection of the natural AhR agonist 6-formylindolo[3,2-b]carbazole (FICZ) was administered. The severity of colitis was estimated, and macrophage polarization was detected. In an in vitro setting, bone marrow-derived macrophages (BMDMs) were polarized to the M2 phenotype in the presence or absence of FICZ. Interferon regulatory factor 4 (IRF4) siRNA was applied to knockdown IRF4 expression. M2-specific markers were quantified using quantitative real-time PCR (qRT-PCR), enzyme-linked immunosorbent assay (ELISA) and flow cytometry. RESULTS Compared with healthy controls, active CD patients exhibited a lower presence of M2 macrophages in colonic tissue. Experimentally, FICZ was found to protect mice against TNBS-induced colitis, as evidenced by reduced diarrhea, bloody stool, and weight loss. This effect was associated with an increase in M2 macrophages and the release of IL-10 in the intestine. In BMDMs, FICZ promoted the expressions of M2-specific markers, including Ym1, Fizz1, IL-10, and CD206. Furthermore, FICZ upregulated IRF4 expression. After IRF4 silencing with siRNA, the enhancement of macrophage M2 polarization by FICZ was significantly impaired. CONCLUSION Activation of AhR appears to have a beneficial effect on intestinal inflammation by promoting macrophage M2 polarization. This effect is partially mediated by the upregulation of IRF4 expression and may lead to new insight into the pathogenesis of CD.
Collapse
Affiliation(s)
- Jiajia Li
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu Wang
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingyuan Wang
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongjie Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
9
|
Zhang Y, Jing Y, He J, Dong R, Li T, Li F, Zheng X, Liu G, Jia R, Xu J, Wu F, Jia C, Song J, Zhang L, Zhou P, Wang H, Yao Z, Liu Q, Yu Y, Zhou J. Bile acid receptor FXR promotes intestinal epithelial ferroptosis and subsequent ILC3 dysfunction in neonatal necrotizing enterocolitis. Immunity 2025; 58:683-700.e10. [PMID: 40023163 DOI: 10.1016/j.immuni.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/14/2024] [Accepted: 02/04/2025] [Indexed: 03/04/2025]
Abstract
Necrotizing enterocolitis (NEC) is a common pediatric emergency primarily afflicting preterm infants, yet its mechanisms remain to be fully understood. Here, we report that plasma fibroblast growth factor (FGF)19, a target of farnesoid X receptor (FXR), was positively correlated with the clinical parameters of NEC. NEC patients and the NEC murine model displayed abundant FXR in intestinal epithelial cells (IECs), which was restricted by microbiota-derived short-chain fatty acids (SCFAs) under homeostasis. Genetic deficiency of FXR in IECs caused remission of NEC. Mechanistically, FXR facilitated ferroptosis of IECs via targeting acyl-coenzyme A synthetase long-chain family member 4 (Acsl4). Lipid peroxides released by ferroptotic IECs suppressed interleukin (IL)-22 secretion from type 3 innate lymphoid cells (ILC3s), thereby exacerbating NEC. Intestinal FXR antagonist, ACSL4 inhibitor, and ferroptosis inhibitor ameliorated murine NEC. Furthermore, the elevated lipid peroxides in NEC patients were positively correlated with FGF19 and disease parameters. These observations demonstrate the therapeutic value of targeting intestinal FXR and ferroptosis in NEC treatment.
Collapse
MESH Headings
- Animals
- Ferroptosis/immunology
- Humans
- Enterocolitis, Necrotizing/metabolism
- Enterocolitis, Necrotizing/immunology
- Enterocolitis, Necrotizing/pathology
- Mice
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/immunology
- Intestinal Mucosa/pathology
- Infant, Newborn
- Lymphocytes/immunology
- Lymphocytes/metabolism
- Fibroblast Growth Factors/blood
- Fibroblast Growth Factors/metabolism
- Disease Models, Animal
- Mice, Inbred C57BL
- Coenzyme A Ligases/metabolism
- Mice, Knockout
- Female
- Male
- Immunity, Innate
Collapse
Affiliation(s)
- Yuxin Zhang
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China
| | - Yuchao Jing
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China; Department of Immunology, Basic Medical College, Changzhi 046000, China
| | - Juan He
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Rui Dong
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China
| | - Tongyang Li
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China
| | - Fang Li
- Department of Central Laboratory, Changzhi Medical College, Changzhi 046000, China
| | - Xiaoqing Zheng
- Laboratory of Immunity, Inflammation & Cancer, Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Gaoyu Liu
- Laboratory of Immunity, Inflammation & Cancer, Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ran Jia
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Jin Xu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Fan Wu
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong, China
| | - Chunhong Jia
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong, China
| | - Jin Song
- Department of Pediatric Surgery Maternal and Child Health Care of Changzhi, Changzhi 046011, China
| | - Lijuan Zhang
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China
| | - Pan Zhou
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China
| | - Haitao Wang
- Department of Oncology, The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases, Tianjin 300211, China
| | - Zhi Yao
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China
| | - Qiang Liu
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China; Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300050, China
| | - Ying Yu
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China; Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jie Zhou
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China; Laboratory of Immunity, Inflammation & Cancer, Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
10
|
Crossette-Thambiah C, Randi AM, Laffan M. von Willebrand disease and angiodysplasia: a wider view of pathogenesis in pursuit of therapy. Haematologica 2025; 110:588-595. [PMID: 39506901 PMCID: PMC11873708 DOI: 10.3324/haematol.2024.285244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
Bleeding in the gastrointestinal tract in patients with von Willebrand disease continues to pose a therapeutic challenge for clinicians. It is associated with significant morbidity and mortality and represents the major unmet need in this disease. Defective angiogenesis in the gut is primarily responsible, resulting in angiodysplastic malformations making bleeding notoriously refractory to standard replacement therapy. A substantial body of evidence now shows that von Willebrand factor has a role in the regulation of angiogenesis but the mechanisms responsible for the formation of vascular malformations remain incompletely understood. Data from the wider field of vascular malformations may lend insight and point to novel therapeutic approaches. Here we review evidence linking von Willebrand factor to angiodysplasia, the associated molecular mechanisms and the implications for therapy.
Collapse
Affiliation(s)
- Christina Crossette-Thambiah
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, UK; Department of Haematology, Imperial College Healthcare NHS Trust, London
| | - Anna M Randi
- National Heart and Lung Institute, Imperial College
| | - Michael Laffan
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, UK; Department of Haematology, Imperial College Healthcare NHS Trust, London.
| |
Collapse
|
11
|
Zhao C, Bao L, Shan R, Zhao Y, Wu K, Shang S, Li H, Liu Y, Chen K, Zhang N, Ye C, Hu X, Fu Y. Maternal Gut Inflammation Aggravates Acute Liver Failure Through Facilitating Ferroptosis via Altering Gut Microbial Metabolism in Offspring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411985. [PMID: 39808540 PMCID: PMC11884527 DOI: 10.1002/advs.202411985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/01/2025] [Indexed: 01/16/2025]
Abstract
Microbial transmission from mother to infant is important for offspring microbiome formation and health. However, it is unclear whether maternal gut inflammation (MGI) during lactation influences mother-to-infant microbial transmission and offspring microbiota and disease susceptibility. In this study, it is found that MGI during lactation altered the gut microbiota of suckling pups by shaping the maternal microbiota in the gut and mammary glands. MGI-induced changes in the gut microbiota of suckling pups lasted into adulthood, resulting in the exacerbation of acute liver failure (ALF) caused by acetaminophen (APAP) in offspring. Specifically, MGI reduced the abundance of Lactobacillus reuteri (L. reuteri) and its metabolite indole-3-acetic acid (IAA) level in adult offspring. L. reuteri and IAA alleviated ALF in mice by promoting intestinal IL-22 production. Mechanistically, IL-22 limits APAP-induced excessive oxidative stress and ferroptosis by activating STAT3. The intestinal abundances of L. reuteri and IAA are inversely associated with the progression of patients with ALF. Overall, the study reveals the role of MGI in mother-to-infant microbial transmission and disease development in offspring, highlighting potential strategies for intervention in ALF based on the IAA-IL-22-STAT3 axis.
Collapse
Affiliation(s)
- Caijun Zhao
- Department of GynecologyChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Lijuan Bao
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Ruping Shan
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Yihong Zhao
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Keyi Wu
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Shan Shang
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Haiqi Li
- Department of NeurologyChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
| | - Yi Liu
- Department of Orthopedic CenterThe First Hospital of Jilin UniversityChangchun130012China
| | - Ke Chen
- Department of GynecologyChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
| | - Naisheng Zhang
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Cong Ye
- Department of GynecologyChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
| | - Xiaoyu Hu
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Yunhe Fu
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| |
Collapse
|
12
|
Hu ZY, Yang SJ, Chang YH, Wang XQ, Liu RQ, Jiang FW, Chen MS, Wang JX, Liu S, Zhu HM, Shi YS, Zhao Y, Li JL. AHR activation relieves deoxynivalenol-induced disruption of porcine intestinal epithelial barrier functions. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136095. [PMID: 39395393 DOI: 10.1016/j.jhazmat.2024.136095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Mycotoxins are ubiquitous natural pollutants that pose a serious threat to public health. Deoxynivalenol (DON) as one of the most prominent mycotoxins has a noticeable adverse effect on intestinal barrier function, which depends on the intestinal barrier integrity. However, the potential mechanisms and effective therapeutic strategies remain unclear. Aryl hydrocarbon receptor (AHR) has been implicated in the modulation of intestinal barrier function and inflammation. The study aims to investigate the unique role of AHR in mediating DON-induced intestinal epithelial barrier function. In the current study, we revealed that DON triggered mitochondrial structural damage and functional impairment, leading to oxidative stress and apoptosis in porcine jejunal epithelial cells (IPEC-J2). DON altered the integrity of IPEC-J2 cells by disrupting the distribution and function of tight junction proteins. Additionally, DON activated TNF-α/NF-κB/MLCK signaling pathway, thereby eliciting inflammatory response. Notably, DON inhibited AHR nuclear translocation and attenuated xenobiotic response element promoter activity and its target genes. However, overexpression of AHR mitigated DON-induced disruption of intestinal epithelial barrier functions by suppressing TNF-α/NF-κB/MLCK pathway in IPEC-J2 cells. Our findings indicate that AHR regulates intestinal epithelial barrier function and therefore is a novel therapeutic molecule for intestinal disorders.
Collapse
Affiliation(s)
- Zi-Yan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shang-Jia Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuan-Hang Chang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Qi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Rui-Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Fu-Wei Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ming-Shan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jia-Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shuo Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hong-Mei Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Sheng Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
13
|
Wang L, Han Q, Liu Y, Ma X, Han H, Yan L, Shen Z, Ji P, Wang B, Liu G. Activation of aryl hydrocarbon receptor protein promotes testosterone synthesis to alleviate abnormal spermatogenesis caused by cholestasis. Int J Biol Macromol 2024; 282:136478. [PMID: 39393744 DOI: 10.1016/j.ijbiomac.2024.136478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
In this study, we have investigated potential roles of cholestasis played in spermatogenesis in the cholestatic animal model generated by giving the mice DDC diet. The data showed that cholestasis jeopardized the testicular structure and function by downregulating the expressions of genes related to the androgen's synthesis. Mechanistically, the cholestasis disturbers the liver's tryptophan metabolism and its metabolites. These tryptophan metabolites including serotonin, 5-Hydroxyindoleacetic acid, 4-(2-Aminophenyl)-2,4-dioxobutanoic acid and Quinoline-4,8-diol were significantly reduced in the cholestatic mice model compared to their controlled counterparts. These tryptophan metabolites are the endogenous ligands of AHR and their levels are positively correlated to the expressions of genes related to the androgen's synthesis and AHR. Notably, supplementation of AHR ligand ITE promoted the expression of genes related to the testosterone synthesis and alleviated abnormal spermatogenesis. In addition, the bacteria that disturbed the tryptophan metabolism in cholestatic mice were identified by 16S rDNA sequencing and Spearman correlation analysis. Briefly, we have identified a cholestasis associated gut microbiota-testis axis. This axis is responsible for the cholestasis induced abnormal spermatogenesis and male reproductive dysfunction. Breaking vicious cycle of this axis may be a suitable strategy to prevent and treat the cholestasis associated male infertility.
Collapse
Affiliation(s)
- Likai Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, China
| | - Qi Han
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, China
| | - Yunjie Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, China
| | - Xiao Ma
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, China
| | - Huigang Han
- College of Animal Science, Xinjiang Agricultural University, China
| | - Laiqing Yan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, China
| | - Zixia Shen
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, China
| | - Pengyun Ji
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, China
| | - Bingyuan Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, China.
| | - Guoshi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, China.
| |
Collapse
|
14
|
Zhang W, Zhang Y, Zhao Y, Li L, Zhang Z, Hettinga K, Yang H, Deng J. A Comprehensive Review on Dietary Polysaccharides as Prebiotics, Synbiotics, and Postbiotics in Infant Formula and Their Influences on Gut Microbiota. Nutrients 2024; 16:4122. [PMID: 39683515 DOI: 10.3390/nu16234122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Human milk contains an abundance of nutrients which benefit the development and growth of infants. However, infant formula has to be used when breastfeeding is not possible. The large differences between human milk and infant formula in prebiotics lead to the suboptimal intestinal health of infant formula-fed infants. This functional deficit of infant formula may be overcome through other dietary polysaccharides that have been characterized. The aim of this review was to summarize the potential applications of dietary polysaccharides as prebiotics, synbiotics, and postbiotics in infant formula to better mimic the functionality of human milk prebiotics for infant gut health. Previous studies have demonstrated the influences of dietary polysaccharides on gut microbiota, SCFA production, and immune system development. Compared to prebiotics, synbiotics and postbiotics showed better application potential in shaping the gut microbiota, the prevention of pathogen infections, and the development of the immune system. Moreover, the safety issues for biotics still require more clinical trials with a large-scale population and long time duration, and the generally accepted regulations are important to regulate related products. Pectin polysaccharides has similar impacts to human milk oligosaccharides on gut microbiota and the repairing of a damaged gut barrier, with similar functions also being observed for inulin and β-glucan. Prebiotics as an encapsulation material combined with probiotics and postbiotics showed better potential applications compared to traditional material in infant formula.
Collapse
Affiliation(s)
- Wenyuan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanli Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yaqi Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhanquan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kasper Hettinga
- Dairy Science and Technology, Food Quality and Design Group, Wageningen University & Research, 6708 WG Wageningen, The Netherlands
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
15
|
Li L, Wang Y, Meng J, Wang X, Wu X, Wo Y, Shang Y, Zhang Z. Sele-targeted siRNA liposome nanoparticles inhibit pathological scars formation via blocking the cross-talk between monocyte and endothelial cells: a preclinical study based on a novel mice scar model. J Nanobiotechnology 2024; 22:733. [PMID: 39593088 PMCID: PMC11600582 DOI: 10.1186/s12951-024-03003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Pathological scars (PS) are one of the most common complications in patients with trauma and burns, leading to functional impairments and aesthetic concerns. Mechanical tension at injury sites is a crucial factor in PS formation. However, the precise mechanisms remain unclear due to the lack of reliable animal models. RESULTS We developed a novel mouse model, the Retroflex Scar Model (RSM), which induces PS by applying controlled tension to wounds in vivo. RNA sequencing identified significant transcriptome changes in RSM-induced scars. Elevated expression of E-Selectin (Sele) was observed in endothelial cells from both the RSM model and human PS (Keloid) samples. In vitro studies demonstrated that cyclic mechanical stretching (CMS) increased Sele expression, promoting monocyte adhesion and the release of pro-inflammatory factors. Single-cell sequencing analysis from the GEO database, complemented by Western blotting, immunofluorescence, and co-immunoprecipitation, confirmed the role of Sele-mediated monocyte adhesion in PS formation. Additionally, we developed Sele-targeted siRNA liposome nanoparticles (LNPs) to inhibit monocyte adhesion. Intradermal administration of these LNPs effectively reduced PS formation in both in vivo and in vitro studies. CONCLUSIONS This study successfully established a reliable mouse model for PS, highlighting the significant roles of mechanical tension and chronic inflammation in PS formation. We identified Sele as a key therapeutic target and developed Sele-targeted siRNA LNPs, which demonstrated potential as a preventive strategy for PS. These findings provide valuable insights into PS pathogenesis and open new avenues for developing effective treatments for pathological scars.
Collapse
Affiliation(s)
- Luyu Li
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Yong Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Jing Meng
- Department of Ultrasound, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Xue Wang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Xiaojin Wu
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Yan Wo
- Department of Human Anatomy, Histology and Embryology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Ying Shang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhen Zhang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
16
|
Chermiti R, Burtey S, Dou L. Role of Uremic Toxins in Vascular Inflammation Associated with Chronic Kidney Disease. J Clin Med 2024; 13:7149. [PMID: 39685608 DOI: 10.3390/jcm13237149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Cardiovascular disease (CVD) is a major complication of chronic kidney disease (CKD), despite improvements in patient care. Vascular inflammation is a crucial process in the pathogenesis of CVD and a critical factor in the cardiovascular complications in CKD patients. CKD promotes a pro-inflammatory environment that impacts the vascular wall, leading to endothelial dysfunction, increased oxidative stress, and vascular remodeling. The uremic toxins that accumulate as kidney function declines are key contributors to vascular inflammatory processes. Our review will examine how CKD leads to vascular inflammation, paving the way to CVD. We will provide an overview of the mechanisms of vascular inflammation induced by uremic toxins, with a particular focus on those derived from tryptophan metabolism. These toxins, along with their receptor, the aryl hydrocarbon receptor (AHR), have emerged as key players linking inflammation and thrombosis. A deeper understanding of the mechanisms underlying inflammation in CKD, particularly those driven by uremic toxins, could reveal valuable therapeutic targets to alleviate the burden of CVD in CKD patients.
Collapse
Affiliation(s)
- Rania Chermiti
- C2VN, Aix-Marseille University, INSERM, INRAE, 13005 Marseille, France
| | - Stéphane Burtey
- C2VN, Aix-Marseille University, INSERM, INRAE, 13005 Marseille, France
- Centre de Néphrologie et Transplantation Rénale, APHM, Hôpital Conception, 13005 Marseille, France
| | - Laetitia Dou
- C2VN, Aix-Marseille University, INSERM, INRAE, 13005 Marseille, France
| |
Collapse
|
17
|
Ferrara F, Valacchi G. Role of microbiota in the GUT-SKIN AXIS responses to outdoor stressors. Free Radic Biol Med 2024; 225:894-909. [PMID: 39505118 DOI: 10.1016/j.freeradbiomed.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Beside the respiratory tract, the skin and the gut represent the first defensive lines of our body against the external insults displaying many important biochemical features able to maintain the epithelial barrier integrity and to regulate the tissue immune responses. The human microbiome is essential in maintaining the tissue homeostasis and its dysregulation may lead to tissue conditions including inflammatory pathologies. Among all external insults, air pollutants have been shown to cause oxidative stress damage within the target tissues via an OxInflammatory response. Dysregulation of the gut microbiome (dysbiosis) by outdoor stressors, including air pollutants, may promote the exacerbation of the skin tissue damage via the interplay between the gut-skin axis. The intent of this review is to highlight the ability of exogenous stressors to modulate the human gut-skin axis via a redox regulated mechanism affecting the microbiome and therefore contributing to the development and aggravation of gut and skin conditions.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Chemical, Pharmaceuticals and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121, Ferrara, Italy; Department of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC, 28081, USA; Kyung Hee University, Department of Food and Nutrition, Seoul, South Korea.
| |
Collapse
|
18
|
English J, Dhanikonda S, Tanaka KE, Koba W, Eichenbaum G, Yang WL, Guha C. Thrombopoietin mimetic reduces mouse lung inflammation and fibrosis after radiation by attenuating activated endothelial phenotypes. JCI Insight 2024; 9:e181330. [PMID: 39513364 PMCID: PMC11601560 DOI: 10.1172/jci.insight.181330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/12/2024] [Indexed: 11/15/2024] Open
Abstract
Radiation-induced lung injury (RILI) initiates radiation pneumonitis and progresses to fibrosis as the main side effect experienced by patients with lung cancer treated with radiotherapy. There is no effective drug for RILI. Sustained vascular activation is a major contributor to the establishment of chronic disease. Here, using a whole thoracic irradiation (WTI) mouse model, we investigated the mechanisms and effectiveness of thrombopoietin mimetic (TPOm) for preventing RILI. We demonstrated that administering TPOm 24 hours before irradiation decreased histologic lung injury score, apoptosis, vascular permeability, expression of proinflammatory cytokines, and neutrophil infiltration in the lungs of mice 2 weeks after WTI. We described the expression of c-MPL, a TPO receptor, in mouse primary pulmonary microvascular endothelial cells, showing that TPOm reduced endothelial cell-neutrophil adhesion by inhibiting ICAM-1 expression. Seven months after WTI, TPOm-treated lung exhibited less collagen deposition and expression of MMP-9, TIMP-1, IL-6, TGF-β, and p21. Moreover, TPOm improved lung vascular structure, lung density, and respiration rate, leading to a prolonged survival time after WTI. Single-cell RNA sequencing analysis of lungs 2 weeks after WTI revealed that TPOm shifted populations of capillary endothelial cells toward a less activated and more homeostatic phenotype. Taken together, TPOm is protective for RILI by inhibiting endothelial cell activation.
Collapse
Affiliation(s)
- Jeb English
- Department of Radiation Oncology
- Department of Pathology, and
| | | | | | - Wade Koba
- Department of Radiology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Gary Eichenbaum
- Office of the Chief Medical Officer, Johnson & Johnson, New Brunswick, New Jersey, USA
| | | | - Chandan Guha
- Department of Radiation Oncology
- Department of Pathology, and
| |
Collapse
|
19
|
Wu L, Li X, Li J, Wang Y, Yang C, Zhao C, Gao L. The role of aryl hydrocarbon receptor in the occurrence and development of periodontitis. Front Immunol 2024; 15:1494570. [PMID: 39575260 PMCID: PMC11580016 DOI: 10.3389/fimmu.2024.1494570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/18/2024] [Indexed: 11/24/2024] Open
Abstract
Periodontitis is a condition characterized by dysbiosis of microbiota and compromised host immunological responses, resulting in the degradation of periodontal tissues. The aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, plays a crucial role in the pathogenesis of periodontitis. AHR serves as a pivotal mediator for the adverse impacts of exogenous pollutants on oral health. Research indicates elevated expression of AHR in individuals with periodontitis compared to those without the condition. However, subsequent to the identification of endogenous AHR ligands, researches have elucidated numerous significant advantageous roles associated with AHR activation in bone, immune, and epithelial cells. This review concentrates on the modulation of the AHR pathway and the intricate functions that AHR plays in periodontitis. It discusses the characteristics of AHR ligands, detailing the established physiological functions in maintaining alveolar bone equilibrium, regulating immunity, facilitating interactions between the oral microbiome and host, and providing protection to epithelial tissues, while also exploring its potential roles in systemic disorders related to periodontitis.
Collapse
Affiliation(s)
- Lingzhi Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomalology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiting Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomalology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jinyu Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomalology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yan Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomalology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Canyu Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomalology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chuanjiang Zhao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomalology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Li Gao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomalology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Willemsen S, Yengej FAY, Puschhof J, Rookmaaker MB, Verhaar MC, van Es J, Beumer J, Clevers H. A comprehensive transcriptome characterization of individual nuclear receptor pathways in the human small intestine. Proc Natl Acad Sci U S A 2024; 121:e2411189121. [PMID: 39475639 PMCID: PMC11551338 DOI: 10.1073/pnas.2411189121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/24/2024] [Indexed: 11/13/2024] Open
Abstract
Nuclear receptors (NRs) are widely expressed transcription factors that bind small, lipophilic compounds and regulate diverse biological processes. In the small intestine, NRs are known to act as sensors that control transcriptional responses to endogenous and exogenous signals, yet their downstream effects have not been characterized extensively. Here, we investigate the activation of six different NRs individually in human intestinal organoids using small molecules agonists. We observe changes in key enterocyte functions such as lipid, glucose, and amino acid absorption, the regulation of electrolyte balance, and drug metabolism. Our findings reinforce PXR, LXR, FXR, and PPARα as regulators of lipid absorption. Furthermore, known hepatic effects of AHR and VDR activation were recapitulated in the human small intestine. Finally, we identify unique target genes for intestinal PXR activation (ERG28, TMEM97, and TM7SF2), LXR activation (RAB6B), and VDR activation (CA12). This study provides an unbiased and comprehensive transcriptomic description of individual NR pathways in the human small intestine. By gaining a deeper understanding of the effects of individual NRs, we might better harness their pharmacological and therapeutic potential.
Collapse
Affiliation(s)
- Sam Willemsen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
- Oncode Institute, Utrecht3584 CT, The Netherlands
| | - Fjodor A. Yousef Yengej
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
| | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
- Oncode Institute, Utrecht3584 CT, The Netherlands
- Junior Research Group Epithelium Microbiome Interactions, German Cancer Research Center, Heidelberg69120, Germany
| | | | | | - Johan van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
- Oncode Institute, Utrecht3584 CT, The Netherlands
| | - Joep Beumer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
- Oncode Institute, Utrecht3584 CT, The Netherlands
- Institute of Human Biology, Roche Innovation Center Basel, Basel4058, Switzerland
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
- Oncode Institute, Utrecht3584 CT, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht3584 CS, The Netherlands
- Pharma, Research and Early Development of F. Hoffmann-La Roche Ltd, BaselCH-4070, Switzerland
| |
Collapse
|
21
|
Stockinger B, Diaz OE, Wincent E. The influence of AHR on immune and tissue biology. EMBO Mol Med 2024; 16:2290-2298. [PMID: 39242971 PMCID: PMC11473696 DOI: 10.1038/s44321-024-00135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024] Open
Abstract
The aryl hydrocarbon receptor is a ligand dependent transcription factor which functions as an environmental sensor. Originally discovered as the sensor for man made pollutants such as 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) it has recently gained prominence as an important mediator for environmental triggers via the diet or microbiota which influences many physiological functions in different cell types and tissues across the body. Notably AHR activity contributes to prevent excessive inflammation following tissue damage in barrier organs such as skin, lung or gut which has received wide attention in the past decade. In this review we will focus on emerging common AHR functions across cell types and tissues and discuss ongoing issues that confound the understanding of AHR physiology. Furthermore, we will discuss the need for deeper molecular understanding of the functional activity of AHR in different contexts with respect to development of potential therapeutic applications.
Collapse
Affiliation(s)
| | - Oscar E Diaz
- The Francis Crick Institute, London, United Kingdom
| | - Emma Wincent
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
22
|
Halawani D, Wang Y, Estill M, Sefiani A, Ramakrishnan A, Li J, Ni H, Halperin D, Shen L, Geoffroy CG, Friedel RH, Zou H. Aryl hydrocarbon receptor restricts axon regeneration of DRG neurons in response to injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.04.565649. [PMID: 37961567 PMCID: PMC10635160 DOI: 10.1101/2023.11.04.565649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Injured neurons sense environmental cues to balance neural protection and axon regeneration, but the mechanisms are unclear. Here, we unveil aryl hydrocarbon receptor (AhR), a ligand-activated bHLH-PAS transcription factor, as a molecular sensor and key regulator of acute stress response at the expense of axon regeneration. We demonstrate responsiveness of DRG sensory neurons to AhR signaling, which functions to inhibit axon regeneration. Conditional Ahr deletion in neurons accelerates axon regeneration after sciatic nerve injury. Ahr deletion partially mimics the conditioning lesion in priming DRG to initiate axonogenesis gene programs; upon peripheral axotomy, Ahr ablation suppresses inflammation and stress signaling while augmenting pro-growth pathways. Moreover, comparative transcriptomics revealed signaling interactions between AhR and HIF-1α, two structurally related bHLH-PAS α units that share the dimerization partner Arnt/HIF-1β. Functional assays showed that the growth advantage of AhR-deficient DRG neurons requires HIF-1α; but in the absence of Arnt, DRG neurons can still mount a regenerative response. We further unveil a link between bHLH-PAS transcription factors and DNA hydroxymethylation in response to peripheral axotomy, while RNA-seq of DRG neurons and neuronal single cell RNA-seq analysis revealed a link of AhR regulon to RNA regulation and integrated stress response (ISR). Altogether, AhR activation favors stress coping and inflammation at the expense of axon regeneration; targeting AhR has the potential to enhance nerve repair.
Collapse
Affiliation(s)
- Dalia Halawani
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Yiqun Wang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Sport Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Molly Estill
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Arthur Sefiani
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jiaxi Li
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Haofei Ni
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Daniel Halperin
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Cédric G. Geoffroy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, USA
| | - Roland H. Friedel
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Hongyan Zou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
23
|
Cao J, Bao Q, Hao H. Indole-3-Carboxaldehyde Alleviates LPS-Induced Intestinal Inflammation by Inhibiting ROS Production and NLRP3 Inflammasome Activation. Antioxidants (Basel) 2024; 13:1107. [PMID: 39334766 PMCID: PMC11429283 DOI: 10.3390/antiox13091107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Indole-3-carboxaldehyde (IAld) is a tryptophan (Trp) metabolite derived from gut microbiota, which has a potential protective effect on intestinal inflammatory diseases. Abnormal activation of NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is an important cause of intestinal inflammation. However, the effect and mechanism of IAld on NLRP3 inflammasome activation remain unclear. Here, we found that IAld inhibited the activation of the NLRP3 inflammasome in intestinal epithelial cells, and effectively prevented intestinal epithelial barrier injury caused by lipopolysaccharide (LPS) stimulation. Mechanistically, we demonstrated that IAld activated the aryl hydrocarbon receptor (AhR), subsequently prevented reactive oxygen species (ROS) production, maintained mitochondrial membrane potential, and blocked the NF-κB/NLRP3 inflammatory pathway in intestinal epithelial cells. Also, the AhR-specific inhibitor CH-223191 effectively blocked the IAld-induced NLRP3 inhibition and intestinal epithelial barrier repairment. In addition, in vivo results showed that IAld prevented pro-inflammatory mediator production and intestinal inflammatory damage in LPS-induced mice, which is related to AhR activation and NLRP3 inflammasome inhibition. Collectively, our study unveiled that IAld is an effective endogenous antioxidant and suggested the AhR as a potential treatment target for NLRP3-induced intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Ji Cao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qiuyu Bao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
24
|
Augustin HG, Koh GY. A systems view of the vascular endothelium in health and disease. Cell 2024; 187:4833-4858. [PMID: 39241746 DOI: 10.1016/j.cell.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 09/09/2024]
Abstract
The dysfunction of blood-vessel-lining endothelial cells is a major cause of mortality. Although endothelial cells, being present in all organs as a single-cell layer, are often conceived as a rather inert cell population, the vascular endothelium as a whole should be considered a highly dynamic and interactive systemically disseminated organ. We present here a holistic view of the field of vascular research and review the diverse functions of blood-vessel-lining endothelial cells during the life cycle of the vasculature, namely responsive and relaying functions of the vascular endothelium and the responsive roles as instructive gatekeepers of organ function. Emerging translational perspectives in regenerative medicine, preventive medicine, and aging research are developed. Collectively, this review is aimed at promoting disciplinary coherence in the field of angioscience for a broader appreciation of the importance of the vasculature for organ function, systemic health, and healthy aging.
Collapse
Affiliation(s)
- Hellmut G Augustin
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ), 69120 Heidelberg, Germany.
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
25
|
Yang L, Wang S, Jin J, Wang J, Chen W, Xue Y, Sheng L, Zhai Y, Yao W. Sucralose triggers insulin resistance leading to follicular dysplasia in mice. Reprod Toxicol 2024; 128:108644. [PMID: 38880404 DOI: 10.1016/j.reprotox.2024.108644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Sucralose, the extensively utilized sweetener, might lead to metabolic disorders with prolonged consumption, but it remains uncertain if sucralose has any impact on female reproductive health. We incorporated sucralose into drinking water and observed food intake, body weight, estrous cycle, follicular development, serum hormones, and insulin sensitivity of mice. The mice did not experience any changes in their food intake or body weight after consuming sucralose. However, they displayed irregularities in the estrous cycle, marked by a reduced count of primordial, primary, and secondary follicles, coupled with a significant increase in the number of antral follicles. There was a decline in follicle-stimulating hormone (FSH), estradiol (E2), and progesterone (P4) levels, while testosterone (T) and luteinizing hormone (LH) levels surged, leading to a notable elevation in the LH / FSH ratio. Sucralose also induced insulin resistance, as evidenced by elevated insulin levels and impaired insulin tolerance, which responded to an increase in bacterial-derived serum endotoxin. By eliminating insulin resistance with rosiglitazone (RSG), eradicating intestinal flora-derived endotoxins with neomycin (NEO), or enhancing intestinal barrier function with indole-3-carbinol (I3C), the abnormalities in estrous cycle, disruptions in follicular development, hormonal imbalances and elevation in serum endotoxins induced by sucralose were successfully reversed. The present study indicates that sucralose-induced follicular dysplasia in mice is probably related to impaired intestinal permeability, infiltration of endotoxins, initiation of systemic inflammation, and insulin resistance.
Collapse
Affiliation(s)
- Luyao Yang
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Shuangshuang Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Jin
- Department of Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Jiahui Wang
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Wenyue Chen
- Department of Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Yun Xue
- Department of Gynecology, Nanjing Lishui District Maternity and Child Health Care Hospital, Nanjing 211299, China
| | - Liang Sheng
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China.
| | - Yongning Zhai
- Department of Gynecology, Nanjing Lishui District Maternity and Child Health Care Hospital, Nanjing 211299, China; Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, China.
| | - Weifeng Yao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
26
|
Zheng L, Zhan Y, Wang C, Fan Q, Sun D, Li Y, Xiong Y. Technological advances and challenges in constructing complex gut organoid systems. Front Cell Dev Biol 2024; 12:1432744. [PMID: 39206092 PMCID: PMC11349554 DOI: 10.3389/fcell.2024.1432744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Recent advancements in organoid technology have heralded a transformative era in biomedical research, characterized by the emergence of gut organoids that replicate the structural and functional complexity of the human intestines. These stem cell-derived structures provide a dynamic platform for investigating intestinal physiology, disease pathogenesis, and therapeutic interventions. This model outperforms traditional two-dimensional cell cultures in replicating cell interactions and tissue dynamics. Gut organoids represent a significant leap towards personalized medicine. They provide a predictive model for human drug responses, thereby minimizing reliance on animal models and paving the path for more ethical and relevant research approaches. However, the transition from basic organoid models to more sophisticated, biomimetic systems that encapsulate the gut's multifaceted environment-including its interactions with microbial communities, immune cells, and neural networks-presents significant scientific challenges. This review concentrates on recent technological strides in overcoming these barriers, emphasizing innovative engineering approaches for integrating diverse cell types to replicate the gut's immune and neural components. It also explores the application of advanced fabrication techniques, such as 3D bioprinting and microfluidics, to construct organoids that more accurately replicate human tissue architecture. They provide insights into the intricate workings of the human gut, fostering the development of targeted, effective treatments. These advancements hold promise in revolutionizing disease modeling and drug discovery. Future research directions aim at refining these models further, making them more accessible and scalable for wider applications in scientific inquiry and clinical practice, thus heralding a new era of personalized and predictive medicine.
Collapse
Affiliation(s)
- Longjin Zheng
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Yang Zhan
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Chenxuan Wang
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Qigui Fan
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Denglong Sun
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Yingmeng Li
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Yanxia Xiong
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| |
Collapse
|
27
|
Cheng X, Baki VB, Moran M, Liu B, Yu J, Zhao M, Li Q, Riethoven JJ, Gurumurth CB, Harris EN, Sun X. Liver matrin-3 protects mice against hepatic steatosis and stress response via constitutive androstane receptor. Mol Metab 2024; 86:101977. [PMID: 38936659 PMCID: PMC11267048 DOI: 10.1016/j.molmet.2024.101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to rise with the increasing obesity epidemic. Rezdiffra as an activator of a thyroid hormone receptor-beta is the only Food and Drug Administration approved therapy. As such, there is a critical need to improve our understanding of gene expression regulation and signaling transduction in MASLD to develop new therapies. Matrin-3 is a DNA- and RNA-binding protein involved in the pathogenesis of human diseases. Here we examined its previously uncharacterized role in limiting hepatic steatosis and stress response via the constitutive androstane receptor (CAR). METHODS Matrin-3 floxed and liver-specific knockout mice were fed either a chow diet or 60 kcal% high-fat diet (HFD) for up to 16 weeks. The mice were euthanized for different analysis including liver histology, lipid levels, and gene expression. Bulk RNA-seq, bulk ATAC-seq, and single-nucleus Multiome were used to examine changes of transcriptome and chromatin accessibility in the liver. Integrative bioinformatics analysis of our data and publicly available datasets and different biochemical assays were performed to identify underlying the molecular mechanisms mediating matrin-3's effects. Liver-tropic adeno-associated virus was used to restore the expression of CAR for lipid, acute phase genes, and histological analysis. RESULTS Matrin-3 expression is induced in the steatotic livers of mice. Liver-specific matrin-3 deletion exacerbated HFD-induced steatosis, acute phase response, and inflammation in the liver of female mice. The transcriptome and chromatin accessibility were re-programmed in the liver of these mice with signatures indicating that CAR signaling is dysregulated. Mechanistically, matrin-3 interacts with CAR mRNA, and matrin-3 deficiency promotes CAR mRNA degradation. Consequently, matrin-3 deletion impaired CAR signaling by reducing CAR expression. Matrin-3 levels positively correlate with CAR expression in human livers. Ces2a and Il1r1 were identified as new target genes of CAR. Interestingly, we found that CAR discords with the expression of its target genes including Cyp2b10 and Ces2a in response to HFD, indicating CAR signaling is dysregulated by HFD despite increased CAR expression. Dysregulated CAR signaling upon matrin-3 deficiency reduced Ces2a and de-repressed Il1r1 expression. CAR restoration partially abrogated the dysregulated gene expression, exacerbated hepatic steatosis, acute phase response, and inflammation in liver-specific matrin-3 knockout mice fed a HFD. CONCLUSIONS Our findings demonstrate that matrin-3 is a key upstream regulator maintaining CAR signaling upon metabolic stress, and the matrin-3-CAR axis limits hepatic steatosis and stress response signaling that may give insights for therapeutic intervention.
Collapse
Affiliation(s)
- Xiao Cheng
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Vijaya Bhaskar Baki
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Matthew Moran
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Baolong Liu
- Department of Nutrition and Health Sciences, University of Nebraska - Lincoln, 230 Filley Hall, Lincoln, NE 68583-0922, USA
| | - Jiujiu Yu
- Department of Nutrition and Health Sciences, University of Nebraska - Lincoln, 230 Filley Hall, Lincoln, NE 68583-0922, USA
| | - Miaoyun Zhao
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Jean-Jack Riethoven
- Nebraska Center for Biotechnology, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA; Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| | | | - Edward N Harris
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA; Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska - Lincoln, Lincoln, NE 68588, USA; Nebraska Center for the Prevention of Obesity Diseases through Dietary Molecules, University of Nebraska - Lincoln, USA
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA; Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska - Lincoln, Lincoln, NE 68588, USA; Nebraska Center for the Prevention of Obesity Diseases through Dietary Molecules, University of Nebraska - Lincoln, USA.
| |
Collapse
|
28
|
Shibuya S, Watanabe K, Shimizu T. The Antioxidant PAPLAL Protects against Allergic Contact Dermatitis in Experimental Models. Antioxidants (Basel) 2024; 13:748. [PMID: 38929186 PMCID: PMC11200398 DOI: 10.3390/antiox13060748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
PAPLAL, a mixture of platinum (nPt) and palladium (nPd) nanoparticles, is widely used as a topical agent because of its strong antioxidant activity. Allergic contact dermatitis (ACD) is one of the most common occupational skin diseases worldwide. However, the role of oxidative stress in ACD remains unclear. In the present study, we investigated the protective effects of topical PAPLAL treatment on 2,4-dinitrofluorobenzene (DNFB)-induced ACD. DNFB treatment increased 8-isoprostane content; upregulated Xdh, Nox2, and Nox4, pro-oxidant genes; and downregulated Sod1, an antioxidant gene, indicating oxidative damage in the ear skin. PAPLAL therapy significantly reduced ear thickness associated with the downregulation of inflammatory cytokine-related genes. PAPLAL also significantly increased the expression of the stress-response-related genes Ahr and Nrf2, as well as their target genes, but failed to alter the expression of redox-related genes. Furthermore, Sod1 loss worsened ACD pathologies in the ear. These results strongly suggest that PAPLAL protects against ACD through its antioxidant activity and activation of the AHR and NRF2 axes. The antioxidant PAPLAL can be used as a novel topical therapy for ACD that targets oxidative stress.
Collapse
Affiliation(s)
| | | | - Takahiko Shimizu
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu 474-8511, Aichi, Japan; (S.S.); (K.W.)
| |
Collapse
|
29
|
Congues F, Wang P, Lee J, Lin D, Shahid A, Xie J, Huang Y. Targeting aryl hydrocarbon receptor to prevent cancer in barrier organs. Biochem Pharmacol 2024; 223:116156. [PMID: 38518996 PMCID: PMC11144369 DOI: 10.1016/j.bcp.2024.116156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
The skin, lung, and gut are important barrier organs that control how the body reacts to environmental stressors such as ultraviolet (UV) radiation, air pollutants, dietary components, and microorganisms. The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that plays an important role in maintaining homeostasis of barrier organs. AhR was initially discovered as a receptor for environmental chemical carcinogens such as polycyclic aromatic hydrocarbons (PAHs). Activation of AhR pathways by PAHs leads to increased DNA damage and mutations which ultimately lead to carcinogenesis. Ongoing evidence reveals an ever-expanding role of AhR. Recently, AhR has been linked to immune systems by the interaction with the development of natural killer (NK) cells, regulatory T (Treg) cells, and T helper 17 (Th17) cells, as well as the production of immunosuppressive cytokines. However, the role of AhR in carcinogenesis is not as straightforward as we initially thought. Although AhR activation has been shown to promote carcinogenesis in some studies, others suggest that it may act as a tumor suppressor. In this review, we aim to explore the role of AhR in the development of cancer that originates from barrier organs. We also examined the preclinical efficacy data of AhR agonists and antagonists on carcinogenesis to determine whether AhR modulation can be a viable option for cancer chemoprevention.
Collapse
Affiliation(s)
- Francoise Congues
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Pengcheng Wang
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Joshua Lee
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Daphne Lin
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Ayaz Shahid
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Jianming Xie
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Ying Huang
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
30
|
Veland N, Gleneadie HJ, Brown KE, Sardini A, Pombo J, Dimond A, Burns V, Sarkisyan K, Schiering C, Webster Z, Merkenschlager M, Fisher AG. Bioluminescence imaging of Cyp1a1-luciferase reporter mice demonstrates prolonged activation of the aryl hydrocarbon receptor in the lung. Commun Biol 2024; 7:442. [PMID: 38600349 PMCID: PMC11006662 DOI: 10.1038/s42003-024-06089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
Aryl hydrocarbon receptor (AHR) signalling integrates biological processes that sense and respond to environmental, dietary, and metabolic challenges to ensure tissue homeostasis. AHR is a transcription factor that is inactive in the cytosol but upon encounter with ligand translocates to the nucleus and drives the expression of AHR targets, including genes of the cytochrome P4501 family of enzymes such as Cyp1a1. To dynamically visualise AHR activity in vivo, we generated reporter mice in which firefly luciferase (Fluc) was non-disruptively targeted into the endogenous Cyp1a1 locus. Exposure of these animals to FICZ, 3-MC or to dietary I3C induced strong bioluminescence signal and Cyp1a1 expression in many organs including liver, lung and intestine. Longitudinal studies revealed that AHR activity was surprisingly long-lived in the lung, with sustained Cyp1a1 expression evident in discrete populations of cells including columnar epithelia around bronchioles. Our data link diet to lung physiology and also reveal the power of bespoke Cyp1a1-Fluc reporters to longitudinally monitor AHR activity in vivo.
Collapse
Affiliation(s)
- Nicolas Veland
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
| | - Hannah J Gleneadie
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
| | - Karen E Brown
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
| | - Alessandro Sardini
- Whole Animal Physiology and Imaging, MRC Laboratory of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Joaquim Pombo
- Senescence Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Andrew Dimond
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Vanessa Burns
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
| | - Karen Sarkisyan
- Synthetic Biology Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Chris Schiering
- Inflammation and Obesity Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Zoe Webster
- Transgenics & Embryonic Stem Cell Facility, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Amanda G Fisher
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK.
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
31
|
Aburto MR, Cryan JF. Gastrointestinal and brain barriers: unlocking gates of communication across the microbiota-gut-brain axis. Nat Rev Gastroenterol Hepatol 2024; 21:222-247. [PMID: 38355758 DOI: 10.1038/s41575-023-00890-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 02/16/2024]
Abstract
Crosstalk between gut and brain has long been appreciated in health and disease, and the gut microbiota is a key player in communication between these two distant organs. Yet, the mechanisms through which the microbiota influences development and function of the gut-brain axis remain largely unknown. Barriers present in the gut and brain are specialized cellular interfaces that maintain strict homeostasis of different compartments across this axis. These barriers include the gut epithelial barrier, the blood-brain barrier and the blood-cerebrospinal fluid barrier. Barriers are ideally positioned to receive and communicate gut microbial signals constituting a gateway for gut-microbiota-brain communication. In this Review, we focus on how modulation of these barriers by the gut microbiota can constitute an important channel of communication across the gut-brain axis. Moreover, barrier malfunction upon alterations in gut microbial composition could form the basis of various conditions, including often comorbid neurological and gastrointestinal disorders. Thus, we should focus on unravelling the molecular and cellular basis of this communication and move from simplistic framing as 'leaky gut'. A mechanistic understanding of gut microbiota modulation of barriers, especially during critical windows of development, could be key to understanding the aetiology of gastrointestinal and neurological disorders.
Collapse
Affiliation(s)
- María R Aburto
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
32
|
Veluswamy P, Wippermann J, Wacker M. Feeding the vasculature with cruciferous vegetables: a secret for organ protection. Signal Transduct Target Ther 2024; 9:36. [PMID: 38388453 PMCID: PMC10884009 DOI: 10.1038/s41392-024-01747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 02/24/2024] Open
Affiliation(s)
- Priya Veluswamy
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Magdeburg, Germany.
| | - Jens Wippermann
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Max Wacker
- Heart Surgery Research, Department of Cardiothoracic Surgery, Otto-von-Guericke University Hospital, Magdeburg, Germany
| |
Collapse
|
33
|
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, Foo JB, Ong YS, How CW, Khaw KY. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024; 9:37. [PMID: 38360862 PMCID: PMC10869798 DOI: 10.1038/s41392-024-01743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Qi Mak
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Hong Hao Chan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Shiau Hueh Yeow
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
34
|
Bernier-Latmani J, González-Loyola A, Petrova TV. Mechanisms and functions of intestinal vascular specialization. J Exp Med 2024; 221:e20222008. [PMID: 38051275 PMCID: PMC10697212 DOI: 10.1084/jem.20222008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
The intestinal vasculature has been studied for the last 100 years, and its essential role in absorbing and distributing ingested nutrients is well known. Recently, fascinating new insights into the organization, molecular mechanisms, and functions of intestinal vessels have emerged. These include maintenance of intestinal epithelial cell function, coping with microbiota-induced inflammatory pressure, recruiting gut-specific immune cells, and crosstalk with other organs. Intestinal function is also regulated at the systemic and cellular levels, such that the postprandial hyperemic response can direct up to 30% of systemic blood to gut vessels, while micron-sized endothelial cell fenestrations are necessary for nutrient uptake. In this review, we will highlight past discoveries made about intestinal vasculature in the context of new findings of molecular mechanisms underpinning gut function. Such comprehensive understanding of the system will pave the way to breakthroughs in nutrient uptake optimization, drug delivery efficiency, and treatment of human diseases.
Collapse
Affiliation(s)
- Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | | | - Tatiana V. Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
Han Q, Yan X, Wang L, Zhang N, Zhang W, Li H, Chen W, You H, Yang A. Aryl hydrocarbon receptor attenuates cholestatic liver injury by regulating bile acid metabolism. Biochem Biophys Res Commun 2023; 682:259-265. [PMID: 37826949 DOI: 10.1016/j.bbrc.2023.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
Cholestatic liver disease is defined as the bile acids (BAs) accumulation in the liver caused by impaired synthesis, and secretion, together with excretion of BAs due to a variety of factors, which, if left untreated, can result in hepatic fibrosis, cholestatic cholangitis, cholestatic cirrhosis, eventually, end-stage liver disease. Currently, modulation of BA metabolism is still a prospective therapeutic strategy for treating the cholestatic diseases. Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor with far-reaching effects on the chronic liver disease. However, its role and mechanism in cholestatic liver damage is still unknown. Therefore, in this work, we explored the impact of AHR on the cholestatic liver injury using AHR overexpression mediated by adeno-associated viral (AAV) vectors. We found that AHR is differentially expressed in different stages of cholestatic liver disease, showing either down-regulation or an increase in protective effects. Overexpression of AHR increased body weight, decreased serum total bilirubin (TBil) and alkaline phosphatase (ALP), reduced porphyrin accumulation in liver tissue, and regulated the bile acid pool in the cholestatic mouse model induced by DDC diet. Overall, our data indicate that AHR attenuated cholestatic liver injury. AHR function indicates that it may have an action in the clinical management of cholestasis.
Collapse
Affiliation(s)
- Qi Han
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Xuzhen Yan
- Beijing Clinical Research Institute, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China; Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Likai Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ning Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Wen Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Hong Li
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Wei Chen
- Beijing Clinical Research Institute, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China; Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China.
| | - Aiting Yang
- Beijing Clinical Research Institute, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China; Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
36
|
Hou JJ, Ma AH, Qin YH. Activation of the aryl hydrocarbon receptor in inflammatory bowel disease: insights from gut microbiota. Front Cell Infect Microbiol 2023; 13:1279172. [PMID: 37942478 PMCID: PMC10628454 DOI: 10.3389/fcimb.2023.1279172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory intestinal disease that affects more than 3.5 million people, with rising prevalence. It deeply affects patients' daily life, increasing the burden on patients, families, and society. Presently, the etiology of IBD remains incompletely clarified, while emerging evidence has demonstrated that altered gut microbiota and decreased aryl hydrocarbon receptor (AHR) activity are closely associated with IBD. Furthermore, microbial metabolites are capable of AHR activation as AHR ligands, while the AHR, in turn, affects the microbiota through various pathways. In light of the complex connection among gut microbiota, the AHR, and IBD, it is urgent to review the latest research progress in this field. In this review, we describe the role of gut microbiota and AHR activation in IBD and discussed the crosstalk between gut microbiota and the AHR in the context of IBD. Taken as a whole, we propose new therapeutic strategies targeting the AHR-microbiota axis for IBD, even for other related diseases caused by AHR-microbiota dysbiosis.
Collapse
Affiliation(s)
| | | | - Yue-Hua Qin
- Department of Gastroenterology, Shaoxing People’s Hospital, Shaoxing, China
| |
Collapse
|
37
|
Tat RP, Robinson CM. Maintaining a healthy balance: How endothelial AHR signaling helps regulate tissue homeostasis and protection. Cell Host Microbe 2023; 31:1593-1594. [PMID: 37827117 DOI: 10.1016/j.chom.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023]
Abstract
Two recent Nature papers reveal that aryl hydrocarbon receptor (AHR) signaling in endothelial cells plays a vital role in cellular quiescence and tissue homeostasis. These studies highlight the important role endothelial cells of the vasculature system play in maintaining a healthy barrier that limits inflammation and protects against invading pathogens.
Collapse
Affiliation(s)
- Rachel P Tat
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christopher M Robinson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
38
|
Stone OA, Kiefer F. Endothelial sensing of dietary metabolites supports barrier tissue homeostasis. NATURE CARDIOVASCULAR RESEARCH 2023; 2:861-863. [PMID: 39196253 DOI: 10.1038/s44161-023-00341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Oliver A Stone
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK.
| | - Friedemann Kiefer
- University of Münster, European Institute for Molecular Imaging, Münster, Germany.
| |
Collapse
|
39
|
Major J, Crotta S, Finsterbusch K, Chakravarty P, Shah K, Frederico B, D'Antuono R, Green M, Meader L, Suarez-Bonnet A, Priestnall S, Stockinger B, Wack A. Endothelial AHR activity prevents lung barrier disruption in viral infection. Nature 2023; 621:813-820. [PMID: 37587341 PMCID: PMC7615136 DOI: 10.1038/s41586-023-06287-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/06/2023] [Indexed: 08/18/2023]
Abstract
Disruption of the lung endothelial-epithelial cell barrier following respiratory virus infection causes cell and fluid accumulation in the air spaces and compromises vital gas exchange function1. Endothelial dysfunction can exacerbate tissue damage2,3, yet it is unclear whether the lung endothelium promotes host resistance against viral pathogens. Here we show that the environmental sensor aryl hydrocarbon receptor (AHR) is highly active in lung endothelial cells and protects against influenza-induced lung vascular leakage. Loss of AHR in endothelia exacerbates lung damage and promotes the infiltration of red blood cells and leukocytes into alveolar air spaces. Moreover, barrier protection is compromised and host susceptibility to secondary bacterial infections is increased when endothelial AHR is missing. AHR engages tissue-protective transcriptional networks in endothelia, including the vasoactive apelin-APJ peptide system4, to prevent a dysplastic and apoptotic response in airway epithelial cells. Finally, we show that protective AHR signalling in lung endothelial cells is dampened by the infection itself. Maintenance of protective AHR function requires a diet enriched in naturally occurring AHR ligands, which activate disease tolerance pathways in lung endothelia to prevent tissue damage. Our findings demonstrate the importance of endothelial function in lung barrier immunity. We identify a gut-lung axis that affects lung damage following encounters with viral pathogens, linking dietary composition and intake to host fitness and inter-individual variations in disease outcome.
Collapse
Affiliation(s)
- Jack Major
- Immunoregulation Laboratory, Francis Crick Institute, London, UK.
- Laboratory of Epithelial Barrier Immunity, New York University Langone Health, New York, NY, USA.
| | - Stefania Crotta
- Immunoregulation Laboratory, Francis Crick Institute, London, UK
| | | | | | - Kathleen Shah
- AhRimmunity Laboratory, Francis Crick Institute, London, UK
- Immunology Research Unit, GSK, Stevenage, UK
| | - Bruno Frederico
- Immunobiology Laboratory, Francis Crick Institute, London, UK
- Early Oncology, R&D, AstraZeneca, Cambridge, UK
| | | | - Mary Green
- Experimental Histopathology, Francis Crick Institute, London, UK
| | - Lucy Meader
- Experimental Histopathology, Francis Crick Institute, London, UK
| | - Alejandro Suarez-Bonnet
- Experimental Histopathology, Francis Crick Institute, London, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hertfordshire, UK
| | - Simon Priestnall
- Experimental Histopathology, Francis Crick Institute, London, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hertfordshire, UK
| | | | - Andreas Wack
- Immunoregulation Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|